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概要

脈動オーロラ (Pulsating Aurora: PsA)は、数秒から数十秒の変化 (主脈動)の上に秒

以下の細かい変動 (内部変調)が重畳する階層的周期構造を有するディフーズオーロラの

一種である。本論文では、複数地点に設置された高速光学観測機器を用いて、PsA の階

層的周期構造の制御機構について議論する。第 1 章では、本論文の背景を述べる。第 2

章では、本論文に用いる高速光学観測機器について紹介する。第 3 章では、PsA 電子の

エネルギー推定手法を紹介し、そのエネルギーが多様であり、朝方に行くほど、そのエネ

ルギーが高くなる傾向にあることを示す。第 4 章では、第 3 章で示した PsA 電子のエネ

ルギーの多様性に基づき、その最大の特徴である階層的周期構造の生成機構を議論する。

第 5 章では研究全体を総括し、今後の展望を述べる。



Abstract

Pulsating aurora (PsA) is a type of diffuse aurora showing characteristic hierarchical

temporal variations with subsecond fluctuations (internal modulation) superimposed on

slower variations (main pulsation). Simultaneous ground-based and satellite observations

have recently revealed that these hierarchical temporal variations are characterized by

magnetospheric chorus waves (e.g., Nishimura et al., 2010). In addition, the hierarchical

temporal variations of PsA are reportedly due to the periodicity of the chorus waves as well

as the transit time required for electrons, which contribute to PsA emission, to precipitate

from the magnetosphere to the ionosphere (Miyoshi et al., 2010; Nishiyama et al., 2014).

However, the formation mechanism of the hierarchical temporal variations, which are the

most distinctive feature of PsA, is still unclear. The reason is that conventional ground-

based observations are designed to be conducted simultaneously with satellite observations

and do not have sufficient temporal resolution to capture the internal modulation, which

occurs on subsecond time scales, over a wide field of view. In this thesis, we discuss the

generation mechanism of the hierarchical temporal variations of PsA by investigating the

energy of the PsA electrons through multipoint high-speed observations. In Chapter 1,

we provide a general introduction to the research presented in this thesis and describe the

characteristics of PsA. In Chapter 2, we present detailed information about the ground-

based optical instruments employed in this work.

In Chapter 3, we present a statistical analysis of the lifetime of O(1S) to determine

the emission altitude of PsA using a ground-based five-wavelength photometer that has

been operating in Tromsø, Norway, since February 2017. The PsA intervals were extracted

using an electron-multiplying charge-coupled device (EMCCD) all-sky imager for 37 nights

from January to March 2018. By performing a cross-correlation analysis between the

time series of the auroral emissions at 427.8 nm (N+
2 first negative band) and 557.7 nm

(oxygen emission), the distribution of the O(1S) lifetime was derived. The mean lifetime

was 0.67 s, and the mode was approximately 0.70 s. The emission altitude of the PsA

was estimated from the lifetime of O(1S); subsequently, a case study was conducted

in which we compared the temporal variation of the emission altitude with the peak

height of E region ionization, which was obtained from simultaneous observations by the

European Incoherent SCATter (EISCAT) UHF radar. We confirmed overall agreement



between the two parameters, indicating the feasibility of the current method for estimating

the energy of precipitating electrons causing PsA. In addition, we derived the statistical

characteristics of the emission altitude of PsA. The result shows that the emission altitude

is lower on the morning side than in the midnight sector, which indicates that the PsA

electrons have higher energies in the later magnetic local time (MLT) sector. In particular,

the emission altitude decreases at approximately 06 MLT. However, the model calculation

suggests that the energy of cyclotron resonance between magnetospheric electrons and

whistler-mode chorus waves does not vary significantly with MLT. This result implies

that the observed change in the emission altitude cannot be explained solely by the MLT

dependence of the resonance energy.

In Chapter 4, we present an analysis of the characteristics of multiple temporal vari-

ations (the main pulsation and internal modulation) of PsA using four EMCCD all-sky

imagers in Scandinavia. We analyzed an interval in which an intense PsA was observed si-

multaneously at all four stations. The period of the main pulsation generally ranged from

4 to 8 s, and the dominant frequency of the internal modulation was approximately 3 Hz.

These results are in good agreement with those obtained in previous studies, confirming

the validity of the present approach. We found that 43% of all PsA cases are accompanied

by internal modulations of ∼3 Hz. More interestingly, the internal modulation was less

frequent at higher latitudes. To discuss the factors controlling these characteristics of the

internal modulation, we reproduced the time series of PsA emissions by considering the

time delay from the occurrence of chorus waves in the magnetosphere to the arrival of

scattered electrons at the ionosphere. The simulation suggested that the internal modu-

lation can be smeared due to the integrated contributions of PsA electrons, which exhibit

different energies and reach the ionosphere with different time delays. This smearing ef-

fect is more effective at higher latitudes because of the longer magnetic field lines. Hence,

this mechanism can explain the observational result that the internal modulation was less

frequent at higher latitudes. Thus, we found that the temporal variation of PsA, espe-

cially their subsecond modulation, does not reflect the time series of chorus waves and is

rather largely influenced by the delay time of PsA electrons.

The results presented in Chapters 3 and 4 demonstrate that the energy of PsA electrons

ranges from 5 to 30 keV and the nature of the hierarchical temporal variations of PsA is

determined not only by the amplitude variation of the chorus waves in the magnetosphere,

but also by the variation in the delay time of PsA electrons, whose energy ranges from 5

ii



to 30 keV from the magnetosphere to the ionosphere. Because the variation in the delay

time depends on the energy of PsA electrons, its effect is expected to be less significant

(i.e., the internal modulation is expected to be clearer) in PsA caused by higher-energy

electrons. Thus, we conclude that the variation in electron energy plays a significant

role in characterizing the hierarchical temporal variations of PsA. This finding further

implies that the discreteness (i.e., visibility) of the internal modulation can be used as an

indicator of the energy of the precipitating electrons causing a PsA.
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Chapter 1

Introduction

The subject of this thesis is the characteristics of pulsating aurora (PsA). This chap-

ter provides background information; the results are presented in subsequent chapters.

Sections 1.1 and 1.2 provide general information about the space environment around

the Earth and the motion of particles in this environment according to Baumjohann and

Treumann (1997). Section 1.3 briefly introduces the auroral emission mechanism and

types of auroras. Section 1.4 reviews the observations of PsA, and Section 1.5 describes

the unresolved issues and motivation for this thesis.

1.1 Research field of this thesis

1.1.1 Magnetosphere

In this section, we describe the magnetosphere, which is the source of the electrons re-

sponsible for producing PsA, the main subject of the thesis. Earth is a magnetized planet

with its own magnetic field. This magnetic field can be approximated by a dipole field,

and the region dominated by this planetary magnetic field is called the magnetosphere.

The Earth’s dipole field can be approximated as follows:

B(λ, req) = BE(
req
RE

)−3 (1 + 3sin2λ)
1
2

cos6λ
(1.1)

where req is the radial distance to a particular magnetic field line on the equatorial plane

of the magnetosphere, BE is the equatorial magnetic field on the Earth’s surface, and λ is

the magnetic latitude. Here, for simplicity, the L value is introduced as a unit of distance.

L =
req
RE

(1.2)
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L is the largest distance to a magnetic field line in the equatorial plane in terms of the

Earth’s radius, RE. By inserting equation 1.2 into equation 1.1, the Earth’s dipole field

can be expressed as

B(λ, L) =
BE

L3

(1 + 3sin2λ)
1
2

cos6λ
(1.3)

Figure 1.1 shows a schematic diagram of the large-scale structure of Earth’s magne-

tosphere. The boundary between the Earth’s magnetosphere and the solar wind is called

the magnetopause. The magnetopause is usually located at a distance that is approx-

imately equal to 10 RE, but it penetrates inward beyond geostationary orbit (6.6 RE)

during periods of disturbance such as coronal mass ejections. A bow shock is thus formed

because the solar wind is blocked by the magnetosphere. The bow shock is located at

∼13 RE, where the kinetic energy of solar wind particles is converted to thermal energy.

The region between the bow shock and the magnetopause is called the magnetosheath.

The plasma in this region is compressed and is denser and hotter than typical plasma in

the solar wind. The magnetosphere is highly stretched in the anti-sunward direction, and

this stretched region is called the magnetotail. Hot plasma is stored in a region called

the plasma sheet, which is near the central part of the magnetotail. The typical electron

density, temperature, and intensity of the magnetic field in the plasma sheet are ne ∼ 0.5

cm−3, Te ∼ 5 × 106 K, and B ∼ 10 nT, respectively. The plasma sheet is a source of the

energetic particles that are responsible for the aurora. The thickness of the plasma sheet

is a few RE, and the regions outside the plasma sheet in the magnetotail are called lobes.

Lobes are located on both the northern and southern sides of the plasma sheet, where the

magnetic field pressure is higher than the plasma pressure. The average electron density,

temperature, and magnetic field strength in the lobes are ne ∼ 10−2 cm−3, Te ∼ 5 × 105

K, and B ∼ 30 nT, respectively. The region of high-energy plasma on the near-Earth side

of the plasma sheet is called the radiation belt or Van Allen belt. The L value of the radi-

ation belt is 2–6 RE, and particles in this region oscillate between mirror points located in

the northern and southern hemispheres (see Section 1.2 for details). The intensity of the

magnetic field ranges from 100 to 1000 nT, and the typical electron density and temper-

ature are ne ∼ 1 cm−3 and Te ∼ 5 × 107 K, respectively. The energy of particles in this

region is very high, ranging from 30 keV up to several MeV. These energetic particles in

the radiation belt are known to cause satellites to malfunction; therefore, understanding

and predicting the variability of energetic particles in the radiation belt is important in
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the framework of space weather. Further inside the radiation belt region is the plasmas-

phere, which is filled with cold (Te ∼ 5 × 103 K) and dense (ne ∼ 5 × 102 cm−3) plasma

originating from the outflow of the Earth’s ionospheric plasma. In the equatorial plane,

the plasmasphere extends to 4 RE, and its boundary is called the plasmapause. At the

plasmapause, the electron density decreases sharply to below 1 cm−3.

When the dynamic pressure of the solar wind increases or when the magnetic field

of the solar wind has a large southward component, the magnetosphere becomes more

active, and various phenomena such as magnetic storms and magnetospheric substorms

occur. These phenomena significantly change the plasma conditions in the magnetosphere

and affect the ionosphere, which is connected to the magnetosphere via the magnetic field

lines. The aurora is one of the most visible examples of such disturbances in near-Earth

space. In the next section, we will introduce the Earth’s ionosphere, the region in which

auroras occur.

Figure 1.1: Schematic diagram of the large-scale structure of the Earth’s magnetosphere.

1.1.2 Ionosphere

The Earth’s upper atmosphere is partially ionized by extreme ultraviolet (EUV) radiation

from the Sun; this region is called the ionosphere. The ionosphere is located at an altitude
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of 60 to 1000 km and can be broadly classified into three main regions, namely, the D

region (60–90 km), E region (90–150 km), and F region (above 150 km); this categoriza-

tion depends on the altitude profiles of the electron density and the types of dominant

ions. Figure 1.2 shows the altitude profiles of the density of the main constituents of the

ionosphere. The type of dominant ion depends primarily on the altitude; in the E and F

regions, molecular ions (NO+, O+
2 ) and atomic oxygen ions are dominant, respectively.

Figure 1.2: Altitude profiles of the main constituents of the ionosphere. This figure is

from Johnson (1966).

In addition to the ionization caused by solar EUV radiation, collisional ionization

also occurs when magnetospheric particles are precipitated into Earth’s ionosphere along

the magnetic field lines. At higher latitudes, where the magnetic latitude exceeds 60◦,

the Earth’s ionosphere and magnetosphere are coupled via magnetic field lines. Figure

1.3 shows the altitude profiles of the ionization rates for precipitating electrons with

various energies. The vertical and horizontal axes indicate the altitude and ionization

rate, respectively. Higher-energy electrons can penetrate to lower altitudes and also cause

collisional ionization at those altitudes. Further, an aurora is generated in a ring-like

4



region that surrounds the magnetic pole due to the precipitation of particles (mainly

electrons) originating from the plasma sheet in the magnetosphere. These collisional

ionizations caused by particle precipitation from the magnetosphere occur mainly in the

E region at altitudes of approximately 100 km.

Figure 1.3: Altitude profiles of rates of collisional ionization by precipitating electrons

from the magnetosphere. This figure is from Rees (1989).

1.1.3 Substorm

Aurora-related phenomena occur on a scale of thousands of kilometers and follow a char-

acteristic cycle on a time scale of 1–2 h. The typical variability of this auroral activity is

called the auroral substorm. The substorm was first proposed by Akasofu (1964), and Fig-

ure 1.4 shows a schematic diagram of the evolution of an aurora in the auroral substorm.

At time T = 0, the nightly auroral band (A) expands toward the equator and increases in

brightness (initial brightening) (B). Next, the auroral activity increases, and many auroral

arcs appear (auroral breakup), which expand in the poleward and longitudinal directions

(C). After expanding, they form a central bulge, a structure called an auroral bulge (D).

