
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019
1079

PAPER Special Section on Discrete Mathematics and Its Applications

Multi-Party Computation for Modular Exponentiation Based on
Replicated Secret Sharing

Kazuma OHARA†,††a), Nonmember, Yohei WATANABE††,†††∗b), Mitsugu IWAMOTO††c), Members,
and Kazuo OHTA††d), Fellow

SUMMARY In recent years, multi-party computation (MPC) frame-
works based on replicated secret sharing schemes (RSSS) have attracted
the attention as a method to achieve high efficiency among known MPCs.
However, the RSSS-based MPCs are still inefficient for several heavy com-
putations like algebraic operations, as they require a large amount and
number of communication proportional to the number of multiplications
in the operations (which is not the case with other secret sharing-based
MPCs). In this paper, we propose RSSS-based three-party computation
protocols for modular exponentiation, which is one of the most popular
algebraic operations, on the case where the base is public and the exponent
is private. Our proposed schemes are simple and efficient in both of the
asymptotic and practical sense. On the asymptotic efficiency, the proposed
schemes require O(n)-bit communication and O(1) rounds,where n is the
secret-value size, in the best setting, whereas the previous scheme requires
O(n2)-bit communication and O(n) rounds. On the practical efficiency,
we show the performance of our protocol by experiments on the scenario
for distributed signatures, which is useful for secure key management on the
distributed environment (e.g., distributed ledgers). As one of the cases, our
implementation performs a modular exponentiation on a 3,072-bit discrete-
log group and 256-bit exponent with roughly 300ms, which is an acceptable
parameter for 128-bit security, even in the WAN setting.
key words: multi-party computation, modular exponentiation, replicated
secret sharing

1. Introduction

1.1 Background

Secure multiparty computation (MPC) enables a set of par-
ties to securely carry out a joint computation of their private
inputs without revealing anything but the output. This strong
cryptographic guarantee of confidentiality is particularly re-
liable for protecting confidential data frommalicious insiders
and malwares or for protecting multiple sources of confiden-
tial private data at their joint analysis. The insider threat is
an annoying problem since some systems need a human op-

Manuscript received September 25, 2018.
Manuscript revised January 25, 2019.
†The author is with the NEC corporation, Tokyo, 108-8001

Japan.
††The authors are with the University of Electro-

Communications, Chofu-shi, 182-8585 Japan.
†††The author is with National Institute of Advanced Industrial

Science and Technology (AIST), Tokyo, 135-0064 Japan.
∗Presently, the author is with National Institute of Information

and Communications Technology (NICT).
a) E-mail: k-ohara@ax.jp.nec.com
b) E-mail: yohei.watanabe@nict.go.jp
c) E-mail: mitsugu@uec.ac.jp
d) E-mail: kazuo.ohta@uec.ac.jp
DOI: 10.1587/transfun.E102.A.1079

erator to manage their data directly while the operator should
not learn the contents of data. It is extremely hard to prevent
malwares that exploit 0-day vulnerabilities from intruding
systems and consequently stealing data. Combining mul-
tiple sources of private data can be effective for obtaining
their deeper analysis, but it has a risk of allowing others to
learn their private data. Nowadays, trustable operations or
hardware security are responsible for mitigating all of these
problems, but they have not been fully successful. MPC is
the strong cryptographic technology that has a potential to
solve these problems in an essential way. It can conceal the
contents of data to operators who can operate this data them-
selves. It can manage data by several different systems with
different 0-days so that the malware intruded into a single
system cannot breach data. It can manage data by mutually
independent systems so that an operator of any one system
cannot learn data of others.

In the past few years, the efficiency of secure computa-
tion protocols has increased in leaps and bounds, we could
expect realistic use of MPCs. In order to demonstrate this
progress, it is sufficient to compare the first implementation
in 2004 of a semi-honest two-party protocol based on Yao’s
garbled circuits [18] that computed at a rate of approximately
620 gates per second, to more recent work that processes at
a rate of approximately 7 billion gates per second [3]. Of
course, this amazing progress is achieved by not only al-
gorithmic technique but also the advent of crypto hardware
acceleration in the form of AES-NI and more. Notably, it
has been revealed that the MPCs based on secret sharing
schemes could achieve high throughput due to its less com-
munication amount than garbled circuits [27], which shows
the potentialities of MPCs to us.

In this paper, we focus on MPCs based on secret shar-
ing schemes. Several remarkable works on MPC [2], [3],
[7], [19], which can achieve high performance in terms of
throughput, deploys Replicated Secret Sharing [8] (which
constructs the access structure by replicating shares of n-out-
of-n threshold scheme among multiple parties). Although
this kind of secret sharing schemes has large share size com-
pared with Shamir’s secret sharing [24], these techniques
show an effect on reducing communication amount of MPC-
multiplication.

1.2 Motivation

Basically, when we want to process confidential information

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

1080
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

on distributed systems, MPC could be an answer. As one of
notable example of such applications, we can consider dis-
tributed ledgers for cryptocurrency, as we know Blockchain.
The protection of secret keys in cryptosystems is an criti-
cal issue in several systems, in particular distributed system.
Since the authority managing secret keys could be a single
point of failure, key management is a problem that plague
system engineers. However, even today, the signing key of
the Blockchain is often managed by depositing with trusted
authority such as exchanges in many services, thus it cannot
be said that it is managed securely enough.

One of the solutions against this issue, we can con-
sider applying MPCs to compute digital signatures among
the nodes of distributed ledger, while concealing its signing
keys. These research are also probably best known as dis-
tributed signatures or threshold signatures [12], [17], [25].
The secret sharing-based MPCs like [2], [3], [7], [19] can
construct distributed signature schemes, since these MPCs
can compute any functions by composition of primitiveMPC
operations.

The MPCs based on RSSSs are generally efficient than
other frameworks, but the cryptographic operations are still
heavy even for these schemes. To handle cryptographic oper-
ations like digital signatures, we should design efficientMPC
protocols for algebraic operations beyond the construction
from primitive gates like addition/multiplication. In partic-
ular, modular exponentiation is one of the most important
building blocks to construct various cryptographic tasks. Of
course, the modular exponentiation is widely used in many
fields including cryptography, and it should be provided as
a basic instruction.

Therefore, in this paper, we focus on how to construct
MPC for efficient modular exponentiation on RSSS-based
MPC frameworks.

1.3 Contribution

In this paper, we propose an efficient MPC protocol for mod-
ular exponentiation with public base for MPC framework
based on RSSS [2], [3], [7], [19]. These frameworks are
known as the best practice for 3-party computation, but still
unsuitable for cryptographic operations since these opera-
tions require much amount of multiplications.

Our proposed scheme is dedicated for modular expo-
nentiation, which is based on the structure of secret sharing
schemes deployed by the frameworks of [2], [3], [7], [19].

More precisely, previous MPCs for modular exponen-
tiation based on RSSS require O(n2) communication com-
plexity by processing square-and-multiply method on MPC,
where n is the size of the secret in bits. On the other hand,
the proposed schemes in this paper require O(n) communi-
cation without deteriorating the order of round complexity.
For more concrete comparison, see Sect. 6.1.

We will show several types of constructions, depending
on the size of the modulus. First is the case where the
modulus is power of 2, and second is the case for modulus
is prime. The second variant can be more optimized if the

modulus of exponent is small.
In addition, as an application of the proposed scheme,

we consider the case of the distributed signatures, which
generates signatures while concealing signing keys. We will
show the experimental results assuming a scenario of dis-
tributed signatures. Not only in the asymptotic sense, the
experiment shows that our scheme is efficient in practical
setting. As one of the cases, our implementation performs a
modular exponentiation on 3072-bit discrete log group and
256-bit exponent with roughly 300ms, which is an accept-
able parameter for 128-bit security, even in WAN setting.
In the simulation in a large parameter and WAN setting, the
previous scheme takes roughly one hour for only network
delay, whereas our protocol can perform roughly 170,000
ms, which is 130 times faster.

