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Abstract

Multi-Party Computation (MPC) is a cryptographic protocol that enables

parties to compute a function while keeping their data secret. Although

standard MPC is constructed with algebraic procedures and is supposed to

be implemented in computers, there are also MPCs that are implemented

with physical tools instead of computers. Our study deals with card-based

cryptography that realizes MPC using physical cards such as playing cards.

In this thesis, we use two types of cards, ♣ and ♥, whose backsides are the

same, for constructing protocols.

Traditional card-based cryptography is based on the operating model that

assumes all operations are performed publicly, such as on the table. This

model has the advantage of preventing a cheat since all operations are moni-

tored between the players. However, this model also causes the lower bound

of the number of cards for a protocol. The assumption that publishes all

operations restricts a method of expressing the input value secretly to use

face-down cards. Then, at least 2n cards are required for an n-bit input pro-

tocol since two cards are necessary to arbitrarily express a 1-bit value. This

model also requires randomizing operations to be done in public. Traditional

card-based cryptography utilizes “shuffle” to achieve confidentiality even un-

der the condition, which publishes all operations. Shuffle is a card-oriented

randomizing operation that requires its result cannot be identified by all

players, including the player who performed it. On the other hand, algebraic
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MPC usually adopts “private randomness” that assumes each player can pri-

vately generate and use a random number. Shuffle’s assumption has a large

gap from private randomness. Thus, card-based cryptography’s framework

is different from algebraic MPC.

In this thesis, we propose a new card-based cryptography model that

introduces “private permutations (PP),” which is similar to private random-

ness of algebraic MPC. Our model allows a player to use the private area,

such as the behind player’s back, and PP is an operation to permute a card

order privately. Then, PP removes the restriction of having to use face-down

cards for input. That is, in our model, there is a possibility to construct

a protocol with fewer cards than the lower bound of traditional card-based

cryptography. We actually propose several protocols to achieve this.

This thesis is consists of six chapters. Chapter 1 is the descriptions of the

background of MPC and card-based cryptography. PP is proposed, and the

notations are introduced in Chapter 2. Chapter 6 is the conclusion of this

thesis. Chapters 3–5 are summarized as follows.

Chapter 3: Secure Computing Logic Gates – Logic Fate Protocols

Whose Number of Cards is Less Than The Lower Limit of Tradi-

tional Model

In traditional card-based cryptography, an n-bit input protocol requires a

minimum of 2n cards. On the other hand, PP enables the input value to be

expressed without using face-down cards. Thus PP enables us to construct

a protocol with fewer cards than the lower bound in the traditional card-

based cryptography. Chapter 3 shows that 2-bit input AND, OR, and XOR

protocols can be realized with less than four cards using PP as the input

representation. Note that AND protocol is proposed by Marcedone, Wen,

and Shi [29].

Chapter 4: Secure Computing Threshold Function – Efficient Card-

based Protocols for Majority Votings And The Threshold Function
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The three-card AND and OR protocols described in Chapter 3 can be

extended to a 2-input 2-output protocol that simultaneously obtains AND

and OR results, with four cards. We show that 3-input majority voting

can be realized by utilizing this four-card AND/OR protocol without any

additional cards. We also propose a (t, n)-threshold function protocol with

n+2 cards by extending our 3-input majority voting protocols. This protocol

is realized with fewer cards than the lower bound 2n in traditional card-based

cryptography. This result thanks to the input representation by PP, as in

Chapter 3. It also reduces the number of PPs and communications from 4n2

to n and 2n2 to n − 1. PP achieves efficiency not only for basic functions,

such as logic gates but also for advanced functions.

Chapter 5: How to Solve Millionaires ’Problem – Efficient Card-

based Millionaires’ Protocols

To introduce PP, the model of card-based cryptography is closer to that

of algebraic MPC, compared to the one based on shuffle. As a result, it is ex-

pected that ideas can be mutually utilized between card-based cryptography

and algebraic MPC, which have been independently studied. We demon-

strate that a new card-based protocol can be obtained by converting Yao’s

(algebraic) millionaires’ protocol into a card-based protocol. Millionaires’

protocol is a 2m-bit input protocol that aims at comparing two m-bit values.

Our proposed protocol can be easily derived if we understand the essence of

his solution and is considerably simplified, thanks to the card’s property.

Our protocol, obtained from Yao’s protocol, is superior to the existing

protocol regarding the number of PPs and communications. However, the

number of cards exponentially increases. Thus, we propose another new

millionaires’ protocol based on the bitwise comparison. This protocol is also

interesting in the sense that it uses the famous logic puzzle, “The fork in the

road.” Although this protocol succeeded in reducing the number of cards

from our protocol based on Yao’s protocol, it does not reduce below the
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traditional lower bound of cards, i.e., 4m.

We can further reduce the number of cards to six by reusing the cards in

our proposed protocol. This protocol clarifies that the millionaires’ protocol

can be realized with only six cards. This protocol is the most straightforward

to show the potential of PP power.



Abstract (in Japanese)

　マルチパーティ計算 (MPC)は，複数の参加者がそれぞれ持つ情報を秘匿し

たまま，参加者同士で協調してそれらの情報を入力値とした関数の計算を行

う暗号プロトコルである．一般的なMPCは，計算機への実装が想定されて

いる代数的なプロトコル（以下，代数的MPC）であるが，計算機を用いずに

物理的な道具を用いて構成されるMPCも提案されている．その中で，本研

究はトランプのような物理的なカードを用いてMPCを実現するカードベー

ス暗号を扱う．用いるカードは ♣と ♥の 2種類で，裏にすると絵柄が同じ

で区別ができないものとする．

既存のカードベース暗号は，すべての操作を（テーブル上などの）公開

の場で行う操作モデルを仮定する．この操作モデルでは，プレイヤの不正な

ふるまいを考慮する必要がない利点がある一方で，入力値を秘匿して表現す

る方法が裏にしたカードを用いる方法に限定される．1-bitの表現には 2枚の

カードを用いる必要があるため，n-bit入力のプロトコルには少なくとも 2n

枚のカードが必要である．

また，この操作モデルはランダマイズも公開の場で行うことを要求する．

この要求の下で，秘匿性を実現する手法として「シャッフル」と呼ばれるカー

ド特有のランダマイズ操作が用いられている．シャッフルは公開の場で行われ

る操作であるが，この操作で生成された乱数は操作を行ったプレイヤ本人を

含めて，すべてのプレイヤに秘匿されることを要求する．この仮定は，代数

的MPCで通常採用される内部乱数モデル（各プレイヤが内部でプライベー

トに乱数を生成する）とは構成原理が大きく異なっている．

5
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本論文では，カードベース暗号に，通常のMPCの内部乱数の使用と類似