On the night side, a patchy PsA spreads to the morning side. Subsequently, the auroral

activity subsides, and the region returns to a quiet state over the next few hours (E, F).
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In addition, the magnetosphere also changes significantly during the auroral substorm

cycle; these changes are referred to as the magnetospheric substorm. When the interplan-

etary magnetic field (IMF), which is the magnetic field embedded in the solar wind, has a

southward component, magnetic reconnection occurs at the dayside magnetopause. This

reconnection allows the IMF to merge with the Earth’s magnetosphere. Consequently, the

energy of the solar wind is stored in the magnetotail and compresses the central part of

the magnetotail from above and below, resulting in thinning of the plasma sheet (growth

phase). When the plasma sheet is sufficiently thin, magnetic reconnection again occurs

rapidly in the center of the magnetotail plasma sheet at a distance of 20–30 RE, the so-

called near-Earth neutral line, and the plasma is injected in the direction toward the Earth

and the magnetotail (expansion phase). Accompanying this Earthward plasma injection

in the magnetosphere, in the ionosphere, the aurora becomes brighter on the nightside

and spreads rapidly. Subsequently, when the IMF turns northward, the magnetosphere

returns to the quiet state (recovery phase).
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Figure 1.4: Schematic diagram of auroral development during auroral substorm. This

figure is from Akasofu (1964).

1.2 Particle motion in the magnetosphere

The equation of motion for a charged particle moving in a magnetic field B and electric

field E is expressed as follows:

m
dv

dt
= q(E + v ×B) + F (1.4)

where m, q, and v are the mass, charge, and velocity of the particle, respectively, and

F is any arbitrary force (other than the Coulomb and Lorentz forces). According to

this equation of motion, the particle has three main periodic motions: gyro (cyclotron)

motion, bounce motion, and drift motion. In this section, we will focus mainly on bounce

motion and discuss it in detail.
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1.2.1 Magnetic mirror

As mentioned in the previous section, the Earth’s magnetic field can be approximated

by a dipole field. Substituting the magnetic latitude λ = 0◦ into equation(1.1) yields the

magnetic field in the equatorial plane:

Beq =
BE

L3
(1.5)

The magnetic moment µ of a particle’s motion along this inhomogeneous magnetic field

is written as follows:

µ =
mv2||
2B

=
mv2 sin2 α

2B
= Const. (1.6)

where m is the mass of the particle, v is the velocity of the particle (v|| is its parallel

component), B is the intensity of the magnetic field, and α is the pitch angle. The pitch

angle is the angle between the magnetic field lines and the parallel component of the

particle’s velocity and is given by the following equation:

α = tan−1(
v⊥
v∥

) (1.7)

where v⊥ and v∥ are the velocity components perpendicular and parallel to the magnetic

field lines of the particles, respectively. Because the magnetic moment is a constant, v⊥

decreases as the magnetic field increases to cancel it out, for example, when the particle

moves along a field line to a region with a stronger magnetic field. Now consider the law

of conservation of kinetic energy, which is expressed as follows:

1

2
m(v2∥ + v2⊥) = Const. (1.8)

The kinetic energy is also a constant, like the magnetic moment µ; thus, when v⊥ increases,

v∥ decreases, resulting in an increase in the pitch angle. When the pitch angle reaches 90◦

(at the mirror point), all the velocity components of the particle are perpendicular to the

magnetic field lines, and the particle cannot precipitate any farther along the magnetic

field lines. Instead, the particle is pushed back by the parallel component of the gradient

B, which is the so-called mirror force:

F = −µ
∂B

∂z
= −µ∇∥B (1.9)

where B is the magnetic field, and z is the direction along the magnetic field lines. The

particles are subjected to a force in the opposite direction when they move toward a

stronger magnetic field.
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In the geometry of an inhomogeneous magnetic field, such as the Earth’s magnetic

field, where the magnetic field is minimized in the equatorial plane, particles are trapped

within the magnetic field as they move back and forth between the two mirror points (i.e.,

in the northern and southern hemispheres), which is called the magnetic mirror effect.

1.2.2 Equatorial pitch angle

As mentioned in the previous section, trapped particles move back and forth between the

mirror points in the northern and southern hemispheres. Now, the position of the mirror

point of a particle (e.g., the magnetic latitude or distance from the ionosphere) is closely

related to the so-called equatorial pitch angle, which is given by the following equation:

sin2 αeq =
Beq

Bm

=
cos6 λm

(1 + 3 sin2 λm)
1
2

(1.10)

where αeq is the equatorial pitch angle, Beq is the intensity of the magnetic field at the

equatorial plane, Bm is that at the mirror point of the particular particle, and λ is the

magnetic latitude of the mirror point. This equation shows that the equatorial pitch angle

does not depend on the L value but depends only on the magnetic latitude of the mirror

point. Thus, the magnetic latitude of the particle’s mirror point is determined only by

the equatorial pitch angle. Therefore, if the equatorial pitch angle αeq is sufficiently small,

the particle has a large parallel component of the velocity along the magnetic field lines

and can penetrate into a region of higher magnetic latitude.

1.2.3 Loss cone

A particle with a sufficiently high latitude at the mirror point can collide with molecules

and atoms in the Earth’s atmosphere instead of making a bouncing motion. For simplicity,

assuming that the mirror point is the Earth’s surface, the loss cone, that is, the equatorial

pitch angle at which a particle can precipitate into the Earth’s atmosphere, is derived as

follows:

sin2 αl =
Beq

BE

=
cos6 λE

(1 + 3 sin2 λE)
1
2

(1.11)

where α is the angle of the loss cone, BE is the intensity of the magnetic field at the

Earth’s surface, and λE is the magnetic latitude of the Earth’s surface, respectively. The

width of the loss cone does not depend on the charge, mass, or energy of the particles,
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but only on the radius of the magnetic field lines. The width of the loss cone is generally

quite small, for example, less than a few degrees in the auroral region.

1.3 Aurora

As described above, the Earth’s magnetosphere and ionosphere are coupled via magnetic

field lines, and electrons with energies ranging from a few hundred eV to a few hundred

keV tend to precipitate from the magnetosphere (primarily from the plasma sheet) along

the magnetic field lines. The precipitating electrons collide with atomic and molecular

ions in the ionosphere and transfer their energy to the Earth’s ionospheric atoms and

molecules; subsequently, they attain their excited states. When they return to their more

stable states, they release photons in the form of auroral emissions.

1.3.1 Auroral emission

Auroral emission is characterized by several main emission lines of nitrogen molecules,

oxygen molecules, oxygen atoms, or their ions, which form the majority of the Earth’s

atmosphere (and ionosphere). Here, we introduce three typical emission lines in auroral

emission.

• 427.8 nm emission

Emission at 427.8 nm occurs when the excited state of the first negative band,

N+
2 (B

2Σ+
u ), transitions to the ground state, N+

2 (X
2Σ+

g ). The excited state of N+
2 (B

2Σ+
u )

is produced by collisional ionization with precipitating electrons, which can be ex-

pressed as

N2 + e → N+
2 (B

2Σ+
u ) + e+ e (1.12)

The emission at 427.8 nm is due to a permitted transition and is immediately

observed after electron precipitation. Its lifetime is ∼10−8 s (Nozawa et al., 2018),

so it is useful for observing auroras with fast modulations, such as the PsA described

below.

• 557.7 nm emission

The emission at 557.7 nm is the brightest auroral emission and is produced by

the transition from the excited state of O(1S) to the O(1D) state. Although the

excitation process of O(1S) is still unclear, there are three candidate mechanisms:
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1. Direct collision of secondary electrons due to precipitating electrons

O(3P ) + e → O(1S) + e (1.13)

2. Dissociative recombination with O+
2 ions

O+
2 + e → O(1S) +O(1S) + e (1.14)

3. Energy transfer from the excited N2 molecule

N2(A
2Σ2

+) +O → O(1S) +N2 (1.15)

The emission at 557.7 nm is associated with a forbidden transition, unlike that at

427.8 nm, and the corresponding lifetime is approximately 0.7 s (Brreke and Hen-

riksen, 1972). In the forbidden transition, the excited states are likely to lose their

energy in collisions with other particles rather than by optical emission. Therefore,

at an altitude of ∼100 km, the excited state of O(1S) loses its energy not by optical

emission but through collisions that occur because of the dense neutral atmosphere

at that altitude. In Chapter 3, we use the lifetime of this emission at 557.7 nm to

estimate the emission altitude of the PsA.

• 630.0 nm emission

The third emission line is observed at 630.0 nm and is caused by the transition

from O(1D) to the ground state O(3P). The O(1D) state is produced not only by the

transition from the O(1S) state, but also by collisions with precipitating electrons,

which are represented by the following equation:

O(3P ) + e → O(1D) + e (1.16)

The emission at 630.0 nm is also due to a forbidden transition, like that at 557.7 nm,

which has a lifetime of approximately 110 s (Rees and Roble, 1975). At altitudes

below ∼250 km, strong emission does not occur at 630.0 nm owing to collisional

de-excitation; thus, the 630.0 nm emission layer is typically located between 250

and 500 km.

1.3.2 Types of aurora

As described above, auroras result from the precipitation of energetic electrons from the

magnetosphere, which is caused by several processes. Auroras are classified into several
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categories according to these processes. Figure 1.5 shows an auroral image captured from

the International Space Station. The green curtain-like aurora in the upper part of the

image is the discrete aurora, and the irregularly shaped aurora in the lower part of the

image is the diffuse aurora. These two types of aurora are described briefly below.

Figure 1.5: Auroral image taken by the crew of the International Space Station. This

image was obtained from the Earth Science and Remote Sensing Unit, NASA Johnson

Space Center, The Gateway to Astronaut Photography of Earth (eol.jsc.nasa.gov).

• Discrete aurora

Discrete auroras are curtain-shaped, as shown in the upper part of Figure 1.5.

Auroral arcs are the most well-known form of discrete aurora. An auroral arc

is a structure that is elongated in the east-west direction; it is a luminous layer

several kilometers in thickness. The energy of the electrons associated with the

auroral arc has a specific peak ranging from a few keVs to a dozen or so keV. This

peak energy increases and decreases with latitude, showing an inverted-V structure

(Frank and Ackerson, 1971). Satellite observations have also shown a potential

difference of several keVs at the onset of auroral arcs (Mozer et al., 1977); electrons

are accelerated by the upward electric field along these magnetic field lines to form

auroral arcs (Torbert and Mozer, 1978; Lin and Hoffman, 1982).

• Diffuse aurora

A diffuse aurora is caused by the precipitation of electrons from the central plasma

sheet or inner magnetosphere. PsA, which is the main subject of this thesis, is a
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type of diffuse aurora. Wave-particle interactions due to cyclotron resonance have

long been proposed as a mechanism for the formation of diffuse aurora (Kennel and

Petschek, 1966). Recent satellite observations have revealed that chorus waves and

electrostatic electron cyclotron harmonic (ECH) waves play an important role in

the pitch-angle scattering of electrons, which contributes to the formation of diffuse

aurora (Thorne et al., 2010). In addition, unlike the mono-energetic discrete auroral

arcs, the electrons contributing to the diffuse auroral emission are distributed over a

wide energy range (a few keVs to a few tens of keVs). It has also been reported that

the ECH waves and upper band chorus contribute to the pitch-angle scattering of

low-energy electrons, and the lower band chorus causes the pitch-angle scattering of

high-energy electrons (e.g., Ni et al., 2008). However, the wave-particle interaction

process is still unclear and needs to be elucidated in detail; thus, the diffuse auroras

associated with wave-particle interactions are regarded as an active area of research

in space science.

1.4 Pulsating aurora

PsA is a type of diffuse aurora that exhibits ON and OFF phases within a period of

few seconds to a few tens of seconds. Most diffuse auroras exhibit such quasi-periodic

variations in their luminosity; thus, PsA is a universal auroral phenomenon that appears

mainly on the morning side.

1.4.1 Morphology

PsA is generally observed between the midnight and dawn sectors (Royrvik and Davis,

1977). Jones et al. (2011) derived the occurrence distribution of PsA using two all-sky

imagers at Gillam (66.1◦N, 333.9◦E) and Fort Smith (67.3◦N, 306.7◦E) in North America.

Figure 1.6 shows the occurrence distribution of PsA as a function of MLT. The dotted,

dashed, and dot-dashed lines show the number of events observed, number of PsA events,

and occurrence rate of PsA among all the observations, respectively. The occurrence rate

increases dramatically after 00 MLT and remains high (nearly 60%) until dawn. They

also investigated the duration of PsA and found a typical duration of approximately 1.5

h. Furthermore, dayside PsA was also reported at high latitudes in previous studies (Han
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et al., 2015; Motoba et al., 2017).

Figure 1.6: Occurrence distribution of PsA versus MLT. The dotted line indicates the

number of observed events. The dashed line indicates the number of observed PsA events

at each MLT. The dot-dashed line indicates the occurrence rate of PsA events among all

observations. This figure is from Jones et al. (2011).

The spatial structures of PsA can be broadly divided into two types (Royrvik and

Davis, 1977; Yamamoto, 1988; Sato et al., 2002):

1. Arc structures, which generally extend in the east-west direction

2. Patch structures, which appear as clusters of patches having irregular shapes

PsA is known to show characteristic propagation modes during the ON phase, which

are poleward, equatorward, and longitudinal propagation (Oguti, 1975). In addition

to the rapid propagation during the ON phase, patches of PsA tend to move with the

speed of ionospheric convection. It was shown that the direction of propagation changes

around midnight (Nakamura and Oguti, 1987). The direction before midnight is duskward,

whereas that after midnight is dawnward. As mentioned above, the speed of propagation

reportedly follows the speed of the E ×B drift (Yang et al., 2015).