1.4 Organization

In Sect. 2, we introduce notations, definitions and building
blocks used in this paper. In Sect. 3, we describe an im-
portant technique named as “local re-sharing of sub-shares”
for RSSS-based MPCs, to describe our proposed scheme.
Section 4 shows our proposal schemes for modular exponen-
tiation. Section 6 discuss an application scenario of modular
exponentiationMPC, and show the practical efficiency of our
proposed scheme on the scenario by implementation results.
Finally Sect. 7 concludes this paper.

2. Preliminaries

2.1 Notation

We assume all values we will handle are on Zq for some
positive integer q. Note that if q = p where p is prime Zp is
a field, and if q = 2m where m ∈ Z, Z2m is a ring.

Let P be a set of parties and Pi ∈ P be a party with the
identifier i. In this paper the indices start from the number 0
for the parties and corresponding shares.

Herewe let [x]q denote that x ∈ Zq is shared by a certain
secret sharing scheme over Zq , and [x]qi be a share of x for
the party Pi . If [x]qi is a tuple of t elements, we denote [x]qi, j
be the j-th element of [x]qi where j ∈ {0, . . . , t − 1}. Let x |j
denotes the j-th least significant bit of the binary expression
of x, and [x]qi |j denote the j-th bits of all elements of the
share, namely ([x]q

i,1 |j, . . . , [x]qi,t |j).

2.2 Secret Sharing

We employ the 2-out-of-3 secret sharing of replicated type
described in [8]. In this paper, we follow the RSSS used in
Araki et al.’s scheme [3]†.
†Araki et al.’s definition of the RSSS scheme is not exactly the

same as the original one in [8] but essentially the same, and such a
variant was referred as RSSS in several subsequent papers [1], [11],
[19]. In this paper, we simply call the variant the RSSS scheme in
these papers. We stress that our proposed schemes are applicable
even to the original RSSS of [8].

OHARA et al.: MULTI-PARTY COMPUTATION FOR MODULAR EXPONENTIATION BASED ON REPLICATED SECRET SHARING
1081

Fig. 1 Reference for the form of 2-out-of-3 replicated secret sharing.

Definition 1: A 2-out-of-3 replicated secret sharing
scheme (2-out-of-3 RSSS) [3] is a set of the following two
probabilistic algorithmsShare andReconst. We additionally
let all indices corresponding to the index space {0, 1, 2} are
described over modulus 3 and hereafter we omit the descrip-
tion of “mod 3”. For example, a certain value xi indexed by
i ∈ {0, 1, 2}, x3 is handled as x0, and x−1 is handled as x2.

Share: Given a specification of Zq , an element of Zq x ∈
Zq , and a random number r , as (Zq, x, r), the algorithm
Share generates random elements x0, x1, x2 ∈ Zq under
the condition of x0 + x1 + x2 = x, generates a share of
Pi denoted by [x]qi as (xi−1 + xi, xi) for i ∈ {0, 1, 2},
and output a set of all shares [x]q . Then, ([x]q

i,0, [x]q
i,1)

= (xi−1 + xi, xi).
Reconst: Given (i, [x]qi , [x]q

i+1) for i ∈ {0, 1, 2}, the algo-
rithm Reconst outputs x = [x]q

i,0+[x]q
i+1,1 (for arbitrary

i ∈ {0, 1, 2}).

As is mentioned in [3], we can easily see that this scheme
satisfies the following correctness and secrecy requirements.

Correctness: For any q ∈ N \ {0}, x ∈ Zq , r ∈ Zq , ([x]q0 ,
[x]q1 , [x]q2) ← Share(Zq, x, r) and any i ∈ {0, 1, 2}, x
is recovered by Reconst(i, [x]qi , [x]q

i+1) with probability
1.

Secrecy: For any q ∈ N \ {0}, x ∈ Zq , r ∈ Zq , ([x]q0 , [x]q1 ,
[x]q2) ← Share(Zq, x, r), no information of x is leaked
from any single party’s share [x]qi where i ∈ {0, 1, 2}.

Figure 1 shows a quick reference for the form of the
shares in Definition 1. The row indexed by “Pi” represents
that the form of the share which is held by Pi .

2.3 A Model of Secure Computation

In this section, we describe the model of MPC in this paper.

(1) Definition of 3-party computation

Here we consider 3-party computation (3PC). Namely, the
parties are P0, P1 and P2.

A multi-party protocol is specified by a (possibly prob-
abilistic) procedure referred to as functionality. Denote
f : ({0, 1}∗)3 → ({0, 1}∗)3 as the 3-ary functionality†.
Specifically, f = (f0, f1, f2) and each party Pi can obtain
distinct outputs f i (~x) in general.

(2) Definition of Security

The goal of MPC protocol based on secret sharing is to
compute shares of outputs from shares of inputs without
revealing information on the input anything but the output.

The security of MPC is formalized by simulation-based
security. Namely, if there exist simulators who can generate
the view of each party in the execution from given inputs
and outputs, the MPC protocol is secure. This formalization
implies that the parties learn nothing about inputs from the
execution of the protocol, except for the information derived
from outputs.

Definition 2: Let A = {Ai }i∈{0,1}∗;n∈N and B =

{Bi }i∈{0,1}∗;n∈N be probability ensembles indexed by i ∈
{0, 1} and n ∈ N. Let κ ∈ N be a security parameter.
We say that A and B are computationally indistinguishable,
denoted by {Ai }κ ' {Bi }κ (or simply A ' B), if for every
non-uniform polynomial-time algorithm D there exists a
function p(·) such that for every i ∈ {0, 1}∗ and every κ ∈ N,

|Pr[D (Ai) = 1] − Pr[D (Bi) = 1]| ≤
1

p(κ)
.

Definition 3: Let f : ({0, 1}∗)3 → ({0, 1}∗)3 be a 3-
ary functionality, and κ be a security parameter. Let
~x = (x0, x1, x2) be a vector of inputs. Let viewπ

i (~x) be
the view of the party Pi during an execution of a protocol
π on input ~x. Let outputπ (~x) be the output of all parties
from an execution of π. We say that a protocol π privately
computes f in the presence of semi-honest adversaries, if it
is correct and for every ~x ∈ ({0, 1}∗)3 the following prop-
erties hold: (1) outputπ (~x) = f (~x) and (2) there exists a
probabilistic polynomial-time algorithm S such that for ev-
ery corrupted party Pi (i ∈ {0, 1, 2}) and every ~x ∈ ({0, 1}∗)3

where |x0 | = |x1 | = |x2 |:{
S

(
xi, f i (~x)

)}
~x,κ '

{
viewπ

i (~x))
}
~x,κ
,

In addition, we say that π privately computes f in the pres-
ence of semi-honest adversaries in the F -hybrid model if π
contains ideal calls to a trusted party computing a certain
functionality F .

Note that the functionalities with only local computa-
tion (i.e. no communication among parties) obviously satisfy
the above definition, since the view of such functionality is
only the information that can be obtained from shares of
secret sharing schemes. Such a view leaks no information
about inputs due to the security of secret sharing.

(3) Representation of functionalities for secret sharing-
based 3PC

For each MPC operation, each party receives the operation
†We can also apply the “client-server” model where the par-

ties running the MPC protocol are servers who receive the input
shares of multiple clients and compute the output for them. The
client-server model for MPC is introduced by Cybernetica in their
Sharemind product [4].

1082
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

code representing a functionality and its input as shares.
Note that the operations to be computed are public for every
party. Here we call the representation of a functionality
as “opcodes”. The whole computation among 3 parties is
represented by a sequence of such opcodes and its input
shares. For each opcode given the parties, they invoke the
function corresponding to the opcodes. In the process of
this function, the parties communicate with each other as
necessary.

