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Abstract

Biometric identification is a procedure of matching the digital files of users in the system database with
the presented biological data. In this thesis, we treat biometric identification systems as a mathematical
model and analyze its fundamental performances by information theoretic methods. Two models of
biometric identification systems are being investigated. The first scenario is the biometric identification
system for secret key-based identification and authentication, and the second one is the system dealing
with both chosen and generated secrecy. In the latter scenario, we concentrate on two settings: discrete
memoryless and Gaussian sources.

The first model can be categorized further into two submodels: generated-secret and chosen-secret
biometric identification system models. Ignatenko and Willems (2015) investigated these models with
visible sources, where the enrollment channel is noiseless, and they clarified the fundamental trade-off
between identification and secrecy rates under a privacy constraint. However, when the biometric data
is scanned for enrolling, it is likely that noise is added to the extracted sequence, and so as to reduce
the cost of hardware architecture, it is important to constrain the size of the storage. We improve the
models by assuming hidden sources, where the enrollment channel is noisy, and adding the constraint
on the size of the storage. We derive the optimal trade-off between identification and secrecy rates of
the two models under both privacy and storage constraints. As special cases, our results agree with
the ones given by Ignatenko and Willems (2015), and coincide with the results derived by Günlü and
Kramer (2018) in which there is only one individual.

In the second model, two secret keys are used together. That is, in the enrollment phase, the
encoder encodes biometric data sequence with a secret key (chosen-secret key), chosen independently,
to generate helper data and another secret key (generated-secret key). In the identification phase,
the decoder should estimate the identified user and her two secret keys reliably. Here, we allow the
two keys to be correlated. We characterize the capacity region among identification, chosen- and
generated- secrecy, template, and privacy-leakage rates of the system for discrete memoryless sources.
As a result, a larger sum of identification, chosen- and generated-secrecy rates is achieved due to
permitting the correlation, and when the sum of the identification and chosen-secrecy rates increases,
a larger storage space for storing the templates is required, but the generated-secrecy rate does not
affect the memory space. Furthermore, only the changes of the identification rate directly affect the
minimum value of the privacy-leakage. Later, we extend the model with both chosen and generated
secrecy to Gaussian sources. We introduce a technique for deriving the capacity region of these
rates by converting the system to one where the data flow is in one-way direction. Also, we provide
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numerical calculations of three different examples, and as a result, it seems difficult to achieve both
high generated secret key rate and small privacy-leakage at the same time.
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Chapter 1

Introduction

In this chapter, we go through some common knowledge of biometric identification, introduce previous
works of this study, state our goals and motivations, and finally brief organizations of the present
thesis.

1.1 Background

When we hear the term biometrics, our imagination often links to the captured pictures such as
fingerprints, faces, and irises. In fact, the term relates to a science of identifying users using physical
characteristics, or biological data (bio-data) [47] where a certain part of human body is transformed
into a matrix form so that the processor is able to compute or recognize it. Biometric identification
indicates an automated process of recognizing individual by matching the individual’s biometrics with

Fig. 1.1 Biometric modalities; Some examples of body traits that can be used for biometric recognition.
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the references in the system database [48]. Basically, any bio-data can be used for biometric identi-
fication, but some common ones include fingerprint, iris, face, voice, palm, and so on [36] (cf. Fig.
1.1). The history of the biometric identification systems (BISs) is not very new. It is believed that its
technologies have been initially used in the late age of the 19th century [1] as a purpose for criminal
detection. At that time, fingerprints were a major resource to identify the suspects due to the limited
technologies available [37], but since then, the researches related to biometric identifications have
been rapidly developed. Nowadays we could enjoy many convenient applications utilizing biometric
technologies based on different modalities. Examples include, but not limited to, online mobile
payment using fingerprints, face scan at airport, sound recognition for granting access into a data
center, handwritten signature for digital documents, and for more details, the reader should refer to
[34].

Fig. 1.2 Traditional methods for identification; Password and IC-card or smart-card based identification are
well-known conventional methods for user’s identification.

Traditional methods, as shown in Fig. 1.2, for identifying individuals are based on information
that we know (passwords) or something that we own (smart cards or tokens) [47], [36]. In these
methods, the disadvantages are that the passwords can be predicted by the intruder since users trend
to use easy ones, and in case the identified user forgets her password, it is impossible to gain system
access. Moreover, smart cards or tokens can be stolen, and thus the abused issue becomes a great
concern [13], [64]. On the other hand, biometrics based identification provides a promising solution
to the issues mentioned above since biometric traits are unique to each individual [13], [35], [64],
and the samplings (scanned version) of the bio-data basically is in structure of a large dimensional
matrix, which is hard for imposter to guess. Even the imposter tries to deceive, the machine can easily
detect such cheats [3], [46]. Although biometric identification can provide a greater confidence in
terms of security concerns, of course, dark sides for the method exist as well. Unlike the passwords or
smart-cards, which can be changed at any time, the bio-data has no or every few alternatives [52], [64].
Bio-data is not easily revoked and it might end up in redesigning the feature extractor of the system
[53]. Therefore, privacy protection of the users is crucial for designing the BIS [57], [89]. Indeed,
it is required to ensure that user’s privacy is well protected or leaked only negligible amount even
the database is hacked. Lastly, one more important indicator is the constraint on the storage device.
It should be minimized to save the memory space and reduce the cost of hardware architectures,
especially, when a large number of users is using the system [16], [21].
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1.2 Related Works

Generally speaking, cancelable biometrics and biometric secrecy systems are two main approaches
in researches regarding BISs in recent years. The former approach focuses on transforming the
bio-data in the feature domain, and matched in the transformed domain directly. In this fashion, the
requirement of storage (database) is avoidable. However, the weak point of this method is that it is
always hard to construct transformations with explicitly provable security. For this approach, we do
not go into deep details. For those who are interested, a understandable explanation of cancelable
biometrics can be seen in Jain et al. [35] or Ratha et al. [58]. On the other hand, the latter one is based
on the concept of information-theoretic method in which Shannon’s entropy and mutual information
[65] become important indicators for evaluating security of the system. In this thesis, we deploys the
latter approach to clarify the fundamental performances of the BIS.

Fig. 1.3 A simple BIS model; A BIS consists of two parts: Enrollment and Identification Phases.

A simple BIS model is illustrated in Fig. 1.3. A detailed explanation of this model is provided in
Section 2.3. Here, only a short and simple description is given, which it can help the readers to grasp
the scenario of this part. In general, the BIS consists of two phrases: Enrollment and Identification
Phases. Assume that there are MI users utilizing the system. In Enrollment Phase, bio-data of these
users are enrolled into the system database via a scanner. In Identification Phase, a user w presents
his/her identify to the identifier and it estimates the user based on the information inside the database.
By focusing on only user w, the data flow of the user is shown in Fig. 1.4. In this figure, we suppose
that the biometric source is a thumb. The original shape of the thumb is represented by xn

w, generated
from source PX . It is scanned through a scanner, modeled as PY |X , in Enrollment Phase and output
as yn

w. The sequence yn
w is stored in the database for future identification. In Identification Phase,
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Fig. 1.4 Modeling of user w: This is an illustration of how user w is modeled within information-theoretic
framework.

the same thumb is again scanned via a scanner, modeled as PZ|X , and the output sequence is zn. The
identifier sees zn, and finally predicts who is being identified.

O’Sullivan and Schmid [56] and Willems et al. [76] initially investigated the fundamental perfor-
mances of the BIS from information-theoretic point of views. In [56], they analyzed the error exponent
of the BIS and showed the maximum identification rate that guarantees the error probability converges
to zero. On the other hands, Willems et al. [76] took a different approach and used arguments of chan-
nel coding, e.g., the asymptotic equipartition property (AEP) and Fano’s inequality, to characterize
the identification capacity of the BIS. The identification capacity means the maximum achievable rate
of the number of individuals as the error probability converges to zero when the length of bio-data
sequences goes to infinity. They proved that the error probability of the BIS trends to zero if and only
if (iff) the identification rate is below the identification capacity I(Z;Y ) (cf. Theorem 2.1). In [56]
and [76], however, it is assumed that bio-data sequences are stored in the system database without
encoded, so some critical problems like enormous storage consuming and magnificent privacy-leakage
could happen. Tuncel [69], [70] extended the model in [76] by incorporating compression of bio-data
sequences before stored in the system database. More specifically, he considered an encoder in the
enrollment phase to generate helper data (in this entire thesis, the helper data and its rate are called
template and template rate, respectively) for bio-data sequences and the helper data or templates
corresponding to each bio-data sequence are saved in the system database. The fundamental trade-off
between identification and compression rates was characterized in [69] for single stage and [70] for
both single and multiple stages. Some extended works of [69], [70] can be found in [71] to recover
noisy reconstruction (rate-distortion) and in order to speed up the search complexity of the BIS,
hierarchical identification with a pre-processing at the decoder is considered in [75]. Error exponents
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of the BIS is examined in [80] from Arimoto’s arguments [5], and [91] and [92] from information
spectrum perspectives [27].

For the purpose of security, the BIS incorporating the generation of both a secret key and a helper
data for each user in the enrollment phase has been found in many studies, e.g., [31], [32], [33],
[40], and [81]. In this system, not only the index, but also the secret key of the identified user is
estimated in the identification phase. In general, there are two types of models: generated-secret and
chosen-secret BIS models are frequently discussed. In the generated-secret BIS model, the secret key
is extracted from bio-data sequences, while in the chosen-secret BIS model, the secret key is chosen
independently of the bio-data sequences. These names came from the literature [21], and we also
use the terms to call the models for the sake of the readers. Note that in the field of cryptography,
the meaning of the word “chosen” is closer to “arbitrary”, for instances, chosen-ciphertext attack,
chosen-plaintext attack, etc. Here, we simply use it to indicate the operation that the secret key is
chosen uniformly and independently of other RVs from a set. These models can be viewed as the
BIS supporting authentication since the estimated index informs whom the identified user is and the
estimated secret key may be used as a tool to claim that it is actually the same user trying to access the
system. Ignatenko and Willems [32], [33] have characterized the capacity regions of identification,
secrecy, and privacy-leakage rates in the two models. Here, privacy-leakage is defined as the amount
of information that leaks from a template to its original bio-data sequence. Fundamentally, the
privacy-leakage is unavoidable and it is hard to make this value negligibly small [66]. The reason
is because the templates are generated from the bio-data sequences and their correlations remain
at certain level. In order to achieve negligible privacy-leakage, an private key available to both
the encoder and decoder was introduced in [29], [31, Section 3.5], [90]. Instead of analyzing the
privacy-leakage rate, a model considering the template rate in the generated-secret BIS model can be
found in [81]. In [81], the authors came to a conclusion that the template and privacy-leakage rates
are equivalent. Furthermore, Kittichokechai and Caire [40] applied the concept of broadcast channel
to assume the presence of an adversary in the generated-secret BIS model. In [40], a constraint on
the storage was also taken into account. However, a common assumption in above studies is that the
identified user is uniformly distributed and the BIS is analysed under visible source model (VSM). In
the VSM, it is assumed that the enrollment channel of the BIS is noiseless, and thus the encoder is
able to observe the biometric source sequences directly.

Another stream of studies deals with only the estimation of one user’s secret key. This type of the
BIS can be viewed as key-agreement model between two terminals. Ahlswede and Csiszár[2], Csiszár
and Narayan [16], and Maurer [49] analyzed the model without imposing privacy constraint. The
privacy constraint was taken into consideration in the literature, e.g., Ignatenko and Willems [29], Lai
et al. [43], [44], Willems and Ignatenko [77], Koide and Yamamoto [42], and Günlü and Kramer [21].
More specifically, Ignatenko and Willems [29] and Lai et al. [43], [44] investigated the fundamental
trade-off of secrecy and privacy-leakage rates for dicreste memoryless soruces (DMSs), and Willems
and Ignatenko [77] provided the trade-off of these rates for Gaussian sources. Koide and Yamamoto
[42] constrained the template to the model considered in [29], and loosened the secrecy-leakage
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condition. Günlü and Kramer [21] made a successful attempt for characterizing the capacity region of
the hidden source model (HSM), where the enrollment channel is noisy and the encoder can only see
the noisy sequences of biometric source. Furthermore, fuzzy commitment scheme, allowing noisy
data to be used as input for generating a secret key, and in the phase of construction, the secret key
is estimated from close values, but not necessarily identical to the original one without sacrificing
the security requirement, is an authentication method that is quite similar to the concept of the BIS
with single user (with no estimation of the index). The scheme was proposed by Juels and Martin
[39], and developed in [18], [66] with adopting error correcting codes. These studies designed codes
based on Hamming distance, edit distance, and set difference to asses the maximum secrecy rate
and the minimum entropy loss, corresponding to the maximum privacy-leakage. However, to reduce
the risk that original bio-data sequence of a user is being hacked by the attackers, the amount of the
privacy-leakage should be minimized [29]. Here, instead of constructing certain codes, we focus on
deriving the fundamental performances of the BIS by applying information theoretic approaches.

1.3 Goals of This Thesis

The goals of this thesis are listed as follows:

• First, we extend the system models considered in [33] to incorporate the HSM and add a
constraint on the storage. Also, we assume that the prior distribution of the identified user is
unknown. We want to find the optimal trade-off between identification and secrecy rates for
both generated- and chosen-secret BIS models under privacy and storage constraints.

• Second, we analyze a model in which the chosen- and generated-secret keys are used together,
and aim to characterize the fundamental limits among identification, chosen- and generated-
secrecy, template, and privacy-leakage rates of the BIS for DMSs.

• Lastly, we further extend the model of the second goal to Gaussian sources and channels.

1.4 Motivations

The motivations for each goal of this thesis are summarized as follows:
For our first goal, this extension is considered to be more natural from the following reasons.

• When users enroll their bio-data to the database for identification, the bio-data must be captured
via a scanner, and through this process, there is high possibility that noise is added to the
captured version. Hence, the encoder possibly cannot access to the perfect source sequences,
and assuming the HSM for evaluating the fundamental performances of the BIS is more natural
setting.

• In order to reduce the cost of hardware architecture, it is important to constrain the template
rate.



1.5 Organizations of This Thesis 7

• In real-life situation, the frequencies of coming to use the system for each user are unlikely
identical, so it would be more realistic to analyze the BIS under the condition that the prior
distribution of the identified user is uniform.

For the second goal, in the previous studies, e.g., [21], [29], [33], [85], the chosen- and generated-
secret keys are assumed in the separate models, namely, chosen- and generated-secret BIS models,
respectively. However, an interesting question is when the two keys are used in the same system,
how the chosen- and generated-secrecy rates affect the fundamental performances of the BIS. The
answer to this question has not yet been known, and it is not trivial from the results of the previous
studies. Yet, we allows chosen- and generated-secret keys to be correlated at some level. The reason
behind the scene of this is that we wish to achieve a larger sum rate of identification, chosen- and
generated-secrecy rates. Another motivation is that we want to figure out the fundamental trade-off of
the BIS supporting two-factor authentication, where in this case, chosen- and generated-secret keys
can be used for the first and second stages of authentications.

For the analysis of Gaussian sources, we are motivated by the fact that the signal of bio-data is ba-
sically represented by vectors with continuous elements in real applications, and most communication
links can be modeled as Gaussian channels. Moreover, in [77], the fundamental trade-off of secrecy
and privacy-leakage rates in the BIS with the VSM for Gaussian case was clarified. However, when
the model is shifted from the VSM to the HSM, the problem becomes more challenging and many
techniques used for deriving the capacity region of the VSM is not directly applicable [21]. Thus,
analysing the BIS for Gaussian sources is of both theoretical and practical interest.

1.5 Organizations of This Thesis

This thesis is organized as follows:
In Chapter 2, we define the notation used in the subsequent chapters, recap some well-known

results in information theory, and introduce the simple model analyzed in [76].
Chapter 3 focuses on characterizing the capacity regions among identification, secrecy, template,

and privacy-leakage rates for both generated- and chosen-secret BIS models. We extend the model
considered in [32] and [33] to include the noisy enrollment and constrain the storage. We derive the
regions via two auxiliary random variables (RVs). The obtained results show that in the generated-
secret BIS model, like the results derived in [33], [82], the minimum required amounts of the
privacy-leakage and template rates vary based on the number of users. However, different to a
conclusion in [81] (the result of the VSM), in which the minimum amount of the privacy-leakage
rate is smaller than the template rate, the two rates are bounded In the chosen-secret BIS, we need
to store the templates at full rate in order to reconstruct the secret key reliably. We also simplify
the derived regions of the generated-secret BIS model for binary hidden sources by applying Mrs.
Gerber’s lemma (MGL), and give numerical results of an example concerning the simplified rate
region.
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Chapter 4 addresses on the BIS with both chosen and generated secrecy. We provide the optimal
trade-off of identification, chosen- and generated-secrecy rates in the BIS under privacy and storage
constraints. Additionally, we allow correlation between the two secret keys. As a result, it turns out
that the identification, chosen- and generated-secrecy rates are in a trade-off relation, and a bigger
sum of these rates is achievable compared to the result in [86]. The minimum amount of the template
rate belongs to both identification and chosen-secrecy rates, but that of the privacy-leakage rate is
only affected by the identification rate, and has nothing to do with the chosen-secrecy rate. Like in
Chapter 3, we simplify the derived region for binary hidden source and give numerical calculations
for an example.

In Chapter 5, we extend the model considered in Chapter 4 to Gaussian sources and channels,
and characterize the capacity region of identification, chosen- and generated-secrecy, template, and
privacy-leakage rates of the BIS. We introduce an idea of converting the system to another one where
the data flow of each user is in the same direction, which enables us to characterize the capacity region.
More specifically, in establishing the outer bound of the region, the converted system allows us to
use the well-known entropy power inequality (EPI) [65] twice in two opposite directions, and also its
property facilitates the derivation of the inner bound. We also provide numerical computations of three
different examples. From the results of these examples, we may conclude that it is difficult to achieve
both high secrecy and small privacy-leakage rates together. To achieve a small privacy-leakage rate,
the gain of the secrecy rate is scarified somehow.

In Chapter 6, we provide some concluding remarks and future directions for this thesis
This thesis is written based on the author’s joint works which are partially published in [83], [84],

[86], and [87].



Chapter 2

Preliminaries

In this chapter, we first introduce and define notation that is used in this paper. After that, we
summarize some basic results in information theory, which are useful in the arguments of upcoming
chapters, and introduce the result of pioneer research [76].

2.1 Notation and its Definition

Calligraphic letter A stands for a finite set and its cardinality is written as |A|. Upper-case such that A
and lower-case a ∈ A denote a RV and its realization, respectively. An = (A1,A2, · · · ,An) represents
a string of RVs, taking values in An, and subscripts represent the position of a RV in the string.
PA(a) = Pr[A = a] represents the probability distribution on A and PAn represents the probability
distribution of RV An ∈ An. In case A is continuous RV, the probability density function (PDF) of A
is denoted by fA. PAnBn represents the joint probability distribution of a pair of RVs (An,Bn) and its
conditional probability distribution PAn|Bn is defined as

PAn|Bn(an|bn) =
PAnBn(an,bn)

PBn(bn)
(2.1)

for any an ∈ An, bn ∈ Bn such that PBn(bn)> 0. Integers a and b such that a < b, [a : b] denotes the
set {a,a+ 1, · · · ,b}. A partial sequence of a sequence cn from the first symbol to the tth symbol
(c1,c2, · · · ,ct) is represented by ct . For x > 0, logx and lnx stand for the base of two and natural
logarithm, respectively.

A standard information measure in information theory is entropy and mutual information. The
entropy tells us about the average value of information or uncertainty inherent in a RV. Its concept
was introduced by Shannon in his pioneering paper [65] in 1948. There are also other types of entropy
such as Hartley or max-entropy [26], collision or quadratic entropy, min-entropy, and Rényi entropy
[59]. The Rényi entropy generalizes the Hartley entropy, the Shannon entropy, the quadratic entropy,
and the min-entropy, corresponding the cases in which The Rényi order is equal to 0,1,2, and ∞,
respectively. In this thesis, however, we use only the Shannon’s entropy [65]. H(·) and h(·) denote
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the entropy of discrete and continuous RV, respectively. On the other hand, mutual information is
a quantity that how much one RV tells about another. The mutual information between RVs A and
B is denoted by I(A;B). Hb(a) = a log 1

a +(1−a) log 1
(1−a) denotes the binary entropy for 0 ≤ a ≤ 1

and Hb(0) = Hb(1) = 0, and H−1
b (·) is inverse function of Hb(·). Overall, we basically follow the

standard notation in Cover and Thomas [14], and El Gamal and Kim [19].

2.2 Basic Results in Information Theory

In this section, we will review many classical results in information theory. First, we begin with the
definition of weakly ε-typical set. The definition holds for both discrete and continuous RV, but here
we provide only the continuous version. It is formally defined below, see also in [14, Chapter 9].

Definition 2.1. (Weakly ε-typical set for continuous RVs [14, Chapter 9])
Assume (X1,X2, · · · ,Xk) be a finite collection of continuous RVs with joint probability density func-

tion (PDF) fX1X2···Xk(x1,x2, · · · ,xk) and differential entropy h(X1,X2, · · · ,Xk). fV (v) is marginal PDF
of the joint PDF fX1X2···Xk(x1,x2, · · · ,xk) with differential entropies h(V ), where RV V ⊆{X1,X2, · · · ,Xk}.
The jointly ε-typical set, denoted by A(n)

ε (X1X2 · · ·Xk), is the set of sequences (xn
1,x

n
2, · · · ,xn

k) ∈
Rn ×·· ·×Rn︸ ︷︷ ︸

k

satisfying:

A(n)
ε (X1X2 · · ·Xk) =

{
(xn

1,x
n
2, · · · ,Xn

k ) :
∣∣∣∣−1

n
log fV n(vn)−h(V )

∣∣∣∣≤ ε

}
, (2.2)

where vn ⊆ {xn
1,x

n
2, · · · ,xn

k} corresponding to RV V and fV n(vn) = ∏
n
k=1 fVk(vk). Moreover, the condi-

tional typicality is defined as

A(n)
ε (Xk|xn

2, · · · ,xn
k−1) =

{
Xn

k : (xn
1,x

n
2, · · · ,Xn

k ) ∈ A(n)
ε (X1X2 · · ·Xk)

}
. (2.3)

Next, we provide several properties regarding the weakly ε-typical set.

Lemma 2.1. (Some properties of weakly ε-typical set [14], and [31, Lemma A.1])
Let ε > 0. We have that

1) From (2.2) and ∀V ⊆ {X1,X2, · · · ,Xk}, it follows that

2−n(h(V )+ε) ≤ fV n(vn)≤ 2−n(h(V )−ε). (2.4)

2) For ∀V ⊆ {X1,X2, · · · ,Xk} and large enough n

Pr{vn ∈ A(n)
ε (V )} ≥ 1− ε. (2.5)
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3) For ∀V ⊆ {X1,X2, · · · ,Xk}, it holds that

(1− ε)2n(h(V )−ε) ≤ |A(n)
ε (V )| ≤ 2n(h(V )+ε). (2.6)

4) For ∀V,W ⊆ {X1,X2, · · · ,Xk}, we have that

(1− ε)2n(h(V |W )−2ε) ≤ |A(n)
ε (V |wn)| ≤ 2n(h(V |W )+2ε). (2.7)

5) Fix k = 2. If (X̃n
1 , X̃

n
2 ) are independent sequence with the same marginals as fXn

1 Xn
2
(xn

1,x
n
2), then

Pr{(X̃n
1 , X̃

n
2 ) ∈ A(n)

ε (X1X2)} ≤ 2−n(I(X1;X2)−2ε). (2.8)

Moreover, for n large enough,

Pr{(X̃n
1 , X̃

n
2 ) ∈ A(n)

ε (X1X2)} ≥ (1− ε)2−n(I(X1;X2)+2ε). (2.9)

See [14, Section 15.2] for detailed proofs of the above properties.
These properties will be used in the derivation of the capacity region of the BIS under Gaussian

source in Section 5. For the weakly ε-typical set for discrete RVs, it can be defined similarly to the
above definition and it also holds for all properties in Lemma 2.1 by replacing differential entropy
h(·) with the entropy of discrete RVs H(·).

Next, we define the strongly ε-typical set for discrete RVs. The strong typicality had a long
history. It was first studied by Wolfowitz [78] and developed in Berger [6] and Csiszár and Korner
[15]. A more comprehensible version of the strong typicality can be found in [14] and [19].

Definition 2.2. (Strongly ε-typical set [14], and [19])
Let N(a1,a2 · · · ,ak|an

1,a
n
2, · · · ,an

k) be the number of occurrences of (a1,a2 · · · ,ak) in (an
1, · · · ,an

k).
The strongly ε-typical set with respect to a distribution PAn

1An
2···An

k
(an

1,a
n
2 · · · ,an

k) on An
1×An

2×·· ·×An
k ,

denoted by T (n)
ε (A1A2 · · ·Ak), is the set of sequence (an

1,a
n
2 · · · ,an

k) ∈ An
1 ×An

2 ×·· ·×An
k satisfying:

1) PAB(a1,a2 · · · ,ak) = 0 implies 1
n N(a1,a2 · · · ,ak|an

1,a
n
1, · · · ,an

k) = 0
for all (a1,a2 · · · ,ak) ∈ A1 ×A2 ×·· ·×Ak,

2) |1
n N(a1,a2 · · · ,ak|an

1,a
n
1, · · · ,an

k)−PA1A2···Ak(a1,a2 · · · ,ak)| ≤ ε

|A1||A2|···|Ak|
if PA1A2···Ak(a1,a2 · · · ,ak)> 0 for all (a1,a2 · · · ,ak) ∈ A1 ×A2 ×·· ·×Ak.

Note that a well-known relation of the two sets is that strong typicality implies weak typicality,
but the converse claim is not guaranteed. In general, strong typicality is more powerful and flexible
than weak typicality as a tool for proving the achievability (direct part) in many memoryless problems.
However, unlike the weak typicality, which can be extended to cover the continuous RVs, the strong
typicality is applicable only for RVs with finite alphabets.
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Here, we provide the definition of the modified ε-typical set [33, Appendix A-A], and [29,
Appendix C-A]. The modified set gives the so-called Markov lemma for weak typicality, and two
properties of this set enable us to establish the inner bound of the capacity region on the BIS for
Gaussian sources in Chapter 5.

Definition 2.3. (Modified ε-typical set [33, Appendix A])
Consider that (X ,Y,U) forms a Markov chain X −Y −U, i.e., fXYU(x,y,u) = fXY (x,y) fU |Y (u|y).

The modified ε-typical set B(n)
ε (YU) is defined as

B(n)
ε (YU) =

{
(yn,un) : Pr{Xn ∈ A(n)

ε (X |yn,un)|(Y n,Un) = (yn,un)} ≥ 1− ε

}
, (2.10)

where ε is small enough positive, and Xn is drawn i.i.d. from the transition probability ∏
n
k=1 fX |Y (Xk|yk).