14



1.4.2 Emission and ionization altitude

The emission altitude of PsA has been intensively studied since the 1970s owing to its

close relationship with the energy of the precipitating electrons. Brown et al. (1976) esti-

mated the emission altitude of PsA by applying triangulation to two all-sky TV imagers at

College, Alaska. They found that the emission altitude of PsA ranges between 82 and 115

km. A recent similar analysis by Partamies et al. (2017) revealed that the emission alti-

tude of PsA tended to be lower on the morning side. However, these results obtained via

optical observations are not statistically significant because of the limited data available.

In addition to these optical observations, incoherent scatter (IS) radar observations have

also been conducted to investigate the variation of electron density during PsA. Jones et

al. (2009) estimated the energy of PsA electrons and the thickness of the emission layer

using the Poker Flat Incoherent Scatter Radar (PFISR). They found that the electrons

responsible for PsA have energies of 6–8 keV and that the emission layer is 15–25 km

thick. More recently, Hosokawa and Ogawa (2015) verified an MLT variation in the ion-

ization height from the electron density profile during PsA using the European Incoherent

SCATter (EISCAT) radar. Figure 1.7 shows the distribution of the ionization height as

a function of MLT (Hosokawa and Ogawa, 2015). The top and bottom panels show the

MLT distributions of all the PsA events and the occurrence distribution of hmE versus

MLT, respectively, where hmE is the peak height of the electron density in the E region

and is an indicator of the altitude at which the PsA causes ionization. In the bottom

panel, the peak is almost constant from 00 to 06 MLT. However, after 06 MLT, the peak

becomes lower below 100 km, and they concluded that the energy of the precipitating

PsA electrons is higher on the morning side. The typical energy of PsA electrons is a few

keVs to tens of keVs (Sandahl et al., 1980). However, several studies have reported that

more energetic electrons are precipitated during PsA (Miyoshi et al., 2015b). These very

energetic electrons can precipitate into the mesosphere, which is located at an altitude

below 90 km. Turunen et al. (2016) detected ionization at an altitude of 68 km using the

EISCAT VHF radar and showed that this precipitation of energetic electrons results in

an increase in NOx and HOx and eventually a decrease in O3.

As descried above, the variations in the electron density and ionization altitude during

PsA have been investigated in detail using IS radars. However, the statistical properties

of the emission altitude of PsA have not been investigated. Therefore, in Chapter 3, we
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derive the statistical characteristics of the emission altitude of PsA from the lifetime of

O(1S).

Figure 1.7: MLT distribution of observed PsA events (upper panel) and occurrence dis-

tribution of the E region peak height (hmE) (lower panel). The occurrence rate is self-

normalized in the lower panel. This figure is from Hosokawa and Ogawa (2015).

1.4.3 Temporal characteristics

The most significant characteristic of PsA is hierarchical temporal variations, in which

more rapid subsecond variations (called internal modulations) are superimposed on the

so-called main pulsation, whose period ranges from a few seconds to a few tens of seconds

(Lessard, 2012, and references therein). These hierarchical temporal variations in PsA

have been investigated in previous studies through ground-based observations with high

temporal resolution such as those using a narrow-field TV imager. Royrvik and Davis

(1977) observed a 3 Hz modulation (they described the internal modulation as a 3 Hz

modulation) using a narrow-field TV imager at College, Alaska. Figure 1.8 shows a

typical example of the hierarchical temporal variations in PsA, as observed in the study

of Royrvik and Davis (1977). The top panel shows an image captured by the narrow-field
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TV imager, and the bottom panel shows the optical time series inside the white box in the

top panel. Several increases in luminosity appear in the bottom panel; they correspond

to the main pulsation. Moreover, a fine-scale (i.e., faster) variation is embedded in the

ON phase of the main pulsation, which shows the signature of the 3 Hz modulation (i.e.,

the internal modulation). These ground-based observations in the 1960s to 1970s revealed

the existence of hierarchical temporal variations of PsA. However, the observations are

limited as they were obtained at a single observation station.

To reveal the large-scale characteristics of PsA, Japan and Canada conducted a joint

observation campaign in January and February 1980. This campaign led to successful

ground-based optical observations at several stations, along with rocket and satellite ob-

servations. The details were reported by McEwen and Duncan (1980). These observations

produced a number of significant results; here, we introduce the principal results regard-

ing the hierarchical temporal variations of PsA. All-sky TV imagers were installed at four

stations in Alaska, and the field of view (FOV) of these four imagers covered a latitude

range of 61.3◦N to 67.8◦N. Duncan et al. (1981) verified the latitudinal dependence of

the period of the main pulsation using all-sky TV imagers installed at Saskatoon, Rabbit

Lake, Southend, and La Ronge. Figure 1.9 shows the distribution of the period of the

main pulsation for each observation point derived by Duncan et al. (1981). Note that

periodicities longer than 18 s are shaded. Figure 1.9 clearly shows that the period of the

main pulsation becomes longer with increasing latitude.
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Figure 1.8: Typical example of the 3 Hz modulation obtained from a narrow-field TV

imager. Image taken by the narrow-field TV imager at 13:36:09 UT on February 10, 1975

(upper panel). Optical time series sampled in the white box in the top panel from 13:34:50

to 13:36:30 UT on the same day (lower panel). These figures are from Royrvik and Davis

(1977).
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Figure 1.9: Latitudinal dependence of the main pulsation of PsA. This figure is from

Duncan et al. (1981).

Yamamoto (1988) statistically investigated the period of the main pulsation using the

all-sky TV imager installed at La Ronge. Figure 1.10 shows the period distribution of

the main pulsation derived by Yamamoto (1988). The solid, shaded, and dashed lines

indicate the duration of the ON phase, duration of the OFF phase, and period of the

main pulsation, respectively. The mean duration of the ON phase is 6.2 ± 1.7 s, and that

of the OFF phase is 14.5 ± 5.3 s; further, the mean period of the main pulsation is 20.7

± 5.4 s. Note that the majority of the main pulsations are distributed from 20 to 30 s,
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and there are a few main pulsations with short periods of a few seconds. However, these

results are not statistically significant because a limited amount of data was used in the

analyses.

In the 2010s, several groups reported that there is a one-to-one correspondence be-

tween PsA and whistler-mode chorus waves in the magnetosphere (Nishimura et al., 2010;

Kasahara et al., 2018; Kawamura et al., 2019). In addition, a number of studies have inves-

tigated the rapid variations of the internal modulation of PsA using ground-based optical

instruments with high temporal resolution, such as electron-multiplying charge-coupled

device (EMCCD) imagers (Samara and Michell 2010; Nishiyama et al., 2014). Nishiyama

et al. (2014) performed a statistical analysis of the hierarchical temporal variation of PsA

on the basis of 53 events observed at Poker Flat, Alaska, between December 2011 and

March 2012. They employed an EMCCD imager with a wide FOV, and their temporal

resolution was 100 Hz. Figure 1.11 shows the distributions of the hierarchical temporal

variations and the distributions of the periods as a function of the auroral intensity de-

rived by Nishiyama et al. (2014). The top two panels show the occurrence distributions of

the main pulsation and internal modulation, respectively. The frequencies of the internal

modulation are distributed between 1.5 and 3.3 Hz, and a few fast modulations beyond 3

Hz were observed. They suggested that the variation of the travel time of PsA electrons

from the magnetosphere to the ionosphere may smear the fine-scale (more rapid) modula-

tions beyond 3 Hz. The periods of most of the main pulsations are distributed from 4 to

12 s, and no main pulsations were observed at periods of a few tens of seconds, as shown

by Yamamoto (1988). The bottom two panels show scatter plots of the main pulsation

and internal modulation versus auroral intensity. Although the internal modulation is

correlated with the auroral intensity (correlation coefficient: 0.58), the main pulsations

do not have a similar correlation. Samara and Michell (2010) also observed fine pul-

sations with frequencies ranging from 0.5 to 15 Hz using narrow-field EMCCD imagers;

these modulation frequencies are consistent with the observational repetition frequency of

the chorus waves (Tracktengerts et al., 2014). Modulations more rapid than the internal

modulation have also been reported (e.g., Ozaki et al., 2018). In particular, Kataoka et

al. (2012) used a Phantom V710 high-speed camera with a frame rate of 500 images per

second and reported modulations of a few tens of Hz at the edges of a PsA patch.
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Figure 1.10: Occurrence distribution of the period of the main pulsation (dashed line)

and the duration of the ON phase (solid line) and OFF phase (shaded line). This figure

is from Yamamoto (1988).

Figure 1.11: Histogram of the frequency of the internal modulation (upper left panel) and

the period of the main pulsation (upper right panel). Scatter plots of the frequency of the

internal modulation (lower left panel) and the period of the main pulsation (lower right

panel) as a function of auroral intensity. This figure is from Nishiyama et al. (2014).
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1.4.4 Generation mechanism

It has been widely accepted that PsA electrons are scattered owing to cyclotron resonance

with plasma waves near the magnetic equator (Johnstone, 1983; Davidson, 1990). In

particular, Thorne et al. (2010) showed that chorus waves are the most efficient agent

to precipitate electrons with energies ranging from a few keVs to a few tens of keVs and

thus contribute to PsA emission. Chorus waves are a type of whistler-mode wave with

quasi-periodic emission and appear as clusters (or bundles) of individual chorus elements.

Their frequency depends on the electron cyclotron frequency (fce), and chorus waves are

known to occur at frequencies of 0.1 to 0.8 fce (Tsurutani and Smith, 1977; Santolik et

al., 2003). In particular, chorus waves are commonly divided into two distinct frequency

ranges, namely, 1) the upper band chorus (UBC), with a frequency range of up to 0.5

fce, and 2) the lower band chorus (LBC), with frequencies below 0.5 fce. The LBC is

considered to be primarily responsible for the precipitation of PsA electrons (Miyoshi et

al., 2015a). Figure 1.12 is a frequency–time (f–t) diagram of the electric field wave data

from the Time History of Events and Macroscale Interactions during Substorm (THEMIS)

satellite (Li et al., 2012). The horizontal white line in Figure 1.12 indicates a frequency

of 0.5 fce. As shown in the bottom panel, all chorus waves appear in the frequency band

below 0.5 fce, which is 700–1500 Hz. This collective (and repetitive) occurrence of chorus

waves is called bursts of chorus or chorus bursts. The upper panel is a magnified view of

the period indicated by the red arrow in the bottom panel. Fine-scale structures (so-called

chorus elements) are embedded in a single burst of chorus. In this way, like a PsA, chorus

waves also exhibit hierarchical temporal variations.

Nishimura et al. (2010) recently reported a one-to-one correspondence between the

optical time series of a PsA and the amplitude variation of the chorus wave. They con-

ducted simultaneous observations using a ground-based all-sky imager and the THEMIS

satellite to investigate the correlation between the auroral intensity and the chorus wave

amplitude. The upper left panel in Figure 1.13 shows a schematic diagram of their simul-

taneous observations. The footprints of the THEMIS satellite are located within the FOV

of the all-sky imager, and the THEMIS satellite obtained the f–t diagrams of the electric

and magnetic field wave data near the magnetic equator, which represent the source re-

gion of the PsA (upper right panel in Figure 1.13). Intense LBC appears at frequencies

below 0.5 fce in both f–t diagrams. A PsA was also observed in the ionosphere at the
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same time. The lower left panel in Figure 1.12 shows four snapshots taken by the all-sky

imager, where the purple square indicates the footprint of the THEMIS satellite, and the

red arrow shows the region of the PsA patch. The lower right panel in Figure 1.13 shows

the correspondence between the average amplitude variation of the chorus wave (blue

line), which was obtained by sandwiching from 0.05 to 0.5 fce, and the optical time series

of the PsA (red line) at the highest correlation pixel of the all-sky imager. In the lower

right panel of Figure 1.13, higher wave amplitude and auroral intensity correspond to

the bursts of chorus and main pulsation, respectively. Further, the correlation coefficient

between them is 0.88, which indicates that there is a one-to-one correspondence between

the chorus wave and PsA.

Figure 1.12: Frequency–time diagram of magnetic field observed by THEMIS satellite in

8 min interval (08:13–08:21 UT, October 15, 2008) (lower panel). Magnified view of 5 s

indicated by red arrow in bottom panel (upper panel). This figure is from Li et al. (2012).
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Figure 1.13: Schematic diagram of simultaneous observations conducted by Nishimura et

al. (2010) (upper left panel). THEMIS satellite observations of bursts of chorus showing

the frequency–time diagram of the electric field. White horizontal line indicates the

local electron cyclotron frequency (fce), which is calculated from the measured magnetic

field (upper right panel). Snapshots of the all-sky imager, which is projected to the

geographic coordinates at 110 km. The red arrow indicates the PsA patch that shows the

highest correlation with the chorus wave (lower left panel). Direct comparison between

the amplitude variation of the chorus wave integrated over a frequency range of 0.05 to

0.5 fce and the optical time series of PsA at the highest correlation pixel (lower right

panel). This figure is from Nishimura et al. (2010).

