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ElGamal-type Encryption for Optimal Dynamic Quantizer
in Encrypted Control Systems

Kaoru TERANISHI
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Abstract : This study considers a quantizer design problem with controller encryption for minimizing performance degra-

dation caused by encryption. It is difficult to design an optimal dynamic quantizer that converts real numbers to plaintexts

for encrypted control systems with ElGamal encryption because the plaintext space of ElGamal encryption is intermittent

and does not include zero and negative numbers. A variant of ElGamal encryption is proposed to apply a conventional

optimal dynamic quantizer for encrypted control systems. The proposed multiplicative homomorphic cryptosystem,

wherein the plaintext space is consecutive integers within a certain range, can handle zero and negative integers properly.

Numerical simulations demonstrate that the optimal dynamic quantizer with the proposed cryptosystem improves the

control performance of an encrypted regulator.

Key Words : cyber-security, encrypted control, homomorphic encryption, dynamic quantizer.

1. Introduction

Threats against control systems are essential concerns in re-

cent years [1]–[3]. Encrypted control [4] is expected to im-

prove the cyber-security of control systems because it reduces

the risks of eavesdropping attacks, which are the main class of

attacks for control systems [2]. This attack is performed for col-

lecting information about a targeted control system to execute

more severe attacks such as replay attacks [5]. In encrypted

control systems, control inputs are directly determined using

encrypted data without decryption, and thus, it effectively pre-

vents eavesdropping attacks.

Encrypted control with multiplicative homomorphic encryp-

tion, such as RSA [6] and ElGamal encryption [7], was pro-

posed in [4]. Not only signals over network links but also

controller parameters are concealed by encryption. Encrypted

control with additive homomorphic encryption, such as Paillier

encryption [8], was studied in [9]. In this encrypted control

scheme, either signals or controller gains are encrypted. En-

crypted control with fully homomorphic encryption was pro-

vided in [10]. Additive and fully homomorphic encryption

require higher computational costs than multiplicative homo-

morphic encryption; therefore, multiplicative homomorphic en-

cryption would be most suitable for encrypting control systems.

Furthermore, a detection method for falsification attacks and

replay attacks based on encrypted control with multiplicative

homomorphic encryption was introduced in [11], [13].

For designing encrypted control systems, controller param-

eters and signals should be quantized. This quantization may

cause a degradation of stability and control performance [12].

Several studies were conducted to avoid destabilization by en-

cryption. The authors of [9] introduced a binary number repre-

sentation for quantization in encrypted control. This method is

∗ Department of Mechanical and Intelligent Systems Engineer-

ing, The University of Electro-Communications, Chofu, Tokyo,

Japan
E-mail: teranishi@uec.ac.jp, kogiso@uec.ac.jp
(Received xxx 00, 0000)
(Revised xxx 00, 0000)

suitable for implementing encrypted control systems with addi-

tive homomorphic encryption on digital computers. The quan-

tization approach of [14] was applied for an encrypted state-

feedback controller with Paillier encryption to achieve asymp-

totic stability [16]. The quantization approach for average con-

sensus control, event-triggered control, and control of nonlin-

ear scalar systems were also considered [15],[16]. The authors

of [17] proposed a dynamic quantizer for encrypted control sys-

tems with ElGamal encryption. The dynamic quantizer guaran-

tees that a closed-loop system with an encrypted state-feedback

controller inherits the asymptotic stability of an unencrypted

closed-loop system. Furthermore, encrypted event-triggered

control with the dynamic quantizer was studied [18].

Previous studies on quantization in encrypted control sys-

tems focused only on guaranteeing the stability of a control

system after encryption. Despite the criticality of control per-

formance as well as stability in control systems, the conven-

tional quantization methods do not consider the control perfor-

mance of encrypted control systems. Minimizing the degrada-

tion of control performance caused by the quantization and es-

timating the degree of performance degradation before control

systems operation is meaningful for the efficient design of en-

crypted control systems and performance guarantee. Therefore,

we consider the following problem.