する「秘匿置換」を導入した新たな操作モデルを提案する．秘匿置換は，プレ

イヤが内部でプライベートに乱数を生成し，他のプレイヤに見えないように

プレイヤの背に隠すなどして，その乱数に応じた置換を行う操作である．こ

のモデルでは，秘匿置換を用いた入力が可能となるため，入力に 2枚のカー

ドを用いる必要がない．その結果，従来モデルにおけるカード枚数の下限値

を下回る枚数でプロトコルを構成できることをいくつかの例で示す．

本稿は全 6章で構成される．第 1章はMPCとカードベース暗号の背景説

明である．第 2章は，秘匿置換の導入および記法の定義などの準備である．

第 6章は本論文のまとめである．3章から 5章では，秘匿置換を用いて構成

したプロトコルの提案を行う．具体的な内容は以下の通りである．

第 3章: 従来モデルにおける下限を下回るカード枚数の論理演算プロトコル

の提案

従来の操作モデルにおけるカードMPCでは，入力値の 1-bit毎に 2枚の

カードを用いるため，n-bit入力のプロトコルには最低 2n枚のカードが必要

であった．本研究で提案する操作モデルでは，秘匿置換を入力に用いること

が可能である．その結果，入力値をカード 2枚で表現しなければならない制

約がなくなり，従来モデルにおけるカード枚数の下限値を下回るプロトコル

を構築することが可能となった．第 3章では，従来モデルでは最低 4枚必要

な，2入力の論理演算プロトコル ANDとORが，秘匿置換を導入した提案

モデルにおいては 3枚のカードで実現（計算）可能であることを示す（AND

はMarcedone–Wen–Shi [29]による）．また，XORについては，2枚のカー

ドで実現可能であることを示す．

第 4章: 多数決および閾値関数を計算するカードMPCの提案

第 3章で示したAND，ORプロトコルは，秘匿置換を用いて入力値表現

を工夫することで，使用カード 4枚で，AND とORの結果を同時に得る 2入

力 2出力のプロトコルへ拡張することができる．第 4章では，このAND/OR

同時計算プロトコルが，カードを追加することなく 3入力多数決プロトコル

へ応用できることを示す．さらに，この 3入力多数決プロトコルを拡張する



CONTENTS 7

ことで，従来モデルでは 2n+2枚のカードが必要であったしきい値関数計算

プロトコルを n + 2枚で実現できることを示す（nは入力数）．従来モデル

では n入力のプロトコルには最低でも 2n枚のカードが必要であるが，秘匿

置換を導入することで，提案のしきい値関数計算プロトコルはその下限値の

ほぼ半分の枚数で実現することができる．これは，3章と同様に，入力値を

カードで表現するのではなく，秘匿置換で表現したことが効率化の決め手と

なっている．また，秘匿置換および通信回数に関しても，それぞれ 4n2を n

へ，2n2を n− 1へ削減することができる． この結果から，秘匿置換は論理

演算のような基礎プロトコルのみでなく，より高度な関数を計算するプロト

コルに対しても効率化が達成できることがわかる．

第 5章: 効率的なカードベース金持ち比べプロトコルの提案

内部乱数より自然に導入される秘匿置換をカードベース暗号に導入した

ことにより，カードベース暗号は代数的MPCにより近いモデルとなった．そ

れにより，独立的に研究が進められてきたカードベース暗号と代数的MPC

間で相互にテクニックを活用できるようになることが期待される．本章では

実際に，代数的MPCである 2つのm-bit値のYaoの大小比較（金持ち比べ）

プロトコルを秘匿置換を用いたカードベース暗号に変換して，新たなプロト

コルを構築する．変換はYaoのプロトコルの本質を用いればほぼ自明なもの

であり，オリジナルのプロトコルを非常に単純化している．

Yaoの金持ち比べから得た提案プロトコルは，秘匿置換および通信回数

では効率化に成功している一方で，カード枚数が指数的に増えてしまう課題

があった．そこで本章では，ビット毎の大小比較に基づく，新しい大小比較

プロトコルを提案する．提案プロトコルは，有名な論理パズル “The fork in

the road”を用いる点でも興味深い．最終的に，金持ち比べプロトコルをたっ

た 6枚のカードで実現できることを明らかにした．また，秘匿置換および通

信回数に関しても，それぞれ 12m− 10を 2m+1へ，6m− 5を 2mへ削減す

る．これは秘匿置換の有効性を示す最も強力な例となっている．
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Chapter 1

Introduction

1.1 Background onMulti-Party Computation

Cryptography is one of the essential technologies for utilizing the Internet

securely. For instance, the symmetric/public key cryptosystem provides se-

cure communications over the Internet, even in an environment with the

adversary. On the other hand, modern cryptography aims to realize not only

secure communications but also secure computations among distinct parties.

Consider a scenario where distinct parties wish to compute a function,

such as the average and summation, using their private data as the input

values. More precisely, we suppose the case where n parties P1, P2, . . . , Pn

hold private data x1, x2, . . . , xn, respectively, and they wish to compute the

value of a function f(x1, x2, . . . , xn) without revealing their own data. Multi-

Party Computation (MPC) is a cryptographic technology that realizes their

wishes. MPC has to fulfill the following two requirements: First, every party

must receive a correct output (correntness). Second, it is necessary that

parties cannot get any information other than the output value (pricacy).

Both correctness and privacy can be easily fulfilled if there is a trusted third

party that takes over the functionality. However, the goal of MPC is to

10
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fulfill the requirements without it, in other words, even if among distrustful

parties. MPC protocols are utilized in various applications, such as electronic

auction [18,42] and electronic voting [5, 6].

The first MPC protocol is the “mental poker” proposed by Shamir, Rivest,

and Adleman in 1979 [53]. It aims to play poker fairly between two people

at a distance over the phone. The theoretical foundation of MPC in the

two-party setting was established by Yao [61] in 1982. After that, Goldreich,

Micali, and Wigderson extended it to the n-party setting [21].

We consider two kinds of adversarial settings, semi-honest and malicious

models.

In the semi-honest adversarial model, it is assumed that adversaries cor-

rectly follow the protocol procedures, but they attempt to extract informa-

tion about the other parties’ inputs from legitimately obtained information.