In addition, define B(n)
ε (U |yn) = {un : (un,yn) ∈ B(n)

ε (YU)} for all yn, and B(n)
ε (U |yn)c denotes the

complementary set of B(n)
ε (U |yn).

Property 2.1. There are two useful properties regarding the modified typical set

(1) If (yn,un) ∈ B(n)
ε (YU), then (yn,un) ∈ A(n)

ε (YU).

(2) For large enough n, it holds that∫∫
B(n)

ε (YU)
fY nUn(yn,un)d(yn,un)≥ 1− ε. (2.11)

Proof: The proofs of both properties are given in [33, Appendix C].
The following lemma is often used in evaluating the lower bounds of uniformity of the secret

keys, secrecy- and privacy-leakage for discrete sources. In Chapter 5,

Lemma 2.2. (Kittichokechai et al. [41])
Assume that (Xn,Y n,Un) are jointly typical with high probability1 for a given codebook Cn. Then,

it holds that

1
n

H(Y n|Un,Cn)≤ H(Y |U)+δn, (2.12)

1
n

H(Y n|Xn,Un,Cn)≤ H(Y |X ,U)+δn, (2.13)

where δn ↓ 0 as n → ∞.

Proof: The proof can be found in [41, Appendix C].
Another important tool for deriving our results is the selection lemma. The lemma was proposed

in [10, Lemma 2.2], and it is mainly used to assert the existence of a good code for the achievability
proofs in the succeeding chapters.

1It means that Pr{(Xn,Y n,Un) ∈ T (n)
ε (XYU)}→ 1 as n → ∞, where T (n)

ε (XYU) denotes the set of strongly ε-typical
sequences for RVs X ,Y , and U .
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Lemma 2.3. (Selection lemma [10, Lemma 2.2])
Let Xn ∈ X n be a random variable and F be a finite set of functions f : X n −→ R+ such that |F|

does not depend on n and

∀ f ∈ F , EXn [ f (Xn)]≤ δ (n). (9a)

Then, there exists a specific realization xn of Xn such that

∀ f ∈ F , f (xn)≤ (|F|+1)δ (n). (9b)

(Proof): See the proof of [14, Lemma 2.2].
Lastly, we introduce Shannon’s EPI, which will be used in the proofs of Section 5. Let RVs A ∼ fA

and B ∼ fB be independent continuous RVs. The EPI tells us that a lower bound of the differential
entropy of the sum of RVs A and B is given by

e2h(A+B) ≥ e2h(A)+ e2h(B) (2.14)

with equality if both RVs A and B are Gaussian RVs. The EPI was first proposed in Shannon [65]
without a rigorous proof. Later, a complete proof of the EPI was given by Stam [68] and Blachman
[9], based on Fisher information inequality. The proof is simplified by Dembo et al. [17]. Yet, other
much simpler proofs can also be found in [25], [72] using minimum mean-square error and Rioul
[60]–[62] via only the properties of mutual information, avoiding both Fisher information inequality
and minimum mean-square error. The conditional version of the EPI is shown in [7, Lemma II]. In the
converse proof of Gaussian sources (Chapter 5), the conditional version of the EPI plays important
role in deriving the outer bound of the capacity region.

2.3 The Primitive BIS

In this section, we review a classical model of the pioneering work. We explain the system model and
introduce the main result given by Willems et al. [76].

2.3.1 System Model

The model is shown in Figure 2.1. Basically, a BIS consists of two big phases; (I) Enrollment Phase
and (II) Identification Phase. In this subsection, the details of each phase and the result of this model
are provided within information theoretic framework.

(I) Enrollment Phase
We assume that there are MI individuals in the BIS. Each user is assigned by an index from the

set I = [1 : MI]. The raw or original bio-data sequence of user i, xn
i = (xi1,xi2, · · · ,xin) ∈ X n, with

symbols xik(i ∈ I,k ∈ [1,n]) takes a value in a finite alphabet X . We also assume that all of these
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Fig. 2.1 Primitive BIS model; This is the system model considered in Willems et al. [76], where the captured
biological data are stored in the system database in the plain forms. This type of model is called noisy BIS, also
known as HSM, because the noise in the enrollment phase is taken into account.

bio-data sequences are generated independently and identically distributed (i.i.d.) from a stationary
memoryless source PX . For all i ∈ I , the generating probability for each sequence xn

i ∈ X n is given by

PXn(xn
i ) = Pr[Xn = xn

i ] =
n

∏
k=1

PX(xik). (2.15)

All bio-data sequences xn
i (i ∈ I) are observed via a discrete memoryless channel (DMC)

{Y,PY |X ,X}, called the enrollment channel, where Y is a finite output-alphabet of PY |X . Therefore, the
corresponding probability that a bio-data sequence xn

i ∈ X n is observed as yn
i = (yi1,yi2, · · · ,yin) ∈ Yn

via the DMC PY |X : X →Y is

PY n
i |Xn

i
(yn

i |xn
i ) = Pr[Y n

i = yn
i |Xn

i = xn
i ] =

n

∏
k=1

PY |X(yik|xik) (2.16)

for all i ∈ I. Here, yn
i is the output sequence of individual i via PY |X . All {yn

1,y
n
2, · · · ,yn

MI
} are saved

into the system database, which can be accessed by a decoder in the identification phase. For simplicity
reason, we denote the system database as JJJ = {yn

1,y
n
2, · · · ,yn

MI
}.

(II) Identification Phase
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In this phase, an unknown user w, who has already gone through the Enrollment Phase, presents
his bio-data sequence to the system and the sequence is observed via a DMC {Z,PZ|X ,X}, called
the identification channel, where Z is a finite output-alphabet via PZ|X : X → Z . Therefore, the
corresponding probability that a bio-data sequence xn

w ∈ X n is observed as zn = (z1,z2, · · · ,zn) ∈ Zn

via PZ|X : X →Z is

PZn|Xn
w
(zn|xn

w) = Pr[Zn = zn|Xn
w = xn

w] =
n

∏
k=1

PZ|X(zk|xwk). (2.17)

zn is passed to the decoder d : Zn × JJJ −→ I and it compares zn with all sequences yn
i (i ∈ I) in the

database JJJ and outputs an estimate of the unknown user’s index

ŵ = d(zn,JJJ). (2.18)

2.3.2 Identification Capacity

Willems et al. [76] applied information theoretic methods to investigate the maximum achievable rate
of the individuals with vanishing decoding error probability. We first note that RVs Xn

i ,Y
n
i , and Zn

form a Markov chain Y n
i −Xn

i −Zn [14], and thus the joint probability distribution among them can
be written as

PXn
i Y n

i Zn(xn
i ,y

n
i ,z

n) = PXn
i
(xn

i )PY n
i |Xn

i
(yn

i |xn
i )PZn|Xn

i
(zn|xn

i )

=
n

∏
k=1

PY |X(yik|xik)PX(xik)PZ|X(zk|xik), (2.19)

where the last equation in (2.19) is due to the i.i.d. structure of each symbol. Then, from the marginal
logic, it can be easily derived that

PY n
i Zn(yn

i ,z
n) = PY n

i
(yn

i )PZn|Y n
i
(zn|yn

i )

=
n

∏
k=1

PY (yik)PZ|Y (zk|yik), (2.20)

where PY and PZ|Y can be computed as

PY (y) = ∑
x∈X

∑
z∈Z

PX(x)PY |X(y|x)PZ|X(z|x), (2.21)

PZ|Y (z|y) = ∑
x∈X

PX(x)PY |X(y|x)PZ|X(z|x)
PY (y)

. (2.22)

Equation (2.20) implies that PZ|Y : Y →Z also forms a DMC and each enrollment output sequence
yn

i can be viewed as an i.i.d source sequence.
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Remark 2.1. Willems et al. [76] observed that the set of all the enrollment output sequences (a
database) can be seen as a code whose codeword corresponding to message i is yn

i . In the identification
phase, these codewords yn

i (1 ≤ i ≤ MI) are observed via a DMC PZ|Y : Y →Z .

Remark 2.1 indicates that we can use the same techniques for analyzing the error probability in
channel coding systems to bound the error probability in the BIS. The identification rate of the BIS
with the block length n and MI individuals is denoted by

RI =
1
n

logMI. (2.23)

Definition 2.4. An identification rate RI (RI ≥ 0) is said to be achievable if for δ > 0 and large
enough n there exists a decoder d such that

max
i∈I

Pr{Ŵ ̸=W |W = i} ≤ δ , (2.24)

1
n

logMI ≥ RI −δ . (2.25)

Moreover, the identification capacity C of the BIS is the supremum of all achievable identification
rates RI . That is,

C = sup{RI | RI is achievable}.

Now, we are in a position to introduce the identification capacity. In [76], Willems et al. proved
the following theorem.

Theorem 2.1. (Willems et al. [76])
The identification capacity of the BIS is given by

C = I(Y ;Z), (2.26)

where I(Y ;Z) denotes the mutual information between RVs Y and Z with the joint probability
distribution PZY (z,y) = ∑

x∈X
P(x)PY |X(y|x)PZ|X(z|x) (∀y ∈ Y, ∀z ∈ Z).

The above theorem is a convincing result because the set of {Y n
1 , · · · ,Y n

MI
} can be viewed as

a random code. When a codeword of this random code is sent via the channel PZ|Y , which is a
compound channel consisting of the backward channel of the channel in the enrollment phase and the
identification channel, the maximum achievable rate that the index of the sent message can be reliably
estimated is the mutual information between RVs Y and Z. This is a simple result, but it has been a
huge influence for all the relevant studies taken place later on.



Chapter 3

BISs Supporting Authentication

As mentioned in Chapter 1, the BIS supporting authentication was first investigated by Ignatenko
and Willems for the generated-secret model [32] and for both the generated- and chosen-secret BIS
models [33]. They aimed to maximize the identification and secrecy rates under a privacy-leakage
constraint for the VSM. However, in real-life applications, when user enrolls her bio-data for future
identification, the identity needs to be scanned and sent into the system database. During these
processes, it is likely that noise is added to the original bio-data. Therefore, it is more natural to
analyze the BIS under the circumstance that the enrollment channel is noisy. Another interesting thing
is that when the model switches from the VSM to the HSM, the problem becomes more challenging.
Especially, the evaluation of the privacy-leakage rate as the template is not a function of original
bio-data, but a noisy version of it. Basically, many techniques used to investigate the fundamental
trade-off in the VSM are not directly applicable to the HSM as claimed in [21]. Indeed, we are greatly
motivated by these facts to improve the models considered in [33] to include the HSM.

In this chapter, we focus on clarifying the fundamental trade-off among identification, secrecy,
template, and privacy-leakage rates of the generated- and chosen-secret BIS models. Both models are
analyzed under the assumption of the HSM. Here, we wish to maximize the identification and secrecy
rates under privacy and storage constraints. In order to get closer to practical system, we analyze the
region by imposing the following requirements:

1) the enrollment channel is a noisy,

2) a scheme of both protecting privacy (e.g., [33], [21]) and compressing template (e.g., [69], [81])
is considered,

3) the capacity region is analyzed under the condition that the prior distribution of an identified
individual is unknown.

In the achievability proof, we deploys layered binning technique to reduce the rate of database,
and this enable us to make the error probability arbitrarily small. To handle the difficulties of bounding
the privacy-leakage in the achievability proof, we introduce a virtual system with a partial decoder,
which outputs only the secret data of individual, and use Lemma 2.2. In the converse proof, we
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relax the problem to be the one where the prior distribution of the identified user is uniform, and use
Fano’s inequality together with the assistance of auxiliary RVs, which is quite standard technique for
analyzing the outer bound of the capacity region. We show that there are two different ways to express
the capacity regions of the generated- and chosen-secret BIS models. An expression uses only a single
auxiliary RV and another requires two auxiliary RVs. Later, we will demonstrate that the two regions
(regions with one and two auxiliary RVs) are technically identical in Remark 3.5. Although there
are two different aspects, we provide the proof of our main result based on the one employing two
auxiliary RVs. Some benefits of deriving via two auxiliary RVs are that the achievability proof can be
done in a simpler form since each rate constraint is addressed individually. The characterization of the
capacity regions of the models is basically similar to the ones given in [21], [33], and [81]. As special
cases, it can be checked that our characterization reduces to the one given by Ignatenko and Willems
[33] where the enrollment channel is noiseless and there is no constraint on the template rate, and it
also coincides with the result derived by Günlü and Kramer [21] where there is only one individual,
and thus individual’s estimation is not necessary.

The rest of this chapter is organized as follows. In Section 3.1, we describe the details of the
system model considered in this chapter. In Section 3.2, we present our main results. Next, we provide
the detailed proofs of the main results in Section 3.4 and Section 3.5. Finally, in Section 3.6, we give
summary of results and discussion.

3.1 System Model

In this section, we explain the system models considered in this chapter. For the detailed explanations
of the processes of generating bio-data sequence Xn

i and observing Y n
i and Zn, the readers should refer

to Section 2.3. Here, we only provides the new parts. We start with describing the generated-secret
BIS model and then the chosen-secret BIS model.

3.1.1 Generated-Secret BIS Model

The generated-secret BIS model investigated in this chapter are shown in Fig. 3.1. As we have
previously mentioned, it consists of two phases: (I) Enrollment Phase and (II) Identification Phase.
Next we explain the details of each phase.

(I) Enrollment Phase:
Let I = [1,MI], J = [1,MJ], and S = [1,MS] be the sets of indexes of users, indexes of templates,

and secret data of users, respectively. The observed bio-data sequence Y n
i via PY |X with in put Xn

i is
encoded into template J(i) ∈ J and secret data S(i) ∈ S as

(J(i),S(i)) = e(Y n
i ) (i ∈ I), (3.1)
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Fig. 3.1 Generated-secret BIS model; This figure illustrates the data flows in the generated-secret BIS model. In
the enrollment phase, the encoder generates secret keys and templates from the bio-data sequence of individuals.
The secret keys are used for authenticating purpose. The templates are stored in the system database so as to
help the decoder to estimate the index and secret key based on the presented bio-data.

where e : Yn −→J ×S denotes encoding function. The corresponding template J(i) is a compressed
version of sequence Y n

i and stored at position i in a public database JJJ = {J(1), · · · ,J(MI)}, which can
be accessed by the decoder. On the other hand, the secret data S(i) is saved at position i in the key
database, which is installed in a secure location. Note that both J(i) and S(i) are functions of index i.

(II) Identification Phase:
Suppose that the user w presents his identity to the BIS. The decoder observers the identified

sequence Zn, the noisy sequence of the identified user Xn
w, and estimates the pair of index and secret

key by comparing Zn with all templates JJJ in the database.

(Ŵ , Ŝ(w)) = d(Zn,JJJ), (3.2)

where d : Zn ×J −→ I×S denotes decoding function.

3.1.2 Chosen-Secret BIS Model

The chosen-secret BIS model analyzed in this chapter is illustrated in Fig. 3.2.
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Fig. 3.2 Chosen-secret BIS model; This is the chosen-secret BIS model and the difference from the generated-
secret BIS model is that the secret key is given to the encoder from a independent source. In the enrollment
phase, the encoder uses the secret key and the bio-data sequence of individuals to form the template.

(I) Enrollment Phase:
In this model, it is assumed that the secret key S(i) for the user i is uniformly distributed on S.

That is,

PS(i)(s(i)) =
1

MS
. (3.3)

Also, the secret key is picked independently of other RVs, e.g., (Xn
i ,Y

n
n ,Z

n,W ), from the key database.
Upon observing the sequence Y n

i and the secret key S(i), the encoder forms a template as

J(i) = e(Y n
i ,S(i)) (i ∈ I), (3.4)

where e : Yn ×S −→J .

(I) Identification Phase:
Seeing the sequence Zn, the decoder reconstructs the index and secret key of the identified user

based on the information inside the database JJJ as follows:

(Ŵ , Ŝ(w)) = d(Zn,JJJ). (3.5)

Remark 3.1. Note that the distribution of PX , PY |X , and PZ|X are assumed to be known or fixed and
RV W is independent of (Xn

i ,Y
n
i ,J(i),S(i),Z

n) for all i ∈ I like previous studies. However, in this
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thesis, we assume neither that the identified individual index W are uniformly distributed over I nor
that there is a prior distribution of W.

Again a motivation of analyzing performances of the BIS provided that the distribution of W is
unknown is that the identified frequencies of each individual are likely different. For example, it is
hard to think that each user comes to use a bank teller at the same rate, and thus for real applications,
this assumption is important to take care of.

3.2 Problem Formulation and Main Results

In this section, formal definitions and main results are provided in details. We begin with stating
the formal definition of the generated-secret BIS. (W,S(W )) and (Ŵ , Ŝ(W )), and denote the RV
corresponding to the pair of index and secret key of the identified individual (w,s(w)), its estimated
values (ŵ, ŝ(w)), respectively.

Definition 3.1. (Generated-secret BIS model)
The tuple of an identification, secrecy, template, privacy-leakage rates (RI,RS,RJ,RL) is said to

be achievable for the generated-secret BIS if for any δ > 0 and large enough n there exist pairs of
encoders and decoders that satisfy

max
i∈I

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))|W = i} ≤ δ , (3.6)

1
n

logMI ≥ RI −δ , (3.7)

min
i∈I

1
n

H(S(i))≥ RS −δ , (3.8)

1
n

logMJ ≤ RJ +δ , (3.9)

max
i∈I

1
n

I(S(i);J(i))≤ δ , (3.10)

max
i∈I

1
n

I(Xn
i ;J(i))≤ RL +δ . (3.11)

Moreover, RGS is defined as the closure of the set of all achievable rate tuples for the generated-secret
BIS, called the capacity region.

In Definition 3.1, (3.6) is the condition of the maximum error probability of an individual i, which
is arbitrarily small. Equations (3.7)–(3.9) are the constraints related to identification, secrecy, and
template rates, respectively. In term of the privacy protection perspective, we measure the information
leakage of individual i by (3.10) and (3.11). Condition (3.10) measures the secrecy-leakage between
the template in the database and the secret data of individual i, and it requires that the maximum
leaked amount is not greater than δ . Condition (3.11) measures the amount of privacy-leakage of
original bio-data Xn

i from template J(i) and its maximum value must be smaller than or equal to
RL +δ . Later, we will see that the evaluation for RL is the most intricate task.
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Remark 3.2. In [21], and [40], the constraint on the helper data is called storage rate. However,
we stay away from calling it storage rate and instead we name it template rate because besides the
database of helper data, there exists a database of secret keys, which is considered to be a secure
storage. Here, we wish to minimize the storage of the helper data and maximize the database of secret
key at the same time. Therefore, the entire storage is not being minimized and it is more proper to
avoid such misleading key word.

Remark 3.3. In [33], a stronger requirement that the distribution of secret data of every individual
must be almost uniform, i.e. 1

n H(S(i))+δ ≥ 1
n logMS, is included in (3.8). However, this requirement

was not actually necessary in the general problem formulation, which will be seen in the proof of
Theorem 3.1.

The definition of the chosen-secret BIS model is given below.

Definition 3.2. (Chosen-secret BIS model)
The tuple of an identification, secrecy, template, privacy-leakage rates (RI,RS,RJ,RL) is said

to be achievable for the chosen-secret BIS if for any δ > 0 and large enough n there exist pairs of
encoders and decoders satisfying

max
i∈I

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))|W = i} ≤ δ , (3.12)

1
n

logMI ≥ RI −δ , (3.13)

1
n

logMS ≥ RS −δ , (3.14)

1
n

logMJ ≤ RJ +δ , (3.15)

max
i∈I

1
n

I(S(i);J(i))≤ δ , (3.16)

max
i∈I

1
n

I(Xn
i ;J(i))≤ RL +δ . (3.17)

Moreover, the capacity region RCS is defined as the closure of the set of all achievable rate tuples for
the chosen-secret BIS.

Due to the assumption of (3.3), the entropy in the left-handed side of (3.8) in Definition 3.1
becomes 1

n logMS in (3.14) (the entropy is maximized).

Remark 3.4. Equations (3.8) and (3.14) imply that the size or length of the secret key should be
maximized. We aim to extract as large as possible size of the secret key from the bio-data sequence at
the encoder, and to estimate the key at the decoder reliably. The estimated key may be utilized as, e.g.,
authentication password or encryption key, in the later stage based on the identified user’s purpose.
Here, however, we do not discuss how it can be applied in real-life applications after estimated. On
the other hand, in cryptography, the encryption key is used to transform the plaintext into ciphertext
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(encryption) and vice versa (decryption). Also, its size should be made as small as possible because
of the computational complexity for encryption and decryption.

Before stating the main results of this chapter, we define the following 4 new regions.

A1 = {(RI,RS,RJ,RL) : RI +RS ≤ I(Z;U),

RJ ≥ I(Y ;U)− I(Z;U)+RI,

RL ≥ I(X ;U)− I(Z;U)+RI,

RI ≥ 0,RS ≥ 0 for some U s.t. Z −X −Y −U}, (3.18)

A2 = {(RI,RS,RJ,RL) : RI +RS ≤ I(Z;U),

RJ ≥ I(Y ;U),

RL ≥ I(X ;U)− I(Z;U)+RI,

RI ≥ 0,RS ≥ 0 for some U s.t. Z −X −Y −U}, (3.19)

A3 = {(RI,RS,RJ,RL) : 0 ≤ RI ≤ I(Z;V ),

0 ≤ RS ≤ I(Z;U)− I(Z;V ),

RJ ≥ I(Y ;U)− I(Z;U)+ I(Z;V ),

RL ≥ I(X ;U)− I(Z;U)+ I(Z;V ),

for some U and V s.t. Z −X −Y −U −V}, (3.20)

A4 = {(RI,RS,RJ,RL) : 0 ≤ RI ≤ I(Z;V ),

0 ≤ RS ≤ I(Z;U)− I(Z;V ),

RJ ≥ I(Y ;U),

RL ≥ I(X ;U)− I(Z;U)+ I(Z;V ),

for some U and V s.t. Z −X −Y −U −V}, (3.21)

where auxiliary RVs U and V take values in some finite alphabets U and V with |U| ≤ (|Y|+2)(|Y|+
3) and |V| ≤ |Y|+3.

Remark 3.5. It can be verified that

A1 =A3, (3.22)

A2 =A4, (3.23)
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Fig. 3.3 Explanation of each rate constraint in Theorem 3.1

respectively, for which the proof is given in Appendix A.1. In this thesis, we prove Theorem 3.1 and
3.2 based on the rate constraints of the regions A3 and A4 instead of A1 and A4. In other words, we
prove the main results of this chapter via two auxiliary RVs.

Now we are at the position to introduce our main results of this chapter.

Theorem 3.1. (Generated-secret BIS model)
The capacity region for the generated-secret BIS is given by

RGS =A1. (3.24)

The meaning of each rate constraint in Theorem 3.1 is shown in Fig. 3.3. In the top figure, I(Z;U)

is the maximum rate that user’s identities can be estimated correctly at the decoder. Since the index
and the secret key are reconstructed at the decoder, the sum of the identification and secrecy rates
should be less than or equal to this value, and they are in a trade-off relation under I(Z;U). In the
bottom one, I(Y ;U) is the rate that we need to generate auxiliary random sequences for encoding.
The first part (yellow part) represents the secrecy rate, and the second half is the rate of the sequences
that are shared between the encoder and decoder to help estimation of the index and secret key,
corresponding the template rate. Storing templates at this rate in the database results in leaking
the user’s privacy at least I(X ;U)− I(Z;U)+RI , and this quantity emerges in the last constraint in
Theorem 3.1.

Theorem 3.2. (Chosen-secret BIS model)
The capacity region for the chosen-secret BIS is given by

RCS =A2. (3.25)

Remark 3.6. Likewise the observation in [21], RGS is clearly wider than RCS, which is due to the
bound on RJ . A remark given in [82] indicated that in case where the enrollment channel is noiseless
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(X = Y ), the minimum required amounts of the template and privacy-leakage rates are identical for
the generated-secret BIS model. However, this claim does not apply to the chosen-secret BIS model.

In the chosen-secret BIS model (Theorem 3.2), the quantity of the identification and secrecy rates
is the same as seen in Theorem 3.1 (cf. the top figure of Fig. 3.4). However, the minimum requirement
of template rate (storage) becomes larger, which is I(Y ;U) (cf. the bottom figure of Fig. 3.4), as we
need to store the information related to the secret key, chosen independently of other RVs, together
with the secret key at the database. For the privacy-leakage rate, the minimum value does not vary.
Indeed, in the chosen-secret BIS model, the chosen secret key might be used as an extra randomness
seed to make the privacy-leakage decrease, but that is not seen in the final condition of the region
RC. This is because the length of the chosen secret key is too small compared to the template rate,
and it can be used to partially conceal the storage. However, the unconcealed part for the storage
at rate I(Y ;U)− I(Z;U)+RI is still exposed publicly. This is identical to the template rate of the
generated-secret BIS model, and thus it is not surprised that the privacy-leakage rates of the two
models are bounded by the same value.

In case there are no generation of the secret key (RS = 0), and the template and privacy-leakage
allow to be large enough (RJ,RL → ∞), the maximum achievable identification rate is I(Y ;Z). This
is due to the Markov chain Z −Y −U and the value is exactly the identification capacity shwon
in Theorem 2.1. Moreover, if there are only one user (RI = 0), RJ,RL → ∞, noise-free enrollment
(X = Y ), the largest possible secrecy rate becomes I(Z;X), corresponding to the secrecy capacity for
one-way communication of two terminals in [2].

As we have previously mentioned, one can check that the characterizations of Theorem 3.1 and
3.2 coincide with the regions characterized by Ignatenko and Willems [33] in two steps: first replace Y
by X and then remove the constraint RJ from (3.18). Also, this results correspond to the regions given
by Günlü and Kramer [21] for the generated- and chosen-secret BIS with only one user. It is easy to
check this claim by just setting RI = 0. Moreover, in the case where there are no assumption of the
adversary and the enrollment channel is noise-free, it is not hard to confirm that the characterization
of the generated-secret BIS model in this chapter is equivalent to the result of [40, Theorem 1] by
similar arguments in Appendix A.1.