More recently, Hosokawa et al. (2020a) demonstrated an excellent correlation between

a PsA and chorus waves, including a fine-scale structure (i.e., the internal modulation and

chorus elements), by performing simultaneous observations using ground-based high-speed

EMCCD all-sky imagers and the ARASE satellite. In these observations, two internal
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modulations were obtained, one in Scandinavia and the other in Alaska. Figure 1.14

directly compares the internal modulation and the chorus elements. The top two panels

show the keogram, and the bottom two panels represent the f–t diagram. In the left

panels, which represent observations in Scandinavia, there is no clear signature of either

the chorus elements or the internal modulation. In the right panels, which represent those

in Alaska, a burst of chorus comprising discrete chorus elements is observed at the same

time as fine-scale vertical stripes, which correspond to the internal modulation. From this

set of observations, they concluded that the presence of chorus elements plays a significant

role in controlling the hierarchical temporal variations of PsA.

Figure 1.14: Direct comparison of the internal modulation of the PsA and the individual

chorus elements. Magnified view of a single main pulsation of the PsA (upper left panel)

and the corresponding bursts of chorus (lower left panel) from a simultaneous observation

in Scandinavia. Magnified view of a single main pulsation (upper right panel) and the

corresponding bursts of chorus (lower right panel) from a simultaneous observation in

Alaska. This figure is from Hosokawa et al. (2020a).

Recent simultaneous ground-satellite observations have shown that chorus waves play

a significant role in the generation of PsA. However, the factors that control the modula-

tion of the chorus waves remain unclear, although there are several candidates. Coroniti

and Kennel (1970) suggested that the linear growth rate of the chorus waves varies quasi-

periodically because of geomagnetic pulsations. Davidson (1979, 1990) proposed a model

based on relaxation oscillations. In this model, intense waves cause pitch-angle scattering,
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which fills the loss cone with electrons. As the electrons in the loss cone precipitate into

the ionosphere, the anisotropy decreases, and the process of wave growth transitions to

the initial state. Then, the conditions for wave growth reappear, and the above process

is repeated. They suggested that the repetition of this process causes the simultaneous

appearance of chorus waves. Demekhov and Trakhtengerts (1994) proposed the flow cy-

clotron maser theory, which is based on the assumption that chorus waves are generated

in a region of high plasma density in a plasma trough. This theory suggests that a flux

tube with high cold plasma density acts as a duct for the chorus waves, and PsA occurs

because the precipitating electrons fill the duct. Recent satellite observations have shown

that chorus waves and the total electron density are strongly correlated (correlation co-

efficient: 0.9), indicating a one-to-one correspondence between the decrease in density

and the increase in chorus wave amplitude. Li et al. (2011) calculated the linear growth

rate of the chorus waves using the observed plasma parameters and demonstrated that

the density depletion intensifies the chorus waves. They suggested that density depletion

plays a significant role in the chorus wave modulation and thus may contribute to the

periodicity of PsA.

1.5 Open questions and motivation of the thesis

PsA has been intensively studied since the 1960s. More recently, simultaneous ground-

based and satellite observations have reported a one-to-one correspondence between PsA

and chorus waves, indicating that studies of PsA are important for better understanding

of chorus waves and wave–particle interactions in the magnetosphere. However, funda-

mental questions about the characteristics of PsA have not been answered. Although the

amplitude variation of chorus waves has been shown to be fundamental to the temporal

variations of PsA, it is not entirely clear how the hierarchical temporal variations, which

are the most significant characteristics of PsA, are controlled. It was reported recently

that the hierarchical temporal variations of PsA are due to the periodicity of the chorus

wave as well as the transit time required for the PsA electrons to precipitate from the

magnetosphere to the ionosphere (Miyoshi et al., 2010; Nishiyama et al., 2014). This

transit time depends on the energy of PsA electrons, which have a wide range of energies

(Sandahl et al., 1980) as well as a tendency toward MLT variation (Hosokawa and Ogawa,

2015). Thus, there is a certain diversity in the energy of the precipitating electrons which
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contribute for PsA, and this diversity may play an important role in controlling the hierar-

chical temporal variations of PsA. However, conventional rocket and IS radar observations

are constrained by a limited observation time, and it is difficult to monitor the PsA elec-

tron energy (i.e., emission altitude) continuously. Therefore, it is necessary to clarify the

statistical properties of the PsA electron energy using optical observations, which enable

steady-state observation. It is also necessary to consider the mechanism controlling the

hierarchical temporal variations of PsA in terms of the range of PsA electron energies.

Therefore, in Chapter 3, we estimate the emission altitude of a PsA from a large amount

of data using a method proposed by Scourfield et al. (1981) and verify the dependence

of the PsA electron energy on MLT. In Chapter 4, we investigate the spatial distribution

of the hierarchical temporal variations of PsA using highly sensitive EMCCD all-sky im-

agers installed at four stations in Scandinavia and discuss the factors, excluding chorus

waves, that can control the hierarchical temporal variations by considering the range of

PsA electron energy obtained in Chapter 3.
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Chapter 2

Instruments

The internal modulation of PsA occurs at 3 ± 1 Hz. Thus, ground-based optical observa-

tion must have high temporal resolution to identify and investigate the characteristics of

PsA. In this section, we briefly introduce the ground-based optical instruments with high

temporal resolution that were used in this work. We employed a five-wavelength pho-

tometer in Tromsø, Norway (69.6◦N, 19.2◦E) and four EMCCD all-sky imagers installed

in locations in Scandinavia, including Tromsø. The five-wavelength photometer and the

EMCCD all-sky imagers have temporal resolutions of 400 and 100 Hz, respectively; both

these devices can observe and determine the hierarchical temporal variations of PsA. In

particular, the author was involved in the development of the EMCCD all-sky imager

observation system described in Section 2.2.

2.1 Five-wavelength photometer

The five-wavelength photometer has been operative in Tromsø, Norway. A schematic dia-

gram of the photometer is shown in Figure 2.1. The main components are the head part,

four dichroic meters, five optical band-pass filters, and five photomultiplier tubes. Light

incident on the head part (for example, an auroral emission) is split by the four dichroic

meters and five optical band-pass filters, which allows the photometer to simultaneously

observe the optical emission at five wavelengths (427.8, 557.7, 630.0, 777.4, and 844.6

nm). As this photometer simultaneously observes optical emissions at five wavelengths,

it is possible to estimate the energy of precipitating electrons (Adachi et al., 2017) and to

derive the variation in the densities of oxygen molecules and oxygen atoms (Scourfield et
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al. 1971) by comparing the optical time series at each wavelength.

Figure 2.1: Schematic diagram of the five-wavelength photometer. This figure is from

Nozawa et al. (2018).

The five-wavelength photometer observes the optical emission in the field-aligned di-

rection at a sampling rate of 400 Hz. This sampling rate is sufficient to identify the

temporal variation of PsA. To improve the signal-to-noise ratio, the time series were aver-

aged to 1 s in this study. Figure 2.2 shows the optical time series from the five-wavelength

photometer at each wavelength (427.8, 557.7, 630.0, 777.4, and 844.6 nm) during a 1 min

interval from 03:39 to 03:40 UT on February 14, 2018. Quasi-periodic variation, which is a

characteristic feature of PsA, is clearly observed in the time series at all the wavelengths.

In addition, there is a time lag between the 427.8 and 557.7 nm emissions.

In Chapter 3, we calculate the lifetime of O(1S) by comparing the 427.8 and 557.7 nm

emissions and use this lifetime to estimate the emission altitude of PsA. Note that the

five-wavelength photometer is described in detail in Nozawa et al. (2018).
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Figure 2.2: Time series of auroral emission at 427.8, 557.7, 630.0, 777.4, and 844.6 nm

obtained with five-wavelength photometer during a 1 min interval from 03:39 to 03:40 UT

on February 14, 2018.
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2.2 EMCCD all-sky imagers

To capture the rapid variations in PsA, such as the internal modulation, we employed

four EMCCD all-sky imagers (Hamamatsu Photonics, C9100-23B) with fish-eye lenses

(Fujinon Co. Ltd., FE185C086HA-1). A photograph of an EMCCD all-sky imager is

shown in Figure 2.3. These imagers have been installed at four stations in Scandinavia.

Their FOV covers a region extending from 15◦ to 35◦ geographic longitude and from 64◦

to 73◦ geographic latitude, which corresponds to a coverage of 500 × 500 km2. This

combined FOV is sufficient to observe PsA occurring on a spatial scale of a few tens to a

few hundreds of kilometers.

Figure 2.3: EMCCD all-sky imager (Hamamatsu Photonics, C9100-23B) that was used

in Tjautjas, Sweden.

As mentioned above, a time delay between electron precipitation and auroral emis-

sion occurs at some wavelengths. This time delay may smear the faster variations. For

example, the lifetime of O(1S) at 557.7 nm is approximately 0.7 s, as shown in Section 3;

this time delay would smear subsecond variations such as the internal modulation. Thus,

wavelengths with such time delays are not suitable for capturing the internal modulation.

The EMCCD all-sky imagers employed a BG3 glass filter to observe the N+
2 first negative
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band emission at 427.8 nm, which is a prompt emission. The transmission characteristics

of the BG3 glass filter are shown in Figure 2.4. The orange line shows the transmission

characteristics of BG3. The vertical lines mark several representative lines and bands

of auroral emission at 427.8, 557.7, 630.0, and 650–700 nm. The blue line shows the

transmission properties of another glass filter, RG665; however, we did not use this glass

filter in this work. The BG3 glass filter enables the EMCCD all-sky imagers to eliminate

contamination by the auroral emission at 557.7 and 630.0 nm and observe only the N+
2

first negative emission at 427.8 nm.

Figure 2.4: Transmission characteristics of BG3 glass filter used on the EMCCD all-sky

imagers. The vertical lines mark typical auroral emission lines (427.8, 557.7, and 630.0

nm). This figure is from Hosokawa et al. (2020b), which has been submitted to J.

Geophys. Res.: Space Phys.

The temporal resolution of the EMCCD all-sky imagers is 100 Hz, which is sufficient

to capture the internal modulation at a few Hz. The EMCCD all-sky imager used in

this system has an imaging component with a spatial resolution of 512 × 512 pixels, but
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images are binned in a 2 × 2 window before they are read out. Thus, the final output

image has a spatial resolution of 256 × 256 pixels. Figure 2.5 shows the hierarchical

temporal variations of PsA observed in Tjautjas, Sweden on March 15, 2018. The top

panel shows the time series along a south-to-north cross section, which is called the

keogram. A number of vertical stripes appear in the keogram, regardless of the latitude,

and each vertical stripe corresponds to the main pulsation of the PsA. In addition, by

focusing on the repetition of these stripes, we can see that the stripes appear with various

periods (i.e., the periodicity of the main pulsation is very diverse). The middle panel is a

magnified view of the green box in the top panel. Several increases in the raw counts can

be seen in the northern half of the panel. These increases represent the main pulsation

of the PsA. In addition, during the ON phase of the main pulsation, fine vertical stripes

appear, which correspond to the internal modulation of the PsA. The bottom panel shows

the time series of the raw optical intensity, which was sampled along the horizontal red

and blue lines in the middle panel. A hierarchical temporal variation appears, in which

the internal modulation is superimposed on the main pulsation, as confirmed from the

keogram.

As mentioned above, these EMCCD all-sky imagers have both high temporal resolution

and wide FOV coverage. By contrast, conventional ground-based optical observations of

PsA have lower temporal resolution or FOV coverage. For example, THEMIS-Ground

Based Observatory (THEMIS-GBO) has deployed a number of all-sky imagers in the

North American region to reveal the large-scale features of PsA, such as their duration

and occurrence distribution (e.g., Jones et al., 2011). However, the time resolution of the

THEMIS-GBO all-sky imagers is 3 s, and it is difficult to capture subsecond variations

such as the internal modulation of PsA. Most recent ground-based observations with high

temporal resolution have been narrow-FOV imagers or single all-sky imager observations.

Thus, a combination of four EMCCD all-sky imagers with a high temporal resolution (100

Hz) has never been used before and is ideal for verifying the large-scale characteristics

of the hierarchical temporal variations of PsA, especially their latitudinal or longitudinal

dependence. Note that in the work described in Chapter 4, we averaged 100 Hz data with

a resolution of 25 Hz to reduce the random noise and facilitate effective analysis.
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Figure 2.5: Typical example of the hierarchical temporal variations of PsA obtained with

the EMCCD all-sky imager in Tjautjas, Sweden on March 15, 2018. Optical time series

from 00:59 to 01:04 UT in the form of a south-to-north keogram (top panel), magnified

view of the 1 min optical time series within the green box in the southern half of the top

panel (middle panel), and two time series of the raw count sampled along the red and blue

lines in the middle panel (bottom panel). This figure is from Hosokawa et al. (2020b),

which has been submitted to J. Geophys. Res.: Space Phys.
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Chapter 3

Estimation of the emission altitude

of pulsating aurora using the

five-wavelength photometer

The subject of this chapter is the emission altitude of PsA (i.e., the energy of PsA elec-

trons). As mentioned in the introduction, continuous monitoring of the precipitating

electron energy by sounding rockets and IS radar observations has been difficult owing

to the limited opportunity for observations. Here, we evaluate a method of estimating

the emission altitude of PsA using multiwavelength optical data from a ground-based

five-wavelength photometer, which has been operative in Tromsø, Norway, and discuss

the characteristics of the PsA electron energy by considering the estimated altitude of the

emission. The contents of this chapter were reported in Kawamura et al. (2020).