For example, we consider the case of MPC for addition
represented by the opcode add. When the parties starts
MPC-addition with shared input x and y , each party Pi

(i ∈ {0, 1, 2}) takes (add, [x]qi , [y]qi) as inputs, and invoke
corresponding function add([x]qi , [y]qi) then get [z]qi where
z = x + y (see also definition in Sect. 2.4). To simplify the
notation, we describe the opcodes and their corresponding
functions by the same name.

2.4 3PC for Arithmetic Operations Based on 2-Out-of-3
RSSS

In this section, we explain secure 3PC for addition and mul-
tiplication described in [3]. Semi-honest secure addition and
multiplication for secret sharing in Definition 1 are given as
follows.

Setup: When each Pi for i ∈ {0, 1, 2} is given (setup, κ),
Pi randomly generates seedi ∈ {0, 1}κ and sends it to
Pi+1. Pi stores seedi that is generated by him/herself
and seedi+1 that is received from Pi−1. In addition, the
parties agree a pseudorandom function PRFq : {0, 1}∗×
{0, 1}κ → Zq†.
For a public constant c ∈ Zq , the share of c is

defined by x0 = c and x1 = x2 = 0. Namely,
[c]q = ((c, 0), (c, c), (0, 0)). It also can be performed
during the execution of MPC operations.

Addition: When each Pi for i ∈ {0, 1, 2} is given
(add, [x]qi , [y]qi), all the parties do as follows:

1. For each i ∈ {0, 1, 2}, Pi generates

[z]qi := ([x]q
i,0 + [y]q

i,0, [x]q
i,1 + [y]q

i,1)

and outputs (add, [z]qi).
This operation as the whole is denoted by [z]q =

add([x]q, [y]q).

We can easily check that [z]q is a valid share of x +
y , since [z]q

i,0 + [z]q
i+1 = ([x]q

i,0 + [y]q
i,0) + ([x]q

i+1,1 +

[y]q
i+1,1) = ([x]q

i,0+[x]q
i+1,1)+ ([y]q

i,0+[y]q
i+1,1) = x+ y

for all i ∈ {0, 1, 2}.
Multiplication:

When each Pi for i ∈ {0, 1, 2} is given (mult, [x]qi , [y]qi),
all the parties do as follows:

†In this paper, we deploy the computationally-secure vari-
ant of [3] for an efficient implementation. For an information-
theoretically secure construction, the parties should exchange an
n-bit random seed for every n-bit multiplication.

1. With a certain unique nonce vid††, each party
Pi computes ηi = PRFq (vid, seedi) − PRFq (vid,
seedi−1) for i ∈ {0, 1, 2}. Note that

∑
i∈{0,1,2} ηi =

0, and Pi can compute ηi without interaction. In
this paper, we call this ηi as correlated randomness
(followed in [3]).

2. For each i ∈ {0, 1, 2}, Pi generates

wi = [x]i,0 · [y]i,0 − [x]i,1 · [y]i,1 + ηi,

where “·” is the multiplication over Zq , and sends
(mult_msg, wi) to Pi+1.

3. For each i ∈ {0, 1, 2}, Pi generates

[z]qi := (wi−1 + wi, wi−1)

and outputs (mult, [z]qi).

This operation as the whole is denoted by [z]q =
mult([x]q, [y]q, η1, η2, η3).

For the correctness, we recall x = x0 + x1 + x2 mod q,
y = y0+ y1+ y2 mod q and z = x · y = (x0+ x1+ x2)(y0+
y1 + y2). wi (i ∈ {0, 1, 2}) at Step 2 can be represented as
w0 = x2 y2+ x2 y0+ x0 y2+η0, w1 = x0 y0+ x1 y0+ x0 y1+η1.
w2 = x1 y1+x2 y1+x1 y2+η2, andwe can see z = w0+w1+w2
mod q. Therefore, the share of Step 3 satisfies the form of
RSSS described in Sect. 2.2.

Efficiency of the protocol: Basically, the biggest bottle-
neck of MPC is communication, since it is necessary
to perform cooperative computation among parties.
Therefore, the efficiency of MPC protocols is evaluated
by two indices: the round complexity and the com-
munication complexity. The round complexity means
the number of communication among parties consider-
ing parallel execution. The communication complexity
means total amount of data to be communicated. As
can be easily seen, the addition of this MPC protocol
requires no communication. On the other hand, to per-
formMPC formultiplication, this protocol only requires
communication at Step 2 to send wi to Pi+1. Here we
denote the size of wi is n = dlog qe. One invocation
of mult requires 3n-bit communication (n-bit per party)
and 1 round. Note that generating ηi in mult requires no
communication by sharing seeds for the hash function
in setup phase.

Security: The proof of security for this protocol was given
by [3]. We will discuss in more detail of the security in
Sect. 5. In the following, we use the protocol of this
section as secure building blocks (i.e., in a black-box
way).

2.5 3PC Functionalities for Building Blocks

In this section, we explain several 3PC functionalities for
††In practice, the vid can be a counter that all parties locally

increment at every call to PRFq . The initial value of vid is agreed
at the setup phase.

OHARA et al.: MULTI-PARTY COMPUTATION FOR MODULAR EXPONENTIATION BASED ON REPLICATED SECRET SHARING
1083

describing the MPC protocols in later sections.
The concrete evaluation of communication bits and the

number of rounds relies on the complexity of the arithmetic
operations introduced in Sect. 2.4. Set n = dlog qe.

2.5.1 Bit-Decomposition

The bit-decomposition operation is a protocol for con-
verting a single integer share [x]q into n binary shares
[x |n−1]2, . . . , [x |0]2. Note that the outputs of the bit-
decomposition are the shares on Z2.

Efficient decomposition protocols are introduced by [1],
[19] for a ring (i.e., q is power of 2), and by [13] for a field
(i.e., q is prime).

The concrete constructions for the bit-decomposition
protocols [1], [13], [19] are closely related to our proposed
scheme. In this section, we only introduce the interface for
bit-decomposition, and review the construction in Sect. 3.

When every Pi for i ∈ {0, 1, 2} is given (bit_decomp,
[x]qi), the parties do the MPC for bit-decomposition and
output ([xn−1]2

i , . . . , [x0]2
i), which are the shares of binary

representation of x over Z2.
This operation as the whole is denoted by ([xn−1]2, . . . ,

[x0]2) = bit_decomp([x]q).

Efficiency: The function maj requires 3-bit multiplication
per one invocation. For each iteration in bit_decomp,
maj is invoked twice. If we apply techniques in [1] or
[19] forZm2 where m ∈ Z, bit_decomp requires 6(n−1)-
bit communications and (n − 1)-round complexity. If
we apply the scheme in [13] for Zp where p is prime,
bit_decomp requires (10n+4)-bit† communications and
2(n − 1)-round complexity.

2.5.2 Bit-Addition

The bit-addition protocol is the addition operation over bi-
nary expression. Namely, this protocol takes shares of
binary representations of two values (xn−1, . . . , x0) and
(yn−1, . . . , y0) where x =

∑n−1
i=0 2i x |i and y =

∑n−1
i=0 2i y |i ,

then output a share of the binary representation of x + y . In
this paper, we only introduce the interface for bit-addition
and use as a building block for other protocols.

When every Pi for i ∈ {0, 1, 2} is given
(bit_add, ([x |n−1]2

i , . . . , [x |0]2
i), ([y |n−1]2

i , . . . , [y |0]2
i)), the

parties do the MPC for bit-addition and output
([z |n−1]2

i , . . . , [z |0]2
i) where z = x + y and z =

∑n−1
i=0 2i z |i .