Problem 1. Given a multiplicative homomorphic encryption

scheme and a controller stabilizing a plant, assume that there

exists an encrypted controller such that a closed-loop system

with the plant is stable. Design a quantizer to minimize the

maximum error between the output of the unencrypted control

system and an encrypted control system and determine the max-

imum error.

Azuma and Sugie’s dynamic quantizer [19] may be consid-

ered a solution to the above problem. Their dynamic quantizer

is a general form of ∆Σmodulator consisting of a uniform mid-

tread quantizer, which rounds off an argument to the nearest

neighbor of a discrete output set, and a quantizer state updated

based on a quantization error. The dynamic quantizer mini-
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mizes the maximum quantization error within the scope of us-

ing the simple quantizer structure. Additionally, the maximum

error is explicitly determined simultaneously with the quantizer

design.

Despite a number of merits of the dynamic quantizer, apply-

ing it to encrypted control systems is not straightforward be-

cause, in general, a plaintext space of multiplicative homomor-

phic encryption does not include zero and negative numbers.

Numbers not included in a plaintext space cannot be encrypted,

and thus, we can handle only positive numbers as long as con-

ventional multiplicative homomorphic encryption is used. Fur-

thermore, using ElGamal encryption, a plaintext space is in-

termittent. The dynamic quantizer guarantees optimality only

when the output set of the quantizer is uniform. Note that a

naive variable transformation, such as adding a number to an

argument to shift non-positive numbers to positive numbers,

cannot be applied to convert a real number and plaintext be-

cause an identity element is not preserved before and after the

transformation. Besides, in principle, zero cannot be consid-

ered in a plaintext space of conventional multiplicative homo-

morphic encryption no matter what a variable transformation

is used since a multiplication between zero and any number is

always zero.

We propose a variant of ElGamal encryption using encod-

ing and decoding maps, converting real numbers and plaintexts

to each other to apply Azuma and Sugie’s dynamic quantizer

for encrypted control systems. The proposed cryptosystem can

appropriately handle zero and negative numbers while preserv-

ing multiplicative homomorphism. Additionally, a plaintext

space of the proposed encryption scheme can be regarded as

consecutive integers through the encoding and decoding maps.

Thus, the dynamic quantizer in encrypted control systems with

the variant achieves optimal performance. Numerical exam-

ples confirm that the proposed scheme improves control per-

formance compared to one in a case with the normal ElGamal

cryptosystem.

The remainder of this paper is organized as follows. Sec-

tion 2 summarizes the preliminaries of number theory, cryptog-

raphy, and encrypted control. Section 3 describes the proposed

encryption scheme with encoding and decoding maps to im-

plement an optimal dynamic quantizer. Section 4 introduces

an optimal dynamic quantizer in encrypted control systems us-

ing the proposed cryptosystem. Section 5 provides the results

of numerical simulation demonstrating the validity of the pro-

posed method. Finally, Section 6 describes the conclusions and

future work.

2. Preliminaries

2.1 Notation

The sets of real numbers, integers, primes, security param-

eters, key pairs, public keys, secret keys, plaintexts, and ci-

phertexts are denoted by R, Z, P, S, K, Kp, Ks, M, and

C, respectively. We define sets R+ ≔ {x ∈ R | 0 ≤ x},

Z+ ≔ {z ∈ Z | 0 ≤ z}, Zn ≔ {z ∈ Z | 0 ≤ z < n}, and

Pb
a ≔ {a

i mod b | i ∈ Zb}. The set of vectors whose sizes

are n is denoted by Rn, and the set of matrices whose sizes are

m × n is denoted by Rm×n. The ith element of a vector v = (vi)

is denoted by vi, and the (i, j) entry of a matrix M = (Mi j)

is denoted by Mi j. For a, b ∈ Z, we use a | b if a divides

b; otherwise, we use a ∤ b. The floor function is defined as

⌊·⌋ : R → Z : x 7→ max{z ∈ Z | z ≤ x}. The identity map on a

set A is denoted by idA.

Definition 1. The minimal residue of an integer a modulo m is

defined as

a Mod m =















b, b < |b − m|,

b − m, otherwise,

where b = a mod m.