3.1 Introduction

The temporal variation of PsA is associated with quasi-periodic precipitation of ener-

getic electrons from the magnetosphere (e.g., Sandahl et al., 1980). Previous studies have

suggested that this quasi-periodic precipitation is caused by wave-particle interaction be-

tween whistler-mode chorus waves and ambient electrons, whose energy ranges from a few

keVs to a few tens of keVs (e.g., Miyoshi et al., 2010, 2015a, b). In particular, there is

reportedly a one-to-one correspondence between the amplitude variation of chorus waves

and the luminosity modulation of PsA (Nishimura et al., 2010, 2011). These observational
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results imply that PsA is a two-dimensional projection of the behavior of chorus waves

in the magnetosphere. Although recent analyses of simultaneous ground-satellite obser-

vations have revealed a correspondence between PsA and chorus waves (e.g., Kasahara

et al., 2018; Hosokawa et al., 2020a), the factors that control these periodic variations

remain unclear.

The emission altitude of PsA has been studied intensively since the 1970s using optical

data from ground-based all-sky video cameras (e.g., Brown et al., 1976). The altitude of

PsA emission contains information about the energy of the precipitating electrons, which

allows us to infer the nature of the wave-particle interaction process. Thus, many studies

have investigated the altitude of PsA and the energy of the precipitating electrons. Brown

et al. (1976) estimated the lower cutoff altitude of PsA emission by the triangulation of

two all-sky TV cameras having a common FOV. They showed that the height of PsA

emission ranges from 82 to 115 km; the corresponding electron energies range from 50 to

5 keV, which is consistent with direct in-situ observations of PsA electrons by sounding

rockets (e.g., Sandahl et al., 1980). However, Brown et al. (1976) analyzed only 2 h of

optical observations from three nights. A more recent similar analysis by Partamies et

al. (2017) demonstrated that the height of PsA is slightly lower on the morning side.

However, it is still unclear whether this trend is statistically significant because only

limited data are available. Jones et al. (2009) estimated the energy of PsA electrons

from ionospheric electron density observations by the PFISR. More recently, Hosokawa

and Ogawa (2015) studied the variation in the electron density profile during PsA using

the EISCAT radar. They demonstrated that the energy of PsA electrons, inferred from

the altitude of ionization, tends to be higher on the morning side (i.e., in the later MLT

sector). Miyoshi et al. (2015a) identified electron precipitation at a few hundred keVs

during simultaneous measurements of PsA with EISCAT and the Van Allen Probes. Then,

they proposed a model explaining the scattering of electrons in a wide energy range by

considering the propagation of chorus waves toward higher latitudes. As mentioned earlier,

the ionospheric electron density variations during PsA have been studied in detail using IS

radars. However, the MLT dependence of the altitude of PsA has not been examined using

sufficient data. The statistical properties of the PsA electron energy are still unknown. To

solve this problem, we need a statistical method of deriving the altitude of PsA emission.

Scourfield et al. (1971) proposed a procedure for estimating the emission altitude of PsA

using the lifetime of O(1S) excited state atoms from optical observations. Because the
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transition from O(1S) to O(1D), which produces 557.7 nm emission, is forbidden, and its

lifetime is approximately 0.7 s, a time series of the 557.7 nm emission exhibits a systematic

time lag compared to that of an allowed transition such as that at 427.8 nm, which has a

lifetime of ∼10−8 s (Nozawa et al., 2018). Scourfield et al. (1971) estimated the altitude

of the 557.7 nm emission from this delay time because the delay time is longer at higher

altitudes. It may be possible to use their method to estimate the energy of PsA electrons.

However, Scourfield et al. (1971) proposed only the method described earlier, which has

not actually been used for the statistical analysis of the altitude of PsA.

In this study, we performed a statistical analysis by applying the method of Scourfield

et al. (1971) to multiwavelength photometer observations in Tromsø, Norway. This

approach enables us to derive the statistical characteristics of the emission altitude of

PsA, which provide fundamental information about the energy of PsA electrons and the

wave-particle interaction process in the magnetosphere.

3.2 Instruments and datasets

In the current statistical analysis, we employed a five-wavelength photometer (Nozawa et

al., 2018) and an EMCCD all-sky imager, both of which were deployed in Tromsø, Norway

[69.6◦N, 19.2◦E, 66.7◦ magnetic latitude (MLAT)]. The five-wavelength photometer has

a FOV of approximately 0.98◦ and measures the auroral emissions in the field-aligned

direction at five wavelengths simultaneously (427.8, 557.7, 630.0, 777.4, and 844.6 nm).

The original sampling rate is 400 Hz. The EMCCD all-sky imager observes primarily the

N2 first positive band emissions with a temporal resolution of 100 Hz. This temporal

resolution is sufficient to detect the main pulsation of PsA, which has a period ranging

from a few seconds to a few tens of seconds. In this study, we employed images from the

all-sky camera to identify the appearance of a PsA at the sensing point of the photometer.

Figure 3.1 shows a typical example of PsA during a 1 min interval from 03:02 to 03:03

UT on February 24, 2018. Figure 3.1a shows an image from the all-sky imager at 03:02:30

UT. The red circle indicates the FOV of the photometer. Figure 3.1b and 3.1c show

the time series of the emission intensity from the photometer at the 427.8 and 557.7

nm, respectively. Note that both time series were averaged using an integration time

of 1 s to improve the signal-to-noise ratio. Quasi-periodic fluctuation with a period of

approximately 5 s is clear in the time series. In addition, a systematic time lag appears
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between the 427.8 and 557.7 nm emissions. By comparing data from these two optical

instruments, we identified 37 nights with PsA events during 3 months (January to March,

2018), which were used for statistical analysis.
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Figure 3.1: a Image recorded by the EMCCD all-sky imager in Tromsø at 03:02:30 UT on

February 24, 2018. The red circle indicates the FOV of the five-wavelength photometer.

Time series of auroral emissions at b 427.8 nm and c 557.7 nm obtained from the five-

wavelength photometer in a 1 min interval from 03:02 to 03:03 UT on the same day.

3.3 Methodology for estimating the lifetime of O(1S)

Before presenting the statistical results, we introduce the methodology for estimating the

lifetime of O(1S) using the PsA illustrated in Figure 3.2. In this study, we calculated the

lifetime of O(1S) every 1 min by performing a cross-correlation analysis of the time series

of the 427.8 and 557.7 nm emissions. We decided to use relatively short (1 min) time

intervals for the correlation analysis to eliminate contributions from slower variations.

Figure 3.2a and 3.2b show the time series of the 427.8 and 557.7 nm emissions in the

same interval shown in Figure 3.1. The time series of the 557.7 nm data clearly has a

time delay of 1 s or less compared to that of the 427.8 nm data. Here, we define the lifetime

of O(1S) as the time lag giving the maximum cross-correlation coefficient. Note that the

correlation coefficient is calculated by shifting the lag from 0 to 2 s with a resolution of
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0.01 s, where the time window of the analysis is 30 s. The result of the correlation analysis

is presented in Figure 3.2c, where the dashed line indicates the time series at 557.7 nm,

and the solid line shows the time-shifted (i.e., delayed by the estimated time lag) variation

at 427.8 nm. In this case, the lifetime of O(1S) is estimated to be 0.67 s, as that lag gives

the maximum correlation coefficient, 0.99.
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Figure 3.2: Time series of auroral emissions at a 427.8 nm and b 557.7 nm observed at

Tromsø for a 1 min interval from 03:02 to 03:03 UT on February 24, 2018. c Comparison

of time series of 557.7 nm (dashed line) and 427.8 nm (solid line) emissions. The time

series of the 427.8 nm emission is delayed by 0.67 s, which corresponds to the lifetime of

O(1S).
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3.4 Statistics of distribution of the lifetime of O(1S)

Figure 3.3a shows the distribution of the lifetime of O(1S) derived by applying the pro-

cedure described earlier to 2856 PsA events, each of which had a duration of 1 min. The

distribution has a prominent peak (mode) at approximately 0.7 s, and the mean of the

distribution is 0.67 s. Brekke and Henriksen (1972) also calculated the lifetime of O(1S)

using a photometer in Tromsø, Norway. In their result, the lifetime was distributed from

0.5 to 1 s, and the mean was 0.80 s. Our result generally agrees with that of Brekke and

Henriksen (1972). In our analysis, however, the mean value is slightly shorter than theirs.

The time window for the cross-correlation analyses of Brekke and Henriksen (1972) was

5 min, whereas our study used a 1 min window. This difference might have resulted in

the slight difference between these two results. However, when we performed the cross-

correlation analysis using several different time windows, no significant differences were

found; thus, the reason behind the difference is still unclear.

We classified events according to MLT and investigated the MLT dependence of the

lifetime of O(1S). The results are summarized in Figure 3.3b–3.3d. These panels show

the distributions of the lifetime in three MLT sectors, i.e., 20–03 MLT, 03–05 MLT, and

05–08 MLT, respectively. The mode and mean of the lifetime are 0.70 and 0.70 s for 20–03

MLT, 0.65 and 0.69 s for 03–05 MLT, and 0.50 and 0.64 s for 05–08 MLT. In addition,

the shape of the distributions reveals that the weight is shifted to the shorter area on the

morning side. In particular, for 05–08 MLT (Figure 3.3d), there is a significant population

having a lifetime of approximately 0.60 s, which is not seen before 05 MLT (Figure 3.3b

and 3.3c). In the following section, we will estimate the altitude of the PsA emission from

these lifetime values.
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Figure 3.3: a Statistical distribution of the lifetime of O(1S). The distributions of the

lifetime for three MLT sectors: b 20–03 MLT, c 03–05 MLT, and d 05–08 MLT.

3.5 Calculating the effective altitude of pulsating au-

rora

Here, we introduce a method of deriving the altitude of the 557.7 nm emission from its

lifetime (Scourfield et al., 1971). There are three routes through which an oxygen atom

in the excited state transitions to the ground state. Here, we define I as the intensity of

the 557.7 nm emission, which can be expressed as follows (Brekke and Henriksen, 1972):

I = A32/(A31 + A32 + d3)×Q0 (3.1)

where A31 and A32 are the probabilities of radiative transitions from the O(1S) state to the

O(1D) and O(3P) states, respectively, and d3 is the probability of the collisional transition

of the O(1S) state. Q0 is the excitation rate of the O(1S) state. The lifetime of the O(1S)

state is calculated as follows using these parameters:

τ = 1/(A31 + A32 + d3) (3.2)

The values of A31 and A32 in this equation have been estimated experimentally as 1.28

s−1 and 0.078 s−1, respectively (Brekke and Henriksen, 1972). Because we can estimate τ
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from actual observations of PsA, the collisional transition probability d3 can be derived

for each PsA. Assuming that there is no collisional change in the O(1S) state, the lifetime

is approximately 0.74 s. Therefore, in the estimation of the emission altitude, we used

only lifetime values that were less than or equal to 0.74 s. Here, we assumed that the

collisional transition is owing to O2 and N2, and thus, d3 can be expressed as follows:

d3 = qO2 × n(O2) + qN2 × n(N2) (3.3)

where qO2 and qN2 are the quenching rate coefficients of O2 and N2, and n(O2) and n(N2)

are the densities of O2 and N2, respectively. Using the theoretical values of qO2 and qN2 ,

which are 3.0×1013 cm3 s−1 (Zipf, 1969) and < 1017 cm3 s−1 (Hunten and McElroy, 1966),

respectively, the collisional transition owing to N2 can be ignored. Thus, d3 can be simply

expressed by the following equation (Scourfield et al., 1971):

d3 = qO2 × n(O2) (3.4)

Using the theoretical value of qO2 , we can determine the density of O2 and then

estimate the emission altitude of PsA by comparing the obtained value of n(O2) with that

from the neutral atmosphere model (Mass Spectrometer and Incoherent Scatter: MSIS,

Hedin, 1991) sampled every 1 km. Figure 3.4 is the altitude profile of n(O2) obtained

by the MSIS model at 01:00 UT on February 19, 2018. The vertical and horizontal axes

indicate the altitude and n(O2), respectively. We defined the emission altitude of PsA

as that where the difference between the modeled n(O2) obtained by MSIS and that

estimated by our method is minimum. The emission layer of PsA can be measured by

IS radar observations such as those of EISCAT, and its thickness is approximately 20 km

(Jones et al., 2009; Hosokawa and Ogawa, 2015). However, our method cannot directly

estimate the lower cutoff altitude of the optical emission or the thickness of the emission

layer. The reason is simply that it is difficult to obtain the height profile of the emission

from optical observations. Therefore, we need to bear in mind that the emission altitude

estimated in this study is the volume altitude, which is, roughly, the center of the emission

layer rather than the lower cutoff altitude.
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Figure 3.4: Altitude profile of n(O2) obtained by MSIS model calculation.

3.6 Accuracy of estimating of the emission altitude

To evaluate the validity of the current method, we compare the emission altitude of a

PsA estimated from the lifetime of O(1S) and the altitude profile of the electron density

from the EISCAT UHF radar, which has a FOV of < 0.7◦. The raw electron density

(i.e., power profile data) was obtained with an altitude resolution of approximately 0.6

km. During 2.5 h, from 00:30 to 03:00 UT on February 19, 2018, an intense PsA and

the corresponding ionization were observed by the five-wavelength photometer and the

EISCAT UHF radar, respectively, at the same location. Figure 3.5a shows the variation

in the ionospheric electron density from the EISCAT UHF radar. In this time interval,

especially after 01:00 UT, a PsA was observed almost continuously by the photometer.