Hence, this model is also called honest but curious.

On the other hand, the malicious adversarial model allows adversaries to

behave out of protocol procedures. More robust security is guaranteed un-

der the malicious adversarial model rather than the semi-honest adversarial

model.

It is known that achievability of such models depends on the ratio of

corrupted parties, as shown in [4,10,21,50]. These results hold in the stand-

alone model that assumes parties to participate in only one protocol and run

it only once. However, it is usual that several different protocols run at the

same time in the modern implementation. It is known that a protocol that

is secure in the stand-alone model is not always secure under the composi-

tion. A model that guarantees security, even in such a case, is referred to

as Universal Composability (UC) [7, 8]. It is known that any protocols can-

not achieve UC security without the setup assumptions, such as a common

reference string and a public key infrastructure [9].

There are roughly two directions when constructing an MPC protocol.
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One direction is a generic construction, and the other is a specialized con-

struction. The generic construction aims to build a protocol that is available

for an arbitrary function. The famous protocol in this direction is the garbled

circuit, proposed by Yao [62], which is applicable for any Boolean function

in the two-party setting. It is based on the fact that a combination of logic

gates can compute any Boolean function. In this direction, MPC protocols

based on secret sharing [52] and homomorphic encryption [16,20,49] are also

known. For instance, GMW protocol [21], which is available for any functions

in the n-party setting, is based on secret sharing. Also, Ben-or, Goldwasser,

and Wigderson extended it to the information-theoretic model [4].*1

On the other hand, specialized construction aims to build a protocol for

a specific function straightforwardly. The protocols based on this direction

tend to be more efficient than generic solutions. For instance, we consider

Yao’s solution for the millionaires’ problem [61], which determines which of

two values is greater without revealing them, is included in this direction (see

Section 5.2.1 for details). The protocols for mental poker [21, 53], electronic

auction [18], and electronic voting [5,6] are followed in this direction as well.

1.2 Multi-Party Computation Using Physical

Objects

So far, we reviewed the history of standard (or algebraic) MPC that is real-

ized by computers algebraically. Although algebraic MPC is constructed to

be implemented in computers, there are MPCs that are implemented with

physical objects. Such protocols are referred to as physical cryptography [24]

or recreational cryptography [3]. We list several examples of these MPC pro-

*1In this model, the adversary has no computational limit. On the other hand, a model
that limits the ability of adverwaries in (probabilistic) polynomial time Turing machine is
referred to as the computational model.
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tocols in the following.

� Physical cards (card-based cryptography) [12,15,22,43,57]

� Envelopes [17,39,40]

� Cups [17]

� PEZ dispenser [2, 3, 41]

� Dial lock [33]

� 15 puzzle [34]

� Random-looking images printed on transparencies (visual cryptogra-

phy) [13,14]

� Physical coins [28]

Utilizing physical assumptions may enable us to design the protocols that

cannot be achieved in the algebraic MPC. Because physical cryptography

can be implemented with human hands and are easy to understand, they

attract research and are useful in education. In this thesis, we focus on

card-based cryptography.

1.3 Background on Card-Based Cryptogra-

phy

Card-based cryptography, proposed by den Boer in 1989 [15], realizes secure

computations by using physical cards. It also employs simple operations

as used in general card games such as permutation, turn face-up/down and

shuffle. Two types of cards, such as ♣ and ♥, are used in general card-based



14 CHAPTER 1. INTRODUCTION

cryptography. The backsides of cards are all the same. The number of cards

and shuffles are the standard efficiency measures of a card-based protocol.

A Boolean value is usually represented with the format, 0 7→ ♣♥ and

1 7→ ♥♣. This format is convenient for NOT operation since it can be easily

realized by swapping. An n-bit input protocol requires at least 2n cards

when we adopt this format to the input representation, such as ? ? ∈ {0, 1}.
We call such a method of expressing the input value using face-down cards

“commitment.”

It is essential in card-based cryptography that all operations are assumed

to take place in public, like on a table. This assumption has the advantage

of preventing a cheat since all operations are monitored between the players.

However, this assumption limits the input representation to use the commit-

ment since there is no other way to express an input value secretly. Thus,

n-bit input protocol requires at least 2n cards since at least two cards are

necessary for 1-bit representation, e.g., 0 7→ ♣♥ and 1 7→ ♥♣. Even if

the Boolean values are represented as 0 7→ ♣ and 1 7→ ♥, each player must

possess at least two cards since input values need to be arbitrarily selected.*2

Card-based cryptography has been devoted to secure computation of logic

gates such as AND, XOR, and COPY. OR operation is easily obtained from

an AND operation using NOT operation. Thus, any computation can be

implemented by a combinations of these logic gate protocols [51]. When we

express a function by a combination of logic gates, it is important whether or

not the protocols can be composed with other protocols. Consider the case

where card-based protocol X is composed of another protocol Y . Then the

output of X must be taken over to Y as the input keeping the value secret,

i.e., face-down.

Committed format [12, 43, 57] is a useful definition to simplify the dis-

*2A study exists to use information on the top and bottom of marks such as ♣ and♣

[37]. We do not apply this method and assume that there is only one card orientation.
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cussion about the composition of card-based protocols. We refer that card-

based protocol is in committed format for an encoding ϕ, e.g., 0 7→ ♣♥ and

1 7→ ♥♣, if both input and output formats follow ϕ. On the other hand, a

protocol with different input and output formats is called a non-committed

format protocol. A non-committed format protocol is possible but not ap-

propriate for the composition with other protocols.

Overview of Previous Works: One of the central issue when designing

efficient card-based protocols is to minimize the number of cards required

in the protocol. den Boer proposed a five-card AND protocol in the non-

committed format [15]. Mizuki, Kumamoto, and Sone showed that AND

protocol in the non-committed format can be done with four-card [35]. As

mentioned above, the input value is represented by two cards. Therefore,

their solution is optimal with respect to the number of cards.

The concept of committed format was proposed by Crépeau and Killian

with actually showing ten-card AND and fourteen-card XOR protocols in the

committed format [12]. The optimal XOR protocol in committed format was

proposed by Mizuki and Sone [38]. They proposed six-card AND protocol

in the same paper, i.e., there is room for improvement on the AND proto-

col. It was one of the important open problems in card-based cryptography

whether AND protocol can be realized with a smaller number of cards in the

committed format. Koch, Walzer, and Härtel proved this problem [27]. In

this work, they proposed five-card AND protocol, which always terminates

with a fixed number of steps, and four-card AND protocol, which is the Las

Vegas algorithm,*3 in committed format. In addition, they proved that AND

protocol in committed format could not be realized with four cards without

using the Las Vegas algorithm. In other words, their 5-card AND protocol

is optimal as a protocol with a finite number of steps.