Definition 2. An integer a is called as a quadratic residue mod-

ulo m if there exists an integer b such that b2 = a mod m.

We use Gauss’s notation, i.e., we use a R m if a is a quadratic

residue modulo m; otherwise, we use a N m.

Definition 3. The Legendre symbol is a map from Z× (P \ {2})

to {−1, 0, 1} defined as















z

p















L

: (z, p) 7→ z
p−1

2 Mod p =



























0, p | z,

1, z R p ∧ p ∤ z,

− 1, z N p ∧ p ∤ z.

2.2 ElGamal encryption

ElGamal encryption is a tuple E ≔ (Gen,Enc,Dec), where

Gen : S → K = Kp × Ks : k 7→ (pk, sk) = ((p, q, g, h), s) is

a key generation algorithm, Enc : Kp ×M → C : (pk,m) 7→

c = (gr mod p,mhr mod p) is an encryption algorithm, Dec :

Ks × C → M : (sk, (c1, c2)) 7→ c1
−sc2 mod p is a decryption

algorithm, pk is a public key, sk is a secret key, q is a k bit

prime, p = 2q + 1 is a safe prime, g is a generator of a cyclic

group G ≔ {gi mod p | i ∈ Zq} = M ⊂ Zp \ {0} such that

gq mod p = 1, h = gs mod p, C = G2, and r and s are random

numbers in Zq. Enc and Dec perform elementwise operations

for a vector and a matrix.

Remark 1. For m,m′ ∈ M, ElGamal encryption satisfies the

following homomorphism:

Dec(sk,Enc(pk,m) ∗ Enc(pk,m′) mod p) = mm′ mod p,

where ∗ is the Hadamard product.

2.3 Encrypted Controller

A plant P and a controller f are given as follows:

P :















x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t),

f :















xc(t + 1) = Acxc(t) + Bcy(t),

u(t) = Ccxc(t) + Dcy(t),

where t ∈ Z+ is a time step, x ∈ Rn is a state, u ∈ Rm is an input,

y ∈ Rl is an output, A, B, and C are plant parameters, xc ∈

Rnc is a controller state, and Ac, Bc, Cc, and Dc are controller

parameters. f can be rewritten as f : R(nc+m)×(nc+l) × Rnc+l →

Rnc+m : (Φ, ξ(t)) 7→ ψ(t), where

ψ(t) ≔

[

xc(t + 1)

u(t)

]

, Φ ≔

[

Ac Bc

Cc Dc

]

, ξ(t) ≔

[

xc(t)

y(t)

]

.

Definition 4. Given a controller f and multiplicative homo-

morphic encryption, such as ElGamal encryption E ,
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R P
q

2
× Zq G3

A∆ C

B∆ D

Fig. 1 Encoding and decoding maps.

f ×Enc : C(nc+m)×(nc+l) × Cnc+l → C(nc+m)×(nc+l)

is called an encrypted controller [4] if it satisfies

f ×Enc(Enc(Φ̌),Enc(ξ̌)) = Enc(Ψ̌),

Dec+(Enc(Ψ̌)) = ψ̌,

where f is divided as f = f + ◦ f × [4],

f × : ((Φi j), (ξ j)) 7→ (Φi jξ j) ≕ Ψ,

f + : (Ψi j) 7→
(

Σ jΨi j

)

= ψ,

Dec+ ≔ f + ◦Dec, and Φ̌, ξ̌, Ψ̌, and ψ̌ are plaintexts of Φ, ξ, Ψ,

and ψ, respectively.

3. Variant of ElGamal Encryption

This section proposes a modified ElGamal encryption whose

plaintext space has uniform width and contains zero and nega-

tive numbers. Our basic idea is based on the fact that G is a set

of quadratic residue modulo p, and (m/p)Lm can be used for

encoding to G for all m ∈ Zp \ {0} [20]. The proposed cryp-

tosystem can be used to design an optimal dynamic quantizer

for encrypted control systems.