However, the low-altitude cutoff of the ionization varied with time, indicating that the

characteristic energy of the precipitating electrons was not uniform during this episode.

Figure 3.5b plots time series of the emission altitude of the PsA derived from the

lifetime analysis (blue line) and from hmE (the peak height of the E region electron
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Figure 3.5: a Altitude–time plot of the ionospheric raw electron density (i.e., power

profile data) obtained by the EISCAT UHF radar during a PsA from 00:30 to 03:00 UT

on February 19, 2018. b Time series of the emission altitude of the PsA estimated from

the lifetime of O(1S) (blue line) and the peak height of E region ionization (hmE) from

the EISCAT UHF radar (red line).

density enhancement: red line). hmE was derived directly from the altitude profile of the

electron density shown in Figure 3.5a. Note that we averaged the original hmE values in

a time window of 1 min to improve the signal-to-noise ratio.

Although they differ slightly, mainly because of the limited altitude resolution of hmE,

the altitude ranges based on PsA emission and hmE are similar. In particular, during the

30 min from 02:30 to 03:00 UT, they show rather good agreement. This indicates that

the emission altitude of a PsA can be a good proxy for the energy of the precipitating

electrons during the PsA.
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3.7 Dependence of altitude of pulsating aurora on

magnetic local time

Figure 3.6a shows the MLT distribution of the occurrence of PsA events. Most events

are distributed from magnetic midnight to 08 MLT, and the mode of the distribution is

located around 04 MLT. This distribution is in good agreement with those reported in

past studies of the occurrence distribution of PsA (e.g., Jones et al., 2011). Figure 3.6b

shows the MLT variation in the PsA emission altitude estimated in this study. Each dot

corresponds to the emission altitude derived for a PsA interval. The red crosses indicate

the averages calculated in each 1 h MLT bin, and the red bars give the standard deviation

of the distribution. The emission altitude is lower on the morning side, especially after 06

MLT, whereas the central altitude remains high at approximately 108 km in the earlier

MLT sector. After 06 MLT, the minimum emission altitude is as low as ∼95 km, which

corresponds to a precipitating electron energy of 30 keV.
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Figure 3.6: aMLT distribution of intervals of PsA sampled from 37 nights of observations.

b Dependence of PsA altitude on MLT. The red crosses and vertical bars indicate the

average and standard deviation, respectively, of the PsA altitude calculated in each 1 h

MLT bin.
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3.8 Discussion

As shown in Figure 3.5b, the emission altitude of PsA is distributed from 95 to 115 km,

which corresponds to the precipitation of 5–30 keV electrons (Turunen et al., 2009). This

result is consistent with several early observations of PsA electrons by sounding rockets

(Sandahl et al., 1980; Yau et al., 1981). Miyoshi et al. (2010, 2015b) also used simulta-

neous particle and optical data from the Reimei satellite to identify the precipitation of

few-keV electrons causing a PsA. Hosokawa and Ogawa (2015) investigated the variation

in the ionospheric electron density profile during PsA using the EISCAT radars and in-

dicated that the energy of PsA electrons tends to be higher on the morning side. This

tendency appears in Figure 3.5b, where the emission altitude decreases drastically after

06 MLT. This systematic change is consistent with the MLT variation in the E region

peak height (hmE) demonstrated by Hosokawa and Ogawa (2015). A similar MLT de-

pendence was reported by Partamies et al. (2017), who showed the MLT dependence of

the emission layer of PsA.

Here, we discuss the reason that the emission altitude of PsA decreases after 06 MLT.

One possible explanation is the change in the background magnetic field intensity in the

magnetosphere with MLT, which occurs because the resonance energy of electrons in first-

order cyclotron resonant scattering with chorus waves is proportional to the square of the

ambient magnetic field intensity (Kennel and Petschek 1966):

ER =
B2

2µ0N

fce
f
(1− f

fce
)3 (3.5)

where B is the ambient magnetic field intensity, µ0 is the permeability of vacuum, N

is the thermal plasma density, fce is the cyclotron frequency, and f is the chorus wave

frequency. Note that this approximation is valid when we assume fpe/fce ≫ 1 or f/fce ≪
1(Kennel and Petschek, 1966). Hosokawa and Ogawa (2015) calculated the magnetic

field intensity and discussed the MLT variation in the resonance energy. However, they

did not evaluate the contribution of the thermal plasma density to the resonance energy.

We calculated the magnetic field intensity at the conjugate point of Tromsø using the

Tsyganenko 89 magnetic field model (Tsyganenko, 1989) and the thermal plasma density

using the model of Sheeley et al. (2001) for the PsA event on February 19, 2018. However,

the calculated value of the resonance energy changed very slightly with MLT, implying

that the drastic decrease in emission altitude cannot be explained only by the effect of MLT
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on the ambient parameters. Miyoshi et al. (2015a) recently reported that the resonance

energy increases as a chorus wave propagates from the magnetic equator to off-equator. If

chorus waves propagate further off-equator on the morning side, more energetic electrons

can be precipitated by cyclotron resonance. Thus, the energy of PsA electrons should be

analyzed considering both the ambient parameters (magnetic field intensity and thermal

plasma density) and the propagation characteristics of chorus waves along the field lines.

3.9 Conclusions

In the work described in this chapter, we estimated the emission altitude of PsA using

the lifetime of O(1S) derived from observations using the five-wavelength photometer in

Tromsø, Norway. The main results are summarized as follows:

1. We statistically analyzed the emission altitude of PsA using the observed value of the

lifetime of O(1S). The distribution of the lifetime has a strong peak at approximately

0.7 s, and the mean lifetime is 0.67 s. These automatically estimated time constants

are in good agreement with those derived in previous studies, implying the feasibility

of the method for estimating the lifetime.

2. By comparing the emission altitude of a PsA with the peak height of the E region

ionization obtained by the EISCAT UHF radar, we demonstrated that the peak

height of the electron density (i.e., the peak of ionization) roughly matches the

central emission altitude of the PsA.

3. Most of the emission altitudes of PsA ranged from 95 to 115 km, and the corre-

sponding precipitating electron energies ranged from 5 to 30 keV. This energy range

is consistent with the results of previous in-situ rocket observations.

4. The emission altitude tends to be significantly lower on the morning side after 06

MLT, suggesting that the energy of the precipitating electrons should be higher in

the later MLT sector.

As mentioned earlier, PsA electrons have a wide energy range of 5 to 30 keV, and their

energy tends to be higher toward the morning side. These results imply that PsA elec-

trons have diverse characteristics (e.g., energy range and MLT variation). In the next
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chapter, based on these diverse characteristics of PsA electrons, we discuss the formation

mechanism of the hierarchical temporal variations of PsA.
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Chapter 4

Factors controlling the internal

modulation of pulsating aurora:

Multi-point high-speed optical

observations in Scandinavia

In this chapter, by considering the energy range of PsA electrons revealed in the previous

chapter, we discuss the generation mechanism of the hierarchical temporal variations of

PsA. These variations (i.e., the presence/absence of internal modulation) depends not

only on the discreteness of the chorus elements but also on the time required for electrons

to move from the magnetosphere to the ionosphere. This travel time depends primarily

on the electron energy; thus, it is possible that the variation in travel time controls the

presence of internal modulation. Here, we derive the spatial distribution of the hierarchical

temporal variations of PsA using the EMCCD all-sky imagers installed at four stations

in Scandinavia. Based on the derived spatial distribution and the energy range of PsA

electrons, we discuss the factors controlling the hierarchical temporal variations of PsA.

4.1 Introduction

Previous studies (e.g., those reviewed in Li et al. (2012)) have suggested that periodic

electron precipitation during PsA is caused by wave-particle interactions between whistler-

mode chorus waves (Thorne at al., 2010) and trapped magnetospheric electrons with
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energies of a few keVs to a few tens of keVs (e.g., Miyoshi et al., 2015a). Similar to PsA,

chorus waves are known to appear as clusters (or bursts) of individual chorus elements

(e.g., Santolik et al., 2003); chorus waves also exhibit two different periodicities: the so-

called bursts of chorus and the repeated occurrence of individual chorus elements. This

similarity has allowed us to discuss the characteristics of multiple temporal variations

of PsA in association with the similar simultaneous appearance of chorus elements. In

particular, some studies reported a one-to-one correspondence between the amplitude

variation in chorus waves (i.e., bursts of chorus) and the main pulsation of PsA (Nishimura

et al., 2010, 2011; Kasahara et al., 2018).

The period of PsA was extensively studied in the 1980s using images from ground-

based all-sky video cameras. For example, Duncan et al. (1981) derived the occurrence

distribution of the period of the main pulsation using optical data from seven nights.

They concluded that the dominant period of the main pulsation ranged from 5 to 10 s.

Later, Yamamoto (1988) investigated the periodicity of the main pulsation and showed

that the average durations of the ON and OFF phases were 6.2 ± 1.7 s and 14.5 ± 5.3

s, respectively, and the average period was 20.7 ± 5.4 s. More recently, Nishiyama et

al. (2014) examined high-time-resolution optical data from an EMCCD all-sky imager at

Poker Flat, Alaska, and demonstrated the statistical properties of both the main pulsation

and internal modulation. According to their statistical analysis, the frequency of the

internal modulation was distributed from 1.5 to 3.3 Hz, which was consistent with the

quasi 3 Hz modulation (e.g., Royrvik and Davis, 1977). Although the amount of data

used in these studies was still limited, they revealed the statistical characteristics of the

period of the hierarchical temporal variations of PsA to some extent.

Hosokawa et al. (2020a) recently identified a remarkable correlation between the

internal modulation of PsA and the repeated appearance of chorus elements. This good

correspondence was obtained during an interval of simultaneous observations of PsA with

a ground-based high-speed EMCCD imager and the ARASE satellite. They concluded

that the discreteness of the chorus elements is one of the primary factors controlling

the presence/absence of subsecond internal modulation of the luminosity variations of

PsA. However, owing to the lack of optical observations in a wide area with sufficient

temporal resolution, it is still unclear how often the quasi 3 Hz internal modulation is

embedded within the overall temporal variations of PsA. Specifically, we still do not know

whether all PsA are accompanied by internal modulations. In this study, we use highly
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sensitive EMCCD all-sky imagers at four stations in northern Scandinavia (Sodankylä and

Kevo in Finland, Tromsø in Norway, and Tjautjas in Sweden) to analyze the periodicity

of the hierarchical temporal variations of PsA. Specifically, we investigate the spatial

distribution of the proportion of PsA with/without internal modulations. Based on the

obtained spatial distribution, we discuss the extent to which the nature of discrete chorus

elements can control the subsecond variations of PsA.

4.2 Instruments and Datasets

We employed four EMCCD all-sky imagers in northern Scandinavia. These imagers were

deployed and have been used for simultaneous observations of PsA with the ARASE

satellite. The locations of the imagers are summarized in Table 4.1. The FOV of these

imagers is approximately 500 × 500 km2, which is sufficient to capture PsA appearing

in a region of several hundreds of square kilometers. Figure 4.1 shows an example of

a mosaic image obtained by combining data from all four EMCCD all-sky imagers at

01:05:00 UT on March 15, 2018. These imagers employ a BG3 glass filter to observe the

N+
2 first negative band emission at 427.8 nm, which is a type of prompt auroral emission.

The imaging component is 512 × 512 pixels. However, the images are binned in 2 × 2

windows before they are read out from the imager, and the data are saved as 256 × 256

pixel raw images. The temporal resolution of the imaging is 100 Hz, which is fast enough

to capture the internal modulation at a few Hz. In this study, the 100 Hz sampled raw

images are averaged with a resolution of 25 Hz to reduce the random noise and facilitate

the analyses.

Table 4.1: Locations of four EMCCD all-sky imagers in northern Scandinavia

Station Tromsø (TRO) Sodankylä (SOD) Kevo (KEV) Tjautjas (TJA)

Geo. Lat. 69.58 67.37 69.76 67.31

Geo. Lon. 19.23 26.63 27.01 20.73

Mag. Lat. 66.76 64.19 66.57 64.39
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Figure 4.1: Mosaic image of four EMCCD all-sky imager observations at 01:05:00 UT on

March 15, 2018.

Figure 4.2 displays a typical example of the temporal variation of PsA obtained by

the EMCCD all-sky imager in Tjautjas during a 10 s interval from 01:03:20 to 01:03:30

UT on March 15, 2018. Figure 4.2a is a keogram along the south-to-north cross section

near the center of the FOV. Two increases in optical intensity appear, from 01:03:22 to

01:03:24 UT and from 01:03:25 to 01:03:27 UT, which represent the main pulsation of the

PsA. Fine-scale vertical stripes also appear during the ON phase of the main pulsation,

which are the signatures of the quasi 3 Hz internal modulations. Figure 4.2b shows a

time series of the raw optical intensity sampled along the horizontal black line in Figure

4.2a. Hierarchical temporal variations again appear, where the internal modulations are

embedded in the main pulsation (very small peaks during the enhancement of the main

pulsation). For this analysis, we extracted a PsA event during a 1 h interval from 00:30:00

to 01:30:00 UT on March 15, 2018, in which an intense PsA was simultaneously observed

at the four stations in Scandinavia.
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Figure 4.2: a South-to-north keogram from all-sky images taken in Tjautjas during a 10

s interval, from 01:03:20 to 01:03:30 UT, on March 15, 2018. b Time series of raw auroral

luminosity along the horizontal black line in a.