Fig. 3.4 Explanation of each rate constraint in Theorem 3.2
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3.3 Numerical Example and Overviews of the Proof

3.3.1 Simplified Rate Region

In this section, a numerical example of the rate region of the generated-secret BIS for binary hidden
source is given. We consider the case where PX(0) = PX(1) = 0.5 and the crossover probabilities at
the encoder 0 ≤ qE ≤ 0.5 and at the decoder 0 ≤ qD ≤ 0.5. First, we simplify the capacity region for
this case by applying Mrs. Gerber Lemma (MGL) [79]. From the right-hand side of (3.18), we obtain
that

I(Z;U) = 1−H(Z|U), (3.26)

I(Y ;U)− I(Z;U)+RI = H(Z|U)−H(Y |U)+RI, (3.27)

I(X ;U)− I(Z;U)+RI = H(Z|U)−H(X |U)+RI. (3.28)

The above relations indicate that to simplify the capacity region, it is required to maximize H(Y |U)

and minimize H(Z|U) for fixed H(X |U).
First, observe that since 1 ≥ H(X |U)≥ H(X |Y ) = Hb(pE), there must exist an γ satisfying that

H(X |U) = Hb(γ ∗ pE), where γ ∈ [0,0.5]. By applying MGL to the Markov chain U −X −Z, we have

H(Z|U)≥ Hb(H−1
b (H(X |U))∗ pD) = Hb(γ ∗ pE ∗ pD). (3.29)

Again, in opposite direction, if the MGL is applied to the Markov chain U −Y −X , it follows that

H(X |U)≥ Hb(H−1
b (H(Y |U))∗ pE). (3.30)

As H(X |U) = Hb(γ ∗ pE), (3.30) yields that

Hb(γ ∗ pE)≥ Hb(H−1
b (H(Y |U))∗ pE) (3.31)

and thus

γ ∗ pE ≥ H−1
b (H(Y |U))∗ pE (3.32)

Therefore, we obtain

H(Y |U)≤ Hb(γ). (3.33)

In (3.29) and (3.33) for binary symmetric (U,Y ) with crossover probability γ , the minimum H(Z|U) =

Hb(γ ∗ pE ∗ pD) and the maximum H(Y |U) = Hb(γ) are achieved. Therefore, the following corollary
is obtained.
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Fig. 3.5 The projection onto RJRI-plane Fig. 3.6 The projection onto RJRS-plane

Fig. 3.7 The projection onto RLRI-plane Fig. 3.8 The projection onto RLRS-plane

Fig. 3.9 The projection onto RSRI-plane Fig. 3.10 The projection onto RJRL-plane
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Corollary 3.1. For binary source, Theorem 3.1 reduces to

RJ = Hb(γ ∗ pE ∗ pD)−Hb(γ)+RI,

RL = Hb(γ ∗ pE)−Hb(γ)+RI,

For some γ ∈ [0,0.5] satisfying RI +RS = 1−Hb(γ ∗ pE ∗ pD),RI ≥ 0,

and RI ≤ 1−Hb(γ ∗ pE ∗ pD). (3.34)

3.3.2 Numerical Example

We calculate the above rate region for pE = 0.03 and pD = 0.1, considered to be realistic values for
bio-data [21],[33]. The numerical results are shown in Fig. 3.5–3.10 and the painted areas represent
the achievable rate regions for each projection.

In Fig. 3.5, if we look at the blue point in RJ-axis, the optimal template rate at RI = 0 (RS is
optimal), as RI rises, the value of the template rate also increases gradually along the boundary in
the direction of arrow, and eventually reaches the red point, the optimal point for identification and
template rates (RS is zero). Clearly, it implies that a greater value of the identification rate results in a
larger value of the template rate. In contrast, when we take a look at the relation of the secrecy and
template rates in Fig. 3.6, as the secrecy rate decreases (sliding from the blue point to the red point in
the bottom), the template rate becomes larger increasingly. This is because the decrease of secrecy
rate leads to a bigger gain for the identification rate due to the trade-off relation between them (cf.
Fig. 3.9), and this quantity reflects to the value of template rate. Similarly, Fig. 3.7 and 3.8 show
the trade-off of the identification rate versus the privacy-leakage rate and the secrecy rate versus the
privacy-leakage rate, respectively. The general behaviors are similar to Fig. 3.5 and 3.6. Finally, one
can see that the identification and secrecy rates are in trade-off relation from Fig. 3.9, and from Fig.
3.10, when the identification rate rises, both the privacy-leakage rate and the template rate increase.

3.3.3 Overviews on the Proofs of Theorem 3.1 and 3.2

The proofs of Theorem 3.1 (generated-secret BIS model) and 3.2 (chosen-secret BIS model) are
provided in Section 3.4 and 3.5, respectively. Each proof contains two parts; achievability and
converse parts. We prove these theorems based on a technique involving two auxiliary RVs U and V ,
i.e., the constraints in the regions (3.20) and (3.21). Basically, the proof of Theorem 3.1 covers the
derivation of Theorem 3.2. The difference is that one time-pad operation is used as an extra layer to
mask the chosen-secret key for secure transmission. Here, we mainly mention the proof of Theorem
3.1. The converse part follows from standard arguments where the assistance of auxiliary RVs and
Fano’s inequality plays an essential role. For deriving the cardinality of auxiliary RVs U and V , we
apply the support lemma, introduced in [15] and simplified in [19], to find their upper bounds. In the
achievability part, we make use of a combination of random coding and binning, where the binning is
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used to decrease the rate of sequences associating to the secret keys. In the proof, the auxiliary RVs U
and V correspond to the secret keys and the templates of users, respectively.

3.4 Proof of Theorem 3.1

We take a standard information theoretic approach, in which the proof is divided into two parts: the
achievability (direct) and converse parts.

3.4.1 Achievability (Direct) Part

First, we fix δ > 0 arbitrarily small, and a block length n. We also fix test channels PU |Y and
PV |U . We set1 RI = I(Z;V )− δ , RS = I(Z;U |V )− δ , RJ = I(Y ;U)− I(Z;U)+ I(Z;V )+ 3δ , and
RL = I(X ;U)− I(Z;U)+ I(Z;V )+3δ . We also set MI = 2nRI , MS = 2nRS , and MJ = 2nRJ , respectively.

Random Code Generation:
Sequences vn

m are generated i.i.d. from PV for m ∈ [1,NV ], whereNV = 2n(I(Y ;V )+δ ). For each m,
sequences un

k|m are generated from the memoryless channel PUn|V n=vn
m

for k ∈ [1,NU ], where NU =

2n(I(Y ;U |V )+δ ). Divide these sequences equally from the first index into NB = 2n(I(Y ;U |V )−I(Z;U |V )+2δ )

bins. That is, the first bin contains {un
1|m, · · · ,u

n
MS|m}, the second bin contains {un

MS+1|m, · · · ,u
n
2MS|m},

and so on. Consequently, each bin contains exactly MS codewords. Bins are indexed by b ∈ [1,NB]

and codewords inside a certain bin are indexed by s ∈ S. Without loss of generality, there exists a
one-to-one mapping between k and the pair (b,s).

Encoding (Enrollment):
When encoder f observes the bio-data sequence yn

i , the encoder looks for (m,k) such that
(yn

i ,v
n
m,u

n
k|m) ∈ T n

ε (YVU). In case there are more than one such pairs, the encoder picks one of
them uniformly at random. Assume that the encoder found a corresponding pair (m,k) = (m(i),k(i))
satisfying the jointly typical condition above. We set the template j(i) = (m(i),b(i)) and the secret
data to be the corresponding codeword’s index s(i) in bin b(i) 2. j(i) is stored at position i in the
database and s(i) is handed back to individual i. If there do not exist such m and k, then we set
j(i) = (1,1) and s(i) = 1.

Decoding (Identification):
The decoder has access to all records in the database {(m(1),b(1)), · · ·(m(MI),b(MI))}. When

decoder g sees zn, the noisy version of identified individual sequence xn
w, it checks whether the

codeword pair (vn
m(i),u

n
b(i),s|m(i)) is jointly typical with zn or not for all i ∈ I with some s ∈ S, i.e.

(zn,vn
m(i),u

n
b(i),s|m(i)) ∈ T n

ε (ZVU). If there exists a unique pair (i,s) for which this condition holds,

then the decoder outputs (ŵ, ŝ(w)) = (i,s) as the estimated index and secret data, respectively. Oth-
erwise, the decoder outputs the index of the template (1,1) as ŵ and ŝ(w) = 1 if (i) there does

1Due to the Markov chain V −U −Z, we have I(Z;U)− I(Z;V ) = I(Z;UV )− I(Z;V ) = I(Z;V )+ I(Z;U |V )− I(Z;V ) =
I(Z;U |V ). In the proof, we use this fact without explanation.

2Since there is a one-to-one mapping between k and (b,s), we identify k(i) with (b(i),s(i)).
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not exist such a pair (i,s), (ii) such a pair (i,s) exists but there are some s′ ̸= s (s′ ∈ S) such that
(zn,vn

m(i),u
n
b(i),s′|m(i)) ∈ T n

ε (ZVU) satisfies, or (iii) such a pair (i,s) exists but there are some i′ ̸= i such
that the pair (vn

m(i′),u
n
b(i′),s′|m(i′)) is jointly typical with zn for some s′ ∈ S .

Analysis of Error Probability:
We evaluate the ensemble average of the error probability, where the average is taken over

randomly chosen codebook Cn, which is defined as the set {V n
m,U

n
k|m : m ∈ [1,NV ],k ∈ [1,NU ]}. Let the

pair (M(i),K(i)) = (M(i),B(i),S(i)) denote the RVs corresponding to the index pair (m(i),k(i)) =
(m(i),b(i),s(i)) of sequences V n

m and Un
k|m determined by the encoder for Y n

i . For individual W = i,
an possible event of errors occurs at the encoder is:

E1: {(Y n
i ,V

n
m,U

n
k|m) /∈ T n

ε (YVU) for all m ∈ [1,NV ] and k ∈ [1,NU ]},

and those at the decoder are:

E2: {(Zn,V n
M(i),U

n
B(i),S(i)|M(i)) /∈ T n

ε (ZVU)},

E3: {∃s′ ̸= S(i) s. t. (Zn,V n
M(i),U

n
B(i),s′|M(i)) ∈ T n

ε (ZVU)},

E4: {∃i′ ̸= i and ∃s′ s. t. (Zn,V n
M(i′),U

n
B(i′),s′|M(i′)) ∈ T n

ε (ZVU)}.

Note that the authentication process is guaranteed to be successful if the genuine index and secret key
of the identified user are correctly estimated at the decoder, indicating that it is sufficient to focus on
assessing the probability of incorrect estimation for the pair at the decoder. Then, the error probability
can be bounded as

max
w∈I

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))|W = i}

= Pr{E1 ∪E2 ∪E3 ∪E4}
(a)
≤ Pr{E1}+Pr{E2|Ec

1}+Pr{E3}+Pr{E4} , (3.35)

where (a) follows because Pr{E1,E2}= Pr{E1}+Pr{E2 ∩Ec
1} ≤ Pr{E1}+Pr{E2|Ec

1}.
Pr{E1} can be made smaller than δ for large enough n by utilizing the covering lemma [19,

Lemma 3.3] because 1
n logNV = I(Y ;V )+δ > I(Y ;V ) and 1

n logNU = I(Y ;U |V )+δ > I(Y ;U |V ). For
Pr{E2|Ec

1}, it can also be made smaller than δ by the Markov lemma [14, Lemma 15.8.1]. By applying
the packing lemma [19, Lemma 3.1], Pr{E3} and Pr{E4} are arbitrarily small for large enough
n since 1

n logMS = I(Z;U |V )−δ < I(Z;U |V ) and 1
n logMI +

1
n logMS = I(Z;U)− 2δ < I(Z;UV ),

respectively.
Therefore, the ensemble average of the error probability can be made that

max
w∈I

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))|W = i} ≤ 4δ (3.36)

for large enough n.
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Intermediate Steps:
We consider a virtual system, where a partial decoder gi is employed, for deriving the upper

bound on the privacy-leakage rate. In this system, knowing index i and seeing Zn
i (defined as the

output sequence of Xn
i via PZ|X ), the partial decoder gi estimates only the secret data of individual i as

Ŝ(i) = di(Zn
i ,J(i)). Note that this system is just for analysis, and the partial decoder is not actually

used during the decoding process.
For any given i ∈ I, the partial decoder di operates as follows: observing zn

i and the template
j(i) = (m(i),b(i)) in the database, it looks for s ∈ S such that (zn

i ,v
n
m(i),u

n
b(i),s|m(i)) ∈ T n

ε (ZVU). It

sets ŝ(i) = s if there exists a unique s. Otherwise, it outputs ŝ(i) = 1. The potential events of error
probability for this case are E2 and E3. Letting Pe(i) be the error probability of di, we readily see that

Pe(i)≤ Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))|W = i} ≤ 4δ , (3.37)

where the middle term in (3.37) denotes the error probability of d (in the original BIS) for individual
W = i.

The function of this partial decoder enables us to bound the following conditional entropy

H(S(i)|Zn
i ,J(i),Cn)

(b)
≤ H(S(i)|Ŝ(i))

(c)
≤ nδn, (3.38)

where

(b) follows because conditioning reduces entropy,

(c) follows because Fano’s inequality and (3.37) are applied, and δn =
1
n (1+4δ logMIMS).

The bound in (3.38) will be used in the analysis of the privacy-leakage rate.

Lemma 3.1. For any i ∈ I, it holds that

1
n

H(Y n
i |J(i),S(i),Cn)≤ H(Y |U)+δ

′
n, (3.39)

where δ ′
n > 0 and δ ′

n ↓ 0.

(Proof) The proof is provided in Appendix A.2.
Due to the fact that we set MS = 2nRS and MJ = 2nRJ , the following inequalities hold

1
n

H(S(i)|Cn)≤ RS = I(Z;U |V )−δ , (3.40)

1
n

H(J(i)|Cn)≤ RJ = I(Y ;U)− I(Z;U |V )+3δ (3.41)

with equality when S(i) and J(i) are uniformly distributed on S and J , respectively, for any codebook
Cn.
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Hereafter, we shall check the bounds of identification, secrecy, secrecy-leakage, template, and
privacy-leakage rates averaged over randomly chosen codebook Cn. In the following analyses, the
index i is arbitrarily fixed on I since we need to show that all conditions in Definition 1 are satisfied.

Analyses of Identification and Template Rates:
From the parameter settings of achievability scheme, it is straight-forward that the conditions (3.7)

and (3.9) hold.

Analysis of Secrecy Rate:
The secrecy rate can be evaluated as follows:

1
n

H(S(i)|Cn) =
1
n

{
H(Y n

i ,J(i),S(i)|Cn)−H(J(i)|S(i),Cn)−H(Y n
i |J(i),S(i),Cn)

}
(d)
≥ 1

n

{
H(Y n

i )−H(J(i)|Cn)−H(Y n
i |J(i),S(i),Cn)

}
(e)
≥ H(Y )− (I(Y ;U)− I(Z;U)+ I(Z;V )+3δ )− (H(Y |U)+δ

′
n)

= I(Z;U)− I(Z;V )−3δ −δ
′
n

(f)
= RS −2δ −δ

′
n, (3.42)

where

(d) holds because (J(i),S(i)) is a function of Y n
i ,

(e) follows because (3.41) and Lemma 3.1 are applied,

(f) holds because we set RS = I(Z;U)− I(Z;V )−δ .

Analysis of Secrecy-Leakage:
The amount of leaked information about S(i) from J(i) can be expanded as

1
n

I(J(i);S(i)|Cn) =
1
n
{H(S(i)|Cn)+H(J(i)|Cn)−H(Y n

i ,J(i),S(i)|Cn)

+H(Y n
i |J(i),S(i),Cn)}

=
1
n

H(S(i)|Cn)+
1
n

H(J(i)|Cn)−
1
n

H(Y n
i )

+
1
n

H(Y n
i |J(i),S(i),Cn)

(g)
≤I(Z;U |V )−δ + I(Y ;U)− I(Z;U |V )+3δ −H(Y )+H(Y |U)+δ

′
n

=2δ +δ
′
n, (3.43)

where (g) follows because equation (3.41) and Lemma 3.1 are applied.

Analysis of Privacy-Leakage Rate:
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In view of (3.11), we start by expanding the privacy-leakage rate 1
n I(Xn

i ;J(i)|Cn) as

1
n

I(Xn
i ;J(i)|Cn) =

1
n

H(J(i)|Cn)−
1
n

H(J(i)|Xn
i ,Cn)

≤ I(Y ;U)− I(Z;U)+ I(Z;V )+3δ − 1
n

H(J(i)|Xn
i ,Cn), (3.44)

where (3.44) is due to (3.41).
Next, let us focus solely on the conditional entropy in (3.44). It can be evaluated as

1
n

H(J(i)|Xn
i ,Cn) =

1
n

H(Y n
i ,J(i)|Xn

i ,Cn)−
1
n

H(Y n
i |J(i),Xn

i ,Cn)

(h)
=

1
n

H(Y n
i |Xn

i ,Cn)−
1
n

H(Y n
i |M(i),B(i),Xn

i ,Cn)

(i)
= H(Y |X)− 1

n
H(Y n

i |M(i),B(i),S(i),Xn
i ,Cn)−

1
n

I(S(i);Y n
i |M(i),B(i),Xn

i ,Cn)

≥ H(Y |X)− 1
n

H(Y n
i |M(i),B(i),S(i),Xn

i ,Cn)−
1
n

H(S(i)|M(i),B(i),Xn
i ,Cn)

(j)
= H(Y |X)− 1

n
H(Y n

i |M(i),B(i),S(i),Un
i ,X

n
i ,Cn)−

1
n

H(S(i)|M(i),B(i),Xn
i ,Z

n
i ,Cn)

(k)
≥ H(Y |X)− 1

n
H(Y n

i |Un
i ,X

n
i ,Cn)−

1
n

H(S(i)|M(i),B(i),Zn
i ,Cn)

(l)
≥ H(Y |X)−H(Y |X ,U)− (δn +δ

′
n)

= I(Y ;U |X)− (δn +δ
′
n)

(m)
= H(U |X)−H(U |Y )− (δn +δ

′
n), (3.45)

where

(h) follows since J(i) is a function of Y n
i and we have J(i) = (M(i),B(i)),

(i) follows because Y n
i and Xn

i are independent of Cn,

(j) follows because Un(B(i),S(i)|M(i)) is denoted by Un
i and it is a function of (M(i),B(i),S(i)) for

the second term, and the Markov chain S(i)− (M(i),B(i),Xn
i )−Zn

i holds for a given codebook
in the last term,

(k) follows because conditioning reduces entropy,

(l) follows as (2.13) in Lemma 1 and Fano’s inequality in (3.38) are applied,

(m) holds since we have H(U |Y,X) = H(U |Y ) by the Markov chain U −Y −X .
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From (3.44) and (3.45), we obtain

1
n

I(Xn
i ;J(i)|Cn)≤ H(U)−H(U |Y )− I(Z;U)+ I(Z;V )

+H(U |Y )−H(U |X)+3δ +δn +δ
′
n

≤ I(X ;U)− I(Z;U)+ I(Z;V )+3δ +δn +δ
′
n

≤ RL +δ (3.46)

for all sufficiently large n.
Finally, applying Lemma 2.3 to all results shown above (i.e., Eqs. (3.36), (3.42), (3.43), and

(3.46)), there exists at least a good codebook satisfying all the conditions in Definition 3.1 for all large
enough n.

3.4.2 Converse Part

For the converse proof, we consider a more relaxed case where identified individual index W is
uniformly distributed over I, and (3.6), (3.8), (3.10), and (3.11) in Definition 3.1 are replaced by

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))} ≤ δ , (3.47)
1
n

H(S(W )|W )≥ RS −δ , (3.48)

1
n

I(S(W );J(W )|W )≤ δ , (3.49)

1
n

I(Xn
W ;J(W )|W )≤ RL +δ , (3.50)

respectively. We shall show that the capacity region, which is not smaller than the original one RGS,
is contained in the right-hand side of (3.20).

We assume that a rate tuple (RI,RS,RJ,RL) is achievable so that there exists a pair of encoder and
decoder (e,d) such that all conditions in Definition 3.1 with replacing (3.6), (3.8), (3.10), and (3.11)
by (3.36)–(3.50) are satisfied for any δ > 0 and large enough n.

Here, we provide other key lemmas used in this part. For t ∈ [1,n], we define auxiliary RVs Ut

and Vt as

Ut = (Zt−1,J(W ),S(W ),W ) (3.51)

Vt = (Zt−1,J(W ),W ), (3.52)

respectively. We denote a sequence of RVs

Xn
W = (X1(W ), · · · ,Xn(W )), (3.53)

Y n
W = (Y1(W ), · · · ,Yn(W )). (3.54)
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Lemma 3.2. The following Markov chains hold

Zt−1 − (Y t−1(W ),J(W ),S(W ),W )−Yt(W ), (3.55)

Zt−1 − (X t−1(W ),J(W ),S(W ),W )−Xt(W ). (3.56)

(Proof) The proofs are available in Appendix A.3.

Lemma 3.3. There exist some RVs U and V satisfying the Markov chain Z −X −Y −U −V and

n

∑
t=1

I(Zt ;Vt) = nI(Z;V ), (3.57)

n

∑
t=1

I(Zt ;Ut) = nI(Z;U), (3.58)

n

∑
t=1

I(Yt(W );Ut) = nI(Y ;U), (3.59)

n

∑
t=1

I(Xt(W );Ut) = nI(X ;U). (3.60)

(Proof) The proofs are provided in Appendix A.4.
In the subsequent analyses, we fix auxiliary RVs U and V specified in Lemma 3.3.

Analysis of Identification Rate:
Again note that we are considering the case where W is uniformly distributed in the converse part,

and we have

logMI = H(W )

= H(W |JJJ,Zn)+ I(W ;JJJ,Zn)

(a)
= H(W |JJJ,Zn,Ŵ , Ŝ(W ))+ I(W ;JJJ,Zn)

(b)
≤ H(W |Ŵ , Ŝ(W ))+ I(W ;JJJ,Zn)

≤ H(W,S(W )|Ŵ , Ŝ(W ))+ I(W ;JJJ,Zn)

(c)
≤ nδn + I(W ;JJJ,Zn), (3.61)

where

(a) holds because (Ŵ , Ŝ(W )) is function of JJJ and Zn,

(b) follows because conditioning reduces entropy,

(c) by applying Fano’s inequality with δn =
1
n(1+δ logMIMS) as in (3.38).
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Continue bounding the second term in (3.61),

I(W ;JJJ,Zn) = I(W ;JJJ)+ I(W ;Zn|JJJ)
(d)
= I(W ;Zn|JJJ)

= H(Zn|JJJ)−H(Zn|JJJ,W )

(e)
= H(Zn|J(W ))−H(Zn|J(W ),W )

(f)
≤ H(Zn)−H(Zn|J(W ),W )

= H(Zn)−H(Zn|J(W ),W )

=
n

∑
t=1

{
H(Zt)−H(Zt |Zt−1,J(W ),W )

}
=

n

∑
t=1

I(Zt ;Zt−1,J(W ),W )

=
n

∑
t=1

I(Zt ;Vt)

(f)
= nI(Z;V ), (3.62)

where

(d) follows because W is independent of other RVs,

(e) follows because only J(W ) is possibly dependent on Zn,

(f) follows because conditioning reduces entropy,

(g) follows because of (3.57) in Lemma 3.3.

Thus, from (3.7), (3.61), and (3.62), we obtain

RI ≤ I(Z;V )+δ +δn, (3.63)

where δn =
1
n(1+δ logMIMS) and3 δn ↓ 0 as n → ∞ and δ ↓ 0.

Analysis of Secrecy Rate:

3Willems et al. [76] characterized the identification capacity of the system, where the decoder estimates only the user
index, and showed that 1

n logMI ≤ I(Y ;Z)+ δ for all sufficiently large n. Since the constraints imposed on the system
addressed in this thesis are more rigorous than the ones in [76], it is trivial that 1

n logMI for this system cannot be larger
than I(Y ;Z)+δ . Moreover, it holds that 1

n logMS ≤ log |Y| because S(i) is a function of Y n
i . Therefore, for large enough n,

we have that δn =
1
n +

δ

n logMIMS ≤ 1
n +δ (log |Y||Z|+δ ), and it converges to zero when n → ∞ and δ ↓ 0.
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This analysis is similar to the analysis of identification rate, which we have already seen above.
We begin by considering the entropy of secret data as follows:

H(S(W )|W ) = H(S(W )|JJJ,Zn,W )+ I(S(W );JJJ,Zn|W )

= H(S(W )|JJJ,Zn,Ŵ , Ŝ(W ))+ I(S(W );JJJ,Zn|W )

≤ H(S(W )|Ŵ , Ŝ(W ))+ I(S(W );JJJ,Zn|W )

≤ H(W,S(W )|Ŵ , Ŝ(W ))+ I(S(W );JJJ,Zn|W )

= H(W,S(W )|Ŵ , Ŝ(W ))+ I(S(W );JJJ|W )+ I(S(W );Zn|JJJ,W )

(g)
= H(W,S(W )|Ŵ , Ŝ(W ))+ I(S(W );J(W )|W )+ I(S(W );Zn|J(W ),W ), (3.64)

where (g) follows because bio-data sequence of each individual is generated independently, so only
J(W ),S(W ), and Zn are possibly dependent on each other.
For the third term in (3.64),

I(S(W );Zn|J(W ),W )

= H(Zn|J(W ),W )−H(Zn|J(W ),S(W ),W )

= H(Zn)−H(Zn|J(W ),S(W ),W )− (H(Zn)−H(Zn|J(W ),W ))

(h)
=

n

∑
t=1

{
H(Zt)−H(Zt |Zt−1,J(W ),S(W ),W )

}
−

n

∑
t=1

{
H(Zt)−H(Zt |Zt−1,J(W ),W )

}
=

n

∑
t=1

{
I(Zt ;Ut)− I(Zt ;Vt)

}
(i)
= n(I(Z;U)− I(Z;V )), (3.65)

where

(h) holds because each symbol of Zn is i.i.d,

(i) holds due to (3.57) and (3.58) in Lemma 3.3.

Therefore, from (3.48), (3.49), (3.64), (3.65), and Fano’s inequality, we have

RS ≤ I(Z;U)− I(Z;V )+2δ +δn. (3.66)

Analysis of Template Rate:
It follows from (3.9) that

n(RJ +δ )≥ logMJ ≥ max
w∈I

H(J(w))≥ H(J(W )|W )

= I(Y n
W ;J(W )|W )

= I(Y n
W ;J(W ),S(W ),Zn|W )− I(Y n

W ;Zn|J(W ),W )− I(Y n
W ;S(W )|J(W ),Zn,W ). (3.67)
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Now let us focus on each term in (3.67) separately. For the first term,

I(Y n
W ;J(W ),S(W ),Zn|W ) = I(Y n

W ;J(W ),S(W )|W )+ I(Y n
W ;Zn|J(W ),S(W )|W )

=
n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Y t−1(W ),J(W ),S(W ),W )

}
+H(Zn|J(W ),S(W ),W )−H(Zn|J(W ),S(W ),Y n

W ,W )

(j)
=

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Zt−1,Y t−1(W ),J(W ),S(W ),W )

}
+

n

∑
t=1

H(Zt |Zt−1,J(W ),S(W ),W )−H(Zn|Y n
W ,W )

(k)
≥

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Zt−1,J(W ),S(W ),W )

}
+

n

∑
t=1

H(Zt |Ut)−nH(Z|Y )

=
n

∑
t=1

{
I(Yt(W );Ut)+H(Zt |Ut)

}
−nH(Z|Y ), (3.68)

where

(j) holds from (3.55) in Lemma 3.2 and (S(W ),J(W )) is a function of Y n
W ,

(k) follows because conditioning reduces entropy.