Definition 5. We define encoding maps A∆ and C , and decod-

ing maps B∆ and D in Fig. 1 as

A∆ : R→ P
q

2
× Zq

: x 7→















(1, ⌊|x|/∆ + 1/2⌋ mod q), x ≥ 0,

(2, ⌊|x|/∆ + 1/2⌋ mod q), x < 0,

B∆ : P
q

2
× Zq → R

: (ζ, z) 7→















ζ

3















L

∆z,

C : P
q

2
× Zq → G

3

: (ζ, z) 7→



































































ζ

p















L

ζ, g, 1















mod p, z = 0,





























ζ

p















L

ζ, 1,















z

p















L

z















mod p, z , 0,

D : G3 → P
q

2
× Zq

: (ω, θ,m) 7→















(|ωMod p|, |m Mod p|), θ = 1,

(|ωMod p|, 0), θ , 1,

where ∆ ∈ R+ \ {0} is a resolution. For simplicity, we employ

Ecd∆ ≔ C ◦A∆ and Dcd∆ ≔B∆ ◦D , which perform elemen-

twise operations for a vector and a matrix.

Proposition 1. If |x|/∆ ∈ Zq, then B∆(A∆(x)) = x.

Proof. Let (ζ, z) = A∆(x). Then, z = |x|/∆.

B∆(A∆(x)) =















ζ

3















L

∆|x|/∆,

=















(1 Mod 3) × |x| = |x|, x ≥ 0,

(2 Mod 3) × |x| = −|x|, x < 0,

= x. �

Remark 2. In practice, an error caused by A∆ and B∆ is

bounded from above by ∆/2, that is, |B∆(A∆(x)) − x| ≤ ∆/2.

Therefore, the error converges to zero as ∆ goes to zero.

Proposition 2. D ◦ C = idPq

2
×Zq

.

Proof. Define maps α : (Zq \ {0}) → G : a 7→ (a/p)La mod p

and β : G → (Zq \ {0}) : b 7→ |b Mod p|. Let y ∈ Zq. If

(y/p)L = 1, then β(α(y)) = |y Mod p| = |y| = y. Similarly, if

(y/p)L = −1, then β(α(y)) = |p − y Mod p| = |p − y − p| = y.

Thus, β ◦ α = idZq\{0}.

Let (ζ, z) ∈ P
q

2
× Zq, and (ω, θ,m) = C (ζ, z). If z = 0, then

D(C (ζ, z)) = D((ζ/p)Lζ mod p, g, 1),

= D(α(ζ), g, 1),

= (β(α(ζ)),0),

= (ζ, z).

If z , 0, then

D(C (ζ, z)) = D((ζ/p)Lζ mod p, 1, (z/p)Lz mod p),

= D(α(ζ), 1, α(z)),

= (β(α(ζ)), β(α(z))),

= (ζ, z). �

Theorem 1. If |x|/∆ ∈ Zq, then Dcd∆(Ecd∆(x)) = x.

Proof. The theorem follows from Propositions 1 and 2. �

This theorem implies that the encoding and decoding maps

convert an argument without loss of information when errors

do not occur in A∆ and B∆.

Definition 6. We modify ElGamal encryption as E† ≔

(Gen,Enc†,Dec†):

Enc† : Kp ×M→ C

: (pk, (m1,m2,m3))

7→ (Enc(pk,m1),Enc(pk,m2),Enc(pk,m3)),

Dec† : Ks × C →M

: (sk, (c1, c2, c3))

7→ (Dec(sk, c1),Dec(sk, c2),Dec(sk, c3)),

where c1, c2, c3 ∈ G
2, M = G3, and C = G6. Enc† and Dec†

perform elementwise operations for a vector and a matrix. In

the following, we omit pk and sk in the encryption and decryp-

tion algorithms for simplicity.

Remark 3. From Proposition 2, we can regard the plaintext

space M as P
q

2
× Zq. P

q

2
and Zq are involved with a sign

and magnitude of plaintext, respectively. That is, the plaintext

space can be treated as a set of consecutive integers. Although



SICE JCMSI, Vol. 0, No. 0, xxx 20064

this study considers using Azuma and Sugie’s dynamic quan-

tizer for quantization in encrypted control, the property of our

proposed cryptosystem is also useful for other quantizers. For

example, a logarithmic quantizer cannot be applied for quanti-

zation in encrypted control with the normal ElGamal cryptosys-

tem because it is impossible to design a resolution to determine

the quantizer’s output set due to intermittence of a plaintext

space of the encryption scheme. In contrast, a plaintext space

of our cryptosystem is consecutive. Therefore, we can easily

design a logarithmic quantizer resolution for encrypted control

by using the cryptosystem.