4.3 Method

Before presenting the results, we introduce the data processing procedure by illustrating a

few examples of the multiscale temporal variations of PsA. Figure 4.3a shows a time series

of the temporal variations of PsA observed by the EMCCD all-sky imager at Tjautjas

from 01:01:00 to 01:04:00 UT on March 15, 2018. In this time series, all the peaks in the

raw count correspond to the main pulsation, which has a period of approximately 5 s. To

analyze the main pulsation, we used 1 Hz averaged data to simplify the signal processing.

Before analyzing the period of the main pulsation, we took the time derivative of the

original time series to eliminate the contribution of slower variations. Figure 4.3b shows

the main pulsation component obtained by taking the time derivative of the original time

series (Figure 4.3a). We derived the period–time (p–t) diagram (Figure 4.3c) by applying

the S-transformation to the fluctuating component in Figure 4.3b. Note that we produced
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the p–t diagram every 30 min. Specifically, Figure 4.3a, 4.3b, and 4.3c are magnified views

of 3 min of the 30 min time window. In the p–t diagram, increases in amplitude appear

around or slightly below 5 s, which is in good agreement with the apparent period of the

main pulsation observed in the raw time series (Figure 4.3a).

Figure 4.3d shows a magnified time series in a 10 s interval from 01:03:20 to 01:03:30

UT, which is part of the event shown in Figure 4.3a. Note that the temporal resolution

of the time series in Figure 4.3d is 25 Hz, which is suitable for visualizing the subsec-

ond internal modulations. Here, very small spiky peaks appear during the large-scale

enhancement of the optical intensity (i.e., the main pulsation), which are signatures of

the internal modulations. Before analyzing the frequency of the internal modulations, the

slower variation associated with the main pulsation should be removed. For this purpose,

we first produced a background trend representing the main pulsation by connecting local

minimum points in a sliding window including five data points. Then, the main pulsation

component was subtracted from the original time series to extract the internal modula-

tions. The result is presented in Figure 4.3e, where only the spiky subsecond modulations

appear. To estimate the frequency of the internal modulations, we applied the wavelet

transform to the time series in Figure 4.3e and derived the f–t diagram, which is shown

in Figure 4.3f. For the frequency analysis of the internal modulations, we produced the

f–t diagram every 1 min. Figures 4.3d, 4.3e, and 4.3f are magnified views of 10 s of the

1 min time window. In the f–t diagram, a continuous band of large wavelet amplitude

appears at approximately 3 Hz, which would correspond to the frequency of the internal

modulation.

To perform an analysis using a certain amount of 2D data, we automatically selected

the main pulsation and internal modulation from the p–t/f–t diagrams using the following

method. First, we extracted the periods of the main pulsation and internal modulation

when the S-transform/wavelet amplitude in the period range of the main pulsation (2–

30 s) and the frequency band of the internal modulation (1–12.5 Hz) were larger than

threshold values. We selected the main pulsation when the intensity of the obtained

S-transform amplitude was larger than 100. For the internal modulation, we employed

different threshold values of the wavelet amplitude for the four stations because of dif-

ferences in the sensitivity and surrounding observation conditions of the EMCCD all-sky

imagers. These threshold values were empirically determined to be 100, 15, 15, and 50

for Tromsø, Sodankylä, Tjautjas, and Kevo, respectively. In addition, to remove contam-
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ination by discrete aurora, we discarded data points for which the brightness exceeded

another threshold value. These threshold values for extracting PsA and discarding dis-

crete aurora are constant over the entire time period analyzed. This method allowed us

to automatically detect the hierarchical temporal variations of PsA from a large amount

of data with high temporal resolution without manual inspection.
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Figure 4.3: a Temporal variation of PsA observed by the EMCCD all-sky imager at

Tjautjas during a 4 min interval from 01:01:00 to 01:04:00 UT on March 15, 2018. b

Time derivative of the original time series in a. c Period–time diagram obtained by

applying the S-transformation to the time-derivative time series in b. d Magnified view

of the time series in a during a 10 s interval from 01:03:20 to 01:03:30 UT. e Component

of the internal modulation obtained by subtracting the background trend of the main

pulsation. f Frequency–time diagram obtained by applying the wavelet transform to the

fluctuating component data in e.
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4.4 Results

4.4.1 Distribution of multiple temporal variations of PsA

To confirm that the hierarchical temporal variations of PsA were selected by the described

procedure, we checked the distributions of the main pulsation and internal modulation.

Figure 4.4a and 4.4b show histograms of the period/frequency of the main pulsation and

internal modulation, respectively. The vertical axis shows the number of events, which

was self-normalized, and the horizontal axis shows the period of the main pulsation (left)

and the frequency of the internal modulation (right). In Figure 4.4a, most of the main

pulsation is distributed between 4 and 8 s, and a few samples appear at periods longer

than 10 s. Yamamoto (1988) demonstrated that the average repetition period of the

main pulsation was 20.7 ± 5.4 s using an all-sky TV imager at La Ronge (64.6◦ MLAT),

Canada. The period derived by Yamamoto (1988) is clearly longer than that in our

result. However, Duncan et al. (1981) derived the distribution of the period of the main

pulsation using photometers at four stations in Canada: Saskatoon (61.3◦ MLAT), La

Ronge (64.6◦ MLAT), Southend (66.0◦ MLAT), and Rabbit Lake (67.8◦ MLAT). They

concluded that the dominant period of the main pulsation ranges from 5 to 10 s, which

is in good agreement with our distribution of the main pulsation period. Thus, the main

pulsation with a longer period reported by Yamamoto (1988) represents one of the classes

(probably an exceptional case) of PsA.

As shown in Figure 4.4b, the internal modulation ranges from 1.5 to 4.0 Hz, which

is consistent with the 3 ± 1 Hz modulation (Royrvik and Davis, 1977). Most of the

internal modulation is concentrated around 2.5 Hz. Nishiyama et al. (2014) statistically

analyzed the frequency of the internal modulation using an EMCCD all-sky imager at

Poker Flat, Alaska and found that it ranged from 1.5 to 3.5 Hz, which is consistent with

our result. In contrast, some previous studies reported that the chorus elements, which

have been considered to be the magnetospheric counterpart of the internal modulation,

often vary more rapidly than the quasi 3 Hz internal modulation of PsA. For example,

Tracktehngerts et al. (2014) statistically demonstrated that the repetition frequency of

the chorus elements had a wide range, from a few Hz to several tens of Hz. In addition,

Miyoshi et al. (2010) investigated the time series of the energy flux of PsA electrons from

the REIMEI satellite and reported that the energy fluxes of 1.1 and 8.6 keV electrons
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fluctuate with a frequency of up to ∼10 Hz, which is well beyond the internal modulation

at ∼3 Hz.
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Figure 4.4: Distributions of a period of main pulsation and b frequency of internal mod-

ulation during the 1 h interval analyzed in this study.

As shown in Chapter 3, the PsA electrons are not mono-energetic but have an energy

range from a few keVs to a few tens of keVs. For instance, Sandahl et al. (1980) showed,

using in-situ data from a sounding rocket, that the energy of PsA electrons ranges from 5

to 40 keV. Therefore, the hierarchical temporal variations of PsA should be characterized

by the combined effects of the temporal variations of all the precipitating electrons in

those energy bands. The time required for precipitating electrons to travel from the

magnetosphere to the ionosphere depends on their energy; thus, the travel time of PsA

electrons varies. This effect may smear the faster variation of the chorus elements. In

fact, Nishiyama et al. (2014) mentioned this possibility but did not further investigate

how the variation in the travel time affects the frequency of the internal modulation. In

the Discussion section, we will consider how this effect can smear the faster variation of

the chorus elements and ultimately control the existence of the internal modulation.
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4.4.2 Proportion of the internal modulation

By using the main pulsations and internal modulations detected by the procedure de-

scribed earlier, we classified all the PsA samples into two categories: PsA with and with-

out internal modulation. Specifically, if at least one internal modulation was detected

in the pixel where the main pulsation was detected, we regarded the sample as a PsA

with internal modulation. Samples that did not meet this criterion were classified as PsA

without internal modulation. This classification process was applied to all the pixels of

the four EMCCD all-sky imagers and enabled us to derive the spatial distributions of

PsA with/without internal modulation. Figure 4.5a shows a snapshot of the spatial dis-

tribution of PsA with/without internal modulation at 01:00:00 UT on March 15, 2018,

where the red (blue) dots indicate PsA with (without) internal modulation. At least in

this time interval, most of the PsAs within the combined FOV were not accompanied by

internal modulation. Interestingly, however, there were clusters of PsAs showing internal

modulation in the lower-latitude portion of the combined FOV, which suggests that the

presence/absence of internal modulation might exhibit a latitudinal dependence.

We calculated the proportion (i.e., percentage) of PsAs with internal modulation for

all the PsA samples in the 1 h interval. The average occurrence rate of PsAs with

internal modulation was approximately 43% of the total cases, which is consistent with

the snapshot shown in Figure 4.5a. This finding indicates that PsAs are not always

accompanied by internal modulation. Figure 4.5b shows the latitudinal dependence of

the percentage of PsAs with internal modulation for geographic latitudes of 65◦ to 72◦.

The percentage tends to decrease as the latitude increases. This result implies that, as

suggested by Figure 4.5a, the presence of internal modulation depends on the latitude.

In the Discussion section, we consider the reason for this latitudinal dependence.
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Figure 4.5: a Spatial distribution of PsAs with/without internal modulation at 01:00:00

UT on March 15, 2018. The red and blue dots indicate PsAs with/without internal mod-

ulation, respectively. b Latitudinal dependence of the percentage of PsAs with internal

modulation.

4.5 Discussion

First, we discuss why the frequency of internal modulation of PsA is generally 3 ± 1 Hz,

whereas the chorus elements and corresponding flux changes of precipitating electrons

vary considerably more rapidly. As briefly mentioned in the previous section, a possible

explanation is the variation in the time of flight (TOF) of precipitating PsA electrons;

we speculate that the variation in TOF may introduce a difference between the frequency

of the internal modulation and the repetition period of chorus elements, which was first

noted by Nishiyama et al. (2014).

To prove this hypothesis, we simulated how the variation in TOF affects the time series

of the optical intensity, including the internal modulation, observed from the ground (i.e.,

the way that faster variations can be smeared by the variation in TOF) by following

the TOF simulation proposed by Miyoshi et al. (2010). Figure 4.6 shows a schematic

diagram of the TOF simulation model taken from Miyoshi et al. (2010). Miyoshi et al.

(2010) considered not only the TOF of electrons in terms of wave-particle interaction in
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the ionosphere but also the time needed for chorus waves to propagate along a field line

from the magnetic equator to the point of resonance. Thus, we estimated the total time

delay from the generation of the chorus at the magnetic equator to the arrival of scattered

electrons at ionospheric altitudes.

Figure 4.6: Schematic diagram of TOF simulation from Miyoshi et al. (2010).

For simplicity, we assumed that the propagation of chorus waves is perfectly parallel

to the magnetic field. First, using the ambient magnetic field intensity B calculated using

the Tsyganenko 04 magnetic field model (Tsyganenko and Sitnov, 2005), we estimated the

resonance energy of electrons in first-order cyclotron resonant scattering with the chorus

wave (Kennel and Petschek, 1966):

ER =
B2

2µ0N

fce
f
(1− f

fce
)3 (4.1)

where B is the ambient magnetic field intensity, µ0 is the permeability of vacuum, N is

the thermal plasma density [which is assumed to be 2.8 cm−3 on the basis of an empirical

model (Carpenter and Anderson, 1992)], fce is the cyclotron frequency, and f is the chorus

wave frequency. As the chorus wave propagates to higher latitudes along the field line, the

resonance energy increases because B is stronger in regions closer to Earth (Miyoshi et
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al., 2015). Lower-energy electrons are scattered near the magnetic equator, whereas more

energetic electrons are scattered at higher latitudes. In this case, the travel distance from

the region of wave-particle interaction to the ionosphere increases because the interaction

occurs in the opposite hemisphere. We also need to consider the time required for the

chorus waves to propagate from the magnetic equator to the resonance scattering region.

Thus, both the location and timing of resonance scattering are determined by the electron

energy; thus, the dependence of the travel distance and precipitation start time on the

electron energy are slightly complicated.

Considering an electron with energy E that resonates with the chorus at magnetic

latitude λ, the total delay time from the generation of the chorus at the magnetic equator

to the arrival of scattered electrons at the ionosphere, τ , can be expressed as follows:

τ = tE + tW (4.2)

where tE is the travel time of electrons with energy E from magnetic latitude λ (i.e., the

resonance scattering region) to the ionosphere, and tW is the time required for the chorus

wave to propagate from the magnetic equator to magnetic latitude λ. When we estimated

tW , we used the group velocity of the chorus in the parallel direction calculated by the

following equation (Ozaki et al., 2019):

vg = 2c
f

1
2 (fcecosθκB − f)

3
2

fpfcecosθκB
(4.3)

where c is the speed of light, fp is the plasma frequency, and θκB is the wave normal angle

to the magnetic field line. Note that we assumed that chorus waves propagate up to 20◦

of magnetic latitude. We estimated the delay time τ for three L values (L = 5, 6, and 7).