For the second term,

I(Y n
W ;Zn|J(W )) = H(Zn|J(W ),W )−H(Zn|J(W ),Y n

W ,W )

=
n

∑
t=1

H(Zt |Zt−1,J(W ),W )−H(Zn|Y n
W )

=
n

∑
t=1

H(Zt |Vt)−nH(Z|Y ). (3.69)

For the last one,

I(Y n
W ;S(W )|J(W ),Zn,W )≤ H(S(W )|J(W ),Zn,W )

= H(S(W )|JJJ,Zn,W )

= H(S(W )|JJJ,Zn,Ŵ , Ŝ(W ))

(l)
≤ H(S(W )|Ŵ , Ŝ(W ))

(m)

≤ nδn, (3.70)

where

(l) follows because conditioning reduces entropy,
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(m) follows due to Fano’s inequality.

Finally, substituting (3.68)–(3.70) into (3.67), the last terms in (3.68) and (3.69) cancel out each other,
and we obtain

RJ +δ ≥ 1
n

n

∑
t=1

{I(Yt(W );Ut)+H(Zt |Ut)−H(Zt |Vt)}−δn

=
1
n

n

∑
t=1

{I(Yt(W );Ut)− I(Zt ;Ut)+ I(Zt ;Vt)}−δn

= I(Y ;U)− I(Z;U)+ I(Z;V )−δn, (3.71)

where (3.71) follows due to (3.57)–(3.59) in Lemma 3.3.

Analysis of Privacy-Leakage Rate:
From (3.50), it follows that

n(RL +δ )≥ I(Xn
W ;J(W )|W )

= I(Xn
W ;J(W ),S(W ),Zn|W )− I(Xn

W ;Zn|J(W ),W )

− I(Xn
W ;S(W )|J(W ),Zn,W ). (3.72)

Likewise in the analysis of template rate, let us focus on each term in (3.72) separately. For the first
term,

I(Xn
W ;J(W ),S(W ),Zn|W ) = I(Xn

W ;J(W ),S(W )|W )+ I(Xn
W ;Zn|J(W ),S(W ),W )

(n)
≥ I(Xn

W ;J(W ),S(W )|W )+H(Zn|J(W ),S(W ),W )

−H(Zn|J(W ),Xn
W ,W )

(o)
≥

n

∑
t=1

{
H(Xt(W ))−H(Xt(W )|Zt−1,X t−1(W ),J(W ),S(W ),W )

}
+

n

∑
t=1

H(Zt |Zt−1,J(W ),S(W ),W )−H(Zn|J(W ),Xn
W ,W )

(p)
≥

n

∑
t=1

{
H(Xt(W ))−H(Xt(W )|Zt−1,J(W ),S(W ),W )

}
+

n

∑
t=1

H(Zt |Ut)−H(Zn|J(W ),Xn
W ,W )

=
n

∑
t=1

{
I(Xt(W );Ut)+H(Zt |Ut)

}
−H(Zn|J(W ),Xn

W ,W ), (3.73)

where

(n) follows because conditioning reduces entropy,

(o) holds from (3.56) in Lemma 3.2,
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(p) follows because conditioning reduces entropy.

For the second term,

I(Xn
W ;Zn|J(W ),W ) = H(Zn|J(W ),W )−H(Zn|J(W ),Xn

W ,W )

=
n

∑
t=1

H(Zt |Zt−1,J(W ),W )−H(Zn|J(W ),Xn
W ,W )

=
n

∑
t=1

H(Zt |Vt)−H(Zn|J(W ),Xn
W ,W ), (3.74)

and the last term can be bounded by the same quantity as seen in (3.70):

I(Xn
W ;S(W )|J(W ),Zn,W )≤ nδn. (3.75)

Finally, substituting (3.73)–(3.75) into (3.72) and taking similar steps as in (3.71), we obtain

RL +δ ≥ 1
n

n

∑
t=1

{I(Xt(W );Ut)− I(Zt ;Ut)+ I(Zt ;Vt)}−δn

= I(X ;U)− I(Z;U)+ I(Z;V )−δn, (3.76)

where (3.76) follows due to (3.57), (3.58), and (3.60) in Lemma 3.3.

To complete the proof of Theorem 3.1, we discuss the bounds on the cardinalities of auxiliary
RVs. For proving the bound on the cardinality of alphabet U in the regions A1 and A2, we use the
support lemma [15], [19, Appendix C] to show that RV U should have |Y|−1 elements to preserve
PY and add three more elements to preserve I(Z;U), I(Y ;U), and I(X ;U). This implies that it suffices
to take |U| ≤ |Y|+2 for preserving the regions. Similarly, to bound the cardinalities of alphabets
U and V in the region A3 and A4, we also utilize the same lemma to show that |V| ≤ |Y|+ 3 and
|U| ≤ (|Y|+2)(|Y|+3) suffice to preserve PY , I(Z;V ), I(Z;U) (= I(Z;U,V )), I(Y ;U), and I(X ;U).

Eventually, letting n → ∞ and δ ↓ 0 in (3.63), (3.66), (3.71), and (3.76), we can see that the
capacity region is contained in the right-hand side of (3.20).

3.5 Proof of Theorem 3.2

In this section, we only give a guideline of how to prove Theorem 3.2. The theorem can be mostly
derived by the same arguments of proving Theorem 3.1. The difference is that an one-time pad
operation is used to mask the chosen secret key for secure transmission between the encoder and
decoder.
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Fig. 3.11 Encoder and decoder of chosen-secret BIS model for the achievability scheme; The components are
the encoder and decoder of the generated-secret BIS model and their descriptions are clearly written in Section
3.4.1.

3.5.1 Achievability (Direct) Part

In order to avoid the confusion in the following arguments, we introduce some new notations which
are used only in this part. The pairs (JC(i),SC(i)) and (JG(i),SG(i)) denote the template and the secret
key of individual i for chosen- and generated-secret BIS encoders, respectively. Moreover, MJC and
MJG denote the number of templates of the chosen- and generated-secret BIS models4.

Overviews of achievability proof:
The proof idea of this part is based on the achievability proof of the generated-secret BIS model

provided in Section 3.4. The difference is that the encoder and decoder of the generated-secret
BIS model are used as components inside the encoder and decoder of the chosen-secret BIS model
as shown in Fig. 3.11. For encoding in the chosen-secret BIS model, a so-called masking layer
(one-time pad operation) is used to mask sC(w) ∈ S for secure transmission by using sG(w) ∈ S
as sC(w)⊕ sG(w). The template jC(w) is the combined information of jG(i) and the masked data
sC(w)⊕ sG(w), i.e.,

jC(w) = ( jG(w),sC(w)⊕ sG(w)). (3.77)

For decoding, it first uses the decoder of the generated-secret BIS model to estimate the pair (ŵ, ŝG(w))
and afterward the secret key is retrieved by

ŝC(w) = sC(ŵ)⊕ sG(ŵ)⊖ ŝG(i), (3.78)

where ⊕ and ⊖ denote addition and subtraction modulo MS. One-time pad system was proposed by
Verman [73] and this technique is also used in many studies such as [2], [32], [29], [21].

4Normally, JC(i), SC(i), and MJC are denoted by J(i), S(i), and MJ in other sections of this chapter.
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Parameter Settings:
First, we define RJG and RJC as the template rates in the generated- and chosen-secret BIS models

encoders, respectively. Let δ be a small enough positive and fix a block length n. We choose test
channels PU |Y and PV |U . Next, we set

RI = I(Z;V )−δ

RS = I(Z;U)− I(Z;V )−δ

RJC = I(Y ;U)+δ

RL = I(X ;U)− I(Z;U)+ I(Z;V )+2δ . (3.79)

We also set the number of individuals MI = 2nRI , the number of secret key MS = 2nRS , and the number
of templates MJC = 2nRJC for the chosen-secret BIS encoder and MJG =

MJC
MS

= 2n(I(Y ;U)−I(Z;U)+I(Z;V )+2δ )

for the generated-secret BIS encoder, respectively.

Random Code Generation:
The operation is the same as the one we have seen in the random code generation of the achiev-

ability proof of Theorem 3.1, so we omit the details.

Encoding (Enrollment):
When the generated-secret BIS encoder, deployed as a component inside the chosen-secret

BIS encoder, observes the bio-data sequence yn
i ∈ Yn, the component looks for (m,k) such that

(yn
i ,v

n
m,u

n
k|m) ∈ T (n)

ε (YVU). In case there are more than one such pairs, the component picks one of
them uniformly at random. Assume that the component found a corresponding pair (m,k), denoted as
(m(i),k(i)) = (m(i),b(i),s(i)), satisfying the jointly typical condition above. Then, the component
sets jG(i) = (m(i),b(i)) and sG(i) = s(i) and shares them to the chosen-secret BIS encoder. After
that, the chosen-secret BIS encoder uses sG(i) to mask the secret sC(i) as sC(i)⊕ sG(i). This masked
information is combined with jG(i) to form the template jC(i) as

jC(i) = ( jG(i),sC(i)⊕ sG(i)) = (m(i),b(i),sC(i)⊕ sG(i)) (3.80)

The template is stored at position i in the database. If there do not exist such m and k, the component
shares jG(i) = (1,1) and sG(i) = 1 to the chosen-secret BIS encoder. In this case, the chosen-secret
BIS encoder declares error.

Decoding (Identification):
The generated-secret BIS decoder, embedded as a component inside the chosen-secret BIS decoder,

has access to all records in the database {(m(1),b(1),sC(1)⊕ sG(1)) , · · · ,(m(MI),b(MI),sC(MI)⊕
sG(MI))} (the chosen-secret BIS decoder also can). When the component receives zn (the noisy
version of identified individual sequence xn

w), it checks if the codeword pair (vn
m(i),u

n
b(i),s|m(i)) is jointly

typical with zn for all i ∈ I with some s ∈ S, i.e. (zn,vn
m(i),u

n
b(i),s|m(i)) ∈ T (n)

ε (ZVU). If there exists

a unique pair (i,s) for which this condition holds, then the component sets (ŵ, ŝG(w)) = (i,s) and
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forwards the pair (ŵ, ŝG(w)) to the chosen-secret BIS decoder. After getting it, the chosen-secret BIS
decoder outputs ŵ = i and ŝC(w) as the result of sC(ŵ)⊕ sG(ŵ)⊖ ŝG(w). Otherwise, the component
shares the index of the template (1,1) and ŝG(w) = 1 to the chosen-secret BIS decoder. Upon detecting
these information, the chosen-secret BIS decoder declares error.

Next we check that the conditions of (3.12)–(3.16) in Definition 3.1 averaged over randomly
chosen codebook Cn, which is defined as the set {V n

m,U
n
k|m,Πm : m ∈ [1,NV ],k ∈ [1,NU ]}.

Analysis of Error Probability:
For individual W = i, the operation at the decoder (3.78) means that ŜC(W ) = SC(W ) iff ŜG(W ) =

SG(W ). In (3.36), it was revealed that the error probability of the identified individual i for the
generated-secret BIS model can be made that Pr{(Ŵ , ŜG(W )) ̸= (W,SG(W ))|W = i} ≤ 4δ . The
detailed proof is provided in the analysis of Theorem 3.1.

Therefore, it follows that the error probability of individual i for the chosen-secret BIS model can
also be bounded by

Pr{(Ŵ , ŜC(W )) ̸= (W,SC(W ))|W = i} ≤ 4δ (3.81)

for large enough n.

Analyses of Identification and Secrecy Rates:
It is easy to confirm that (3.13), (3.15), and (3.14) hold from the parameter settings.

Analysis of Storage Rate:

1
n

logMJC ≤ 1
n

logMJG +
1
n

logMS

= I(Y ;U)− I(Z;U)+ I(Z;V )+2δ + I(Z;U)− I(Z;V )−δ

= I(Y ;U)+δ

≤ RJC +δ . (3.82)

Analysis of Privacy-Leakage Rate:
It can be proved that

I(Xn
i ;JC(i)|Cn) = I(Xn

i ;JG(i)|Cn). (3.83)

To verify this, first one can easily see that

I(Xn
i ;JC(i)|Cn) = I(Xn

i ;JG(i),SC(i)⊕SG(i)|Cn)

= I(Xn
i ;JG(i)|Cn)+ I(Xn

i ;SC(i)⊕SG(i)|JG(i),Cn)

≥ I(Xn
i ;JG(i)|Cn). (3.84)
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Meanwhile, it can be shown that

I(Xn
i ;JC(i)|Cn) = I(Xn

i ;JG(i),SC(i)⊕SG(i)|Cn)

= I(Xn
i ;JG(i)|Cn)+ I(Xn

i ;SC(i)⊕SG(i)|JG(i),Cn)

= I(Xn
i ;JG(i)|Cn)+H(SC(i)⊕SG(i)|JG(i),Cn)

−H(SC(i)⊕SG(i)|Xn
i ,JG(i),Cn)

(a)
≤ I(Xn

i ;JG(i)|Cn)+ logMS −H(SC(i)⊕SG(i)|Xn
i ,JG(i),SG(i),Cn)

=I(Xn
i ;JG(i)|Cn)+ logMS −H(SC(i)|Xn

i ,JG(i),SG(i),Cn)

(b)
= I(Xn

i ;JG(i)|Cn)+ logMS − logMS

= I(Xn
i ;JG(i)|Cn), (3.85)

where

(a) follows as conditioning reduces entropy,

(b) follows because SC(i) is chosen uniformly from S and independent of other RVs.

From (3.84) and 3.85, (3.83) clearly holds. By using a result shown in (3.46) of Theorem 3.1, the
privacy-leakage of the generated-secret BIS model can be bounded by 1

n I(Xn
i ;JG(i)|Cn)≤ I(X ;U)−

I(Z;U)+ I(Z;V )+3δ for large enough n. Then, the privacy-leakage of the chosen-secret BIS model
can also be made that

1
n

I(Xn
i ;JC(i)|Cn)≤ I(X ;U)− I(Z;U)+ I(Z;V )+3δ

= RL +δ (3.86)

for large enough n.

Analysis of Secrecy-Leakage:
It holds that

I(JC(i);SC(i)|Cn) = I(JG(i),SC(i)⊕SG(i);SC(i)|Cn)

= I(JG(i);SC(i)|Cn)+ I(SC(i)⊕SG(i);SC(i)|JG(i),Cn)

= I(JG(i);SC(i)|Cn)+H(SC(i)⊕SG(i)|JG(i),Cn)

−H(SC(i)⊕SG(i)|JG(i),SC(i),Cn)

≤ I(JG(i);SC(i)|Cn)+ logMS −H(SG(i)|JG(i),SC(i),Cn)

(c)
= logMS −H(SG(i)|JG(i),Cn)

= I(JG(i);SG(i)|Cn)+ logMS −H(SG(i)|Cn), (3.87)
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where (c) holds because SC(i) is chosen independently of (SG(i),JG(i)) for given Cn. In the analyses
of the uniformity of secret key (cf, (3.42)) and secrecy-leakage (cf. (3.43)) of Theorem 3.1, it is
shown that

1
n

H(SG(i))≥ logMS −2δ , (3.88)

1
n

I(JG(i);SG(i)|Cn)≤ 2δ (3.89)

for large enough n. Substituting (3.88) and (3.89) into (3.87), the secrecy-leakage of the chosen-secret
BIS model is bounded by

1
n

I(JC(i);SC(i)|Cn)≤ 4δ (3.90)

for large enough n.
Finally, by applying Lemma 2.3 to above results, there exists at least a good codebook satisfying

all conditions in Definition 3.2 for large enough n.

3.5.2 Converse Part

Similar to the converse part of Theorem 3.1, we consider a more relaxed case where identified
individual index W is uniformly distributed over I and (3.12), (3.16), and (3.17) in Definition 3.1 are
replaced with the average error criterion

Pr{(Ŵ , Ŝ(W )) ̸= (W,S(W ))} ≤ δ , (3.91)
1
n

I(S(W );J(W )|W )≤ δ , (3.92)

1
n

I(Xn
W ;J(W )|W )≤ RL +δ , (3.93)

respectively. We shall show that the capacity region, which is not smaller than the original one RCS,
is contained in the right-hand side of (3.21). We assume that a rate tuple (RI,RS,RJ,RL) is achievable.

For t ∈ [1,n], like the converse part of Theorem 3.1, we define auxiliary RVs Ut and Vt as

Ut = (Zt−1,J(W ),S(W ),W ), (3.94)

Vt = (Zt−1,J(W ),W ), (3.95)

respectively. Though we do not provide the detailed proof, it can be verified that Lemma 3.2 and
Lemma 3.3 still hold even for the case where the secret key is chosen independently of bio-data
sequences by the same argument shown in Appendix A.3. In the following arguments, we fix auxiliary
RVs U and V specified in Lemma 3.3.

Analysis of Identification and Secrecy Rates:
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It can be shown that

RI ≤ I(Z;V )+δ +δn, (3.96)

RS ≤ I(Z;U)− I(Z;V )+2δ +δn, (3.97)

where δn =
1
n(1+δ logMIMS) and δn ↓ 0 as n → ∞. The proofs can be done by similar arguments of

the analysis of identification and secrecy rates in the converse part of Theorem 3.1.

Analysis of Template Rate:
From (3.15), it holds that

n(RJ +δ )≥ logMJ

≥ max
w∈I

H(J(w))

≥ H(J(W )|W )

= I(J(W );S(W ),Y n
W |W )

≥ I(J(W );Y n
W |S(W ),W )

= H(Y n
W |S(W ))−H(Y n

W |J(W ),S(W ))

(a)
=

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|J(W ),S(W ),Y t−1(W ))

}
(b)
=

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|J(W ),S(W ),Y t−1(W ),Zt−1)

}
(c)
≥

n

∑
t=1

I(Yt(W );Zt−1,J(W ),S(W ))

=
n

∑
t=1

I(Yt(W );Ut))

(d)
= nI(Y ;U), (3.98)

where

(a) holds because S(W ) is independent of Y n
W and each symbol of Y n

W is i.i.d.,

(b) is due to (3.55) in Lemma 3.2,

(c) follows because conditioning reduces entropy,

(d) holds due to (3.59) in Lemma 3.3.

Thus, we obtain

RJ ≥ I(Y ;U)−δ . (3.99)

Analysis of Privacy-Leakage Rate:
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It can be proved that

RL +δ ≥ I(X ;U)− I(Z;U)+ I(Z;V )−δn. (3.100)

For detailed proof, the readers should refer to the analysis of privacy-leakage rate in the converse part
of Theorem 3.1 since similar approach is taken.

The cardinality bounds of U and V can be derived by the same arguments seen in the previous
section.

Finally, by letting n→∞ and δ ↓ 0, we obtain that the capacity region is contained in the right-hand
side of (3.21) from (3.96), (3.97), (3.99), and (3.100).

3.6 Summary of Results and Discussion

In this chapter, we deployed a method using two auxiliary RVs to characterize the capacity regions of
identification, secrecy, template, and privacy-leakage rates for both the generated- and chosen-secret
BIS under the condition that that the prior distribution of the identified individual is unknown. We
demonstrated that the characterizations using two auxiliary RVs reduce to the ones using only an
auxiliary RV. Compared to the model proposed in [69] and [33], what we newly imposed on our
models are:

• treating a noisy channel in the enrollment phase,

• considering a scheme of both compressing template (as in [69] and [81]) and protecting privacy
(as in [33]),

• analyzing the capacity region provided that the prior distribution of the identified individual is
unknown.

As special cases, it can be checked that our characterizations reduce to the one in [33] where the
enrollment channel is noiseless and there is no constraint on the template rate, and also coincide with
the ones derived by Günlü and Kramer [21] where there is only one individual.

After showing the capacity regions of the generated- and chosen-secret BIS models, we learned
that the results are actually derivable with single auxiliary RV, too. For this case, the converse part can
be proved similarly, but the achievability scheme needs to be adapted, especially, the encoding and
decoding rules. The detailed proofs are provided in [85].

In [30, Section 3.2.2] and [31, Section 3.4], the constraint on the privacy-leakage is replaced by
a conditional version, i.e., 1

n I(Xn
i ;J(i)|S(i))≤ RL +δ . For the VSM, it is shown that the minimum

required amount of the privacy-leakage rate for the generated-secret BIS model with unconditional
or conditional privacy constraint is the same form. However, for the HSM, it seems that this claim
dose not hold. As we require the secrecy-leakage 1

n I(S(i);J(i)) should be negligible, compared to
the unconditional privacy-leakage (3.11) in Definition 3.1, the conditional version is more rigor-
ous. That is obvious from 1

n I(Xn
i ;J(i)|S(i)) = 1

n I(Xn
i ,S(i);J(i))− 1

n I(S(i);J(i))∼ 1
n I(Xn

i ,S(i);J(i)) =
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1
n I(Xn

i ;J(i))+ 1
n I(S(i);J(i)|Xn

i ). In VSM, 1
n I(S(i);J(i)|Xn

i ) is zero since (S(i);J(i)) are a function
of Xn

i , but this can not be applied to the HSM case where the pair (S(i);J(i)) is generated from the
sequence Y n

i , a noisy version of Xn
i . Therefore, the mutual information is likely positive and the

minimum amount of the privacy-leakage rate is greater than the one seen in Theorem 3.1.
On the other hand, in the chosen-secret model, the minimum amount of the privacy-leakage rate

under unconditional or conditional privacy is characterized differently (cf. [31, Theorem 3.2],[31,
Theorem 3.4]) even for the VSM, and this conclusion is possibly applied to the HSM as well.
Nevertheless, there are still rooms for investigating these models under the conditional privacy
constraint.



Chapter 4

BISs With Both Chosen and Generated
Secrecy: DMS

In this chapter, we investigate the fundamental limits of the BIS with a combined usage of chosen-
and generated-secret keys. We also allows the two secret keys to be correlated, and the reason of this
is because we wish to achieve a higher sum of the identification, chosen- and generated-secrecy rates.
In the enrollment phase, for each user, the encoder generates a secret key (generated-secret key) and
a template (helper data) by using another secret key (chosen-secret key), chosen independently of
biometric identifiers and the bio-data sequence. In the identification phase, observing biometric data
sequence, the decoder should estimate index, chosen- and generated-secret keys of the identified user
reliably.

In the previous studies such as [21], [29], [33], and [85], the chosen- and generated-secret keys
are assumed in the separate models, namely, chosen- and generated-secret BIS models, respectively.
However, an interesting question is when the two keys are used in the same system, how the chosen-
and generated-secrecy rates affect the fundamental performances of the BIS. The answer to this
question has not yet been known, and it is not trivial from the results of the previous studies. A
possible application of this model may be the system supporting two-factor authentication based on
biometrics as the estimated index can be used to claim who the identified user is, and the chosen-
and generated-secret keys may be used for the first and second rounds of authentications. In the
present chapter, we are interested in characterizing the optimal trade-off of identification, chosen- and
generated-secrecy rates under privacy and storage constraints for the BIS with exponentially many
users. In the derivation, the hard part is the evaluation of the privacy-leakage rate in the converse part,
and we establish a new lemma for dealing with the difficulty. As a result, the characterization shows
that identification, chosen- and generated-secrecy rates are in a trade-off relation, and a larger sum of
these rates is achievable compared to the result in [86]. The template rate (storage space) requires to
be larger as identification and chosen-secrecy rates rise, similar to an observation for the chosen-secret
BIS model in [21], [29], and [33], but it is not affected by the generated-secrecy rate. Unlike the
template rate, the privacy-leakage rate increases or decrease in accordance with only the changes
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Fig. 4.1 BIS with both chosen and generated secrecy; One can see that two secret keys SC(i) and SG(i) appear
in the model, and these secret keys and index of the identified user should be estimated reliably at the decoder.

of the identification rate. As special cases, this result reduces to several known characterizations
provided in previous studies.

The organization of this chapter is as follow. We describe the basic settings of system model
considered in this chapter in Section 4.1, state our main result in Section 4.2, and look into connections
of the main result and the results in previous studies. The proof of main result is given in Section 4.4,
and a short summary of results and discussion for this chapter follows in Section 4.5.

4.1 Basic Settings of the System Model

The system model considered in this paper is illustrated in Fig. 4.1. 1 , 2 , and 3 represent the
databases of chosen- and generated-secret keys, and templates, respectively. In order to avoid the
notation confusion, we call SC(i) and SG(i) the chosen- and generated-secret keys, respectively. Let
SC = [1 : MC] and SG = [1 : MG] be the sets of the chosen- and generated-secret keys. Lowercase
letters sC(i) ∈ SC, sG(i) ∈ SG, and j(i) ∈ J stand for the realizations of the two keys and template,
respectively. Here, as we have seen in the analysis of the chosen-secret BIS model in Section 3.1, it is
also assumed that the chosen-secret key is uniformly distributed on SC, i.e.,

PSC(i)(sC(i)) =
1

MC
(4.1)
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for all i ∈ I and sC(i) ∈ SC. Observing sequence Y n
i and SC(i), provided independently of other RVs

from 1 , the encoder e generates SG(i) and J(i) as

(J(i),SG(i)) = e(Y n
i ,SC(i)) (4.2)

for all i ∈ I. J(i) is stored at position i in 3 and S(i) is saved in 2 . This operation is repeated for
all users. In the Identification Phase, observing Zn, the decoder d reconstructs index and both secret
keys by

(Ŵ , ŜC(w), ŜG(w)) = d(Zn,JJJ). (4.3)

Moreover, to pass the process of identification, it is required that the first and second authentications
must be accepted. In the first authentication, it checks that whether

ŜC(w) = SC(Ŵ ) (4.4)

, and in the second authentication phase, it again checks that if

ŜG(w) = SG(Ŵ ) (4.5)

or not, and if the condition of each step is matched, decoding is successful. Again note that it is not
required that the identified user W must be uniformly distributed on I as in [40] and [76].

4.2 Problem Formulation and Main Result

In this section, we provide the formal definition of the system and the main result of this study.
After that we take a look into the connection between our result and the ones characterized in
previous studies. For simplicity, let E(W ) and Ê(W ) represent the tuples (W,SC(W ),SG(W )) and
(Ŵ , ŜC(W ), ŜG(W )), respectively.

Definition 4.1. A tuple of identification, chosen- and generated-secrecy, template, and privacy-
leakage rates (RI,RC,RG,RJ,RL) is said to be Γ-achievable for a DMS if for any1 0≤Γ≤min{RC,RG},

1In (4.8) and (4.9), we aim to achieve as large as possible RC and RG, indicating these values are very close to their
entropies. Thus, it is natural that the mutual information in (4.12) is bounded by the smaller one of the two rates. For the
case where Γ > min{RC,RG}, it is impossible to achieve such a value since Γ becomes larger than 1

n H(SC(i)) or 1
n H(SG(i)),

but the degree of correlation for the two secret keys is at most equal to the smaller one of these entropies.