*3Las Vegas algorithm is a randomized algorithm that outputs either the correct result
or information about the failure.
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Efficiency has been improveed for each logic gate, but at least one shuffle

is required for one logic gate*4. Thus, a protocol composed of a combination

of logic gates tends to have a large number of shuffles. There may be more

efficient protocols that are specialized for each function.

Formulation of Operations in Card-Based Cryptography: There are

three operations used in general card-based cryptography: “permutation,”

“turn face-down/up,” and “shuffle.” As mentioned above, all operations are

assumed to be performed in public, including randomizing operattions. How-

ever, in algebraic MPC, we achieve a secure protocol by utilizing the private

randomness, which assume each player can generate and use random number

privately. Thus, it seems that the confidentiality cannot be achieved if all

operations are shown to other players. Shuffle is the key technique to solve

this problem, which is the randomizing operation performed in public. Then,

it is requires that none of the players can identify the result, including the

player performed the shuffle. Mizuki–Shizuya [36] formalized this operation

as follows:

For a card order (α1, α2, . . . , αn), the shuffle operation shuffleΠ,F is a

random variable defined as

shuffleΠ,F(α1, α2, . . . , αn) = πr(α1, α2, . . . , αn) (1.1)

where Π = {π1, π2, . . . , πt} is a set of permutations and F is a probability

distribution on Π. r ∈ {1, . . . , t} is determined according to F . Then, none

of the players identify r that expresses which permutation is selected.

For instance, den Boer [15] used random cut that is cyclic shift shuffle

*4There is also a method to realize card-based protocol for computing circuits with one
shuffle [56]. Since this protocol utilized the techniques of garbled circuit [62], it requires
distinct twenty four cards for each gate. Hence, instead of achieving the minimum number
of shuffles, this protocol requires much more number of cards compared to the protocols
obtained by simply combining the card-based protocols for logical gates.
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to realize the five-card AND protocol. This shuffle is on the following set of

permutations:

Π = {id, (5, 1, 2, 3, 4), (4, 5, 1, 2, 3), (3, 4, 5, 1, 2), (2, 3, 4, 5, 1)}. (1.2)

F is the uniform distribution over Π. Crépeau and Killian [12] also used the

random cut to construct ten-card AND and fourteen-card XOR protocols

in the committed format. It is known that such shuffles that are closed

about permutations and have a uniform distribution can be performed with

human hands [23, 26]. Thus, it is desirable that the shuffle is closed and

uniform [1, 25]. However, even if the shuffle can be performed with human

hands, we need to verify whether it is secure even in public.

In order to reduce the number of cards, a different type of shuffle was

introduced in [35, 38], called random bisection cut. In executing random

bisection cut, even number of cards are divided into two sets consisting of

the same number of cards, and these two sets are exchanged many times

until none of the players can recognize how many times the two sets of cards

are permuted. Hence, π is {id, (v + 1, v + 2, . . . , 2v, 1, 2, . . . , v)} where 2v

is the number of cards and F is the uniform distribution over Π. We note

that the random bisection cut has only two results, unlike the random cut.

Such a shuffle seems unnatural from general card games’ viewpoint, and

there is room to discuss whether it can be securely implemented with human

hands [59,60].

Furthermore, Koch, Walzer, and Härtel introduced unique shuffles whose

result is non-uniform to reduce the number of cards in the AND protocols [27].

For instance, they used a shuffle whose set of permutations is similar to

random bisection cut, but the probabilities were non-uniform such as 1/3

and 2/3. Although their shuffle certainly contribute to protocols’ efficiency,
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Table 1.1: Comparison of MPC Models
Algebraic MPC Public Model (Our) Private Model

Enc/Dec Enc/Dec Turn Face-down/up Turn Face-down/up
Randomization Private Public Private
Communication Use Not use Use

it is much harder to be implemented with human hands.*5

1.4 Motivation

As explained in the previous section, much of previous works for card-based

cryptography are based on the operating model that assumes all operations

are performed in public, such as on the table. We call this model public

model. Public model restricts the expression of input values secretly to use

face-down cards. That is, at least 2n cards are required for an n-bit input

protocol since two cards are necessary to express a 1-bit value arbitrarily.

While public model has the advantage of preventing a player’s malicious

behavior, it causes a lower bound of the number of cards.

Public model also requires randomizing operations to be done in public.

Normally, a probabilistic operation must be executed privately since it is

necessary to conceal the random number from other players. On the other

hand, traditional card-based cryptography achieves confidentiality even un-

der public model by using “shuffle” based on the card-oriented assumption.

Discussion about Shuffles: Shuffle is the most critical operation in card-

based cryptography, which is to randomize a card order in public. den Boer

showed how to compute securely AND protocol utilizing the random cut,

which is one of the shuffles. This shuffle seems practically feasible with human

hands. On the other hand, the special shuffles, such as random bisection cut

*5A method to realize the non-uniform shuffle by using special boxes is proposed in [46].



1.4. MOTIVATION 19

and non-uniform shuffles, have a human infeasibility problem. The methods

of human hands implementation were proposed using tools, such as boxes [46]

and a rubber [60], but it is not preferable if we want to execute protocols only

by hands. Such shuffles are mathematically acceptable but not physically

acceptable and thus seem not to be included in card-oriented assumptions.

Also, shuffle is based on the assumption that its result cannot be identified

by human eyes. We note that the protocol’s security cannot be guaranteed

if video filmed shuffle.

Algebraic MPC realizes secure protocols based on private randomness,

which is the assumption that each player can privately generate and use a

random number. On the other hand, card-based cryptography realizes MPC

protocols without private randomness by utilizing the physical assumption,

i.e., by using shuffles. Thus, card-based cryptography framework becomes

different from algebraic MPC’s one because of this card-oriented assumption.

Thus, card-based cryptography has been studied independently to algebraic

MPC and has constructed protocols from scratch.

In traditional card-based cryptography, protocols for logic gates have been

the central concern. This is because a combination of logic gates can compute

any Boolean function, and it is necessary to build a protocol from scratch.

The difference in frameworks of algebraic MPC and card-based cryptogra-

phy under the public model makes card-based cryptography difficult. Thus,

almost all traditional card-based cryptography concentrated on logical gates,

and there are few studies on the specialized construction for advanced func-

tions.