Figure 4.7 shows τ for electron energies of 5 to 30 keV. The colors indicate the chorus wave

frequency normalized by fce. Importantly, there is a time difference of approximately 0.5

s between the 5 and 30 keV electrons even at L = 5.0, and the variation in τ with energy

becomes larger with increasing L. This result suggests that the variation in τ smears the

contribution of the faster variations of the chorus elements to the subsecond temporal

variations of PsA.

To demonstrate the smearing process in detail, we reproduced a time series of the

temporal variation of PsA as observed from the ground from an input fundamental wave-

form. During this reproduction process, we considered the values of τ for various electron

energies. Before presenting the results, we introduce the methodology for reproducing
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the temporal variation of PsA. Figure 4.8a shows the fundamental test wave forms, which

reveal that there is no delay time as input whose modulation frequency is 3 Hz. When

we reproduced the time series of PsA emission, we began by generating multiple time

series representing the energy flux of electrons with various energies. We estimated the

delay time τ for each electron energy and shifted each time series accordingly. Then,

we generated the time series of the PsA emission by blending multiple time series for

different τ , where the blending was weighted by considering the energy spectrum of PsA

electrons in Sandahl et al. (1980). By integrating multiple time series for different τ ,

which is the smearing process that we are interested in, we reproduced the hierarchical

temporal variations of PsA that should be observed as prompt emission of auroral light

(e.g., at 427.8 nm). Figure 4.8b shows the reproduced time series of the PsA luminosity

calculated by this procedure. The increases in auroral intensity in Figure 4.8b correspond

to the ON phase of the main pulsation, and the fine-scale spiky structures superimposed

on the main pulsation are the signatures of the internal modulation. The signatures of the

3 Hz modulation in the original time series (Figure 4.8a) are still recognizable in Figure

4.8b, although the amplitude of the peaks is decreased by smearing. This result indicates

that the 3 Hz modulation of the input fundamental waveform can survive the smearing

process and can be identified as the internal modulation of PsA observed from the ground.

We applied the wavelet transform to these time series using the same procedure as that

in the frequency analysis of actual optical data. Figure 4.8c shows the frequency–time

diagrams. Frequency bands showing a larger wavelet amplitude appear at 3 Hz.

The latitudinal distribution of the wavelet amplitude at each geographic latitude was

obtained by performing the earlier procedure for various input frequencies ranging from

2 to 10 Hz at 1 Hz intervals. The results are presented in Figure 4.9. The vertical and

horizontal axes represent the geographic latitude and frequency of the input waveform,

respectively, and the colors indicate the wavelet amplitude. Figure 4.9 shows that the

amplitude decreases as the input frequency increases. Specifically, at frequencies above 6

Hz, the wavelet amplitude is remarkably small, indicating that the internal modulation

is well smeared by the variation in τ . However, even around 5 Hz, where little internal

modulation was observed, the wavelet amplitude was large. The reason may be the con-

tribution of electrons with energies below 5 keV, although we assumed that the electrons

contributing to PsA emission have an energy range of 5–30 keV in the simulations. For

PsA electrons with energies below 5 keV, the variation in τ would be even larger, and
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thus, a more significant smearing effect is expected. In addition, the energy flux (or energy

spectrum) of the electrons in the simulation may differ from the observations. However, it

is important to note that higher-frequency variations tend to be smeared more effectively

by the variation in τ , which prevents rapid variation in the internal modulation with time.
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Figure 4.8: a Fundamental (input) time series with a modulation frequency of 3 Hz at a

geographic latitude of 68.5◦. b Time series of PsA emission reproduced considering the

variation effect. c Frequency–time diagrams of the reproduced time series shown in b.
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Here, we discuss the reason that PsA with internal modulation is more frequently

observed at low latitudes. At high latitudes, the variation in τ increases (as shown in

Figure 4.7) because PsA electrons must travel farther at larger L values. Therefore, PsA

without internal modulation is likely to be observed more frequently at lower latitudes.

This dependence is also illustrated in Figure 4.9, where the wavelet amplitude decreases

at higher latitudes for each frequency of the input waveform. To evaluate the effect of

this latitudinal change in the variation in τ on the amplitude of the internal modula-

tion, we also reproduced the time series of PsA for a geographical latitude of 66◦ and a

geographical longitude of 70◦. Figure 4.10a shows the test waveform of a chorus wave

with a modulation frequency of 3 Hz. Figure 4.10b and 4.10c show the reproduced time

series of PsA emission at geographical latitudes of 66◦ and 70◦, respectively. In both the

cases, the reproduced time series shows hierarchical temporal variations (i.e., the internal

modulation superimposed on the main pulsation). However, the amplitude of the internal

modulation at a geographical latitude of 70◦ is smaller than that at a geographical latitude

of 66◦. As the geographic latitude increases (i.e., at larger L values), the electrons follow

a longer path to travel from the magnetosphere to the ionosphere. Therefore, the effect of

the variation in τ (i.e., the smearing effect) is more significant at higher geographic lati-
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tudes than at lower latitudes. This result is consistent with the latitudinal dependence of

PsA without internal modulations, which is more frequently observed at lower latitudes.

Recent studies have reported that the energy of PsA electrons depends on MLT and

tends to be higher on the morning side (Hosokawa and Ogawa, 2015; Kawamura et al.,

2020). As shown in Figure 4.7, the variation in τ decreases as the energy of the precipitat-

ing electrons increases. For example, if the bulk energy of a PsA is carried by 15–30 keV

electrons, the variation is only approximately 0.1 s, which may allow the PsA to respond

to more rapid variation in the chorus elements. This result suggests that PsAs with in-

ternal modulation can be observed more frequently on the later morning side. Next, the

dependence of PsAs with internal modulation on MLT needs to be examined.
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4.6 Conclusions

The characteristics of the internal modulation of PsA were investigated using data from

EMCCD imagers at four locations in northern Scandinavia with simultaneous observations

by the Arase satellite. Specifically, we investigated a PsA that was observed simultane-

ously by all four EMCCD all-sky imagers during a 1 h interval. The combination of

data from four high-speed (100 Hz sampling) imagers and a simple numerical simulation

yielded the following results:

1. We detected multiple temporal variations of PsA (i.e., the main pulsation and inter-

nal modulations) and derived their period/frequency distributions. The period of

the main pulsation is typically 4–8 s, whereas the frequency of the internal modula-

tions was 2–3 Hz. These characteristics are fairly consistent with previous studies of

the periods of PsA, which confirms the accuracy of the frequency analyses employed

in this study.

2. Not all the PsAs were accompanied by the ∼3 Hz subsecond modulation. In these

results, the average occurrence rate of PsAs with 3 Hz internal modulation is 43% of

the total. It was also found that the proportion (percentage) of PsAs with internal

modulation was higher at lower latitudes. The internal modulation is less frequent

at larger L values.

3. To determine the factors controlling the presence/absence of internal modulation, we

simulated the effect of the variation in delay time from the generation of the chorus

to the arrival of electrons at the ionosphere. The simple simulation suggested that

the effect of this variation (i.e., the smearing process) eliminates the faster variation

in the original time series of the chorus, and more rapid variations (faster than 5

Hz, say) cannot be identified in the time series of PsA emission.

4. The observed latitudinal dependence of the presence/absence of internal modulation

can also be explained by the smearing process because the travel time from the point

of resonance scattering in the magnetosphere to the ionosphere is longer for larger L

values (i.e., at higher latitudes). At higher latitudes, the smearing process is more

effective; thus, the 3 Hz internal modulation sometimes cannot survive the trip

from the magnetosphere to the ionosphere.
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The temporal variation in the chorus, especially the discreteness of the chorus elements,

is one of the most important factors controlling the temporal variation of PsA. The results

of this study, however, suggest that the difference in the travel time of electrons having

different energies and the propagation of chorus waves from the magnetic equator to the

point of resonance scattering also play a significant role in characterizing the temporal

variation of PsA as observed from the ground. In addition, the presence/absence of inter-

nal modulation may provide additional information about the energy of the precipitating

electrons causing a PsA.
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Chapter 5

Concluding remarks

5.1 Summary and conclusions

In the work reported herein, we investigated the fundamental characteristics of PsAs

(specifically, the formation mechanism of the hierarchical temporal variations) using high-

speed optical observations. To reproduce the hierarchical temporal variations of PsA, the

delay time of the PsA electrons must be considered, in addition to the time series of the

chorus waves (Miyoshi et al., 2010; Nishiyama et al., 2014). However, the energy of the

PsA electrons and its MLT dependence have not yet been analyzed statistically. Therefore,

the effect of the characteristics of the PsA electrons on the development of the hierarchical

temporal variations of PsA is unclear. In this work, we first derived the energy of PsA

electrons and their MLT variation statistically. Then, we calculated the delay times of

PsA electrons in the obtained energy ranges of PsA electrons and evaluated their effects

on the hierarchical temporal variations of PsA. Several key results are summarized next.

In Chapter 3, we presented calculations of the lifetime of O(1S) obtained by a cross-

correlation analysis of the time series of the emissions at 427.8 and 557.7 nm obtained

by a five-wavelength photometer in Norway. Using the method proposed by Scourfield

et al. (1981), we statistically estimated the distribution of the emission altitude of PsA.

The emission altitude of PsA generally ranges from 95 to 115 km, and the energies of the

precipitating electrons range from 5 to 30 keV. In addition, the emission altitude of PsA

decreases toward the morning side, which indicates that the energy of PsA electrons tends

to be higher in the later MLT sector. However, by simple calculations of the resonance

energy of the chorus waves, we found that this tendency (harder PsA electrons on the
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morning side) cannot be explained only by the effects of MLT on ambient parameters such

as the magnetic field intensity and density of cold plasma. Therefore, when discussing

the energy of PsA electrons, it is necessary to consider not only the ambient parameters

but also the propagation characteristics of chorus waves along the magnetic field.

In Chapter 4, to determine the factors controlling the hierarchical periodic structure

of PsA, we investigated the proportion of PsAs with internal modulation and their spatial

distribution. An intense PsA was observed by four EMCCD all-sky imagers in Scandi-

navia on March 15, 2018, from 00:30 to 01:30 UT. By performing frequency analysis of

the optical time series obtained during that interval, we demonstrated that 43% of all

the PsA cases showed subsecond internal modulation and that the typical frequency of

the internal modulation was approximately 3 Hz. However, the frequency of the chorus

elements, which are considered to be the counterpart of the internal modulation, is widely

distributed from a few Hz to several tens of Hz. We also derived the spatial distribution

of PsAs with internal modulation and found that they were more frequently observed at

lower latitudes. These results suggest that a certain process is smearing the fast variation

of the chorus elements. We performed simple numerical simulations considering the time

delay of chorus wave propagation and the TOF of PsA electrons whose energy range is es-

timated in Chapter 3. On the basis of the results, we suggest that, in addition to fine-scale

structure in the chorus intensity, the variation in the travel time of PsA electrons from the

magnetosphere to the ionosphere and the propagation of chorus waves play an important

role in determining the hierarchical temporal variations of PsA (i.e., the presence/absence

of ∼3 Hz internal modulation).

The results presented in Chapters 3 and 4 demonstrate that the energy of PsA electrons

is approximately 5–30 keV and that the hierarchical temporal variations of PsA result

from the variation in the delay time of these electrons and the discreteness of the chorus

elements. Because the variation in the delay time depends on the energy of PsA electrons,

its effect is expected to be less significant (i.e., the internal modulation is expected to be

clearer) in PsAs caused by higher-energy electrons. Thus, we conclude that the range

of electron energies plays a significant role in characterizing the hierarchical temporal

variations of PsA. This finding further implies that the discreteness (i.e., visibility) of

the internal modulation can be used as an indicator of the energy of the precipitating

electrons causing a PsA.
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5.2 Future work

In Chapter 3, we showed that the energy of PsA electrons tends to be higher toward the

morning side. In addition, as discussed in the previous section, as the energy bands of

PsA electrons become higher, the variation in the delay time becomes smaller. Then, the

internal modulation becomes more evident. This suggests that PsAs with internal modu-

lation can be expected to be more frequently observed on the morning side. Therefore, it

is necessary to compare the effect of MLT on the presence/absence of internal modulation

with that of the energies of PsA electrons.

In Chapter 4, we derived the spatial distribution of the hierarchical temporal variation

using an example with a duration of 1 h. Therefore, it is necessary to statistically analyze

the presence/absence of internal modulation using many datasets.

The method of estimating the emission altitude of PsA presented in Chapter 3 can

also be applied to all-sky imager observations (e.g., by pointing the imagers observing

at 427.8 and 557.7 nm in the same direction). This method enables us to estimate the

emission altitude of PsA in two dimensions rather than at a single point within the FOV.

Using this technique, we can estimate the relationship between the shape of a PsA and

the energy of the precipitating electrons (i.e., where and how the electrons resonate with

chorus waves).

The shape and propagation direction of PsA are very complex; therefore, it is difficult

to analyze them visually using a large amount of data. However, the automated detection

method described in Chapter 4 can be used to verify the relationship between the shape

of PsA and its direction of propagation and hierarchical temporal variation. In particular,

the shape of PsA is thought to reflect the spatial extent of the source of the chorus waves,

which is a key parameter for gaining a better understanding of the unsolved problem of

wave-particle interaction.
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