52 BISs With Both Chosen and Generated Secrecy: DMS

δ > 0, and large enough n there exist pairs of encoders and decoders that satisfy

max
i∈I

Pr{Ê(W ) ̸= E(W )|W = i} ≤ δ , (4.6)

1
n

logMI ≥ RI −δ , (4.7)

1
n

logMC ≥ RC −δ , (4.8)

min
i∈I

1
n

H(SG(i))≥ RG −δ , (4.9)

1
n

logMJ ≤ RJ +δ , (4.10)

max
i∈I

1
n

I(Xn
i ;J(i))≤ RL +δ , (4.11)

max
i∈I

1
n

I(SC(i);SG(i))≤ Γ, (4.12)

max
i∈I

1
n

I(SC(i),SG(i);J(i))≤ δ . (4.13)

Moreover, RD(Γ) is defined as the closure of the set of all Γ-achievable rate tuples, called the
Γ-capacity region, of the BIS for discrete memoryless sources.

The first main result of this paper is presented below.

Theorem 4.1. The Γ-capacity region for the system for discrete memoryless source is given by

RD(Γ) = {(RI,RC,RG,RJ,RL) : RI +RC ≤ I(Z;U),

RI +RC +RG ≤ I(Z;U)+Γ,

RJ ≥ I(Y ;U)− I(Z;U)+RI +RC,

RL ≥ I(X ;U)− I(Z;U)+RI,

RI ≥ 0, RC ≥ Γ ≥ 0, RG ≥ 0,

for some U s. t. Z −X −Y −U}, (4.14)

where auxiliary RV U takes values in a finite alphabet U with |U| ≤ |Y|+2.

Note that a constraint of RI +RG ≤ I(Z;U) is redundant in (4.14) due to the fact that it is obvious
from the second condition as RC ≥ Γ. Using a similar technique shown in [29, Sect. IV-A], one can
easily check that RD(Γ) is a convex region.

An explanation of rate constraints in (4.14) is illustrated in Fig. 4.2. In this setting, the decoder
is required to reconstruct the index and both secret keys. In [86], Yachongka and Yagi showed
that the sum of identification, generated- and chosen-secrecy rates cannot be larger than I(Z;U) if
the condition (4.12) is imposed by the perfect secrecy. However, since we permit the chosen- and
generated-secret keys to be correlated (non-perfect secrecy), the recognizable value for the sum of
these rates exceeds I(Z;U), and the increased quantity is equal to the the degree of correlation between
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Fig. 4.2 Explanation of rate constraints for Theorem 4.1

the two keys’ Γ (cf. the middle band graph in Fig. 4.2). More precisely, RI and RC can be any value in
the range of [0, I(Z;U)] under a constraint that their sum should be less than I(Z;U) as shown in the
top band graph. The generated-secrecy rate RG can take values up to I(Z;U)+Γ− (RI +RC), which
was originally achieved up to I(Z;U)− (RI +RC) for the case of perfect secrecy [86].

The minimum required amount of the template rate is larger than the one of the generated-secret
BIS model seen in Theorem 3.1, which is identical to the sum of the rates of yellow part (RC) and
green part (I(Y ;U)− I(Z;U)+RI) in the bottom band graph of Fig. 4.2. The constraint of template
rate RJ depends on both the identification rate RI and the chosen-secrecy rate RC. This is because the
storage space increases with the number of users, and we need to attach the information related to the
chosen-secret key with the templates in some form.

Fundamentally, the privacy-leakage rate is proportional to the template rate. Compared to the
constraint of the template rate in Theorem 3.1, the one in Theorem 4.1 is lower bounded by a bigger
value. Therefore, we expect that this increment might lead to leaking a larger amount of the privacy.
Surprisingly, the minimum amount of the privacy-leakage rate is characterized in the same form in
both theorems. As a matter of fact, the chosen-secrecy rate does not involve, and only the changes of
identification rate affect the minimum required amount of the privacy-leakage rate. This is because the
portion related to the chosen-secret key stored in the database should be made perfectly confidential,
e.g., by using the one-time pad operation, and this information makes no contribution to the privacy-
leakage. Similar to the conclusion of Theorem 3.2, the template rate that can be openly observed
by the adversary is at least I(Y ;U)− I(Z;U)+RI , and for this reason, the minimum value of the
privacy-leakage rate becomes I(X ;U)− I(Z;U)+RI .
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4.3 Special Cases and Overviews of the Proof of Theorem 4.1

4.3.1 Connection to the Results of the Previous Studies and Example

Next, we will take a look into a few special cases. One can check that Theorem 4.1 covers the results
provided in previous studies. For instance, in the case of no chosen-secrecy, that is RC = 0, RD(Γ)

naturally reduces to the one given in Theorem 3.1. In the case of no secrecy generation, that is RG = 0,
the capacity region, denoted by R′ in this case, is given in the following corollary.

Corollary 4.1.

R′ = {(RI,RC,RJ,RL) : RI ≥ 0,RC ≥ 0,

RI +RC ≤ I(Z;U),

RJ ≥ I(Y ;U)− I(Z;U)+RI +RC,

RL ≥ I(X ;U)− I(Z;U)+RI,

for some U s. t. Z −X −Y −U}, (4.15)

where |U| ≤ |Y|+2.

Although the expression of R′ and the one given in Theorem 3.2 are different, it can be checked
that both are identical. The proof is available in Appendix B.1.

Moreover, in the case where we set RI to be zero (single user case), the capacity region, denoted
by R′′ in this case, is obtained.

Corollary 4.2.

R′′ = {(RC,RG,RJ,RL) : RC ≥ 0,RG ≥ 0,

RC +RG ≤ I(Z;U),

RJ ≥ I(Y ;U)− I(Z;U)+RC,

RL ≥ I(X ;U)− I(Z;U),

for some U s. t. Z −X −Y −U}, (4.16)

where |U| ≤ |Y|+2.

When RC = 0 (no provision of secret key), one can easily see that R′′ is equivalent to the one
given in [21, Theorem 1]. Moreover, in case RG = 0 (no generation of secret key), it can also be
shown that R′′ matches with the region provided in [21, Theorem 2] by a similar argument of proving
that R′ and the region in Theorem 3.1 are the same.

Applying the similar arguments in Section 3.3, we can show the following corollary.
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Fig. 4.3 The projection onto RGRC-plane. Fig. 4.4 The projection onto RJRC-plane.

Fig. 4.5 The projection onto RJRG-plane. Fig. 4.6 The projection onto RLRG-plane.

Corollary 4.3. For binary hidden source, Theorem 4.1 reduces to

RJ = Hb(γ ∗ pE ∗ pD)−Hb(γ)+RC +RI,

RL = Hb(γ ∗ pE)−Hb(γ)+RI,

For some γ ∈ [0,0.5] satisfying RI +RC +RG = 1−Hb(γ ∗ pE ∗ pD)+Γ, RI ≥ 0, RC ≥ Γ ≥ 0,

and RI +RC ≤ 1−Hb(γ ∗ pE ∗ pD). (4.17)

We calculate the above rate region for pE = 0.03 and pD = 0.1, which is the same setting as
Section 3.3, in the case where RI = 0 and Γ = 0. The results are shown in Fig. 4.3–4.6 and the
painted areas represent the achievable rate regions. Blue and red points marked with an asterisk
correspond to the points where RG = 0 and RC = 0, respectively. One can see that the chosen- and
generated-secrecy rates are in trade-off relation from Fig. 4.3. In Fig. 4.4, it is evident that a greater
value of chosen-secrecy rate results in a larger value of template rate. In contrast, when we take a look
at the relation of the generated-secrecy and template rates in Fig. 4.5, as the generated-secrecy rate
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decreases, the template rate is increasingly large. This is due to increase of the chosen-secrecy rate.
Finally, Fig. 4.6 show the optimal trade-off of the generated-secrecy and privacy-leakage rates, and
the optimal value of RL is not affected by the change of chosen- or generated-secrecy rates.

4.3.2 Overviews on the Proof of Theorem 4.1

Unlike the technique seen in deriving Theorem 3.1 and 3.2, the main result of this chapter is proved
based on a single auxiliary RV U . We also take a standard approach in which the proof of Theorem
4.1 is divided into two parts: achievability and converse parts. The converse part is based on Markov
properties of the auxiliary RV and Fano’s inequality, and the cardinality bound of auxiliary RV U
follows by applying the support lemma [15], [19]. In the achievability part, the argument of random
coding is used, and auxiliary sequences of RV U corresponds to the secret keys and the templates
of users. Every generated sequence un is assigned with three indexes (s1,s2,m), where s1 and m
represent the generated-secret key and the dummy message shared between the encoder and decoder
to help the estimation of both secret keys. On the other hand, s2 acts as a random seed to mask the
chosen-secret key by one time-pad operation, and this masked information is stored together with the
dummy message in the database.

4.4 Proof of Theorem 4.1

In this section, we provide the detailed proof of Theorem 4.1. The proof begins with showing the
converse part and then follows by the achievability part.

4.4.1 Converse Part

A same approach as seen in the proofs of the converse part of Theorem 3.1 and 3.2, we assume that W
is uniformly distributed on I, and (4.6), (4.9), (4.11), (4.12), and (4.13) are replaced by

Pr{Ê(W ) ̸= E(W )} ≤ δ , (4.18)
1
n

H(SG(W )|W )≥ RG −δ , (4.19)

1
n

I(Xn
W ;J(W )|W )≤ RL +δ , (4.20)

1
n

I(SC(W );SG(W )|W )≤ Γ, (4.21)

1
n

I(SC(W ),SG(W );J(W )|W )≤ δ , (4.22)

respectively. We demonstrate that even this more relaxed condition, the outer bound of the capacity
region coincides with its inner bound derived under the circumstance that the prior distribution of W
is unknown.
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Suppose that a rate tuple (RI,RC,RG,RJ,RL) is achievable. Before proceeding to detailed proofs,
we provide some useful lemmas. For t ∈ [1 : n], we define an auxiliary RV

Ut = (Zt−1,T (W )), (4.23)

where T (W ) = (J(W ),SC(W ),SG(W ),W ).

Lemma 4.1. The following Markov chains hold

Zt−1 − (Y t−1(W ),T (W ))−Yt(W ), (4.24)

Zt−1 − (X t−1(W ),T (W ))−Xt(W ). (4.25)

(Proof): The proofs can be done by similar arguments shown in Appendix A.3.
The following lemma plays a key role in the analysis of privacy-leakage, which will be seen in the

sequel.

Lemma 4.2. It holds that

1
n

I(Zn;JJJ,W )≥ RI − (δ +δn), (4.26)

where δn =
1
n(1+δ logMIMCMG), and δn ↓ 0 as n → ∞ and δ ↓ 0.

(Proof): We can prove the above lemma by a few steps as follows:

1
n

I(Zn;JJJ,W )≥ 1
n

I(Zn;W |JJJ)

=
1
n

H(W |JJJ)− 1
n

H(W |Zn,JJJ)

(a)
≥ 1

n
H(W )−δn

=
1
n

logMI −δn

(b)
≥ RI − (δ +δn), (4.27)

where

(a) follows because Fano’s inequality is applied and W is statistically independent of all templates,

(b) follows since (4.7) is applied, and we have that δn =
1
n(1+ logMIMCMG) goes to zero as δ ↓ 0

and n → ∞.
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Analysis of Identification, Chosen- and Generated-Secrecy Rates: We begin with considering the joint
entropy of E(W ) = (W,SG(W ),SC(W )) as

H(E(W )) = H(E(W )|Zn,JJJ)+ I(E(W );Zn,JJJ)
(c)
≤ nδn + I(E(W );JJJ)+ I(E(W );Zn|JJJ)

≤ nδn + I(W ;JJJ)+ I(SC(W ),SG(W );JJJ|W )+H(Zn|JJJ)

−H(Zn|JJJ,SC(W ),SG(W ),W )

(d)
= nδn + I(SC(W ),SG(W );J(W )|W )+H(Zn|J(W ))−H(Zn|T (W ))

(e)
≤ n(δn +δ )+H(Zn)−H(Zn|T (W ))

=
n

∑
t=1

{
H(Zt)−H(Zt |Zt−1,T (W ))

}
+n(δ +δn)

=
n

∑
t=1

I(Zt ;Ut)+n(δ +δn)

(f)
= n(I(Z;U)+δ +δn), (4.28)

where

(c) follows because Fano’s inequality is applied,

(d) holds because W is independent of other RVs and only J(W ) is possibly dependent on Zn,
SC(W ), and SG(W ),

(e) follows because (4.22) is used and conditioning reduces entropy,

(f) holds due to (3.58) in Lemma 3.3.

In the opposite direction, we can also derive the following relation

H(E(W )) = H(W,SC(W ),SG(W )) = H(W )+H(SC(W ),SG(W )|W )

(g)
= H(W )+H(SC(W ))+H(SG(W )|W )− I(SC(W );SG(W )|W )

(h)
≥ logMI + logMC +H(SG(W )|W )− I(SC(W );SG(W )|W )

(i)
≥ n(RI +RC +RG −Γ−3δ ), (4.29)

where

(g) holds because W and SC(W ) are independent of each other,

(h) follows since W and SC(W ) is uniformly distributed on I and SC, respectively,

(i) is due to (4.7), (4.8), (4.19), and (4.21).
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From (4.28) and (4.29), we obtain

RI +RC +RG ≤ I(Z;U)+Γ+4δ +δn. (4.30)

Analysis of Identification and Chosen-secrecy Rates: It holds that

H(W,SC(W ))≤ H(W,SC(W ),SG(W ))≤ n(I(Z;U)+δ +δn), (4.31)

and we have

H(W,SC(W ))
(j)
= H(W )+H(SC(W )) = logMI + logMC

(k)
≥ RI +RC −2δ , (4.32)

where

(j) follows because W is independent of SC(W ),

(k) is due to (4.7) and (4.8).

From (4.7) and (4.8), we obtain

RI +RC ≤ I(Z;U)+3δ +δn. (4.33)

Analysis of Template Rate: We have that

n(RJ +δ )≥ logMJ ≥ max
w∈I

H(J(w))≥ 1
MI

MI

∑
w=1

H(J(W )|W = w) = H(J(W )|W )

= I(Y n
W ,SC(W );J(W )|W )

(l)
= H(Y n

W )+H(SC(W ))−H(Y n
W ,SC(W ),SG(W )|J(W ),W )

(m)
= H(Y n

W )−H(Y n
W |T (W ))+ logMC −H(SC(W ),SG(W )|J(W ))

=
n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Y t−1(W ),T (W ))

}
+ logMC

−H(SC(W ),SG(W ))+ I(SC(W ),SG(W ));J(W ))

(n)
≥

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Zt−1,Y t−1(W ),T (W ))

}
+n(RC −δ )−H(SC(W ),SG(W ))

(o)
≥

n

∑
t=1

{
H(Yt(W ))−H(Yt(W )|Zt−1,T (W ))

}
+n(RC −δ )−n(I(Z;U)−RI +2δ +δn)

=
n

∑
t=1

I(Yt(W );Ut)−n(I(Z;U)−RI −RC +3δ +δn)

(p)
= n(I(Y ;U)− I(Z;U)+RI +RC −3δ −δn), (4.34)
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where

(l) holds because Y n
W is independent of SC(W ) and SG(W ) is a function of (Y n

W ,SC(W )),

(m) holds since SC(W ) is uniformly distributed on SC and W is independent of other RVs,

(n) follows due to (4.8) and (4.24),

(o) follows as conditioning reduces entropy and from (4.28), we have H(SC(w),SG(w))≤ n(I(Z;U)+

δ +δn)−H(W )≤ n(I(Z;U)−RI +2δ +δn),

(p) holds due to (3.59) in Lemma 3.3.

Therefore,

RJ ≥ I(Y ;U)− I(Z;U)+RC +RI −4δ −δn. (4.35)

Analysis of Privacy-Leakage Rate: We expand the left-hand side of (4.20) as

I(Xn
W ;J(W )|W ) = I(Xn

W ;J(W ),SC(W ),SG(W ),Zn|W )− I(Xn
W ;SC(W ),SG(W ),Zn|J(W ),W )

= I(Xn
W ;J(W ),SC(W ),SG(W )|W )+ I(Xn

W ;Zn|J(W ),SC(W ),SG(W ),W )

−H(SC(W ),SG(W ),Zn|J(W ),W )+H(SC(W ),SG(W ),Zn|J(W ),W,Xn
W )

=
n

∑
t=1

I(Xt ;X t−1(W ),T (W ))+H(Zn|T (W ))−H(Zn|T (W ),Xn
W )

−H(Zn|J(W ),W )−H(SC(W ),SG(W )|J(W ),W,Zn)

+H(SC(W ),SG(W )|J(W ),W,Xn
W )+H(Zn|T (W ),Xn

W )

(q)
≥

n

∑
t=1

I(Xt ;Zt−1,X t−1(W ),T (W ))− (H(Zn)−H(Zn|T (W )))

+(H(Zn)−H(Zn|J(W ),W ))−nδn

(r)
≥

n

∑
t=1

I(Xt(W );Zt−1,T (W ))−
n

∑
t=1

I(Zt ;Zt−1,T (W )) + I(Zn;JJJ,W )−nδn

(s)
≥

n

∑
t=1

{
I(Xt(W );Ut)− I(Zt ;Ut)

}
+n(RI − (δ +δn))−nδn

(t)
= n(I(X ;U)− I(Z;U)+RI −δ −2δn), (4.36)

where

(q) follows because (4.25) is used and in the right above equality, the third and the last terms cancel
out each other, Fano’s inequality is applied for the fifth term, and the sixth term is eliminated,

(r) follows since conditioning reduces entropy and Zn − (J(W ),W )− JJJ\J(W ) is applied,

(s) follows due to Lemma 4.2,

(t) holds due to (3.58) and (3.60) in Lemma 3.3.
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Dividing both sides of (4.36) by n, from (4.20), it yields that

RL ≥ I(X ;U)+ I(Z;U)+RI −2(δ +δn). (4.37)

For the cardinality bound |U| ≤ |Y|+2, it can be derived by using the support lemma [19, Lemma
3.4].

Finally, by letting n → ∞ and δ ↓ 0, we complete the proof of the converse part.

4.4.2 Achievability Part

Parameter Settings: First, fix the test channel PU |Y . Let δ be a small enough positive value and fix a
block length n. We set

RI > 0,RC > 0, (RI +RC < I(Z;U)) (4.38)

Γ < RC, (4.39)

RG = I(Z;U)+Γ− (RI +RC)−δ , (4.40)

RM = I(Y ;U)− I(Z;U)+RI +2δ , (4.41)

RJ = I(Y ;U)− I(Z;U)+RI +RC +2δ , (4.42)

RL = I(X ;U)− I(Z;U)+RI +2δ , (4.43)

where RM denotes the rate of dummy message shared between the encoder and decoder. We also
set SC = [1 : 2nRC ], SG = [1 : 2nRG ], and J = [1 : 2nRJ ]. We define four new sets SΓ = [1 : 2nΓ],
SCΓ̄ = [1 : 2n(RC−Γ)], SGΓ̄ = [1 : 2n(RG−Γ)], and M = [1 : 2nRM ], representing the sets of shared bits,
unshared bits in chosen-secret key, unshared bits in generated-secret key, dummy message, respectively.
Without loss of generality, we have that

• There exists one-to-one mapping between l and a pair (m,n), where l ∈ SC, m ∈ SΓ, and
n ∈ SCΓ̄.

• There exists one-to-one mapping between p and (q,r), where p ∈ SG, q ∈ SΓ, and r ∈ SGΓ̄.

Codebook Generation: Generate 2n(I(Y ;U)+δ ) sequences of un(s1,s2,m), which are i.i.d. from PU ,
where s1 ∈ SC, s2 ∈ SGΓ̄, and m ∈M.

Encoding (Enrollment): Note that the encoder knows the user index i beforehand and the chosen-secret
key sC(i) ∈ SC is given and there is a one-to-one mapping between sC(i) and a pair (sC1(i),sC2(i)),
where sC1(i) ∈ SΓ, and sC2(i) ∈ SCΓ̄. The first nΓ information bits of sC(i), which is sC1(i), are shared
with the generated-secret key as displayed in Fig. 4.7.

Observing the measurement yn
i and sC(i) chosen from 3 , the encoder finds index tuples (s1,s2,m)

such that (yn
i ,u

n(s,s2,m)) ∈ T (n)
ε (YU). If there exists multiple tuples satisfying the joint typicality
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Fig. 4.7 Shared bits; The blue parts describe information bits shared between chosen- and generated-secret
keys.

above, it picks one of them at random. Otherwise, error is declared. Let (s1(i),s2(i),m(i)) denote the
tuple chosen for given yn

i . Then, the encoder generates a secret key and a template as follows:

j(i) = (m(i),sC(i)⊕ s1(i))), (4.44)

sG(i) = (sC1(i),s2(i)), (4.45)

where ⊕ denotes the addition modulo MC. j(i) is stored at location i in 1 , which can be accessed by
the decoder, and sG(i) is saved at position i in 2 .

Decoding (Identification): Seeing zn, the decoder looks for the index tuple (s1,s2,m(i)) such that
(zn,un(s1,s2,m(i))) ∈ T (n)

ε (ZU) for all i with some s1 ∈ SC and s2 ∈ SGΓ̄. If such i, s1, and s2 are
unique, the decoder sets (ŝ1(w), ŝ2(w), m̂(w)) = (s1,s2,m(i)). Otherwise, it declares error. Assume
that i,s2, and s2 are uniquely found. Then, the decoder outputs the index ŵ = i and the chosen-secret
keys as

ŝC(w) = sC(ŵ)⊕ s1(ŵ)⊖ ŝ1(w). (4.46)

where s1(ŵ)⊕ sC(ŵ) is the latter half of the template j(ŵ) and ⊖ denotes the subtraction modulo
MC. After that, the decoder determines the corresponding pair (ŝC1(w), ŝC2(w)) from the one-to-one
mapping tables, and use ŝC1(w) to estimate the generated-secret key as ŝG(w) = (ŝC1(w), ŝ2(w)).
Finally, the decoder checks again that whether ŝG(w) = sG(ŵ) and ŝG(w) = sG(ŵ) or not. If they
match, decoding is successful.

Next, we shall check that all the conditions (4.6)-(4.13) in Definition 4.1 satisfy under random
codebook Cn = {Un(s1,s2,m) : s1 ∈ SC,s2 ∈ SGΓ̄,m ∈M}. We denote the corresponding index tuple
of individual i chosen by the encoder for given Y n

i as (S1(i),S2(i),M(i)). For simplicity, we denote
the sequence Un(S1(i),S2(i),M(i)) as Un

i .

Analysis of Error Probability: For W = i, an error event possibly happens at the encoder is

E1 :{(Y n,Un(s1,s2,m)) /∈ T n
ε (YU) for all s1 ∈ SC, s2 ∈ SGΓ̄, m ∈M},

and those at the decoder are:
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E2 : {(Zn,Un
i ) /∈ T n

ε (ZU)},

E3 : {(Zn,Un(S1(i),s′2,M(i)) ∈ T n
ε (ZU) for ∃s′2 ̸= S2(i) (s′2 ∈ SGΓ̄)},

E4 : {(Zn,Un(s′1,S2(i),M(i)) ∈ T n
ε (ZU) for ∃s′1 ̸= S1(i) (s′1 ∈ SC)},

E5 : {(Zn,Un(s′1,s
′
2,M(i)) ∈ T n

ε (ZU) for ∃s′1 ̸= S1(i) (s′1 ∈ SC) and ∃s′2 ̸= S2(i) (s′2 ∈ SGΓ̄)},

E6 : {(Zn,Un(s′1,s
′
2,M(i′)) ∈ T n

ε (ZU) for ∃i′ ̸= i (i′ ∈ I), s′1 ∈ SC, and s′2 ∈ SGΓ̄}.

Note that it suffices to concentrate on assessing the probability of incorrect estimation for the index,
chosen- and generated-secret keys at the decoder. If they are correctly estimated, it is guaranteed that
the first and second authentications are successful. The error probability of the model can be further
analyzed as

Pr
{

Ê(W ) ̸= E(W )
}
= Pr{E1 ∪E2 ∪E3 ∪E4 ∪E5 ∪E6}

≤ Pr{E1}+Pr{E2|Ec
1}+Pr{E3 ∪E4 ∪E5 ∪E6} , (4.47)

where (4.47) follows from the same reason of (a) in (3.35).
By using the covering lemma [19, Lemma 3.3], Pr{E1} can be made smaller than δ since

RC +RG −Γ+RM > I(Y ;U). Pr{E2|Ec
1} can also be made small enough by the Markov lemma [14,

Lemma 15.8.1]. The last term vanishes as well by applying the packing lemma [19, Lemma 3.1] since
we have RI ≥ 0,RC ≥ 0,RG ≥ 0, and RI +RC +RG −Γ < I(Z;U). Overall, the error probability can
be bounded by

Pr{Ê(W ) ̸= E(W )|W = i} ≤ 3δ (4.48)

for large enough n.
We first introduce some useful lemmas, which are used in the evaluation of the conditions, and

then dive into the core part of the discussion.

Lemma 4.3. It holds that

H(Y n
i |S1(i),S2(i),M(i),Cn)≤ n(H(Y |U)+δn), (4.49)

H(Y n
i |Xn

i ,S1(i),S2(i),M(i),Cn)≤ n(H(Y |X ,U)+δn), (4.50)

where δn is a positive value satisfying δn ↓ 0.

Proof: Since the tuple (S1(i),S2(i),M(i)) determines Un
i , the above lemma follows by applying

Lemma 2.2. A similar proof can be found in Appendix A.2.
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Lemma 4.4. We have that

H(S1(i)|Cn)≥ n(RC −δ −δn), (4.51)

H(S2(i)|Cn)≥ n(RG −Γ−δ −δn), (4.52)

H(S1(i),S2(i)|Cn)≥ n(RC +RG −δ −δn), (4.53)

I(S1(i),S2(i);M(i)|Cn)≤ n(δ +δn), (4.54)

I(S1(i);S2(i),M(i)|Cn)≤ n(δ +δn). (4.55)

Proof: The proofs are provided in Appendix B.2.

Analyses of Identification and Chosen-Secrecy Rates: From the parameter settings, (4.7) and (4.8) are
trivial.

Analysis of Generated-Secrecy Rate: From the left-hand side of (4.9), we have

1
n

H(SG(i)|Cn) =
1
n

H(SC1(i),S2(i)|Cn)
(a)
=

1
n

H(SC1(i)|Cn)+
1
n

H(S2(i)|Cn)
(b)
≥ RG −δ −δn, (4.56)

where

(a) holds as SC1(i) is independent of S2(i),

(b) follows because SC1(i) is uniformly distributed on SΓ and (4.52) is applied.