This operation as the whole is denoted by ([z |n−1]2,
. . . , [z |0]2) = bit_add(([x |n−1]2, . . . , [x |0]2), ([y |n−1]2, . . . ,
[y |0]2)).

Efficiency: Since the round and communication cost de-
pend on the number of MPC-multiplication over Z2,
the cost of bit_add follows standard construction of the

†The reason why the communication costs are not multiples of
three is that the optimization procedures in [13] is assymetric.

full adder circuit. For example, if we deploy the well-
known construction for ripple carry adder, bit_add takes
n − 1 rounds and 3(n − 1) communication complexity
for a ring [1], [19], and 2n − 1 rounds and 6(n − 1)
communication complexity for a field [13]. For other
constructions, see also [1], [9], [23].

We recall x =
∑n−1

i=0 2i · x |i where x ∈ Zq and
x |n−1, . . . , x |0 ∈ Z2 (namely, (x |n−1, . . . , x |0) is a binary rep-
resentation of x).

Let [x]q |j denote (([x]q0 |j), ([x]q1 |j), ([x]q2 |j)) =

(([x]q0,0 |j, [x]q0,1 |j), ([x]q1,0 |j, [x]q1,1 |j), ([x]q2,0 |j, [x]q2,1 |j)), and
([x |j]q)j=0,...,n−1 := ([x |n−1]q, . . . , [x |0]q). Set n = dlog qe.

2.5.3 Bit-Injection

The bit incetion protocol is a special instruction for convert-
ing a single binary share over Z2 into a single integer share
over Zq of the same value. In this paper, we only introduce
the interface for bit-injection and use as a building block for
other protocols.

When every Pi for i ∈ {0, 1, 2} is given (bit_inject, [x]2
i),

where x ∈ Z2 and ([x]q0,1, [x]q1,1, [x]q2,1) = (x0, x1, x2) all
parties do the MPC for bit-injection and output [x]qi .

This operation as the whole is denoted by [x]q =
bit_inject([x]2).

Efficiency: If we follow the protocol of [1], bit_inject re-
quires 6n-bit communications and 2-round complexity.

3. MPCs Using “Local Re-Sharing of Sub-Shares”

In this section, we introduce an important technique via a
local conversion named as “local re-sharing of sub-shares”
for RSSS-based MPCs.

We recall a 2-out-of-3 RSSS share [x]q consists of
x0, x1, x2 as described in Definition 1 (see also Fig. 1).

Here we consider a MPC for computing [f (x)]q from
[x]q for a function f . Unfortunately, it is generally diffi-
cult to efficiently compute [f (x)]q from [x]q directly. One
promising approach is to go through a certain conversion of
[x]q to get [f (x)]q . As one of the conversions realizing this
approach, there is an technique for share generation, which
we call “local re-sharing of sub-shares” in this paper.

[1], [13], [19] proposed such a conversion by gener-
ating shares of sub-shares on [x]q . More specifically, we
call x0, x1, x2 as sub-shares of x, and let f̃ be a func-
tion. Each party Pi can perform an conversion to ob-
tain [f̃ (xi)] (i ∈ {0, 1, 2}) from f̃ (xi) which is locally
computed. Note that this computation can be done lo-
cally. In this paper, we call the above procedure to com-
pute shares [f̃ (x0)]q, [f̃ (x1)]q, [f̃ (x2)]q of the sub-shares
x0, x1, x2 (with f̃) is called “local re-sharing of sub-shares”.

From the shares of [f̃ (x0)]q, [f̃ (x1)]q, [f̃ (x2)]q , the
parties can perform a MPC for a functionality f . Note that
this technique consists of the set of the local conversion
from [x]q to [f̃ (x0)]q, [f̃ (x1)]q, [f̃ (x2)]q and the MPC for

1084
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

Fig. 2 Local re-sharing of sub-shares.

[f (x)]q using [f̃ (x0)]q, [f̃ (x1)]q, [f̃ (x2)]q .
If we find a good combination of f̃ and the MPC pro-

tocol, we can design more efficient protocol than directly
computing [f (x)]q from [x]q . Especially, this technique
has been utilized in the context of bit-decomposition proto-
cols [1], [13], [19] and [13] specified the general case of the
local re-sharing of sub-shares for also achieving the secu-
rity against malicious adversary and constructing modulus
conversion.

3.1 How to Generate Shares of Sub-Shares

First, we explain how to generate shares of sub-shares.
Here we consider simple case for generating the shares
[x0]q, [x1]q, [x2]q as an example.

The key observation for this idea is that every sub-
share xi (i ∈ {0, 1, 2}) is held by two parties, and the
parties work on 2-out-of-3 secret sharing. Therefore,
we can define the valid shares of sub-shares as [x0]q =
((x0, 0), (x0, x0), (0, 0)), [x1]q = ((0, 0), (x1, 0), (x1, x1)),
and [x2]q = ((x2, x2), (0, 0), (x2, 0)). It means that the par-
ties can obtain the valid RSSS shares of x0, x1, x2 without
communication. Note that this operation does not leak infor-
mation about x, since there is no communication (the secrecy
is obviously guaranteed from the security of the secret shar-
ing scheme).

In the above procedure, we can see that xi can be
replaced to f̃ (xi) for arbitrary conversion f̃ and every
i ∈ {0, 1, 2}. Thus, when the parties want to perform MPC
for a certain functionality f with input [x]q , they can use the
shares [f̃ (x0)]q, [f̃ (x1)]q, [f̃ (x2)]q for any MPC, without
additional communication cost. (Note that f̃ need not nec-
essarily be the same as the functionality f to be computed.)

In the following, we will see how to use local re-sharing
of sub-shares by an example of bit-decomposition protocols.

3.2 An Application to Bit-Decomposition

In this section, we review the bit-decompositions [1], [13],
[19] as an example for local re-sharing of sub-shares.

We recall the notation x =
∑n−1

i=0 2i · x |i where x ∈ Zq
and x |n−1, . . . , x |0 ∈ Z2 (namely, (x |n−1, . . . , x |0) is a binary
representation of x). The goal of bit-decomposition is to ob-
tain ([x |n−1]2, . . . , [x |0]2) from [x]q , where (x |n−1, . . . , x |0)

Fig. 3 Bit-decomposition via “local decomposition” of sub-shares.

is the binary representation of x.
Figure 3 shows the overview of the protocol in [1],

[13], [19]. Their bit-decomposition protocols go through a
certain local conversion in the first step, named as “Local
decomposition of sub-shares” in Fig. 3 instead of computing
bit-decomposition directly. In the latter step, the parties
perform MPC from the locally-converted shares and obtain
the desired output for bit-decomposition.

We can see that the “local decomposition of sub-shares”
is a special case of local-resharing of sub-shares. Namely,
all bit-decomposition protocols in [1], [13], [19] can be gen-
eralized using the local re-sharing of sub-shares and the
bit-addition protocol.

(1) Local Decomposition of Sub-shares

As described in Sect. 3.1, we can easily generate the shares of
sub-shares [x0]q, [x1]q, [x2]q . Interestingly, this technique
also can be applied to each bit of the sub-shares (since the
party who has xi also has each bit of xi), we can obtain the
bit-wise shares of sub-shares overZ2 without communication
among parties. Namely, in this case, f̃ j (xi) = xi |j for i ∈
{0, 1, 2} and j ∈ {0, . . . , n − 1}. In the bit-decomposition
protocol, this type of local re-sharing has a key role as the
map from Zq to (Z2)n.

Here we review the procedure of local decomposition
of sub-shares described in [1] as follows. ([13], [19] also
deploy same procedure except for a little difference of the
form of the share depending the scheme)

Let [x]q |j denote (([x]q0 |j), ([x]q1 |j), ([x]q2 |j)) =

(([x]q0,0 |j, [x]q0,1 |j), ([x]q1,0 |j, [x]q1,1 |j), ([x]q2,0 |j, [x]q2,1 |j)), and
([x |j]q)j=0,...,n−1 := ([x |n−1]q, . . . , [x |0]q), where n =

dlog qe.