Although the combination of logic gates has the advantege of being gen-

eral, there may be a specific and more efficient construction for each function.

Thus, we focus on the specialized construction for each function to discover

a more efficient protocol.

Proposal of Private Permutations: We propose a new card-based cryp-
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tography model that is naturally derived from the private randomness of

algebraic MPC. Our model, called private model, allows players to use pri-

vate area, such as under the table or behind the player’s back.*6 That is, we

introduce the following two operations into card-based cryptography instead

of shuffle:

� Private Permutation (PP): Permute card order in private area

� Communication: hand over (or send) cards to another player.

In private model, shuffle can be interpreted as a combination of multiple

operations under the semi-honest assumption. For instance, we realize a ran-

dom bisection cut as follows: Alice first generates a random number rA and

permutes bisected cards rA times behind her back, and sends the permuted

cards to the other player, say Bob. Bob privately generates a random number

rB and permutes bisected cards rB times behind his back. If rA and rB are

kept private by Alice and Bob, respectively, this protocol shuffles bisected

cards rA + rB times, and no one can know the number of permutations.

Similarly, other shuffles can be achieved with two PPs and one commu-

nication. Thus, a protocol constructed on public model can also be realized

on private model.

Expected Results on Private model: In private model, operations, in-

cluding input, can be performed privately like algebraic MPC. As a result,

it is possible to break the lower bound of the number of cards in traditional

card-based cryptography. However, security is weakened in the sense that

semi-honest assumption is required.

Card-based cryptography becomes closer to algebraic MPC by removing

the physical assumption of shuffle and introducing private randomness. Table

1.1 summaries the correspondences between the operations of each model and

*6Private randomness in card-based cryptography is introduced independently by Marce-
done, Wen, and Shi [29]. Their protocol is described in Section 3.2.



1.4. MOTIVATION 21

algebraic MPC. From this table, we can see that our private model is closer

to algebraic MPC.

As mentioned above, public model requires that all operations, includ-

ing randomizations, are performed in public. This requirement has a large

gap with the private randomness of algebraic MPC. On the other hand, our

private model enables the players to perform privately similar to the private

randomness. It is noteworthy that public model does not have communica-

tion. This is because it is no matter who performs each process in a situation

where all operations are performed in public. Surprisingly, all operations can

be executed by one player in public model. This property has a large gap

with algebraic MPC.

In private model, there is no need to use commitment, i.e., two cards

to express one bit, for input by utilizing PP. For instance, in Chapter 3,

we will express 0 and 1 by do nothing and permute order by PP, which

means no additonal card is necessary to express an input value. Actually,

we can construct an n-bit input protocol with less than 2n cards by utilizing

PP. We show that protocols for logic gates, the threshold function, and the

millionaires’ problem with less than 2n cards in this thesis. These protocols

do not rely on the combination of logic gates. They are specialized for each

function and are more efficient than generic construction. Unfortunately,

our protocols for logic gates cannot be used for the combination with other

protocols. It is future work to verify whether efficiency can be improved even

in general constructions, such as the combination of logic gates.

It is also expected that algebraic MPC’s achievements can be returned

to card-based cryptography by closing the model gap between card-based

cryptography and algebraic MPC. We show that a new card-based proto-

col can be obtained by converting (algebraic) Yao’s millionaires’ protocol to

card-based cryptography. On the contrary, it is expected that card-based

cryptography can help algebraic MPC, which is the future work.
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1.5 Our Results

We propose a new assumption, “private permutation (PP),” as mentioned

in the previous section. PP enables us to the input representation without

using the commitment. As a result, we can construct the protocols with less

than the lower bound of cards in traditional card-based cryptography. We

propose several protocols for demonstrating PP’s power. We summarize our

results in Table 1.2 where n is the number of players and m is the bit length

of players’ inputs.

Chapter 3: We show that an n-input protocol can be constructed with

fewer cards than 2n. In traditional card-based cryptography, it is assumed

that all operations are performed in public. This assumption restricts the

input representation to use two face-down cards. PP removes this restriction

since the input value can be expressed with PP, e.g., defined by permuting

cards if the input value is 0. Doing nothing otherwise.

Chapter 3 shows the following three 2-bit input protocols using PP. Note

that the study of constructing logic gate protocols are fundamental in tradi-

tional card-based cryptography with shuffle.

� 3-card AND (proposed by Marcedone et al. [29])

� 3-card OR (This work)

� 2-card XOR (This work)

First, we show the protocol that is proposed by Marcedone, Wen, and Shi [29].

They succeeded in reducing the number of cards by the same idea to PP,

independently to our work.*7 The 3-card OR protocol is easily derived from

their AND protocol by De Morgan’s laws (described in Section 3.3.1). Also,

*7In [29], PP is realized PP by permuting cards in an empty room.
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we show the XOR protocol can be done with only two cards by a similar

technique in Section 3.3.2.

Chapter 4: Chapter 3 showed that PP works effectively for improving effi-

ciency in basic protocols for logic gates. We offer that PP also works effec-

tively for more advanced functions in this chapter. We propose the following

two protocols.

� 3-input majority voting protocol with four cards

� n-input threshold function protocol with n+ 1 cards

The 3-input majority voting protocol aims to obtain the voting result

with three voters who have Boolean inputs while keeping the input values

secret. The threshold function is a Boolean function to determine whether

x1 + x2 + · · · + xn ≥ t where the threshold value 0 ≤ t ≤ n. Note that the

threshold function is a generalization of majority voting.

Our idea is the following: The three-card AND and OR protocols de-

scribed in Chapter 3 can be extended to a 2-input 2-output protocol with

four cards that simultaneously obtains AND and OR results by utilizing the

symmetry between them. Our 3-input majority voting protocol is based on

this four-card AND/OR protocol without any additional cards (described in

Section 4.2). We show the outline of this protocol below:

We utilize the following relational expression.

If c = 0 : a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 2 ⇐⇒ a ∧ b = 1 (1.3)

If c = 1 : a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 1 ⇐⇒ a ∨ b = 1 (1.4)

Four-card AND/OR protocol is used to obtain a ∧ b and a ∨ b. After that,

the third player whose input is c chooses which one outputs by using PP, and

this action is her input. Namely, the third player uses no card to express her

input value.
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The lower bound of the number of cards is six for a 3-bit input protocol

in public model. We propose a protocol that beats the lower bound.