Analysis of Template Rate: The total required storage rate is

1
n

logMJ ≤ RM +RC = I(Y ;U)− I(Z;U)+RI +2δ +RC = RJ +δ . (4.57)

Analysis of Privacy-leakage Rate: We apply the techniques developed in [21] with some proper
extensions. By invoking the same arguments around (3.83)–(3.85) in the analysis of the privacy-
leakage rate of the chosen-secret BIS model, we obtain that

I(Xn
i ;J(i)|Cn) = I(Xn

i ;M(i)|Cn). (4.58)

From (4.58), we have

I(Xn
i ;M(i)|Cn) = I(Xn

i ;S1(i),S2(i),M(i)|Cn)− I(Xn
i ;S1(i),S2(i)|M(i),Cn)

= H(S1(i),S2(i),M(i)|Cn)−H(S1(i),S2(i),M(i)|Xn
i ,Cn)−H(S1(i),S2(i)|M(i),Cn)

+H(S1(i),S2(i)|M(i),Xn
i ,Cn)



4.4 Proof of Theorem 4.1 65

(c)
≤ n(I(Y ;U)+δ )−H(Y n

i ,S1(i),S2(i),M(i)|Xn
i ,Cn)+H(Y n

i |Xn
i ,S1(i),S2(i),M(i),Cn)

−H(S1(i),S2(i)|Cn)+ I(S1(i),S2(i);M(i)|Cn)+δ
′
n

(d)
≤ nI(Y ;U)−H(Y n

i |Xn
i ,Cn)+H(Y n

i |Xn
i ,S1(i),S2(i),M(i),Cn)

−n(RC +RG −δ −δn)+n(δ +δn)+n(δ +δ
′
n)

(e)
≤ nI(Y ;U)−nH(Y |X)+n(H(Y |X ,U)+δn)

−n(I(Z;U)−RI −2δ −2δn −δ
′
n)

= n(I(Y ;U)− I(Y ;U |X))−n(I(Z;U)−RI −2δ −3δn −δ
′
n)

= n(H(U)−H(U |Y )−H(U |X)+H(U |Y,X))

−n(I(Z;U)−RI −2δ −3δn −δ
′
n)

(f)
= n(I(X ;U)− I(Z;U)+RI +2δ +3δn +δ

′
n), (4.59)

where

(c) follows because a similar argument of the virtual system in Intermediate Steps of the achiev-
ability proof in Theorem 3.1 is applied,

(d) follows because conditioning reduces entropy, and (4.53) and (4.54) in Lemma 4.4 are applied,

(e) follows since (4.50) in Lemma 4.3 is applied, (Y n
i ,X

n
i ) are independent of Cn, and RC +RG =

I(Z;U)−RI −δ ,

(f) holds due to the Markov chain X −Y −U (cf. (4.14)) and thus H(U |Y,X) = H(U |Y ).

Therefore, from (4.58) and (4.59), it follows that

1
n

I(Xn
i ;J(i)|Cn)≤ I(X ;U)− I(Z;U)+RI +3δ = RL +δ (4.60)

for large enough n.

Analysis of Information Leakage between Chosen- and Generated-Secret Keys: We have that

I(SC(i);SG(i)|Cn) = I(SC1(i),SC2(i);SC1(i),S2(i)|Cn)

= H(SC1(i),SC2(i)|Cn)−H(SC1(i),SC2(i)|SC1(i),S2(i),Cn)

(g)
= H(SC1(i),SC2(i)|Cn)−H(SC2(i)|Cn)

= H(SC1(i)|Cn)+H(SC2(i)|Cn)−H(SC2(i)|Cn)

= nΓ, (4.61)

where (g) follows because SC2(i) is chosen independently of S2(i). Thus, we obtain that

1
n

I(SC(i);SG(i)|Cn)≤ Γ. (4.62)
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Analysis of Secrecy-leakage: From the left-hand side of (4.12), it follows that

I(SC(i),SG(i);J(i)|Cn)

(h)
= I(SC(i),S2(i);M(i),S1(i)⊕SC(i)|Cn)

= H(M(i),S1(i)⊕SC(i)|Cn)−H(M(i),S1(i)⊕SC(i)|SC(i),S2(i),Cn)

= H(M(i)|Cn)+H(S1(i)⊕SC(i)|M(i),Cn)−H(M(i)|SC(i),S2(i),Cn)

−H(S1(i)⊕SC(i)|M(i),SC(i),S2(i),Cn)

≤ H(M(i)|Cn)+nRC −H(M(i)|SC(i),S2(i),Cn)

−H(S1(i)|M(i),SC(i),S2(i),Cn)

(i)
= H(M(i)|Cn)+nRC −H(M(i)|S2(i),Cn)−H(S1(i)|M(i),S2(i),Cn)

= nRC −H(S1(i)|Cn)+ I(S2(i);M(i)|Cn)+ I(S1(i);S2(i),M(i)|Cn)

(j)
≤ 2nδ +3nδn, (4.63)

where

(h) due to the fact that SG(i) = (SC2(i),S2(i)) and SC2(i) is the second half of the chosen-secret key
SC(i),

(i) holds since SC(i) is independent of other RVs,

(j) follows because (4.51), (4.54), and (4.55) in Lemma 4.4 are applied.

Thus, the secrecy-leakage can be bounded as

1
n

I(SC(i),SG(i);J(i)|Cn)≤ 3δ (4.64)

for large enough n.
By applying Lemma 2.3 to all results shown above (i.e., Eqs. (4.48), (4.56), (4.57), (4.60), (4.61)

and (4.64)), there exists at least a good codebook satisfying all the conditions in Definition 4.1 for all
large enough n.

4.5 Summary of Results and Discussion

In this chapter, we characterized the capacity region among identification, chosen- and generated-
secrecy, template, and privacy-leakage rates for the BIS. The characterizations showed that identifica-
tion, chosen- and generated-secrecy rates are in a trade-off relation, and by permitting the correlation
of the two secrecy keys, a larger sum of these rates was achievable. In addition, larger memory space
for the database is required when the sum of identification and chosen-secrecy rates increases. Unlike
the template rate, only the identification rate contributes to the minimum required amount of the
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privacy-leakage rate and the chosen-secrecy rate does not. As special cases, this characterization
reduces to the results seen in Chapter 3, and the ones provided in [21].

Actually, the models considered in Chapter 3 can also be applied to two-factor authentication if
we consider partitioning the secret key into two parts. This leads to have two new secret keys with
smaller sizes and these keys may be used for the first and second rounds in authentications. However,
it seems impossible to achieve the secrecy rate that is larger than I(Z;U) since there is no shared
information bits from other sources. Another case could be the model considered in [44] where a user
enrolls two times in different systems. However, in the settings of [44], the decoder of each system
has no permission to access the other systems’ database, meaning that it can only estimate one secret
key. We need to adapt the settings in [44] by letting the decoder to access all databases so that it can
reconstruct two secret keys at once. In this way, the system becomes capable of performing two-factor
authentication by using these estimated keys.



Chapter 5

BIS With Both Chosen and Generated
Secrecy: Gaussian Source

For DMS settings, the fundamental performances of the BIS are extensively analyzed in the literature
[29]–[33],[40] for the VSM and in [21],[81],[85] for the HSM. However, the studies under Gaussian
setting are not so many. For example, the optimal trade-off between secrecy and privacy-leakage was
clarified in [77] and in order to speed up search complexity, hierarchical identification was taken into
account in [74]. A common stand in [77], [74] is that the VSM was assumed.

In this study, we extend the BIS assuming the HSM in Chapter 4 to i.i.d. Gaussian sources and
channels. This is motivated by the fact that the signal vectors of bio-data sequences are basically
represented by continuous values in real-life applications and most communication links can be
modeled as white addictive Gaussian channels. What is more, when the model is switched from
the VSM to the HSM, the evaluation becomes more challenging [21], [83],[85] and many existing
techniques for deriving the results of the VSM are not directly applicable. Thus, the extension is of
both theoretical and practical interest. Our goal is to look for the optimal trade-off of identification,
chosen- and generated-secrecy rates under privacy and storage constraints for Gaussian settings. We
demonstrate that an idea of converting the system to another one where the data flow of each user
is in the same direction, which enables us to characterize the capacity region. More specifically, in
establishing the outer bound of the region, the converted system allows us to use the well-known EPI
[65] twice in two opposite directions, and its property facilitates the derivation of the inner bound. In
[21] and Chapter 3, MGL was applied twice, too, to simplify the rate region of the HSM for binary
sources without converting the BIS. That was possible due to the uniformity of the sources, and the
backward channel of the enrollment channel is also the binary symmetric channel with the same
crossover probability. However, this claim is no longer true in the Gaussian case, so it is necessary to
formulate the general behavior of the backward channel. We also provide numerical calculations of
three different examples. As a consequence, we may conclude that it is difficult to achieve both high
secrecy and small privacy-leakage rates at the same time. To achieve a small privacy-leakage rate, the
secrecy rate is scarified somehow. Furthermore, as a by-product of our result, the capacity regions
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of the BIS analyzed in [21] (the BIS with a single user) is obtained, and as special cases, it can be
checked that this characterization reduces to the results given in [76], [77].

This chapter is organized as follow. In Section 5.1, we briefly go through the system model and
introduce an idea of converting the system for analysis. The main result and numerical examples are
given in Section 5.2 and 5.3, respectively. The proof of the main result is available in Section 5.4 and
finally, a short summary of results and discussion follows in Section 5.4.

5.1 System Model and Converted System

In this section, we explain system model analyzed in this chapter and introduce an idea of converting
the system.

5.1.1 System Model

In this setting, we analyze the same model argued in Chapter 4 under the situation that the bio-
data sequences are generated from i.i.d. Gaussian sources. For i ∈ I and k ∈ [1 : n], we assume
Xik ∼N (0,1). Note that Gaussian RV with mean zero and unit variance can be obtained by applying
a scaling technique. The enrollment channel PY |X and the identification channel PZ|X are modeled as
follows:

Yik = ρ1Xik +N1, (5.1)

Zk = ρ2Xik +N2, (5.2)

where |ρ1| < 1, |ρ2| < 1 are the Pearson’s correlation coefficients, and N1 ∼ N (0,1 − ρ2
1 ) and

N2 ∼N (0,1−ρ2
2 ) are i.i.d. Gaussian RVs, independent of each other and bio-data sequences. From

(5.2), Y and Z are Gaussian with zero mean and unit variance, and the Markov chain Y −X −Z holds.
Then, the PDF corresponding to the tuple (Xn

i ,Y
n
i ,Z

n) is given by

fXn
i Y n

i Zn(xn
i ,y

n
i ,z

n) =
n

∏
k=1

fXY Z(xik,yik,zk), (5.3)

where for x,y,z ∈ R,

fXY Z(x,y,z) = fX(x) · fY |X(y|x) · fZ|X(z|x), (5.4)

=
1√

(2π)3(1−ρ2
1 )(1−ρ2

2 )
exp
(
−
(

x2

2
+

(y−ρ1x)2

2(1−ρ2
1 )

+
(z−ρ2x)2

2(1−ρ2
2 )

))
. (5.5)

The bio-data sequences Xn
i (i ∈ I) are generated i.i.d. from PDF fXn

i
, a marginal PDF of fXn

i Y n
i Zn .

Like what we have seen in the settings of Section 3.1.2 or Section 4.1 in the previous chapter, the
chosen-secret key is chosen uniformly and independently from the set SC. The operations of encoder
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and decoder of this chapter are exactly the same as those given in Section 4.1, and therefore the
detailed descriptions are omitted.

5.1.2 Converted System

Fig. 5.1 Original and converted systems; The top figure shows the data flow of the bio-data in the original
system and the below one is the converted system, where Y becomes virtual input and the data flow is a one-way
direction from Y to Z.

The original system, having X as input source and Y,Z as outputs, is illustrated in the top figure
in Fig. 5.1. There are two main obstacles toward characterizing the capacity regions directly from
this system. (I) In establishing the converse proof, a tight upper bound regarding RV Y for a fixed
condition of RV X is needed, but it is laborious to pursue the desired bound since applying EPI to the
first relation in (5.2) only produces a lower bound. (II) It seems difficult to prove the achievability
part based on generating auxiliary sequences from edge X , e.g., the rate settings. To overcome these
bottlenecks, we introduce an idea of converting the original system to a new one in which the data
flow of each user is one-way from Y to Z without losing its general properties. The image of this idea
is shown in the bottom figure of Fig. 5.1, where Y becomes input virtually. To achieve this objective,
knowing the property of the backward channel PX |Y , namely, how X correlates to the virtual input Y ,
is crucial and we explore that in the rest of this section.

Due to the Markov chian Y −X −Z, the joint pdf of RVs X , Y , and Z of equation (5.4) can also
be expanded in the following form.

fXY Z(x,y,z) = fY (y) · fX |Y (x|y) · fZ|X(z|x) (5.6)

for x,y,z ∈ R.
Observe that
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x2

2
+

(y−ρ1x)2

2(1−ρ2
1 )

=
x2

2
+

y2

2(1−ρ2
1 )

− ρ1xy
1−ρ2

1
+

(ρ1x)2

2(1−ρ2
1 )

=
y2

2(1−ρ2
1 )

+
x2

2(1−ρ2
1 )

− ρ1xy
1−ρ2

1

=
y2

2(1−ρ2
1 )

− (ρ1y)2

2(1−ρ2
1 )

+
1

2(1−ρ2
1 )
(x−ρ1y)2

=
y2

2
+

(x−ρ1y)2

2(1−ρ2
1 )

. (5.7)

Without loss of generality, the equation (5.5) can be rearranged as

fXY Z(x,y,z) =
1√

(2π)3(1−ρ2
1 )(1−ρ2

2 )
exp
(
−
(

y2

2
+

(x−ρ1y)2

2(1−ρ2
1 )

+
(z−ρ2x)2

2(1−ρ2
2 )

))
. (5.8)

From (5.6) and (5.8), we may conclude that the following equations hold.

Xik = ρ1Yik +N′
1, (5.9)

Zk = ρ2Xik +N2 = ρ1ρ2Yik +ρ2N′
1 +N2 (5.10)

with some Gaussian RV N′
1 ∼N (0,1). Equations (5.9) and (5.10) describe the outputs of the backward

channel and the compound channel between the backward and identification channels, respectively,
for virtual input Y . The above relations play key roles for solving the problem of the HSM, and indeed
we use them in many steps during the analysis in this chapter. In [74] and [77], the concept of this
transformation is not seen because the enrollment channel does not exist due to the assumption of
VSM as mentioned before.

Remark 5.1. In case there is no operation of scaling, equations (5.9) and (5.10) are settled as follows.
Suppose that Xik ∼N (0,σ2

x ) with σ2
x < ∞, Yik = Xik +D1, and Zk = Xik +D2, where D1 ∼N (0,σ2

1 )

and D2 ∼ N (0,σ2
2 ) are i.i.d. Gaussian RVs, and independent of each other and other RVs. By

applying the arguments around (5.6)–(5.8), we obtain that

Xik =
σ2

x

σ2
x +σ2

1
Yik +D′

1 (5.11)

Zk = Xik +D2 =
σ2

x

σ2
x +σ2

1
Yik +D′

1 +D2 (5.12)

with some Gaussian RV D′
1 ∼N (0, σ2

x σ2
1

σ2
x +σ2

1
) is Gaussian and independent of other RVs. The capacity

region of the model consider in this study can also be characterized from (5.11) and (5.12). However,
equation developments need more space and do not look so neat. Herein, we pursue our result based
on the method that RVs X, Y , and Z are standardized (cf. (5.9) and (5.10)).
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Now from (5.9) and (5.10), it is not difficult to calculate that

I(X ;Y ) =
1
2

ln
(

1
1−ρ2

1

)
, (5.13)

I(Z;Y ) =
1
2

ln
(

1
1−ρ2

1 ρ2
2

)
, (5.14)

where (5.14) is attained because the variance of the noise term ρ2N′
1+N2 in (5.10) is equal to 1−ρ2

1 ρ2
2 .

5.2 Problem Formulation and Main Results

In this section, we provide the formal definitions of the BIS with both chosen- and generated-secrecy
under Gaussian sources, and state the main result.

Definition 5.1. A tuple (RI,RC,RG,RJ,RL) is said to be Γ-achievable for a Gaussian source if there
exist pairs of encoders and decoders that satisfy all the requirements in Definition 4.1 for any δ > 0,
0 ≤ Γ ≤ min{RC,RG}, and large enough n. In addition, let RG(Γ) denote the Γ-capacity region for
this case.

The main result of this chapter is given below.

Theorem 5.1. The Γ-capacity region of the BIS with both chosen and generated secrecy for a
Gaussian source is given by

RG(Γ) =
{
(RI,RC,RG,RJ,RL) : RI +RC ≤ 1

2
ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
,

RI +RC +RG ≤ 1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
+Γ,

RJ ≥
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RC +RI,

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
+RI,

RI ≥ 0, RC ≥ Γ, RG ≥ 0 for some 0 < α ≤ 1
}
. (5.15)

It can be shown that RG is convex region. The proof is given in Appendix C.1. The region RG(Γ)

can also be expressed in the form of using auxiliary RV like RD(Γ). However, the issue is that we can
not compute the behavior of the region for this expression due to the unbounded cardinality of the
auxiliary RV. Here, instead of using auxiliary RV, e.g., U , we characterize the capacity region with a
parameter α , where it lies in the range of (0,1]. Since the parameter varies within a limited range, the
region RG(Γ) becomes computable.
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Remark 5.2. If there is no scaling as in (5.11) and (5.12) in Remark 5.1, the Γ-capacity region of the
BIS, denoted by R′

G, becomes

RG(Γ) =
{
(RI,RC,RG,RJ,RL) : RI +RC ≤ 1

2
ln
(

(σ2
x +σ2

1 )(σ
2
x +σ2

2 )

ασ4
x +σ2

x σ2
1 +σ2

1 σ2
2 +σ2

2 σ2
x

)
,

RI +RC +RG ≤ 1
2

ln
(

(σ2
x +σ2

1 )(σ
2
x +σ2

2 )

ασ4
x +σ2

x σ2
1 +σ2

1 σ2
2 +σ2

2 σ2
x

)
+Γ,

RJ ≥
1
2

ln
(

ασ4
x +σ2

x σ2
1 +σ2

1 σ2
2 +σ2

2 σ2
x

α(σ2
x +σ2

1 )(σ
2
x +σ2

2 )

)
+RI +RC,

RL ≥ 1
2

ln
(

ασ4
x +σ2

x σ2
1 +σ2

1 σ2
2 +σ2

2 σ2
x

(ασ2
x +σ2

1 )(σ
2
x +σ2

2 )

)
+RI,

RI ≥ 0, RC ≥ Γ, RS ≥ 0 for some 0 < α ≤ 1
}
. (5.16)

It can be verified that RG(Γ) is equivalent to RG(Γ) if we set ρ2
1 = σ2

x
σ2

x +σ2
1

and ρ2
2 = σ2

x
σ2

x +σ2
2

.

Similar to a conclusion in Section 4.2, the larger sum of identification, generated- and chosen-
secrecy rates is obtained due to allowing the correlation of secret keys. The lower bound on the
template rate RJ involves both RI and RC. This means the minimum required amount of RJ rises in
accordance with the increase of RI and RC. This is because the number of users is proportional to
the increase of storage, and the information related to the chosen-secret key of each user needs to be
saved together with the templates in the database so that it can be reconstructed at the decoder. Unlike
the template rate RJ , the bound on the privacy-leakage rate RL only relies on RI , and this implies the
randomness (independence) of the chosen-secret keys make no contribution to the privacy-leakage.
Here, we omit the meaning of each rate constraint since it can be explained similarly to that of Theorem
4.1 (cf. Figure 4.2) if one thinks of I(Z;U) = 1

2 ln
(

1
αρ2

1 ρ2
2+1−ρ2

1 ρ2
2

)
, I(Y ;U) = 1

2 ln
(

αρ2
1 ρ2

2+1−ρ2
1 ρ2

2
α

)
,

and I(X ;U) = 1
2 ln
(

αρ2
1 ρ2

2+1−ρ2
1 ρ2

2
αρ2

1+1−ρ2
1

)
.

Next, let see how Theorem 5.1 associates with the results in previous studies. When the chosen-
and generated-secrecy rates are zero (RC = RG = 0), and the template and privacy-leakage rates are
large enough (RJ,RL → ∞), the maximum value of the identification rate RI is 1

2 ln( 1
1−ρ2

1 ρ2
2
). This

value is exactly the identification capacity I(Y ;Z) (cf. (5.14)) derived in [76], and it is achieved when
α ↓ 0. Moreover, when RI = RC = Γ = 0, RJ → ∞, and the enrollment channel is noiseless (ρ1 = 1),
one can see that Theorem 5.1 naturally reduces to the characterizations of [77, Theorem 1]. In slightly
different condition, when RI = RG = Γ = 0, RJ → ∞, and the enrollment channel is noiseless (ρ1 = 1),
it can be checked that Theorem 5.1 matches with [77, Theorem 2].

In [21], the capacity regions of the generated- and chosen-secret BIS models with a single user for
DMS were characterized. As by-products, when the models studied in [21] is extended to Gaussian
sources and channels, the capacity regions of these models are simply special cases of Theorem 5.1.
Also, the capacity regions of the generated- and chosen-secret BIS models analyzed in Chapter 3
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for Gaussian sources and channels are special cases to this theorem. To explain that, we define four
following regions.

RG
1 =

{
(RG,RJ,RL) : RG ≤ 1

2
ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
,

RJ ≥
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
,

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
,

RG ≥ 0 for some 0 < α ≤ 1
}
. (5.17)

RG
2 =

{
(RC,RJ,RL) : RC ≤ 1

2
ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
,

RJ ≥
1
2

ln
(

1
α

)
,

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
,

RC ≥ 0 for some 0 < α ≤ 1
}
. (5.18)

RG
3 =

{
(RI,RG,RJ,RL) : RI +RG ≤ 1
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2 +1−ρ2

1 ρ2
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)
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αρ2
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)
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RI ≥ 0,RG ≥ 0 for some 0 < α ≤ 1
}
. (5.19)

RG
4 =

{
(RI,RC,RJ,RL) : RI +RC ≤ 1

2
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αρ2

1 ρ2
2 +1−ρ2

1 ρ2
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αρ2
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)
+RI,

RI ≥ 0,RC ≥ 0 for some 0 < α ≤ 1
}
. (5.20)

First, we give a remark related to the results of the models considered in [21] for Gaussian sources
and channels. By the similar argument of proving Theorem 5.1, the following remark is obtained.

Remark 5.3. The capacity regions of the generated- and chosen-secret BIS models with single user
for a Gaussian source are given by RG

1 and RG
2 , respectively.
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To show that Remark 5.3 is special cases for Theorem 5.1, we let RG
GSS and RG

CSS denote the
special cases of Theorem 5.1 for Γ = RI = RC = 0 and Γ = RI = RG = 0, respectively. Indeed, it can
be verified that

RG
GSS =RG

1 , (5.21)

RG
CSS =RG

2 . (5.22)

For the first case, one can easily see that RG
GSS and RG

1 is the same, implying that (5.21) holds. For
the second case, RG

CSS becomes

RG
CSS =

{
(RC,RJ,RL) : RC ≤ 1

2
ln
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1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
,

RJ ≥
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ln
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1 ρ2
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1 ρ2

2
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+RC,

RL ≥ 1
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ln
(
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1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
,

RC ≥ 0 for some 0 < α ≤ 1
}
. (5.23)

The concrete proof of (5.22) is provided in Appendix C.2.
Next, we discuss about the generated- and chosen-secret BIS models with the presence of

exponentially many users considered in chapter 3. Note that the difference of these models to the
one in this chapter is that the chosen- and generated-secret keys are treated in separate models. The
capacity regions of the generated- and chosen-secret BIS models with the presence of exponentially
many users were characterized in [85] for DMS and [87] for Gaussian sources. For Gaussian settings,
it was demonstrated that the capacity regions of these were given by RG

3 (cf. [87, RG in Theorem 1])
and RG

4 (cf. [87, RC in Theorem 1]), respectively. The regions RG
3 and RG

4 are other special cases
of Theorem 5.1. Now let RG

GSM and RG
CSM represent the special cases of the region RG(Γ) where

Γ = RC = 0 and Γ = RG = 0. Then, it is clear that RG
GSM and RG

3 coincide, but the second condition
of which Γ = RG = 0, Theorem 5.1 reduces to the following region.

RG
CSM =

{
(RI,RC,RJ,RL) : RI +RC ≤ 1
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RC ≥ 0 for some 0 < α ≤ 1
}
. (5.24)

It can be shown that the regions RG
CSM and RG

4 are identical by applying the similar approaches given
in Appendix C.2.
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5.3 Examples and Overviews of the Proof

5.3.1 Some Important Behaviors of the Capacity Region

For given RI,RC ≥ 0, RI +RC ≤ 1
2 ln
(

1
αρ2

1 ρ2
2+1−ρ2

1 ρ2
2

)
, and 0 ≤ Γ ≤ RC, we define two rate functions

R∗
G(RJ) = max

(RI ,RC,RS,RJ ,RL)∈RG

RG, (5.25)

R∗
L(RJ) = min

(RI ,RC,RS,RJ ,RL)∈RG

RL, (5.26)

where (5.25) and (5.26) are the maximum secrecy rate and the minimum privacy-leakage rate,
respectively, for given RJ ≥ RI +RC. Moreover, we define

Rα
J =

1
2

ln(
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

α
)+RI +RC (5.27)

so that we can write

R∗
G(R

α
J ) =
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−RC −RI +Γ, (5.28)
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1 +ρ2

1 (1−ρ2
2 )/e2(Rα

J −RI−RC)

)
+RI, (5.29)

For the sake of succinct discussion, we only concentrate on the condition at which RI = 0 (one
user), RC = 0, and Γ = 0, corresponding to the region RG

1 . For these conditions, (5.28) and (5.29) can
be further simplified as

R∗
G(R

α
J ) =

1
2
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2/e2Rα
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)
, (5.30)
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)
. (5.31)

We first look over some special points of secrecy and privacy-leakage rates when storage rate
becomes extremely low or large. As the template late is large enough, i.e., RJ → ∞, we see that the
asymptotic optimal secrecy and privacy-leakage rates

lim
Rα

J →∞

R∗
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α
J ) = lim

Rα
J →∞
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)
=

1
2

ln
(

1
1−ρ2
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)
= I(Y ;Z), (5.32)
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lim
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)
= I(X ;Y )− I(Z;Y ). (5.33)

The result (5.32) corresponds to the optimal asymptotic secrecy rate [77, Sect. III-B] and in order to
achieve this rate, it is required to take the storage rate to infinity and allow to leak the user’s privacy
up to rate I(X ;Y )− I(Z;Y ).