Local Bit-Decomposition of Sub-Shares:
When every Pi for i ∈ {0, 1, 2} is given (local_decomp,
[x]qi) where ([x]q0,1, [x]q1,1, [x]q2,1) = (x0, x1, x2), all the
parties do as follows:
Let

([x0 |j]2)j=0,...,n−1

:= ([x0 |j]2
0, [x0 |j]2

1, [x0 |j]2
2)j=0,...,n−1

= ((x0 |j, 0), (x0 |j, x0 |j), (0, 0))j=0,...,n−1

([x1 |j]2)j=0,...,n−1

OHARA et al.: MULTI-PARTY COMPUTATION FOR MODULAR EXPONENTIATION BASED ON REPLICATED SECRET SHARING
1085

:= ([x1 |j]2
0, [x1 |j]2

1, [x1 |j]2
2)j=0,...,n−1

= ((0, 0), (x1 |j, 0), (x1 |j, x1 |j))j=0,...,n−1

([x2 |j]2)j=0,...,n−1

:= ([x2 |j]2
0, [x2 |j]2

1, [x2 |j]2
2)j=0,...,n−1

= ((x2 |j, x2 |j), (0, 0), (x2 |j, 0))j=0,...,n−1

For each i ∈ {0, 1, 2}, Pi generates and outputs
(local_decomp, ([x0 |j]2

i , [x1 |j]2
i , [x2 |j]2

i)j=0,...,n−1).
This operation as the whole is denoted by ([x0 |j]2,
[x1 |j]2, [x2 |j]2)j=0,...,n−1) = local_decomp([x]q).

(2) Bit-Addition for x0 + x1 + x2

If we obtain the shares of binary expression of x0, x1, x2,
we can straightforwardly compute the share of binary ex-
pression of x by performing the MPC for bit-addition de-
scribed in Sect. 2.5.2. We recall it is exactly desired output
of bit_decomp since x = x0 + x1 + x2 by definition. Here we
conclude the procedure of bit-decomposition.

As seen in the previous paragraph, local_decomp is
the local operation. Therefore, the dominant part of the
complexity in bit_decomp is bit_add.

3.3 Toward the Application for Modular Exponentiation

As described above, the local re-sharing of sub-shares is
an interesting technique relied on the specific structure of
RSSSs. However, although the technique seems to be very
generic, it’s not obvious how this functionality is effective in
other MPCs. Its effective applications are not well studied,
except for the technique in [1], [13], [19], to the best of our
knowledge.

In Sect. 4.2, we introduce a special case of the local
re-sharing technique, as named local_expo, and discuss how
to apply it to modular exponentiation in the later sections.
Our proposed scheme based on local re-sharing is basically
simple, but the effect on efficiency is quite large.

4. MPC for Exponentiation

4.1 Known MPC Scheme for Exponentiation

Before describing the proposed schemes, we will see the
standard way to compute exponentiation on MPC.

Modular exponentiation with public base: Given a
public value a ∈ Zq and a share [x]qi , the algorithm pub_expo
outputs [y]qi = [ax]qi which is a share of modular exponen-
tiation for the base a and exponent x (over the modulus q).

More specifically, when every Pi for i ∈ {0, 1, 2} is given
(pub_expo, a, [x]qi), all parties do as follows:

1. [xn−1]2
i , , . . . , [x0]2

i = bit_decomp([x]qi)
2. for j = 0, . . . , n − 1 : [x j]qi = bit_inject([x j]2

i)
3. [y]qi = [1]qi
4. for j = 0, . . . , n − 1 :

[y]qi = a2 j
· [x j]qi · [y]qi + (1 − [x j]qi [y]qi)

5. outputs (pub_expo, [y]qi)

The above procedure is an implementation of the
“square-and-multiply” method, which is a standard way of
computing modular exponentiation. This method can be
applied also the base is private.

Efficiency: We can easily see that the dominant part of com-
plexity in this procedure is the for-loop at Step 4. Here
we denote Rbd and Cbd (resp., Rinj and Cinj) be the
round complexity and the communication complecx-
ity of bit-decomposition (resp., bit-injection), respec-
tively. In the above procedure, step 1 takes Rbd-round
and Cbd-bit communication complexity. Step 2 takes
Rinj-round and n · Cinj-bit communication complexity
(note that each bit_inject can be performed in parallel).
Step 3 is a deterministic procedure and hence takes no
round and communication complexity. In Step 4, two
multiplication are invoked n times sequentially. We
recall each multiplication of n-bit ring takes 1-round
and 3n-bit communication complexity. Thus, Step 4
takes n-round and 6n2-bit communication complexity.
In total, pub_expo takes (Rbd + Rinj + n)-round and
(Cbd + nCinj + 6n2)-bit communication complexity. If
we apply the scheme in [1], [3] (for the efficiency, see
Sect. 2.5), it takes (n − 1) + 2 + n = 2n + 1-round and
6(n−1)+n ·6n+6n2 = 12n2+6n−6-bit communication
complexity.

4.2 Local Exponentiation of Sub-Shares

The overview of the proposed modular exponentiation is
shown in Fig. 4. In this section, we define a local operation
local_expo, which is a special case of the local re-sharing of
sub-shares in Sect. 3.1.

Note that the construction of MPC modular expo-
nentiation is still not straightforward even if we introduce
local_expo. In the later section, we discuss how to apply
local_expo to themodular exponentiation on several settings.

Local Exponentiation of Sub-shares: When every
Pi for i ∈ {0, 1, 2} is given (local_expo, a, [x]qi) where
([x]q0,1, [x]q1,1, [x]q2,1) = (x0, x1, x2), all parties do as follows:

Fig. 4 Proposed modular exponentiation via “local exponentiation” of
sub-shares.

1086
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

1. Let [ax0]q = ((ax0, ax0), (ax0, 0), (0, 0))
2. Let [ax1]q = ((0, 0), (ax1, ax1), (ax1, 0))
3. Let [ax2]q = ((ax2, 0), (0, 0), (ax2, ax2))
4. Output (local_expo, [ax0]q, [ax1]q, [ax2]q)

4.3 Proposed Schemes

We recall that what we want to compute is ax =

ax0+x1+x2 mod m. Note that x is not equal to x0 + x1 + x2
but x0 + x1 + x2 mod m. Therefore, we couldn’t compute
the share [ax] by [ax0] ·[ax1] ·[ax2] naively, without checking
whether the sum x0 + x1 + x2 goes over modulus.

4.3.1 Scheme 1: The Case Where Modulus is Prime

Here we consider the case the modulus is prime p (namely,
q = p).

In this case, we can see that ax = ax′+kp = axak where
k ∈ {0, 1, 2} by Fermat’s little theorem. Namely, x0+ x1+ x2
can go over the modulus at most twice. Therefore, we should
check modulus overflow at the point of computing x0 + x1
and (x0 + x1) + x2. If the these values go over the modulus
p, we can fix it by multiplying a−1.

To detecting the modulus overflow, we use bit-
decomposition in this protocol. The point is that, if a certain
value a is larger than themodulus p, the parity of a mod p is
flippled, since p is odd. Therefore, when we check the least
significant bit of x0, x1, and x0 + x1 mod p, if the parity is
not consistent, it means that x1 + x2 exceed p.