Theorem 2. Let |x|/∆, |x′|/∆′ ∈ Zq. If |xx′ |/(∆∆′) ∈ Zq, then

E† satisfies the following homomorphism:

Dcd∆∆′ (Dec†(Enc†(Ecd∆(x)) ∗ Enc†(Ecd∆′ (x′)) mod p))

= xx′.

Proof. Let (ζ, z) = A∆(x), (ζ′, z′) = A∆′ (x′), (ω, θ,m) =

C (ζ, z), (ω′, θ′,m′) = C (ζ′, z′), c = Enc†(ω, θ,m), and c′ =

Enc†(ω′, θ′,m′). Then, z = |x|/∆ and z′ = |x′|/∆′.

(i) z = 0 ∧ z′ , 0 ⇐⇒ x = 0 ∧ x′ , 0

Dcd∆∆′ (Dec†(c ∗ c′ mod p))

= Dcd∆∆′ (ωω
′ mod p, g,m′),

=B∆∆′ (1, 0),

=















1

3















L

∆∆′ × 0,

= 0.

(ii) (z/p)L = 1 ∧ (z′/p)L = 1

Dcd∆∆′ (Dec†(c ∗ c′ mod p))

= Dcd∆∆′ (ωω
′ mod p, 1, zz′ mod p),

=B∆∆′ (ζζ
′, zz′),

=















ζζ′

3















L

∆∆′|x||x′ |/(∆∆′),

=















ζζ′

3















L

|x||x′ |,

=



































































(20 Mod 3) × |xx′| = |xx′ |,

for x ≥ 0 ∧ x′ ≥ 0,

(21 Mod 3) × |xx′| = −|xx′ |,

for (x ≥ 0 ∧ x′ < 0) ∨ (x < 0 ∧ x′ ≥ 0),

(22 Mod 3) × |xx′| = |xx′ |,

for x < 0 ∧ x′ < 0,

= xx′.

(iii) (z/p)L = −1 ∧ (z′/p)L = 1

Dcd∆∆′ (Dec†(c ∗ c′ mod p))

= Dcd∆∆′ (ωω
′ mod p, 1, (p − z)z′ mod p),

=B∆∆′ (ζζ
′, |p − zz′ − p|),

=B∆∆′ (ζζ
′, zz′),

= xx′.

f ×
Enc† z−1 P

Ecd∆ξEnc†

Dcd∆Φ∆ξDec+

u(t)

y(t)

xc(t + 1)

xc(t)

Enc†(ξ̌(t))

Enc†(Ψ̌(t))

Fig. 2 Block diagram of encrypted control system.

(iv) (z/p)L = −1 ∧ (z′/p)L = −1

Dcd∆∆′ (Dec†(c ∗ c′ mod p))

= Dcd∆∆′ (ωω
′ mod p, 1, (p − z)(p − z′) mod p),

= Dcd∆∆′ (ωω
′ mod p, 1, zz′ mod p),

= xx′.

Because of the symmetry of x and x′, the proofs for the cases

of z , 0∧ z′ = 0 and (z/p)L = 1∧ (z′/p)L = −1 are the same as

(i) and (iii), respectively. �

Remark 4. In the modified ElGamal encryption scheme, mul-

tiplication between ciphertexts is allowed up to ⌊log2 q⌋ times.

Fig. 2 depicts a block diagram of an encrypted control sys-

tem with the modified ElGamal cryptosystem. In this case,

the plaintexts are denoted as Φ̌ = Ecd∆Φ (Φ), ξ̌ = Ecd∆ξ (ξ),

Ψ̌ = Ecd∆Φ∆ξ (Ψ) = f ×(Φ̌, ξ̌), and ψ̌ = Ecd∆Φ∆ξ (ψ) = f (Φ̌, ξ̌).