In contrast, when RJ ↓ 0, it is evident that RS and RL become zero as well, which does not carry
much information. However, to investigate the BIS that achieves high secrecy and small privacy-
leakage rates in the low storage rate regime, the zero-rate slopes of secrecy and privacy-leakage rates,
namely, how fast they converge to zero, are important indicators. In views of (5.30), the first derivative
of the generated-secrecy rate can be determined as follows:
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Likewise, from (5.31), the first derivative of the privacy-leakage rate can be determined as follows:
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Table 5.1 The secrecy and privacy-leakage rates when RJ → ∞.

Cases
The optimal secrecy rate Privacy-leakage rate

a) b) c) a) b) c)

Ex. 1 0.5 0.63 0.70 0.5 0.87 1.29

Ex. 2 0.5 1.12 1.41 0.5 0.54 0.59

Ex. 3 0.5 0.79 0.87 0.5 0.20 0.13

Table 5.2 The slopes of secrecy and privacy-leakage rates at RJ ↓ 0.

Cases
The slope of secrecy rate The slope of privacy-leakage rate

a) b) c) a) b) c)

Ex. 1 1.0 1.40 1.67 0.5 0.7 0.83

Ex. 2 1.0 3.71 6.11 0.5 0.53 0.56

Ex. 3 1.0 2.0 2.33 0.5 0.25 0.17

Therefore, from (5.34) and (5.35), the slopes of secrecy and privacy-leakage rates at RJ ↓ 0 can be
determined as follows:
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2
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, (5.37)

where (5.36) is equal to the signal-to-noise ratio of the compound channel from Y to Z. This value
multiplied by the reverse of the signal-to-noise ratio of the channel PZ|X appears in the slope of
privacy-leakage rate in (5.37).

5.3.2 Numerical Examples

Next, we give numerical computations of three different examples and take a look into behaviors of
the special points.

Ex. 1: a) ρ2
1 = 3/4, ρ2

2 = 2/3, b) ρ2
1 = 7/8, ρ2

2 = 2/3, c) ρ2
1 = 15/16, ρ2

2 = 2/3,

Ex. 2: a) ρ2
1 = 3/4, ρ2

2 = 2/3, b) ρ2
1 = 9/10, ρ2

2 = 7/8, c) ρ2
1 = 15/16, ρ2

2 = 11/12,

Ex. 3: a) ρ2
1 = 3/4, ρ2

2 = 2/3, b) ρ2
1 = 3/4, ρ2

2 = 8/9, c) ρ2
1 = 3/4, ρ2

2 = 14/15.
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Fig. 5.2 Example 1; The left-hand side figure is the projection of the rate region onto the plane of template and
generated-secrecy rates (RJRG-plane), and the right-hand side one is the projection of the rate region onto the
plane of template and privacy-leakage rates (RJRL-plane).

Fig. 5.3 Example 2: The left-hand side figure is the projection of the rate region onto RJRG-plane, and the
right-hand side one is the projection of the rate region onto RJRL-plane.

Fig. 5.4 Example 3; The left-hand side figure is the projection of the rate region onto RJRG-plane, and the
right-hand side one is the projection of the rate region onto RJRL-plane.
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Note that as ρ2
1 ,ρ

2
2 are large, the noises added to the bio-data sequences at encoder and decoder

become small. Example 1 is the case where the noise at encoder is gradually small from a) to c),
but the noise added to the bio-data sequences at the decoder stays constant for each round. Example
2 is the case in which the noises added to the bio-data sequences at both encoder and decoder are
improved increasingly from a) to c). Example 3 is opposite to Example 1. The calculated results of
the generated-secrecy and privacy-leakage rates for these cases are summarized in Table 5.1 and 5.2,
and Fig. 5.2–5.4.

It is ideal to keep the privacy-leakage rate small, while produce high secrecy rate, but Example 1
works out in the opposite way (cf. the rows of Ex. 1 in Table I and II, and Fig 5.2), so this is not a
preferable choice. Example 2 realizes a high secrecy rate, but the amount of privacy-leakage remains
high at some level, too (cf. the rows of Ex. 2 in Table I and II, and Fig. 5.3). On the other hand,
in Example 3, the privacy-leakage rate declines, but the secrecy rate becomes small compared to
Example 3 (cf. the rows of Ex. 3 in Table I and II, and Fig. 5.4). From these behaviors, we may
conclude that it is unmanageable to achieve both a high secrecy rate and small privacy-leakage at the
same time. If one aims to achieve a high secrecy rate, it is important to diminish the noises at both
encoder and decoder, e.g., deploying quantizers with high quality, but this could result in leaking more
user’s privacy. In different circumstances, to achieve a small privacy-leakage rate, it is preferable to
maintain a certain level of noise at encoder and pay sufficient attention for processing the noise at
decoder. In this way, however, the gain of the secrecy rate may be dropped.

5.3.3 Overviews on the Proof of Theorem 4.1

In this section, a brief summary regarding the proof of Theorem 5.1 is described. It consists of two
parts: achievability and converse parts. We first demonstrate the converse proof and then show the
achievability part. The converse proof follows by applying Fano’s inequality [14] and the conditional
EPI [7, Lemma II] doubly in two opposite directions. In the achievability part, the modified set
(cf. Lemma 2.3), giving the so-called Markov lemma for weak typicality, and Gaussian typicality
[14, Section 8.2] help us determine the inner bound of the capacity region. Though a more general
version of the Markov lemma for the Gaussian source, including lossy reconstruction, is shown in
[54] and [55], we found out that the two properties of the modified set are handy tools for checking all
conditions in Definition 4.1, and thus we provide our proof of the achievability based on this modified
set. To evaluate the uniformity of secret keys (4.8), privacy-leakage (4.11), and information leakage
(4.12), (4.13), we extend Lemma 2.2 to incorporate continuous RVs so that the extended one can be
used to derive the upper bounds on conditional differential entropies of jointly typical sequences,
appearing in these evaluations. This lemma is used in several analyses of the achievability part.

The detailed proofs are given in the following section. The proof begins with the converse part
and follows by the achievability.
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5.4 Proof of Theorem 5.1

5.4.1 Converse Part

Here, we also assume that W is uniformly distributed on I, and the conditions in Definition 5.1 are
replaced with the average error criterion, e.g.,

Pr{Ê(W ) ̸= E(W )} ≤ δ , (5.38)
1
n

H(SG(W )|W )≥ RG −δ , (5.39)

1
n

I(Xn
W ;J(W )|W )≤ RL +δ , (5.40)

1
n

I(SC(W );SG(W )|W )≤ Γ, (5.41)

1
n

I(SC(W ),SG(W );J(W )|W )≤ δ . (5.42)

In this part, we show that the capacity region for this case, which contains RG(Γ), is contained in
(5.15). Assume that a rate tuple (RI,RC,RG,RJ,RL) is achievable.

Analysis of Secrecy Rate: We begin with considering the join entropy of E(W ) as

H(E(W )) = H(E(W )|Zn,JJJ)+ I(E(W );Zn,JJJ)
(a)
= H(E(W )|Ê(W ),Zn,JJJ)+ I(E(W );Zn,JJJ)
(b)
= H(E(W )|Ê(W ))+ I(E(W );Zn,JJJ)
(c)
≤ nδn + I(E(W );JJJ)+ I(E(W );Zn|JJJ)

≤ nδn + I(W ;JJJ)+ I(SC(W ),SG(W );JJJ|W )+ I(E(W );Zn|JJJ,W )

(d)
≤ nδn + I(SC(W ),SG(W );J(W )|W )+ I(E(W );Zn|J(W ))

(e)
≤ n(δn +δ )+h(Zn|J(W ))−h(Zn|J(W ),SG(W ),SC(W ),W )

(f)
≤ n(δn +δ )+h(Zn)−h(Zn|T (W ))

= I(Zn;T (W ))+n(δn +δ ), (5.43)

where

(a) holds since Ê(W ) are function of (Zn,JJJ),

(b) follows because conditioning reduces entropy,

(c) follows due to Fano’s inequality, where δn =
1
n(1+ lnMIMCMG), and δn ↓ 0 as δ ↓ 0 and n → ∞,

(d) follows because only J(W ) is possibly dependent on Zn and E(W ), and W is independent of
other RVs

(e) is due to (5.42),
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(f) follows because conditioning reduces entropy.

Also, from (5.43), it is trivial that

H(W,SC(W ))≤ H(E(W ))≤ I(Zn;T (W ))+n(δn +δ ). (5.44)

Analysis of Template Rate: From (4.10), we have that

n(RJ +δ )≥ lnMJ

≥ max
w∈I

H(J(w))

≥ H(J(W )|W )

(g)
= I(Y n

W ,SC(W );J(W )|W )

= I(Y n
W ;J(W )|SC(W ),W )+ I(SC(W );J(W )|W )

(h)
= h(Y n

W )−h(Y n|J(W ),SC(W ),SG(W ),W )− I(SG(W );Y n
W |J(W ),SC(W ),W )

(i)
= I(Y n

W ;T (W ))−H(SG(W )|J(W ),SC(W ),W )

(j)
≥ I(Y n

W ;T (W ))−H(SG(W )|SC(W ),W )

(k)
≥ I(Y n

W ;T (W ))− (I(Zn;T (W ))−n(RI +RC − (3δ +δn))

= I(Y n
W ;T (W ))− I(Zn;T (W ))+n(RI +RC −3δ −δn), (5.45)

where

(g) holds as J(W ) is a function of (Y n
W ,SC(W )),

(h) holds since W and SC(W ) are independent of Y n
W ,

(i) holds because SG(W ) is a function of (Y n
W ,SC(W )),

(j) follows since conditioning reduces entropy,

(k) is due to the following equations (5.46) and (5.47), from (5.43), we have that

I(Zn;T (W ))+n(δn +δ )≥ H(SG(W ),SC(W ),W )

= H(W )+H(SC(W )|W )+H(SG(W )|SC(W ),W )

(∗)
= lnMI + lnMC +H(SG(W )|SC(W ),W )

≥ n(RI +RC −2δ )+H(SG(W )|SC(W ),W ), (5.46)

where (∗) holds as W and SC(W ) are independent and W and SC(W ) are uniformly distributed
on I and SC, respectively, and thus

H(SG(W )|SC(W ),W )≤ I(Zn;T (W ))−n(RI +RC − (3δ +δn)). (5.47)
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Analysis of Privacy-Leakage Rate: Equation (5.40) can be expanded as

n(RL +δ )≥ I(Xn
W ;J(W )|W )

= I(Xn
W ;J(W ),SG(W ),SC(W ),Zn|W )− I(Xn

W ;SG(W ),SC(W ),W,Zn|J(W ),W )

= I(Xn
W ;J(W ),SG(W ),SC(W ),W )+ I(Xn

W ;Zn|J(W ),SG(W ),SC(W ),W )

− I(Xn
W ;SG(W ),SC(W ),W |J(W ),W )− I(Xn

W ;Zn|J(W ),SG(W ),SC(W ),W )

= I(Xn
W ;J(W ),SG(W ),SC(W ),W )− I(Xn

W ;SG(W ),SC(W )|J(W ),W )

≥ I(Xn
W ;T (W ))−H(SG(W ),SC(W )|J(W ),W )

(l)
≥ I(Xn

W ;T (W ))−H(SG(W ),SC(W )|W )

(m)

≥ I(Xn
W ;T (W ))− I(Zn;T (W ))+n(RI − (δn +2δ )), (5.48)

where

(l) follows since conditioning reduces entropy,

(m) is due to the following relation, which can be obtained by a similar reason seen in equations
(5.46) and (5.47),

H(SG(W ),SC(W )|W )≤ I(Zn;T (W ))−n(RI − (2δ +δn)). (5.49)

For further evaluations of (5.43)–(5.48), we scrutinize a tight lower bound of h(Zn|T (W )) and
a tight upper bound of h(Y n

W |T (W )) under fixed h(Xn
W |T (W )) by applying the conditional EPI [7,

Lemma II]. It is a key to set

1
n

h(Xn
W |T (W )) =

1
2

ln
(
2πe(αρ

2
1 +1−ρ

2
1 )
)
, (5.50)

where 0 < α ≤ 1.
Actually, this is reasonable setting because 1

2 ln(2πe)≥ 1
n h(Xn

W |T (W ))≥ 1
2 ln(2πe(1−ρ2

1 )). The
lower bound is obtained from

1
n

h(Xn
W |T (W )) =

1
n

h(Xn
W |J(W ),SG(W ),SC(W ),W )

(l)
≥ 1

n
h(Xn

W |Y n
W ,T (W ))

=
1
n

h(Xn
W |Y n

W ,SC(W ),W )

(m)
=

1
n

h(Xn
W |Y n

W )

= h(X |Y ) = 1
2

ln(2πe(1−ρ
2
1 )), (5.51)

where
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(n) follows since conditioning reduces entropy, and (J(W ),SG(W )) is a function of (Y n
W ,SC(W )),

(o) follows as both (SC(W ),W ) are chosen independently of Xn
W and Y n

W .

First, we have

1
n

I(Xn
W ;T (W )) = h(X)− 1

n
h(Xn|T (W ))

=
1
2

ln(2πe)− 1
2

ln
(
2πe(αρ

2
1 +1−ρ

2
1 )
)

=
1
2

ln
(

1
αρ2

1 +1−ρ2
1

)
. (5.52)

From the direction of X to Z, by applying the conditional EPI [7, Lemma II] to the first equality
in (5.10), it follows that

e
2
n h(Zn|T (W )) ≥ e

2
n h(ρ2Xn

W |T (W ))+ e
2
n h(Nn

2 |T (W )),

(n)
= ρ

2
2 e

2
n h(Xn

W |T (W ))+ e
2
n h(Nn

2 ),

= ρ
2
2
(
2πe(αρ

2
1 +1−ρ

2
1 )
)
+2πe(1−ρ

2
2 ),

= 2πe(αρ
2
1 ρ

2
2 +1−ρ

2
1 ρ

2
2 ), (5.53)

where (n) holds as Nn
2 is independent of T (W ), and as a deduction,

1
n

h(Zn|T (W ))≥ 1
2

ln(2πe(αρ
2
1 ρ

2
2 +1−ρ

2
1 ρ

2
2 )). (5.54)

Then, we can calculate

1
n

I(Zn;T (W )) = h(Z)− 1
n

h(Zn|T (W ))

≤ 1
2

ln(2πe)− 1
2

ln(2πe(αρ
2
1 ρ

2
2 +1−ρ

2
1 ρ

2
2 ))

=
1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
. (5.55)

Next, we are interested in finding a tight upper bound on 1
n h(Y n|T (W )). In the opposite direction

(from X to Y ), by again applying the conditional EPI [7, Lemma II] to (5.9), we have that

e
2
n h(Xn

W |T (W )) ≥ e
2
n h(ρ1Y n

W |T (W ))+ e
2
n h(N′n

1 |T (W )), (5.56)

meaning that

2πe(αρ
2
1 +1−ρ

2
1 )≥ ρ

2
1 e

2
n h(Y n

W |T (W ))+2πe(1−ρ
2
1 ), (5.57)
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where (5.57) follows because N′n
1 is independent of T (W ), and thus

e
2
n h(Y n

W |T (W )) ≤ 2πeα. (5.58)

Hence, it follows that

1
n

h(Y n
W |T (W ))≤ 1

2
ln(2πeα), (5.59)

which is not derivable from the first equation in (5.2) of the original system. In (5.59), α = 0 is
not achievable as the point implies that the entropy of H(T (W )) should be infinity (∞), which is
impossible for finite sets of I, SC, SG, and J . From (5.59), we have that

1
n

I(Y n
W ;T (W )) = h(Y )− 1

n
h(Y n

W |T (W ))

≥ 1
2

ln(2πe)− 1
2

ln(2πeα) =
1
2

ln
(

1
α

)
. (5.60)

By similar arguments around (4.29), and from (5.43), (5.44), (5.55), we have that

RI +RC ≤ 1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
+3δ +δn (5.61)

RI +RC +RG ≤ 1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
+Γ+4δ +δn. (5.62)

From (5.52), (5.55) and (5.60), we

RJ ≥
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RI +RC − (δ +4δn), (5.63)

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
+RI − (δ +3δn). (5.64)

Finally, by letting δ ↓ 0 and n → ∞ in (5.61)–(5.64), one can see that the capacity region for
the case where W is uniformly distributed on I is contained in the right-hand side of (5.15). This
completes the proof of converse part.

5.4.2 Achievability Part

First, let 0 < α ≤ 1. Fix δ > 0 (small enough positive), and the joint PDF of (U,Y,X ,Z) such that
the Markov chain U −Y −X −Z holds. Let U be Gaussian with mean zero and variance 1−α . Now
consider that

Yik =U +Φ, (5.65)
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where Φ, independent of U , is Gaussian with mean zero and variance α . From (5.9) and (5.10) of the
converted system, we have that

Xik = ρ1U +ρ1Φ+N′
1, (5.66)

Zk = ρ1ρ2U +ρ1ρ2Φ+ρ2N′
1 +N2. (5.67)

Hence, we readily see that

I(Y ;U) =
1
2

ln
1
α
,

I(X ;U) =
1
2

ln
(

1
αρ2

1 +1−ρ2
1

)
,

I(Z;U) =
1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
. (5.68)

Similar to the parameter setting of DMS in the achievability proof of Chapter 4, we pick RI and
RC as follows:

RI > 0, RC > 0,
(

RI +RC < I(Z;U) =
1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

))
,

Γ < RC,

and1 we set

RG = I(Z;U)+Γ− (RI +RC)−2δ =
1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
+Γ− (RI +RC)−2δ ,

RM = I(Y ;U)− I(Z;U)+RI +6δ =
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RI +6δ ,

RJ = I(Y ;U)− I(Z;U)+RI +RC +6δ =
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RI +RC +6δ ,

RL = I(X ;U)− I(Z;U)+RI +6δ =
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
+RI +6δ . (5.69)

We also set SC = [1 : enRC ], SG = [1 : enRG ], J = [1 : enRJ ], SΓ = [1 : enΓ], SCΓ̄ = [1 : en(RC−Γ)],
SGΓ̄ = [1 : en(RG−Γ)], and M= [1 : enRM ].

For forming the codebook, we generate en(I(Y ;U)+δ ) sequences of un(s1,s2,m) from fU , in which
each symbol of these sequences is i.i.d. Gaussian with mean zero and variance 1−α , and s1 ∈ SC,
s2 ∈ SGΓ̄, and m ∈M.

The encoding and decoding schemes are similar to the ones based on strong typicality, which
we have already seen in Section 4.2. However, the differences is that the modified and weak typical
sets are used as the encoding and decoding rules, respectively, since the strongly δ -typical set is not

1By setting RC, RG in this way, it is always guaranteed that Γ ≤ min{RC,RG}.



5.4 Proof of Theorem 5.1 87

applicable in this argument since X ,Y,Z, and U are all continuous RVs. Here, we shortly provide the
entire description of the scheme as follows:

For encoding, seeing yn
i and sC(i), the encoder (enrollment) finds a tuple (s1,s2,m) satisfying

(yn
i ,u

n(s1,s2,m)) ∈ B(n)
δ

(YU). If there are multiple such pairs, it selects one at random. Otherwise,
error is declared. We denote the chosen tuple as (s1(i),s2(i),m(i)). Finally, it generates the template
j(i) = (m(i),sC(i)⊕ s1(i)) and the generated-secret key sG(i) = (sC1(i),s2(i)).

To decode the identified user zn, a noisy measurement of xn
w, the decoder looks for the index

tuple (s1,s2,m(i)) such that (zn,un(s1,s2,m(i))) ∈A(n)
δ
(ZU) for all i with some s1 ∈ SC and s2 ∈ SGΓ̄.

If such (i,s1,s2) are unique, the decoder sets (ŵ, ŝ1(w), ŝ2(w)) = (i,s1,s2). Otherwise, error occurs
at the decoder. Assume that (i,s1,s2) are uniquely determined. Then, the decoder outputs the
index ŵ = i, the chosen-secret key ŝC(w) = sC(ŵ)⊕ s1(ŵ)⊖ ŝ1(w), and the generated-secrecy key
ŝG(w) = (ŝC1(w), ŝ2(w)). Finally, the decoder checks if ŝC(w) = sC(ŵ) and ŝG(w) = sG(ŵ), and
decoding is successful if these conditions are satisfied.

Next, we check all conditions in Definition 5.1 hold for a random codebook Cn = {Un(s1,s2,m), s1 ∈
SC, s2 ∈ SGΓ̄, m ∈M}.

For W = i, a possible error event at encoder is

E1 :{(Y n
i ,U

n(s1,s2,m)) /∈ B(n)
δ

(YU) for all s1 ∈ SC, s2 ∈ SGΓ̄, m ∈M},

and those at the decoder are:

E2 : {(Zn,Un
i ) /∈ A(n)

δ
(ZU)},

E3 : {(Zn,Un(S1(i),s′2,M(i))) ∈ A(n)
δ
(ZU) for ∃s′2 ̸= S2(i) (s′2 ∈ SGΓ̄)},

E4 : {(Zn,Un(s′1,S2(i),M(i))) ∈ A(n)
δ
(ZU) for ∃s′1 ̸= S1(i) (s1 ∈ SC)},

E5 : {(Zn,Un(s′1,s
′
2,M(i))) ∈ A(n)

δ
(ZU) for ∃s′1 ̸= S1(i) (s1 ∈ SC) and ∃s′2 ̸= S2(i) (s′2 ∈ SGΓ̄)},

E6 : {(Zn,Un(s1,s2,M(i′))) ∈ A(n)
δ
(ZU) for ∃i′ ̸= i (i′ ∈ I), and s1 ∈ SC and s2 ∈ SGΓ̄}.

Note that the authentication process is guaranteed to be successful if the genuine index and secret key
of the identified user are correctly estimated at the decoder, indicating that it is sufficient to focus on
assessing the probability of incorrect estimation for the pair at the decoder. Then, the error probability
can be further evaluated as

Pr
{

Ê(W ) ̸= E(W )|W = i
}
= Pr{E1 ∪E2 ∪E3 ∪E4 ∪E5 ∪E6}

≤ Pr{E1}+Pr{E2 ∩Ec
1}+Pr{E3}+Pr{E4}+Pr{E5}+Pr{E6} .

(5.70)

By applying the similar arguments of [33, Appendix A-B], it can be shown that the entire error
probability vanishes. Nonetheless, we provide the details for completeness of the proof. The first term
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Pr{E1} can be evaluated as

Pr{E1}= Pr

 ⋂
s1∈SC,s2∈SGΓ̄,m∈M

(Y n
i ,U

n(s1,s2,m)) /∈ B(n)
δ

(YU)


=

|S|

∏
s=1

|SGΓ̄|

∏
s2=1

|M|

∏
m=1

Pr{(Y n
i ,U

n(s1,s2,m)) /∈ B(n)
δ

(YU)}

(a)
=

|S|

∏
s1=1

|SGΓ̄|

∏
s2=1

|M|

∏
m=1

∫
fY n

i
(yn)Pr{Un(s1,s2,m) /∈ B(n)

δ
(U |yn)}dyn

=
∫

fY n
i
(yn)

|S|

∏
s1=1

|SGΓ̄|

∏
s2=1

|M|

∏
m=1

{∫
B(n)

δ
(U |yn)c

fUn(un)dun
}

dyn

=
∫

fY n
i
(yn)

{
1−

∫
B(n)

δ
(U |yn)

fUn(un)dun
}|SC×SGΓ̄×M|

dyn

=
∫

fY n
i
(yn)

(
1−

∫
B(n)

δ
(U |yn)

fUn(un)dun
)|SC×SGΓ̄×M|

dyn

(b)
≤
∫

fY n
i
(yn)

(
1− e−n(I(U ;Y )+3δ )

∫
un∈B(n)

δ
(U |yn)

fUn|Y n
i
(un|yn)dun

)|SC×SGΓ̄×M|
dyn

(c)
≤
∫

fY n
i
(yn)

(
1−

∫
un∈B(n)

δ
(U |yn)

fUn|Y n
i
(un|yn)dun + e−|SC×SGΓ̄×M|e−n(I(U ;Y )+3δ )

)
dyn

(d)
=
∫∫

B(n)
δ

(U |yn)c
fUnY n

i
(un,yn)dundyn + e−enδ ·

∫
yn

i

fY n(yn)dyn

(e)
≤ 2δ (5.71)

for large enough n, where

(a) is due to the fact that Y n
i and Un(s1,s2,m) are mutually independent,

(b) is obtained by applying Property 1 of Lemma 2.3, suggesting that if (yn,un)∈B(n)
δ

(YU), (yn,un)

is also a member of A(n)
δ
(YU), and thus

fUn(un) = fUn|Y n
i
(un|yn)

fUn(un) · fY n
i
(yn)

fUnY n
i
(un,yn)

≥ fUn|Y n
i
(un|yn)

e−n(h(U)+δ ) · e−n(h(Y )+δ )

e−n(h(Y,U)+δ )

= fUn|Y n
i
(un|yn)e−n(I(Y ;U)+3δ ), (5.72)

(c) follows because (1−αβ )m ≤ 1−α + e−mβ [20] is applied,

(d) since 1
2 ln |SC|+ 1

2 ln |SGΓ̄|+ 1
2 ln |M|= I(Y ;U)+4δ ,

(e) follows by applying Property 2 of Lemma 2.3.
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For the second term, it follows that

Pr{E2 ∩Ec
1}= Pr{(Zn,Un

i ) /∈ A(n)
δ
(ZU)∩ (Y n

i ,U
n
i ) ∈ B(n)

δ
(YU)}

≤ Pr{(Zn,Y n
i ,U

n
i ) /∈ A(n)

δ
(ZYU)∩ (Y n

i ,U
n
i ) ∈ B(n)

δ
(YU)}

=
∫∫

B(n)
δ

(YU)
fY n

i Un
i
(yn,un) ·Pr{Zn /∈ A(n)

δ
(Z|yn,un)|(Y n

i ,U
n
i ) = (yn,un)}d(yn,un)

(f)
≤ δ

∫∫
B(n)

δ
(YU)

fY n
i Un

i
(yn,un)d(yn,un)

≤ δ , (5.73)

where (f) follows from the definition of the modified δ -typical set (cf. Lemma 2.3) due to the Markov
chain Z −Y −U .