When every Pi for i ∈ {1, 2, 3} is given
(modexpp, a, [x]qi) where ([x]q0,1, [x]q1,1, [x]q2,1) = (x0, x1, x2),
all parties do as follows:
1. ([ax0]q, [ax1]q, [ax2]q) ← local_expo([x]q)
2. [s]q = [ax0]q · [ax1]q · [ax2]q
3. [dn−1]2, . . . , [d0]2 = bit_decomp([x0]q)
4. [en−1]2, . . . , [e0]2 = bit_decomp([x1]q)
5. [fn−1]2, . . . , [f0]2 = bit_decomp([x0 + x1]q)
6. [b1]2 = [x0 + x1 > p]2 = [d0 ⊕ e0 , f0]q = [d0 ⊕ e0 ⊕

f0]q
7. [gn−1]2, . . . , [g0]2 = bit_decomp([x2]q)
8. [hn−1]2, . . . , [h0]2 = bit_decomp([x0 + x1 + x2]q)
9. [b2]2 = [x0 + x1 + x2 > p]2 = [f0 ⊕ g0 , h0]q =

[f0 ⊕ g0 ⊕ h0]q
10. [b1]q = bit_inject([b1]2)
11. [b2]q = bit_inject([b2]2)
12. [t]q = [s]q · [b1]q · a−1 + [s]q (1 − [b1]q)
13. [t]q = [t]q · [b2]q · a−1 + [t]q (1 − [b2]q)
14. output (modexpp, [t]q)

Step 3–6 is the description of modulus overflow check
for x0+ x1, and similarly Step 7–9 is check for (x0+ x1)+ x2.
What we actually need are only least significant bit (LSB)
of these values, we don’t have to compute full procedure of
bit_decomp, but can close the process when we get LSBs of
the values.
Efficiency: Each bit_decomp and multiplication can be per-

formed in parallel. In the above procedure, Step 2 takes

2-round and 6n-bit communication. Each bit_decomp
takes (n+1)-round and 10n+4-bit communication (us-
ing [13] since q is prime) and Step 3, 4, 5, 7, and 8 can
be done in parallel. Steps 10 and 11 take 2-round and
6n-bit communication respectively and these steps can
be done in parallel. Step 12 and 13 take 1-round and
6n-bit communiation respectively. In total, modexpp
takes 2 + (n + 1) + 2 + 1 + 1 = (n + 7)-round and
6n + 5 · (10n + 4) + 2 · 6n + 2 · 6n = (80n + 20)-bit
communication complexity.

4.3.2 Scheme 2: The Case Where Modulus is Power of 2

Next we consider the case where q = 2n for some n ∈ Z. To
consider this case, we recall Euler’s theorem.

Theorem 4 (Euler’s theorem): If n and a are coprime pos-
itive integers, aφ(n) ≡ 1 (mod n) where φ(·) is Euler’s
totient-function.

By Euler’s theorem, if a is prime, a2n−1
= 1 mod 2n,

which implies a2n = 1 mod 2n. Namely, in this case, we
don’t have to check the overflow of exponent.

When every Pi for i ∈ {0, 1, 2} is given (modexp_2n, a,
[x]qi) where q = 2n and ([x]q0,1, [x]q1,1, [x]q2,1) = (x0, x1, x2),
all parties do as follows:

1. [ax0]q, [ax1]q, [ax2]q = local_expo([x]q)
2. [s]q = [ax0]q · [ax1]q · [ax2]q
3. output (modexp_2n, [s]q).

Note that we cannot apply this procedure if a is even.
In addition, it is difficult to apply the technique like Scheme
1 since there is no multiplicative inverse for all even value
in Z2n , that is we cannot compute a−1 on Z2n if a is even.
However, if we encounter case to apply the Scheme 2, this is
very efficient.

Efficiency: Scheme 2 requires requires only 2 multiplica-
tion for n-bit elements and no bit_decomp. Total cost
of Scheme 2 is 2 rounds and 6n-bit communication
complexity.

4.3.3 Scheme 3: Special Case that the Discrete Logarithm
is Small

We can consider the case where the size of the base and the
exponent value are different. For example, we consider the
case where p = 2q + 1, and x0, x1, x2 ∈ Zq , a ∈ Zp . In such
case, x0 + x1 + x2 can exceed p at most once.

When every Pi is given (modexp_sp, a, [x]qi) for i ∈
{0, 1, 2}where p = 2q+1, a ∈ Zp and ([x]q0,1, [x]q1,1, [x]q2,1) =
(x0, x1, x2), all parties do as follows:

1. [ax0]p, [ax1]p, [ax2]p = local_expo([x]q)
2. [s]p = [ax0]p · [ax1]p · [ax2]p
3. [dn−1]2, . . . , [d0]2 = bit_decomp([x0 + x1]q)
4. [en−1]2, . . . , [e0]2 = bit_decomp([x1]p)
5. [fn−1]2, . . . , [f0]2 = bit_decomp([x0 + x1 + x2]p)

OHARA et al.: MULTI-PARTY COMPUTATION FOR MODULAR EXPONENTIATION BASED ON REPLICATED SECRET SHARING
1087

Table 1 Complexity of MPC for modular exponentiation over replicated
secret sharing.

Method Round Communication
Previous (Square-and-Multiply) 2 dlog qe + 1 12 dlog qe2 + 6 dlog qe − 6
Scheme 1 (q is prime) dlog qe + 7 80 dlog qe + 20
Scheme 2 (q is power of 2) 2 6 dlog qe
Scheme 3 (2q + 1 < p ≤ 3q + 1) dlog pe+4 36 dlog pe - 18
Scheme 3 (3q + 1 ≤ p) 2 6 dlog pe

6. [b]2 = [x0 + x1 + x2 > p]2 = [d0 ⊕ e0 ⊕ f0]2

7. [b]p = bit_inject([b]2)
8. [t]p = [s]p · [b]p · a−1 + [s]p (1 − [b]p)
9. output (modexp_sp, [s]q).

In addition, if the case p > 3q + 1, we don’t have
to check the overflow of x0 + x1 + x2 since x0 + x1 + x2
mod p = x0 + x1 + x2 in this parameter.

When every Pi for i ∈ {0, 1, 2} is given (modexp_sp2, a,
[x]qi) where p = 2q + 1, a ∈ Zp and ([x]q0,1, [x]q1,1, [x]q2,1) =
(x0, x1, x2), all parties do as follows:

1. [ax0]p, [ax1]p, [ax2]p = local_expo([x]p)
2. [s]p = [ax0]p · [ax1]p · [ax2]p
3. output (modexp_sp2, [s]p).

Efficiency: Scheme 3 requires less number of invocation
of bit_decomp. In particular, in the case where 3q +
1 ≤ p, we can perform same procedure as Scheme
2. If the case where 2q + 1 < p ≤ 3q + 1 total cost
of Scheme 3 is obviously n + 4 rounds and (36n −
18)-bit communication complexity. If the case where
3q + 1 < p, Scheme 3 takes only 2 rounds and 6n-bit
communication as same as Scheme 2.

4.4 Efficiency Comparison

We summarize the round and communication complexity for
each protocol in Table 1. Basically, our proposed schemes re-
quires O(n) round and O(n)-bit communication complexity,
whereas the previous scheme requires O(n2)-bit communi-
cation.

As an example, we show the comparison of communi-
cation bits between previous scheme and Scheme 1. We can
clearly see how efficient the proposed schemes is compared
with the previous scheme. The previous scheme takes over
300kb when n = 256 bits. On the other hand, Scheme 1 re-
quires 15,360-bit communication. As for Scheme 2 or 3 with
3q + 1 ≤ p case, these takes only 1,536-bit communication.

5. Proof of Security

In this section, we discuss the proof of the security for the
proposed scheme described in Sect. 4.3.

5.1 Universal Composability

First, we confirm how the security of sub-protocols (like

Fig. 5 Comparison for communication bits between previous scheme and
scheme 1 in this paper.

addition and multiplication described in Sect. 2.4, and local-
resharing of sub-shares) can imply the security of the pro-
posed scheme.