Our 3-input majority voting protocol can be extended to more partici-

pants. Furthermore, the threshold function can be reduced to the majority

voting by fixing some input values. From these facts, we can obtain a pro-

tocol for (t, n)-threshold function for any t and n (described in Section 4.3).

Our protocol is realized with n+1 cards. This result succeeds in reducing the

number of cards to below the traditional lower bound. Also, we evaluate a

card-based protocol by the number of PPs and communications as the com-

putational cost. As described in Section 1.4, a shuffle is interpreted as two

PPs and one communication. We convert a protocol in public model to a pro-

tocol in private model when comparing the efficiency between them. Then,

our threshold function protocol succeeds in reducing the number of PPs and

communications from 4n2 to n and 2n2 to n− 1, respectively. We note that

this protocol is not the general construction, such as the combination of logic

gates but specialized construction for the threshold function.

Chapter 5: By introducing PP, the frame of card-based cryptography be-

comes closer to that of algebraic MPC. To demonstrate this, we show that

a new card-based protocol can be obtained by converting Yao’s (algebraic)

millionaires’ protocol into a card-based protocol (described in Section 5.2)

The millionaires’ protocol is a comparison protocol for two m-bit values. We

note that at least 4m cards are necessary to construct the proposed protocol

in public model since this protocol has 2m-bit input. Our proposed protocol

can be easily derived if we understand the essence of Yao’s protocol. Also,

our protocol is considerably simplified thanks to the property of cards, which

strips away the complexities of the algebraic process. This is the first result

of obtaining a card-based protocol by converting an algebraic protocol. Al-

though this protocol is improved from the viewpoint of the number of PPs

and communications, the number of cards exponentially increases from the
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existing protocol, which is constructed by the combination of logic gates.

Thus, we propose efficient millionaires’ protocols in Section 5.3.2 by us-

ing bitwise representation of input values. First, we propose a millionaires’

protocol with 4m+ 2 cards. Thus, it does not succeed in breaking the lower

bound of the number of cards in public model, although it succeeds in re-

ducing the number of cards the above protocol. We show the outline of this

protocol below:

Let a = (am, . . . , a1) and b = (bm, . . . , b1) be binary inputs. Then, input

values are represented by two card representation as in public model , i.e.,

0 7→ ♣♥ and 1 7→ ♥♣. Thus, 4m cards are used for the input representa-

tion. This protocol adopts the bitwise comparison from the least significant

bit. Then, we want to extract information of the most significant bit that

holds ai 6= bi to determine if a > b. To achieve this, we prepare two additional

cards for the following two roles.

� output card : To be overwritten with bi if ai 6= bi

� dummy card : To be overwritten with bi if ai = bi

We note that bi shows whether ai > bi or not if ai 6= bi. Repeating this record-

ing process up to the most significant bit, the output card has information of

the most significant bit that holds ai 6= bi. Then, the reason why the output

and dummy cards are one card respectively is that one-card representation

is sufficient, such as 0 7→ ♣ and 1 7→ ♥. Namely, bi is recorded as one-card

representation. To realize this process, a player Alice sends her bit ai to the

other player Bob, and Bob compares and overwrites according to the above

rules. Of course, the outline given here does not consider confidentiality. In

the actual protocol, Alice sends ai or ¬ai to achieve confidentiality. It does

not seem that Bob can correctly overwrite in this case. However, our proto-

col provides both the correct overwriting and confidentiality. The interesting
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point is that this protocol’s main idea is related to the famous logic puzzle,

“The fork in the road.” *8

This protocol does not succeed in breaking the lower bound of the num-

ber of cards because input values are expressed as traditional card-based

cryptography, i.e., two cards per bit. We show that further improvement is

possible for the number of cards by applying the idea of expressing the input

values with PP as in Chapters 3 and 4. In the original protocol, overwrit-

ten cards, i.e., output/dummy cards, are discarded without opening since

these cards have input value information. On the other hand, our improved

protocol reuses these discarded cards. Two players randomize the reused

cards each other before reusing them to delete the input value information.

Then, this protocol adopts two-card representation for output/dummy cards

since once-card representation cannot be randomized. The reused cards are

utilizes for expressing players’ input values. As a result, our improvement

enables us to solve the millionaires’ problem with only six cards, which is the

most significant result to show the power of PP (described in Section 5.3.3).

1.6 Organization of This Thesis

The remaining part of this thesis is organized as follows: We introduce several

notations, basic operations of cards, including PP, and the security notion

for card-based cryptography in Chapter 2. Chapter 3 presents card-based

protocols for logic gates by utilizing PP. In Chapter 4, we first show how to

merge the 3-card AND and three-card OR protocols into 4-card AND/OR

*8 This problem is summarized as follows: An logician finds himself on an island in-
habited by two tribes: liars and truth-tellers. Members of the one tribe always tell the
truth, whereas members of the other tribe always tell lies. The logician reaches a fork in a
road and has to ask a native bystander which branch he should take to reach the village.
He has no way of telling whether the native is a truth-teller or a liar. The logician only
asks one question. From the reply he knows which road to take. What question does he
ask? [19, p.25]
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protocol. Then, we propose 3-input majority voting protocol and threshold

function protocol based on the 4-card AND/OR protocol. Chapter 5 is de-

voted to the proposal of millionaires’ protocol. We first show how to convert

algebraic Yao’s protocol into a card-based protocol. Then, we propose an-

other millionaires’ protocol that is utilizing the idea of the logic puzzle “The

fork in the road.” We conclude this thesis in Chapter 6.
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Table 1.2: Summary of Our Results

Protocol References # of PPs # of Comm. # of Cards

OR Mizuki et al. [35] 3 2 4
Sect. 3.3.1 2 1 3

XOR Mizuki–Sone [38] 2 1 4
Sect. 3.3.2 2 1 2

Majority Voting Nishida et al. [45] 5 3 8
with 3 inputs Sect. 4.2 3 2 4

Threshold Nishida et al. [44] 4n2 2n2 2n+ 2
Function Sect. 4.3 n n− 1 n+ 1

Nishida et al. [44] 6m− 5 12m− 10 4m+ 2
Millionaires’ Sect. 5.2 1 2 2 · 2m
Problem Sect. 5.3.2 2m 2m+ 1 4m+ 2

Sect. 5.3.3 2m 2m+ 1 6



Chapter 2

Preliminaries

2.1 Notations and Basic Operations in Card-

based Cryptography

In card-based cryptography, we normally use two types of cards such as ♣
and ♥.*1 We assume that two cards with the same mark are indistinguish-

able. We also assume that all cards have the same design on their reverse

sides, and that they are indistinguishable and represented as ? . While some

studies uses information on the top and bottom of marks such as ♣ and

♣

[37], we do not apply this method and assume that there is only one card

orientation. The Boolean values 0 and 1 are encoded as ♣♥ and ♥♣, re-

spectively. Note that we regard a card order as a vector. In this thesis, we use

the following fundamental card operations [36]. Note that these operations

are executed publicly.