4. Optimal Dynamic Quantizer

To implement encrypted controllers, controller parameters

and signals should be converted into the plaintext space. This

process can be regarded as the quantization of controller pa-

rameters and signals in a closed-loop system [17].

P̃ and f̄ in Fig. 3, which is a quantized control system equiv-

alent to Fig. 2, are given as follows:

P̃ :



































[

xc(t + 1)

x(t + 1)

]

=

[

O O

O A

] [

xc(t)

x(t)

]

+

[

I O

O B

]

ψ(t),

ξ(t) =

[

I O

O C

] [

xc(t)

x(t)

]

,

f̄ : ψ(t) = Φ̄ξ̄(t) =

[

Āc B̄c

C̄c D̄c

]

ξ̄(t),

where Q : ξ 7→ ξ̄ is a quantizer, I and O are, respectively, an

identity matrix and a zero matrix of an appropriate size, and

Φ̄ = Dcd∆Φ (Ecd∆Φ(Φ)). The closed-loop system can be written

as

Σ :















xΣ(t + 1) = AΣxΣ(t) + BΣξ̄(t),

ξ(t) = CΣxΣ(t),

where

xΣ(t) =

[

xc(t)

x(t)

]

, AΣ =

[

O O

O A

]

,

BΣ =

[

Āc B̄c

BC̄c BD̄c

]

, CΣ =

[

I O

O C

]

.
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Theorem 3. Suppose A is Schur, and CΣBΣ is a non-singular

matrix. An optimal dynamic quantizer in Fig. 4,

Q⋆ :















xq(t + 1) = Aqxq(t) + Bq(ξ̄(t) − ξ(t)),

ξ̄(t) = Dcd∆ξ (Ecd∆ξ (Cqxq(t) + ξ(t))),

minimizing

E(Q) ≔ sup
xΣ(0)∈Rnc+n

sup
t∈Z+
‖ξ̄(t) − ξI(t)‖∞

can be designed as

Aq = AΣ, Bq = BΣ, and Cq = −(CΣBΣ)
−1CΣAΣ,

where xq is a quantizer state, xq(0) = 0, Aq, Bq, and Cq are

quantizer parameters, and ξI is an output of P̃ in Fig. 3 when

the quantizer Q is not involved. Furthermore, the maximum

difference between ξ̄(t) and ξI(t) is given as

E(Q⋆) = ‖CΣBΣ‖∞
∆ξ

2
.

The proof is omitted due to space constraints. The complete

proof of an optimal dynamic quantizer is shown in [19].

Remark 5. Q⋆ is stable if and only if the following system is

stable [19]:

xq(t + 1) = (AΣ − BΣ(CΣBΣ)
−1CΣAΣ)xq(t) + BΣw(t),

ξ̄(t) = −(CΣBΣ)
−1CΣAΣxq(t) + ξ(t) + w(t),

where w(t) = Dcd∆ξ (Ecd∆ξ (Cqxq(t) + ξ(t))) − (Cqxq(t) + ξ(t)).

Remark 6. The dynamic quantizer may be applied for en-

crypted control systems even though the normal ElGamal cryp-

tosystem is employed by using the conventional encoding and

decoding maps [4], [17]. However, the quantization results are

not optimal [19] because the intermittence of a plaintext space

is not solved, and the maps cannot consider zero. In these cases,

E(Q⋆) is upper-bounded as

E(Q⋆) ≤ ‖CΣB′Σ‖∞
∆ξdmax

2
, B′Σ =

[

Ā′c B̄′c
BC̄′c BD̄′c

]

,

where dmax is the maximum width of M, and Ā′c, B̄′c, C̄′c, and

D̄′c are given by the encoding and decoding maps. Unfortu-

nately, there is no efficient method to search dmax of a given

cryptosystem in our best knowledge. The computation time of

the linear search for finding dmax is O(2k). Thus, using the pre-

vious encoding and decoding maps and the calculation of the

upper-bound are not practical if the key length is large.