To bound the third term Pr{E3}, we apply [19, Lemma 11.1], which guarantees that Pr{E3} ≤
Pr{(Zn,Un(1,s′2,1)) ∈ A(n)

δ
(ZU) for some s′2 ̸= S2(i), s′2 ∈ SGΓ̄}. Since Un(1,s′2,1) is independent

of Zn and both have i.i.d. structure, we have that

Pr{E3} ≤
|SGΓ̄|

∑
s′=1

Pr{(Zn,Un(1,s′2,1)) ∈ A(n)
δ
(ZU)} ≤

|SGΓ̄|

∑
s′2=1

e−n(I(Z;U)−δ ) = e−n(RI+RC+δ ). (5.74)

For Pr{E4}–Pr{E6}, they can be made negligible by similar techniques seen in (5.74). Conse-
quently,

Pr{Ê(W ) ̸= E(W )|W = i} ≤ 7δ (5.75)

for large enough n.
The evaluations of (4.7)–(4.13) for Gaussian source can be checked by the same arguments as in

the DMS setting. As we have seen, the discussions were build up based on the support of Lemma
4.3. To the end of this part, we provide an extended version of Lemma 4.3, associating continuous
RVs. Since Un

i can be determined uniquely by the tuple S1(i),S2(i),M(i) for a given codebook Cn,
this lemma also become an extension of Lemma 2.2. Likewise the proof of achievability proof of
Chapter 4, this lemma is a fundamental tool for deriving the bounds of generated-secrecy rate (4.9),
privacy-leakage (4.11), and information leakage (4.12) and (4.13) for Gaussian sources.

Lemma 5.1. For continuous RVs (X ,Y,U), if (Xn
i ,Y

n
i ,U

n
i ) are jointly typical with high probability, it

holds that

1
n

h(Y n
i |S1(i),S2(i),M(i),Cn)≤ h(Y |U)+δn, (5.76)

1
n

h(Y n
i |Xn

i ,S1(i),S2(i),M(i),Cn)≤ h(Y |X ,U)+δn. (5.77)
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Proof: The connection between the modified δ -typical set B(n)
δ

(·) and the weakly δ -typical set
A(n)

δ
(·) is useful for proving the above lemma. We first prove (5.76).
Define an RV T as follows:

T =

1 if (Y n
i ,U

n
i ) ∈ B(n)

δ
(YU),

0 otherwise.
(5.78)

In the analysis of error probability, we have already demonstrated that PT (0)≤ 2δ , or (Y n
i ,U

n
i ) ∈

B(n)
δ

(YU) with high probability. From the left-hand side of (5.76),

h(Y n
i |S1(i),S2(i),M(i),Cn)

(h)
=h(Y n

i |Un
i ,S1(i),S2(i),M(i),Cn)

(i)
≤ h(Y n

i |Un
i )≤ h(Y n

i ,T |Un
i )

≤ H(T )+h(Y n
i |Un

i ,T )

≤ 1+PT (0)h(Y n
i |Un

i ,T = 0)+PT (1)h(Y n
i |Un

i ,T = 1)
(j)
≤ nεn +h(Y n

i |Un
i ,T = 1)

= nεn +
∫

h(Y n
i |Un

i = un,T = 1)dF(un)

= nεn +
∫ ∫

B(n)
δ

(Y |un)
PY n

i |Un
i ,T (y

n|un,1) ln
1

PY n
i |Un

i ,T (y
n|un,1)

dyndF(un)

(k)
≤ nεn +

∫
ln

(∫
B(n)

δ
(Y |un)

PY n
i |Un

i ,T (y
n|un,1)

1
PY n

i |Un
i ,T (y

n|un,1)
dyn

)
dF(un)

= nεn +
∫

ln
(∫

B(n)
δ

(Y |un)
dyn
)

dF(un)

= nεn +
∫

ln
(

Vol
(
B(n)

δ
(Y |un)

))
dF(un)

(l)
≤ nεn +n(h(Y |U)+δ ))

∫
dF(un)

≤ n(h(Y |U)+δ + εn), (5.79)

where

(h) follows as (J(i),S(i)) determines Un
i ,

(i) follows because conditioning reduces entropy,

(j) follows as h(Y n
i |Un

i ,T = 0)≤ h(Y n
i ) =

n
2 log(2πe), and we define εn =

1
n +δ log(2πe),

(k) follows by applying Jensen’s inequality,

(l) follows since Vol
(
B(n)

δ
(Y |un)

)
≤ Vol

(
A(n)

δ
(Y |un)

)
≤ en(h(Y |U)+δ )) (cf. [14]).
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Therefore, from (5.79), we obtain that

1
n

h(Y n
i |S1(i),S2(i),M(i),Cn)≤ h(Y |U)+δn, (5.80)

where δn = 2δ + εn and δn ↓ 0 as n → ∞ and δ ↓ 0.
Next, we briefly summarize how to show (5.77). The left-hand side of (5.77) can be developed

as h(Y n
i |Xn

i ,S1(i),S2(i),M(i),Cn) = h(Y n
i |Xn

i ,U
n
i ,S1(i),S2(i),M(i),Cn)≤ h(Y n

i |Xn
i ,U

n
i ,Cn), where the

first equality and second inequality follow due to the same reasons of (h) and (i) in (5.79), respectively.
By applying the definition of the modified typical set [33, Appendix A-A], it can be concluded
that Pr{(Xn

i ,Y
n
i ,U

n
i ) ∈ A(n)

δ
(XYU)} → 1 as n → ∞ (cf. (5.73)) due to the Markov chain X −Y −U

and (Y n
i ,U

n
i ) ∈ B(n)

δ
(YU) with high probability. This implies Pr{(Xn

i ,U
n
i ) ∈ A(n)

δ
(XU)} → 1 and

Pr{Y n
i ∈ A(n)

δ
(Y |xn,un)|(Xn

i ,U
n
i ) = (xn,un)} → 1 as n → ∞ as well. Based on this observation, the

rest of proof for (5.77) can be done similarly by the arguments seen in [41, Appendix C], and therefore
the details are omitted.

5.5 Summary of Results and Discussion

We extended to the system considered in Chapter 4 to Gaussian sources and channels and characterized
the capacity region among identification, generated- and chosen-secrecy, storage, and privacy-leakage
rates for the BIS under this setting. This was motivated by the truth that the signal vectors of bio-data
sequences are represented by continuous values and transmission channels can be modeled as additive
white Gaussian channels. Therefore, considering BIS with Gaussian sources and channels brings a
step closer to real applications. We showed that an idea for deriving the capacity region is to convert
the system to one where the data flow of each user are in one-way direction. Moreover, numerical
computations of three different examples for the capacity region were provided, and from these results,
it appeared that achieving both high secrecy and small privacy-leakage rates simultaneously is unlikely
manageable.

In this chapter, we did not discuss how the models with Gaussian sources and channels can
be applied to real-life BIS. The point was mentioned as a note in [77]. Here, we also leave such
discussion for future studies. Also, an investigation to characterize the capacity regions of the BIS for
Gaussian vector sources and channels is of sufficient interest.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

Chapter 3 dealt with two different models: BIS supporting authentication and BIS with both chosen
and generated secrecy. The fundamental limits of the BIS supporting authentication (generated- and
chosen-secret BIS models) were discussed in Chapter 3. We demonstrated that there are two different
ways to express the capacity regions for these models. An expression uses a single auxiliary RV
and the other requires two auxiliary RVs, but the two regions are technically identical. We provided
the proofs of our main results based on the one employing two auxiliary RVs. We showed that a
combination use of random coding and binning is optimal scheme for proving the achievability. As a
result, as mentioned in [33], identification and secrecy rates are in a trade-off relation. The minimum
values of the template and privacy-leakage rates increase when the identification rate rises, and like an
observation in [21], the minimum amount of the template rate is always greater than the bound of the
privacy-leakage rate.

Chapter 4 studied the BIS model with both chosen and generated secrecy for DMS. In the analysis,
we allowed the two secret keys to be correlated at some level, and this led to obtain a greater sum of
identification, chosen- and generated-secrecy rates compared to the result derived in [86]. In addition,
the template rate involves both identification and chosen-secrecy rates, but it is not affected by the
generated-secrecy rate. Unlike the template rate, the privacy-leakage rate varies in accordance with
the change of identification rate, but it has nothing to do with the chosen-secrecy rate.

In Chapter 5, we extended the model considered in Chapter 4 to Gaussian sources and channels.
We gave a complete characterization of the capacity region of the model for Gaussian settings. We
showed that an idea of deriving the capacity region is to convert the BIS to another one where the
data flow of each user is in the same direction. Moreover, we provided numerical computations of
three different examples for the derived region, and as a consequence, it seems hard to achieve both
high secrecy and small privacy-leakage rates at the same time. When we manage to obtain small
privacy-leakage rate, the gain of the secrecy rate is also declined.
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6.2 Future Directions

In this section, we mention some possible future directions of this work. An intuitive extension is to
build practical codes that provide as good performance as the derived theoretical bounds. Recently, in
the BIS with a single user, code constructions for secrecy, template, and privacy-leakage rates were
considered in [22] with the use of linear codes and nested polar codes. It was improved in [24] by
deploying randomized nested polar subcodes, a combined usage of a polar code as a vector quantizer
and a polar subcode as error correcting code. Another approach can be found in [38] by using nested
tailbiting convolutional codes. However, the gap between achievable point by this method and the
theoretical bound is still quite big. Moreover, there has not yet been any studies considering code
constructions for the BIS with multiple users. In this case, one has to take care of identification rate,
and hence the problem may become more complicated.

Secrecy amplification is another natural extension. As seen in the definitions of each chapter, we
solely focused on deriving the results under the weak secrecy criterion in terms of secrecy-leakage. In
the BIS with a single user, it has been shown that it is possible to make the secrecy-leakage negligible
under the strong secrecy criterion [11], [22], and [23]. More specifically, in [22] and [23], the capacity
regions are derived via the technique of output statistic of random binning [88], [51], or resolvability
[28] combined with likelihood encoder [67]. A distinct technique can be seen found in [11] based
on source polarization of polar codes [4], [12]. These methods are promising tools for analyzing the
capacity region of the BIS with multiple users under the strong secrecy criterion, too. In fact, when
the criterion is switched from weak to strong, we have to check only the achievability proof since
fundamentally the outer bound established under the weak secrecy criterion results in an outer bound
for a more rigorous one, e.g., the strong secrecy criterion. In the achievability proof, it suffices to
concentrate only on the user with the worst performance due to the fact that the prior distribution of
the identified user is assumed to be unknown. In this fashion, the analysis can be proved similarly as
the proof of the BIS with single user, and thus the techniques mentioned above is possibly applicable.
Moreover, establishing a technique, which has few results compared to DMS settings, to investigate
the BIS for Gaussian sources under the strong secrecy criterion is an interesting and challenging open
problem.

Finally, for the sake of simplicity in the analysis, we assume that the bio-data sequences are
generated from i.i.d. sources, but this assumption is still far from a realistic model. A good example
for this is fingerprints. There are similarities in the patterns of fingerprint for a user, and thus adjacent
elements in a quantized vector of the bio-data sequences are possibly correlated. To get closer to
practical circumstance, it is important to analyze the fundamental trade-off of the models for non-i.i.d.
sources, e.g., the Markov source. Furthermore, all results in this thesis were derived under the
condition that the block-length trends to infinite (asymptotic arguments). The discussion in the finite
block-length regime still remains as an attractive and important topic.
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Appendix A

Supplementary Proofs for Chapter 3

A.1 Proof of Remark 3.5

We show only the relation of A1 =A3 since the proof that A2 and A4 can be done similarly. In the
proof, we prove the equivalence of A1 and A3 by removing the cardinality bounds of auxiliary RVs U
and V from the two regions. Once the equivalence without the cardinality bounds is established, the
cardinality bounds follow from the standard arguments (cf. [19, Appendix C]).

It is obvious that A3 ⊆A1, so we shall show that A3 ⊇A1. We assume that (RI,RS,RJ,RL) ∈A1,
meaning that (RI,RS,RJ,RL) satisfies all conditions in (3.18) for some PU |Y . Especially, we have
RI +RS ≤ I(Z;U). We choose the test channel PV |U satisfying that

RI = I(Z;V ). (A.1)

Such PV |U always exists since I(Z;U) ≥ I(Z;V ) ≥ 0 and I(Z;V ) is a continuous function of PV |U .
Under that condition, it is easy to check that (RI,RS,RJ,RL) is also an element lying in the region
A3.

A.2 Proof of Lemma 3.1

In [29], a similar result of this lemma is used without the proof. Here, we will provide a proof for
readers’ sake. Note that J(i) = (M(i),B(i)). We start by considering the conditional entropy in the



A.3 Proof of Lemma 3.2 103

left-hand side of (3.39) as

1
n H(Y n

i |J(i),S(i),Cn) =
1
n H(Y n

i |M(i),B(i),S(i),Cn)

(a)
= 1
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i ,Cn)

(b)
≤ 1

n H(Y n
i |Un
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(c)
≤ H(Y |U)+δ

′
n (A.2)

where

(a) holds because we denote Un(B(i),S(i)|M(i)) as Un
i for simplicity and the tuple (M(i),B(i),S(i))

determines Un
i for a given codebook,

(b) follows because conditioning reduces entropy,

(c) follows because Y n
i and Un

i are jointly typical with high probability and (2.12) in Lemma 2.2 is
applied.

A.3 Proof of Lemma 3.2

First, we prove that (3.55) holds. The joint distribution among Zt−1,Y t(W ),J(W ), and S(W ) can be
developed as
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where

(d) holds because (J(W ),S(W )) is a function of Y n
W ,
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(e) follows because of the Markov chain Zt−1 −Y t−1(W )− (J(W ),S(W )).

Similarly, equation (3.56) can be shown as follows:
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where

(f) holds because (J(W ),S(W )) is a function of Y n
W ,

(g) follows due to the i.i.d. property of each symbol and the Markov chain Zt−1 −X t−1(W )−
Y t−1(W ),

(h) follows because of the Markov chain Zt−1 −X t−1(W )− (J(W ),S(W )).

A.4 Proof of Lemma 3.3

We will prove only (3.57) by the well-known argument (cf. [14]). We introduce a timesharing variable
Q which is uniformly distributed over {1,2, · · · ,n} and is independent of all other RVs. The left-hand
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side of (3.57) can be rewritten as

n

∑
t=1

I(Zt ;Vt) = n

{
1
n

n

∑
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I(Zt ;Vt |Q = t)

}
= nI(ZQ;VQ|Q)

= n[I(ZQ;VQ,Q)− I(ZQ;Q)]

= nI(ZQ;VQ,Q). (A.5)

By denoting V = (VQ,Q) and Z = ZQ, (3.57) obviously holds. The proof of (3.58)–(3.60) can be done
similarly by setting X = XQ and Y = YQ.

To complete the proof, we need to verify that Zt −Xt(W )−Yt(W )−Ut −Vt holds. We shall first
check that Zt −Xt(W )−Yt(W )−Ut holds for any t ∈ [1,n]. To prove this claim, we have to verify that

Zt −Xt(W )−Yt(W ), (A.6)

Xt(W )−Yt(W )−Ut , (A.7)

Zt − (Xt(W ),Yt(W ))−Ut . (A.8)

Indeed, Eqs. (A.6) and (A.7) clearly hold so the remaining task is to check if the last one also holds.
Before checking that, we show that the Markov chain Zt − (Zt−1,Xt(W ),Yt(W ))− (J(W ),S(W ),W ),
which will be used to confirm (A.8), holds.

I(Zt ;J(W ),S(W ),W |Zt−1,Xt(W ),Yt(W ))

= H(Zt |Zt−1,Xt(W ),Yt(W ))−H(Zt |Zt−1,Xt(W ),Yt(W ),J(W ),S(W ),W )

(i)
≤ H(Zt |Zt−1,Xt(W ),Yt(W ))−H(Zt |Zt−1,Xt(W ),Y n

W ,J(W ),S(W ),W )

(j)
= H(Zt |Zt−1,Xt(W ),Yt(W ))−H(Zt |Zt−1,Xt(W ),Y n

W ,W )

(k)
= H(Zt |Xt(W ))−H(Zt |Xt(W ))

= 0, (A.9)

where

(i) follows because conditioning reduces entropy,

(j) holds because (J(W ),S(W )) is a function of Y n
W ,

(k) holds because each symbol of bio-data sequences is i.i.d., W is independent of other RVs, and
we have Zt −Xt(W )−Yt(W ).

From (A.9), the conditional mutual information is zero and the claim is valid.
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Equation (A.8) can be checked as follows:

I(Zt ;Ut |Xt(W ),Yt(W ))

= H(Ut |Xt(W ),Yt(W ))−H(Ut |Xt(W ),Yt(W ),Zt)

= H(Zt−1,J(W ),S(W ),W |Xt(W ),Yt(W ))

−H(Zt−1,J(W ),S(W ),W |Xt(W ),Yt(W ),Zt)

= H(Zt−1|Xt(W ),Yt(W ))+H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt−1)

−H(Zt−1|Xt(W ),Yt(W ),Zt)−H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt ,Zt−1) (A.10)
(l)
= H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt−1)−H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt−1,Zt)

(m)
= H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt−1)−H(J(W ),S(W ),W |Xt(W ),Yt(W ),Zt−1)

= 0, (A.11)

where

(l) holds because every symbol of bio-data sequences is i.i.d. generated so the first and third terms
in (A.10) cancel each other,

(m) follows because Zt − (Zt−1,Xt(W ),Yt(W ))− (J(W ),S(W )) holds (cf. (A.9)).

Thus, Zt −Xt(W )−Yt(W )−Ut holds, and since Vt is a function of Ut , it follows that Zt −Xt(W )−
Yt(W )−Ut −Vt also forms a Markov chain.
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Supplementary Proofs for Chapter 4

B.1 Equivalence of the Region in (4.15) and in (3.2)

One can easily see that R′ is contained in the region in (3.2) due to the range of RJ . For proving the
opposite relation, we choose a new test channel PU ′|U satisfying that RI +RC = I(U ′;Z). We can pick
such channel since I(Z;U)≥ I(Z;U ′)≥ 0 and I(Z;U ′) is a continuous function. The bounds of the
template and privacy-leakage rates become

RJ ≥ I(Y ;U)− I(Z;U)+ I(Z;U ′)

(a)
≥ I(Y ;U ′)− I(Z;U ′)+ I(Z;U ′)

= I(Y ;U ′) (B.1)

RL ≥ I(X ;U)− I(Z;U)+RI

(b)
≥ I(X ;U ′)− I(Z;U ′)+RI, (B.2)

where (a) and (b) follow from the face that I(Y ;U |Z) ≥ I(Y ;U ′|Z) and I(X ;U |Z) ≥ I(X ;U ′|Z),
respectively. Hence, there always exists an auxiliary U ′ where an achievable rate tuple (RI,RC,RJ,RL)

in the region in (3.2) is also included in R′.

B.2 Proof of Lemma 4.4

We show only the proofs of (4.51) and (4.54). We omit the proofs of the others because (4.52) and
(4.53) can be proved by similar arguments of (4.51), and (4.55) follows similarly from the arguments
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of (4.54). We begin with checking equation (4.51).

1
n

H(S1(i)|Cn) =
1
n

H(Y n
i ,S1(i),S2(i),M(i)|Cn)−

1
n

H(S2(i),M(i)|S1(i),Cn)

− 1
n

H(Y n
i |S1(i),S2(i),M(i),Cn)

(a)
≥ 1

n
H(Y n

i )−
1
n

H(S2(i)|Cn)−
1
n

H(M(i)|Cn)−
1
n

H(Y n
i |V (i),Cn)

(b)
≥ H(Y )− (I(Z;U)−RI −RC −δ )− (I(Y ;U)− I(Z;U)+RI +2δ )

− (H(Y |U)+δn)

≥ RC −δ −δn, (B.3)

where

(a) follows because conditioning reduces entropy and Y n
i is independent of Cn,

(b) follows because (4.49) in Lemma 4.3 is applied.

Next, we prove (4.54). From the left-hand side of the equation, we have that

1
n

I(S1(i),S2(i);M(i)|Cn)

=
1
n

H(S1(i),S2(i)|Cn)+
1
n

H(M(i)|Cn)+
1
n

H(Y n
i ,S1(i),S2(i),M(i)|Cn)

+
1
n

H(Y n
i |S1(i),S2(i),M(i),Cn)

(c)
≤ 1

n
H(S1(i)|Cn)+H(S2(i)|Cn)+

1
n

H(M(i)|Cn)−
1
n

H(Y n
i )+

1
n

H(Y n
i |V (i),Cn)

(d)
≤ RC +(I(Z;U)−RI −RC −δ )+(I(Y ;U)− I(Z;U)+RI +2δ )

−H(Y )+(H(Y |U)+δn)

= δ +δn, (B.4)

where

(c) follows because conditioning reduces entropy,

(d) follows (4.49) in Lemma 4.3 is applied.
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Supplementary Proofs for Chapter 5

C.1 Convexity of RG

In this appendix, we prove that the region RG is convex. First we define η = 1
αρ2

1 ρ2
2+1−ρ2

1 ρ2
2
. and then

it follows that α = 1
ρ2

1 ρ2
2

(
1
η
− (1−ρ2

1 ρ2
2 )
)
. Therefore, the right-hand sides of RJ and RL in (5.15)

can be transformed as follows:

RJ ≥
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RI +RC

=
1
2

ln

 1
ρ2

1 ρ2
2

(
1
η
− (1−ρ2

1 ρ2
2 )
)

ρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

1
ρ2

1 ρ2
2

(
1
η
− (1−ρ2

1 ρ2
2 )
)

+RI +RC

=
1
2

ln
(

ρ2
1 ρ2

2

1− (1−ρ2
1 ρ2

2 )η

)
+RI +RC

=−1
2

ln
(
1− (1−ρ

2
1 ρ

2
2 )η
)
+ ln |ρ1ρ2|+RI +RC (C.1)

and

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
+RI

=
1
2

ln

 1
ρ2

1 ρ2
2

(
1
η
− (1−ρ2

1 ρ2
2 )
)

ρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

1
ρ2

1 ρ2
2

(
1
η
− (1−ρ2

1 ρ2
2 )
)

ρ2
1 +1−ρ2

1

+RI

=
1
2

ln
(

ρ2
2

1− (1−ρ2
2 )η

)
+RI

=−1
2

ln
(
1− (1−ρ

2
2 )η
)
+ ln |ρ2|+RI. (C.2)

Since |ρ1|, |ρ2|< 1, and 0 < α ≤ 1, we have that 1−ρ2
2

αρ2
1 ρ2

2+1−ρ2
1 ρ2

2
≤ 1−ρ2

1 ρ2
2

αρ2
1 ρ2

2+1−ρ2
1 ρ2

2
< 1, indicating the

values of 1− (1− ρ2
1 ρ2

2 )η and 1− (1− ρ2
2 )η are positive. Now the region in (5.15) can also be



110 Supplementary Proofs for Chapter 5

expressed as follows:

RG =
{
(RI,RC,RG,RJ,RL) : RI +RC ≤ 1

2
lnη ,

RI +RC +RG ≤ 1
2

lnη +Γ,

RJ ≥−1
2

ln
(
1− (1−ρ

2
1 ρ

2
2 )η
)
+ ln |ρ1ρ2|+RI +RC,

RL ≥−1
2

ln
(
1− (1−ρ

2
2 )η
)
+ ln |ρ2|+RI,

RI ≥ 0, RC ≥ Γ, RG ≥ 0 for some 1 ≤ η <
1

1−ρ2
1 ρ2

2

}
.

(C.3)

Suppose that RRR1 = (R1
I ,R

1
C,R

1
G,R

1
J ,R

1
L) and RRR2 = (R2

I ,R
2
C,R

2
G,R

2
J ,R

2
L) are achievable tuples for η1 and

η2, respectively. Without loss of generality, we assume that 1 ≤ η1 ≤ η2 <
1

1−ρ2
1 ρ2

2
. Next, let consider

linear combination of these tuples. For 0 ≤ λ ≤ 1, we have that

λ (R1
I +R1

C)+(1−λ )(R2
I +R2

C)≤
1
2
(λ lnη1 +(1−λ ) lnη2)

(a)
≤ 1

2
ln(λη1 +(1−λ )η2)

(b)
=

1
2

lnη
′, (C.4)

where

(a) is due to logx (x > 0) is a convex upward function,

(b) holds as we define η ′ = λη1 +(1−λ )η2.

Similarly, we can show that

λ (R1
I +R1

C +R1
G)+(1−λ )(R2

I +R2
C +R2

G)≤
1
2

lnη
′+Γ. (C.5)

Let take a look into the template rate.

λR1
J +(1−λ )R2

J ≥−λ
1
2

ln
(
1− (1−ρ

2
1 ρ

2
2 )η1

)
− (1−λ )

1
2

ln
(
1− (1−ρ

2
1 ρ

2
2 )η2

)
+ ln |ρ1ρ2|+RI +RC

(c)
≥ −1

2
ln
(
1− (1−ρ

2
1 ρ

2
2 )(λη1 +(1−λ )η2)

)
+ ln |ρ1ρ2|+RI +RC

=−1
2

ln
(
1− (1−ρ

2
1 ρ

2
2 )η

′)+ ln |ρ1ρ2|+RI +RC, (C.6)
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where (c) follows because f (x) =− ln(1− x) (x < 1), is a convex downward function. Likewise, we
can also show that

λR1
L +(1−λ )R2

L ≥−1
2

ln
(
1− (1−ρ

2
2 )η

′)+ ln |ρ2|+RI. (C.7)

From (C.4)–(C.7), we see that there exists an η ′, where η1 ≤ η ′ ≤ η2, that satisfies λRRR1+(1−λ )RRR2 ∈
RG. This indicates that the region RG is convex.

C.2 Verification of R2
G =R′′

G

It is easy to see that R2
G ∈R′′

G due to the range of the template rate. It is clear that

1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RC ≤ 1

2
ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+

1
2

ln
(

1
αρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
=

1
2

ln
(

1
α

)
. (C.8)

To prove that R′′
G ∈R2

G, we assume that (RC,RJ,RL) ∈R′′
G. For a given α , we pick another α ′ (α ≤

α ′ ≤ 1) that satisfies

RC =
1
2

ln
(

1
α ′ρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
, (C.9)

which is possible since ln
(

1
αρ2

1 ρ2
2+1−ρ2

1 ρ2
2

)
is continuous function for 0 ≤ α ≤ 1 and it is guaranteed

that 1
2 ln
(

1
α ′ρ2

1 ρ2
2+1−ρ2

1 ρ2
2

)
≤ 1

2 ln
(

1
αρ2

1 ρ2
2+1−ρ2

1 ρ2
2

)
. Thus, we have

RJ ≥
1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α

)
+RC,

≥ 1
2

ln
(

α ′ρ2
1 ρ2

2 +1−ρ2
1 ρ2

2
α ′

)
+

1
2

ln
(

1
α ′ρ2

1 ρ2
2 +1−ρ2

1 ρ2
2

)
,

=
1
2

ln
(

1
α ′

)
(C.10)

RL ≥ 1
2

ln
(

αρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

αρ2
1 +1−ρ2

1

)
≥ 1

2
ln
(

α ′ρ2
1 ρ2

2 +1−ρ2
1 ρ2

2

α ′ρ2
1 +1−ρ2

1

)
. (C.11)

From (C.9)–(C.11), we see that (RC,RJ,RL) also lies in R2
G.
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