� Face up: ? 7→ ♣, ? 7→ ♥

*1There are also researches that uses different cards such as ordinary playing cards
[31,43], polygonal cards [54] and polarizing plates [55].

29
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� Face down: ♣ 7→ ? , ♥ 7→ ?

� Public permutation: e.g., ♣♣♥ 7→ ♥♣♣

A pair of face-down cards for the Boolean value x ∈ {0, 1}, is called

commitment. In particular, the permutation for a commitment is referred to

as swap.

For simplicity, ♣ and ♥ are represented as ♣ and ♥, respectively.

2.2 Shuffles and Private Permutation

2.2.1 Shuffles Used in Previous Works

den Boer utilized the shuffle, called random cut, to realize five-card AND

protocol in non-committed format [15]. The random cut is one of the shuf-

fles that repeats the procedure of moving the first card to the end until all

players cannot specify the result. Crepeau–Kilian [12], Niemi–Renvall [43],

and Stiglic [57] also used this shuffle to construct card-based AND protocol,

in committed format with ten-card, twelve-card, and eight-card respectively.

After that, Mizuki and Sone succeeded in reducsing the number of cards by

introducing the new shuffle random bisection cut [38].

Random Bisection Cut. This is a key technique to realize efficient card-based

protocols for logic gates, e.g., four-card AND protocol in non-committed

format [35] and six-card AND protocol in committed format [38], which is

described as follows:

For a positive integer v, suppose that there is a sequence of 2v face-down

cards. Denote the left and right halves by u⃗1 and u⃗2, respectively. Namely,
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we define

v cards︷ ︸︸ ︷
? ? · · · ?︸ ︷︷ ︸

=:u⃗1

v cards︷ ︸︸ ︷
? ? · · · ?︸ ︷︷ ︸

=:u⃗2

. (2.1)

Then, u⃗1 and u⃗2 are interchanged or left unchanged with probability 1/2.

Depicting this by using figures, one of either

? ? · · · ?︸ ︷︷ ︸
u⃗1

? ? · · · ?︸ ︷︷ ︸
u⃗2

or ? ? · · · ?︸ ︷︷ ︸
u⃗2

? ? · · · ?︸ ︷︷ ︸
u⃗1

(2.2)

is selected with a probability 1/2. This operation, called random bisection

cut, is executed in public, but it is assumed that no player knows whether

one of the above is selected.

Although the random bisection cut contributes to the efficiency of card-

based protocols, it is arguable whether this shuffle, which has only two results,

can realize uniformly at random with human hands in public [44,59].

Non-uniform Shuffle. While it is assumed that the results are chosen uni-

formly at random in the random cut and random bisection cut, there are

also shuffles that are assumed to be the results are chosen with non-uniform

probability. Koch, Walzer, and Härtel utilized such non-uniform shuffles to

reduce the number of cards further [27]. However, it is controversial whether

non-uniform shuffles can be implemented with only human hands [46].

2.2.2 Proposal of Private Permutations

The shuffle is regarded as a convenient randomization technique for imple-

menting card-based cryptography. However, the assumption of shuffle is

card-oriented, as is pointed out in Section 1.4. The shuffle is a key technique

that realizes card-oriented protocols, but it also causes a gap with algebraic
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MPC. Concretely, algebraic MPC cannot accept the following assumptions:

� All players cannot identify the random number even if it is generated

in public area.

� Every player cannot know the random number which is generated by

him/herself.

Both assumptions are natural for real shuffles, e.g., in playing cards. On the

other hand, the shuffle used in card-based cryptography does not completely

randomize cards, unlike used in general card games. Thus the shuffle used

in card-based cryptography has a problem in them feasibility even if it is

accepted that they are based on card-oriented properties.

In order to solve these problems, we introduce new card operations pri-

vate permutation (PP) and communication instead of the shuffle. PP allows

us to construct card-based protocols with the private randomness like alge-

braic MPC, e.g., by permuting cards behind the player’s back. It becomes

necessary to clarify who perform the operation as a result of introducing the

private randomness in card-based cryptography. Thus we introduce an oper-

ation to hand cards to other players, i.e., communication, in order to make

it clear who owns the cards. As a result, shuffles are not interpreted as one

operation but as being realized by multiple operations in our model.

Concretely, a random bisection cut by Alice can be realized as follows:

Alice first generates a random number rA and permutes the bisected cards

rA times behind her back and sends the permuted cards to the other player,

say Bob. Bob privately generates a random number rB and permutes the

bisected cards rB times behind his back. If rA and rB are kept private by

Alice and Bob, respectively, this protocol permutes the bisected cards rA+rB

times, and no one can know the number of permutations.

We fomalize PP as follows: For a positive integer t, let c⃗ ∈ {♣,♥}t be
a vector consisting of t face-down cards. For a set Pt of all permutations
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over [t] := {1, 2, . . . , t}, let Rt ⊂ Pt be a set of possible permutations. We

also define Rt = {π0, π1, . . . , π|Rt|−1}, where πi denotes a permutation over

[t]. Then, for a positive integer t and a set of possible permutations Rt, the

private permutation is defined as follows:

PP
[t]
Rt
(c⃗, s) := πs(c⃗), s = 0, 1, . . . , |Rt| − 1. (2.3)

Note that the same function was introduced in the previous works [27,36]

although we impose an additional assumption on this function. Namely, we

assume that the player executing PP
[t]
Rt

keeps s secret, whereas he/she makes

the other parameters public, which is easy to realize by permuting the cards

behind the player’s back. We note that, not only the random bisection cut,

but also several different types of shuffles, e.g., in [43], can be realized by

PPs by specifying Rt appropriately.