Remark 7. Although the dynamic quantizer does not necessar-

ily guarantee the stability of a closed-loop system, it is possible

to achieve asymptotic stability by changing the resolution ∆ξ
according to plant behavior [17].

5. Numerical Example

Consider the following continuous-time plant:

A =

[

−0.1 0.1

0 −0.3

]

, B =

[

0

1

]

, C =
[

1 1
]

.

This plant is discretized as

f̄ P̃

Q

ψ(t)

ξ(t)ξ̄(t)

Fig. 3 Equivalent block diagram of encrypted control system.

Σ

Q⋆

ξ̄(t) ξ(t)

Fig. 4 Optimal dynamic quantizer.

A =

[

0.990 0.010

0 0.970

]

, B =

[

4.934 × 10−4

0.099

]

, C =
[

1 1
]

,

where a sampling period is set to 0.1 s.

A regulator for the plant is given as















x̂(t + 1) = (A + BF)x̂(t) + L(Cx̂(t) − y(t)),

u(t) = Fx̂(t),

where x̂ ∈ Rn is an estimated state, L ∈ Rn×l is an observer gain,

and F ∈ Rm×n is a state-feedback gain. In this case, controller

parameters are Ac = A + BF + LC, Bc = −L, Cc = F, and

Dc = O. The observer gain and the state-feedback gain are

designed by using the discrete-time linear quadratic regulator

problem as

F =
[

−0.351 −0.739
]

, L =

[

−0.402

−0.318

]

,

where state weights and input weights are set to I and 1, respec-

tively.

The parameters of E† are k = 32, p = 6848919887, q =

3424459943, g = 2, h = 5527055734, s = 1076876626, and

dmax = 32. We select ∆Φ = 1 × 10−2 and ∆ξ = 5 × 10−2, and

then, Q⋆ is designed as

Aq =































0 0 0 0

0 0 0 0

0 0 0.990 0.010

0 0 0 0.970































,

Bq =































0.590 −0.390 0.400

−0.350 0.580 0.320

−1.727 × 10−4 −3.651 × 10−4 0

−0.034 −0.073 0































,

Cq =





















0 0 9.690 9.594

0 0 8.930 8.841

0 0 −5.587 −5.531





















,

and

E(Q⋆) = 0.034, ‖CΣB′Σ‖∞
∆ξdmax

2
= 1.120.

Fig. 5(a) and (b) show the input and output of the encrypted

control system using the dynamic quantizer with the normal
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Fig. 5 Control performance of the encrypted control system using dy-

namic quantizer with ElGamal encryption.
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Fig. 6 Control performance of the encrypted control system using optimal

dynamic quantizer with the proposed cryptosystem.

ElGamal cryptosystem. Similarly, Fig. 6(a) and (b) depict the

signals with the optimal dynamic quantizer based on the pro-

posed ElGamal-type encryption scheme. In both the simula-

tion results, an impulse disturbance is added to the control in-

put at 60 s to evaluate whether the encrypted control system

is stable under the disturbance even after quantization and en-

cryption. Figs. 5(c)(d) and Figs. 6(c)(d) are enlarged graphs of

Figs. 5(a)(b) and Figs. 6(a)(b), respectively. These results con-

firm that the optimal dynamic quantizer with the proposed cryp-

tosystem improves the control performance of the encrypted

control system, and the encrypted control system inherits the

stability of the original control system.

6. Conclusions

This study proposed a variant of ElGamal encryption, in

which the width of the plaintext space is uniform and it can

properly handle zero to implement an optimal dynamic quan-

tizer in encrypted control systems. The proposed cryptosys-

tem employs encoding and decoding maps, which convert be-

tween integers and quadratic residues without loss of infor-

mation. The optimal dynamic quantizer minimizes the max-

imum difference between outputs of an extended plant in an

encrypted control system with the proposed encryption scheme

and that in unencrypted control system. The numerical sim-

ulations demonstrated that the proposed cryptosystem allowed

the implementation of the optimal dynamic quantizer, and the

quantizer improved the control performance of an encrypted

control system.

In future work, we will consider implementing an encrypted

optimal dynamic quantizer whose processes are addressed in

ciphertext space.
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