{"created":"2023-05-15T08:44:50.761319+00:00","id":10142,"links":{},"metadata":{"_buckets":{"deposit":"292c97f8-26c1-4d30-a7ae-935675955ac1"},"_deposit":{"created_by":13,"id":"10142","owners":[13],"pid":{"revision_id":0,"type":"depid","value":"10142"},"status":"published"},"_oai":{"id":"oai:uec.repo.nii.ac.jp:00010142","sets":["7:287"]},"author_link":["27100"],"control_number":"10142","item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2022-02-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"16","bibliographicPageStart":"7","bibliographicVolumeNumber":"34","bibliographic_titles":[{"bibliographic_title":"電気通信大学紀要","bibliographic_titleLang":"ja"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"This paper once again introduces one traditional Japanese mathematical book, Kenki Sanpo (1683) by Katahiro Takebe (1664 - 1739). In this book Takebe solved a problem of area of segment utilizing the approximate formula for the length of arc reduced as a result of polynomial interpolation. The author poses the hypothesis to reconstruct Takebe’s formula, which the formula has close resemblance to the minimax approximation polynomial.","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.18952/00010049","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"電気通信大学"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"09150935","subitem_source_identifier_type":"ISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"佐藤, 賢一","creatorNameLang":"ja"},{"creatorName":"サトウ, ケンイチ","creatorNameLang":"ja-Kana"},{"creatorName":"SATO, Kenichi","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"27100","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2022-03-18"}],"displaytype":"detail","filename":"340102.pdf","filesize":[{"value":"3.2 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"340102","url":"https://uec.repo.nii.ac.jp/record/10142/files/340102.pdf"},"version_id":"7bd61322-b899-42c2-ab6a-803dbe0081a1"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Katahiro Takebe","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Kenki Sanpo","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Takakazu Seki","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"minimax approximation polynomial","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"建部賢弘『研幾算法』による弓形の弧長の導出式の復元について(続)","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"建部賢弘『研幾算法』による弓形の弧長の導出式の復元について(続)","subitem_title_language":"ja"}]},"item_type_id":"10002","owner":"13","path":["287"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2022-02-01"},"publish_date":"2022-02-01","publish_status":"0","recid":"10142","relation_version_is_last":true,"title":["建部賢弘『研幾算法』による弓形の弧長の導出式の復元について(続)"],"weko_creator_id":"13","weko_shared_id":-1},"updated":"2024-02-20T05:19:57.706086+00:00"}