Here we describe the concept of universal composabil-
ity (UC) framework proposed by [6]. Protocols which is
secure in UC framework maintain its security even if it is
composed with arbitrary other (secure and insecure) proto-
cols. In particular, [14] clarified a condition under which the
security of protocols implies the security of these protocols
under universal composition as follows.

Proposition 1 (Thm. 1.5 in [14]): Every protocol that is se-
cure in the stand-alone model and has start synchronization
and a straight-line black-box simulator is secure under con-
current general composition (universal composition).

In the above theorem, “straight-line” simulatormeans that the
non-rewinding simulator, and “start synchronization” means
that the inputs of all parties are fixed before the execution
begins (also called as “input availability).

Our protocols and sub-protocols in this paper satisfies
start synchronization. Therefore, it is sufficient to prove
security in the classic stand-alone setting and automatically
derive universal composability.

5.2 Security of Sub-Protocols

The security of sub-protocols described in Sect. 2.4 are
proven in [3].

The proof in [3] consist of three steps as follows. Here
we denote πF ≡ f to say that π privately computes f in the
F -hybrid model.

1. Proving the sub-protocols π privately compute f in the
Fmult -hybrid model in the presence of one semi-honest
corrupted party, where Fmult is an ideal functionality
for computing multiplication (namely, πFmult ≡ f).

2. Proving a protocol ρ privately computes Fmult in the
FCR-hybrid model in the presence of one semi-honest
corrupted party, where FCR is an ideal functionality

1088
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

for computing correlated randomness (namely, Fmult ≡

ρFCR).
3. Proving a protocol σ privately computes FCR in plain

model in the presence of one semi-honest corrupted
party (namely, σ ≡ FCR).

The above three steps and the composition theoremdescribed
in Theorem 1 lead πρσ ≡ f , which concludes the proof.

5.3 Security of Our Protocols

Adding to the sub-protocols in Sect. 2.4, our protocols con-
tain one more sub-protocol, that is, local exponentiation (or
local re-sharing of sub-shares).

Fortunately, we can easily confirm that step 1 of the
above proof still can be proven even π contains local re-
sharing of sub-shares since this functionality consist of local
computation only, as same as the addition protocol. This
is not affect the simulation in the Fmult -hybrid model and
πFmult ≡ f . Regarding Step 2 and 3 of the proof, we can
apply same proof as [3] for our protocol since we adopt same
algorithms for multiplication and correlated randomness.

Finally, we can apply the proof of Sect. 5.2 to our pro-
tocol and thus all sub-protocols including local re-sharing of
sub-shares are secure in terms of Definition 3. As described
above, Theorem 1 [14] guarantee that our all sub-protocols
are secure in the UC model. Therefore, by the UC composi-
tion theorem [6], we can prove the security of our protocols
in Sect. 4.3.

On the Security for Malicious Adversaries We recall that
our protocols in this paper are basically secure against
semi-honest adversaries (see Definition 1). However,
the protocols also can be secure in the presence of ma-
licious adversaries by applying the technique of [11] (or
its optimized version [2]), which allows us to construct
a 3PC for malicious adversaries from 3PC protocols for
semi-honest adversaries. If we apply the scheme in [2],
the communication complexity is roughly 7 times that
of the protocols in Sect 4.

6. Applications

The cryptosystems which are based on discrete logarithm are
basically constructed by modular exponentiations of group
elements, these are suitable for our schemes. Table 2 shows
the key sizes of discrete-log based cryptosystems which are

Table 2 Appropriate data length of discrete-log based cryptosystem for
128/256-bit security.

Method discrete keys Logarithm Group
Security level 128 256 128 256
Lenstra/Verheul [16] 230 474 6790 49979
Lenstra Updated [15] 256 512 4440 26268
ECRYPT [10] 256 512 3072 15360
NIST [20] 256 512 3072 15360
ANSSI [21] 200 200 2048 3072
RFC3776 [22] 256 512 3253 15489

recommended in some evaluation documents. We can see
that the size of exponent is much smaller than the size of
group elements. In this setting, we can apply Scheme 3 in
this paper, which is most efficient one in our proposal.

6.1 Experimental Evaluation

(1) Experiment Scenario

We consider a simple scenario for distributed signatures
based on discrete logarithm: the key storage server is dis-
tributed three parties P1, P2, P3. Let the signing key x of the
signature scheme is a element of Zq where q is prime. We
assume x is shared among P1, P2, P3 by the RSSS. Now, a
certain authorized user throw a query to the distributed server
to generate own signature σ ∈ Zp using shared his/her sign-
ing key by MPC, where p is prime satisfying p > 3q + 1
(this assumption is reasonable according to Table 2). As
signature schemes suitable for such scenario, we can choose
BLS signature [5] or Waters signature [26].

(2) Environment and Settings

We run our experiments on a cluster of three servers, each
with two 10-core Intel Xeon (E5-2650 v3) processors and
128GBRAM, connected via a 10Gbps Ethernet. (We remark
that little RAM was utilized and thus this is not a parameter
of importance here.)

Based on the parameter shown in Table 2, we run two
experiments assuming 128-bit security and 256-bit security,
respectively. From Table 1, we implement and compare
Scheme 3 and previous scheme with the field of size n =
log p. For each experiment, we measure the latency of one
MPC process of modular exponentiation, while fixing the
size of q (discrete logarithm) and changing the size of p (i.e.,
the size of field).

We also run experiments for various network latency
using tc† command on Linux. In the experiments, we tried
three latency settings assumingLAN/WAN: 0.1ms, 5ms and
50ms. We suppose that 0.1ms is very low-latency of LAN,
5ms is round-trip delay of 500 km distance (e.g.,between
Tokyo-Osaka), and 50ms is round-trip delay of 5000 km
distance (e.g., between Los Angeles-New York) ††.

(3) Results and Discussion

The results on Scheme 3 are shown in Fig. 6 and Fig. 7.
We can see that the proposed scheme works even on WAN
network at the same speed as the LAN network latency.
This characteristic comes from that the round complexity
is constant for the size of the field. On the other hand,
the previous scheme takes O(n) rounds and therefore the
latency is much larger than the result in Figs. 6 and 7. For
example, if the size of field is 2048, the round complexity

†This command allows us to show/change network traffic set-
tings, like latency, packet loss, etc. (The name means “traffic
control”.)
††We assume the speed of the light passing through the optical

fiber is roughly 200,000 km/s.

OHARA et al.: MULTI-PARTY COMPUTATION FOR MODULAR EXPONENTIATION BASED ON REPLICATED SECRET SHARING
1089

Fig. 6 Latency-field size with 128-bit security parameter (log q = 256
bit).

Fig. 7 Latency-field size with 256-bit security parameter (log q = 512
bit).

of proposed scheme is 3 · 2048 + 2 = 6146 according to
Table 2. It takes 0.1 · 6, 146 = 614.6ms when the case of
0.1ms-latency network, and 50 · 6146 = 307, 300ms when
the case of 50ms-latency network ignoring the computation
cost etc. In the worst case of this experiment, which is the
log p = 27, 648 bits with 50ms-latency network for 256-bit
security, it takes 50 · (3 · 27, 648 + 2) = 4, 147, 300ms =
69.1 minutes for only network delay. Namely, our proposed
scheme is roughly one or two order of magnitude faster than
previous scheme in a certain setting.

7. Conclusion

We propose MPC protocols for modular exponentiation on
the state-of-the-art MPC framework. The proposed schemes
is a new application based on the local re-sharing of sub-
shares. The construction of our scheme is simple and effi-
cient in both of aysmptotic and practical sense, as shown by
the experiment on a scenario on distributed signatures.

From the results of this paper, we can learn the necessity
of dedicated MPC instructions for such MPC framework.
Basically, the naive construction of MPC based on secret
sharing-based technique takes a large number of round. As
we discussed in Sect. 6.1, it is serious concern, in particular
WAN environment.

However, these secret sharing-based MPCs still do not
impair their worth, since we have the possibility to reduce

the complexity by dedicated design as we show, and these
frameworks naturally have a small communication complex-
ity. We believe our proposal in this paper also supports
solving the performance problems on secret sharing-based
MPCs.

Acknowledgments

The authors are grateful to the reviewers for their care-
ful reading and comments. This work was partially sup-
ported by JSPS KAKENHI Grant Numbers JP17H01752,
JP18H05289, JP18K11293, JP18H03238, and 18K19780.

References

[1] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and
H. Tsuchida, “Generalizing the SPDZ compiler for other protocols,”
IACR Cryptology ePrint Archive, 2018:762, 2018.

[2] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K.
Ohara, A. Watzman, and O. Weinstein, “Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-gate per sec-
ond barrier, IEEE S&P 2017, pp.843–862, 2017.

[3] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an hon-
est majority,” ACM CCS 2016, pp.805–817, 2016.

[4] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” ESORICS 2008, pp.192–
206, 2008.

[5] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” J. Cryptol., vol.17, no.4, pp.297–319, 2004.

[6] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” FOCS 2001, pp.136–145, 2001.

[7] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell,
and A. Nof, “Fast large-scale honest-majority MPC for malicious
adversaries,” CRYPTO 2018, pp.34–64, 2018.

[8] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion, pseudoran-
dom secret-sharing and applications to secure computation,” TCC
2005, pp.342–362, 2005.

[9] I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft, “Uncondi-
tionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation,” TCC 2006, pp.285–304, 2006.

[10] ECRYPT-CSA, Algorithms, key size and protocols report (2018),
H2020-ICT-2014 – Project 645421, EuropeanCoordination and Sup-
port Action in Cryptology, 2018.

[11] J. Furukawa, Y. Lindell, A. Nof, and O.Weinstein, “High-throughput
secure three-party computation for malicious adversaries and an hon-
est majority,” EUROCRYPT 2017, pp.225–255, 2017.

[12] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet secu-
rity,” ACNS 2016, pp.156–174, 2016.

[13] R. Kikuchi, D. Ikarashi, T. Matsuda, K. Hamada, and K. Chida,
“Efficient bit-decomposition and modulus-conversion protocols with
an honest majority,” ACISP 2018, pp.64–82, 2018.

[14] E. Kushilevitz, Y. Lindell, and T. Rabin, “Information-theoretically
secure protocols and security under composition,” SIAM J. Comput.,
vol.39, no.5, pp.2090–2112, 2010.

[15] A.K. Lenstra, Key Lengths, The Handbook of Information Security,
Wiley, 2004.

[16] A.K. Lenstra and E.R. Verheul, “Selecting crytographic key sizes,”
J. Cryptol., vol.14, no.4, pp.255–293, 2001.

[17] Y. Lindell, “Fast secure two-party ECDSA signing,” CRYPTO 2017,
pp.613–644, 2017.

[18] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure
two-party computation system,” Proc. 13th USENIX Security Sym-
posium, pp.287–302, San Diego, CA, USA, Aug. 2004.

https://eprint.iacr.org/2018/762
https://eprint.iacr.org/2018/762
https://eprint.iacr.org/2018/762
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1109/sp.2017.15
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-319-96878-0_2
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-319-56614-6_8
http://dx.doi.org/10.1007/978-3-319-56614-6_8
http://dx.doi.org/10.1007/978-3-319-56614-6_8
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-93638-3_5
http://dx.doi.org/10.1007/978-3-319-93638-3_5
http://dx.doi.org/10.1007/978-3-319-93638-3_5
http://dx.doi.org/10.1137/090755886
http://dx.doi.org/10.1137/090755886
http://dx.doi.org/10.1137/090755886
http://dx.doi.org/10.1007/s00145-001-0009-4
http://dx.doi.org/10.1007/s00145-001-0009-4
http://dx.doi.org/10.1007/978-3-319-63715-0_21
http://dx.doi.org/10.1007/978-3-319-63715-0_21
http://dx.doi.org/10.1145/1455770.1455804
http://dx.doi.org/10.1145/1455770.1455804
http://dx.doi.org/10.1145/1455770.1455804

1090
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

[19] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” ACM CCS 2018, pp.35–52, 2018.

[20] NIST, Recommendation for key management, Special Publication
800-57 Party 1 Rev.4, 2016.

[21] NSA, Mécanismes cryptographiques, Règles et recommandations,
Rev. 2.03, 2014.

[22] NSA, Commercial national security algorithms, Information Assur-
ance Directorate at the NSA, 2016.

[23] K. Ohara, K. Ohta, K. Suzuki, and K. Yoneyama, “Constant rounds
almost linear complexity multi-party computation for prefix sum,”
AFRICACRYPT 2014, pp.285–299, 2014.

[24] A. Shamir, “How to share a secret,” Commun. ACM, vol.22, no.11,
pp.612–613, 1979.

[25] Y. Wang, D.S. Wong, Q. Wu, S.S.M. Chow, B. Qin, and J. Liu,
“Practical distributed signatures in the standard model,” CT-RSA
2014, pp.307–326, 2014.

[26] B. Waters, “Efficient identity-based encryption without random ora-
cles,” Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Proceedings, pp.114–127, Aarhus, Denmark,
May 2005.

[27] A.C.-C. Yao, “Protocols for secure computations (extended ab-
stract),” FOCS 1982, pp.160–164, 1982.

Kazuma Ohara received the B.E., and
M.E. degrees from the University of Electro-
Communications in 2012 and 2014, respectively.
He is presently engaged in research on public
key cryptography and secure multi-party com-
putation at NEC corporation, since 2014. He
received the SCIS Paper Award in 2014, and
ACM CCS 2016 Best Paper Award in 2016.

Yohei Watanabe received the B.E., M.E.,
and Ph.D. degrees in information science from
Yokohama National University, Japan, in 2011,
2013, and 2016, respectively. He was also JSPS
Research Fellow (DC1) during his Ph.D. course.
After spending two years and a half as JSPS Re-
search Fellow (PD) at the University of Electro-
Communications, he moved to National Institute
of Information and Communications Technol-
ogy (NICT) on Oct. 2018. His research interests
include cryptography and information security,

especially unconditional cryptography and pairing-based cryptography. He
received several awards including SCIS Paper Prize, CSS 2018 Paper Prize,
and IEEE Information Theory Society Japan Chapter Young Researcher
Best Paper Award. He was invited to 4th Heidelberg Laureate Forum as
one of selected young researchers. He is a member of IEICE, IPSJ, IEEE,
and IACR.

Mitsugu Iwamoto received the B.E., M.E.,
and Ph.D. degrees from the University of To-
kyo, Tokyo, Japan, in 1999, 2001, and 2004, re-
spectively. In 2004, he joined the University of
Electro-Communications, where he is currently
an Associate Professor of Department of Infor-
matics. His research interests include informa-
tion theory, information security, and cryptog-
raphy. He is a member of IEICE, IEEE, and
IACR.

Kazuo Ohta received the B.S., M.S., and
Dr.S. degree from Waseda University, Tokyo,
Japan, in 1977, 1979, and 1990 respectively.
He has been a Professor at The University of
Electro-Communications since 2001. He had
been a researcher at NTT laboratories between
1979 and 2001. He is presently engaged in re-
search on information security. He is a fellow of
IEICE, and a member of IEEE and IACR.

http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1007/978-3-319-06734-6_18
http://dx.doi.org/10.1007/978-3-319-06734-6_18
http://dx.doi.org/10.1007/978-3-319-06734-6_18
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-319-04852-9_16
http://dx.doi.org/10.1007/978-3-319-04852-9_16
http://dx.doi.org/10.1007/978-3-319-04852-9_16
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7
http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1982.38