For instance, consider the set of permutations capable of randomly inter-

changing the first and the latter halves of a vector as follows: For a positive

integer v, let Rbc
2v := {π0, π1} ⊂ P2v where

π0 := (1, . . . , v, v + 1, . . . , 2v), and π1 := (v + 1, . . . , 2v, 1, . . . , v). (2.4)

Eq. 2.4 means that π0(c⃗) = (u⃗1, u⃗2) and π1(c⃗) = (u⃗2, u⃗1) for c⃗ := (u⃗1, u⃗2)

given by (2.1). Then, the random bisection cut for 2v cards is represented as

PP
[2v]

Rbc
2v
(c⃗, s) = πs(c⃗) where s is chosen from {0, 1} uniformly at random and

it is known only by the player executing this operation. In executing the

random bisection cut, for a card order c⃗, Alice executes PP
[2v]

Rbc
2v
(c⃗, rA) =: c⃗′ by

using her private randomness rA ∈ {0, 1}, and c⃗′ is sent to Bob. Bob also

executes PP
[2v]

Rbc
2v
(c⃗′, rB) by using his private randomness rB ∈ {0, 1}.

In most of previous works, all operations are performed in public so as

to avoid cheating. On the other hand, our card-based protocols are realized

under the semi-honest model since we adopt the operation of executing in
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player’s private area.*2

Efficiency Measures. Most of the previous work, e.g., [36,54], considered the

number of shuffles as the computational complexity since shuffle is the most

time-consuming operation. On the other hand, in this thesis we consider

that the computational complexity is evaluated by the number of PPs and

communications since such measures are suitable for algebraic MPC. In this

thesis, successive PPs executed by one player without communication and/or

face up is counted as one PP since the composition of permutations is also

regarded as a permutation and the subsequent private permutation can be

executed at once behind the player’s back.

2.3 Example: Six-card AND Protocol

In order to clarify the difference between shuffles and PPs, we show two

kinds of implementations of six-card AND protocol [38], namely, we show

the protocol realized by using shuffles (Protocol 1) and PPs (Protocol 2),

respectively. Note that all operations in protocols 1 are executed in public.

On the other hand, there are both private and public operations in protocol

2, so that it needs to be clearly distinguished whether the operation is private

or public and who perform the operations.

We assume that two players, Alice and Bob, hold secret bits a ∈ {0, 1} and
b ∈ {0, 1}, respectively, and they wish to calculate a ∧ b without revealing

information of their inputs. We introduce the six-card AND protocol [38]

realizing this requirement.

*2It is known that malicious behaviors can be detected by having players act as monitors
in a particular protocol [2].
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2.4 Security Notion

Throughout this thesis, we assume that both Alice and Bob are semi-honest

players. Following [11], we introduce the security notion (perfect secrecy) of

card-based cryptography for the millionaires’ problem.

In defining the security of card-based cryptography, view plays a key role.

View is roughly defined to be a vector of random variables*3 to the data

that each player can obtain in the protocol. Specifically, view includes the

randomvariables corresponding to the input of the player, the output of the

protocol, public information all players can gain, and random values which

are used when the player makes a random choice.

For i ∈ [m], let xi be n-bit integers representing the input values of

player Pi. The common output of the protocol for all players is represented

as χ(x1, x2, . . . , xm). The information obtained by each player in the protocol

can be classified into private information denoted by ri for each i ∈ [m], and

public information denoted by λ.

Hence, view of Pi can be described as the sequence of random variables

corresponding to her/his input value xi, output of the protocol, private infor-

mation ri and public information λ. The private information ri is the random

number generated by Pi for PPs. The public information is the cards that the

players made public by turning them face-up. Note that, in algebraic MPC,

view includes information that each player receives via private channel, but in

card-based cryptography, there is no private channel. Only face-up cards can

reveal information, and hence, we can define the face-up cards are included

in the view as public information. Let Xi, Ri, and Λ be random variables

corresponding to the values xi, ri, and λ, respectively. Then, the views of Pi

*3Throughout the thesis, random variables are represented by capital letters. The prob-
ability that a random variable X takes a value x is represented by Pr{X = x} which is
also written as PX(x) for short. Mathematically, a random variable is defined to be a map
from probability space to the set of real numbers. However, for simplicity, we allow the
cards ♣,♥ to be treated as the values of random variables.
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are represented as (Xi, χ(X1, X2, . . . , Xn), RA,Λ).

Intuitively, if private and public information of Pi can be simulated from

her/his input and output for all i ∈ [m], we can say that no information is

contained in the private and public information other than her/his input and

output. Hence, we can formulate perfect secrecy of card-based cryptography

for the millionaires’ problem as follows:

Definition 1 (Perfect secrecy) Consider a card-based protocol for players

P1, P2, . . . , Pm. We say that the card-based protocol is perfectly secure if for

all i ∈ [m], there exist simulators Si such that for all possible input values of

the protocol, it holds that

Si(xi, χ(x1, x2, . . . , xm))
perf
≡ (a, χ(x1, x2, . . . , xm), RA,Λ) (2.7)

where U
perf
≡ V means that the each probability distribution QU , QV corre-

sponding to the random variables U and V , respectively, are perfectly the

same.
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Protocol 1 Six-card AND Protocol [38] (Using Shuffle)

1) Set up the initial value (a, 0, b) represented by the commitments of six
cards.

2) Apply π := (1, 3, 4, 2, 5, 6) to the card order prepared in the step 1).

3) Execute a random bisection cut for these six cards.

4) Apply π−1 := (1, 4, 2, 3, 5, 6) to the card order obtained in step 3). Note
that the result of 2)–4) is either (a, 0, b) or (¬a, b, 0) with probability
1/2.

5) Open the first bit. If it is 0, then output the second bit. Otherwise,
output the third bit. Graphically, this step is represented as

♣♥
output︷︸︸︷
? ? ? ? or ♥♣ ? ?

output︷︸︸︷
? ? .
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Protocol 2 Six-card AND Protocol [38] (Using PPs)

1) Set up the initial value c = (a, 0, b) represented by the commitments of
six cards. First, one of both players, say Alice, holds these six cards.

2) Alice applies π = (1, 3, 4, 2, 5, 6) to c in public. Let the sequence exe-
cuted this permutation be c′.

3-i) Alice privately executes the following PP with respect to Rbc
6 which is

defined in (2.4) with v = 3.

cA := PP
[6]

Rbc
6
(c′, rA) (2.5)

where Rbc
6 := {π0, π1} is given by (2.4) with v = 3 and rA ∈ {0, 1} is

chosen uniformly at random.

3-ii) Alice sends cA to Bob.

3-iii) Bob privately executes the following PP.

cB := PP
[6]

Rbc
6
(cA, rB) (2.6)

where rB ∈ {0, 1} is chosen uniformly at random.

4) Bob executes π−1 = (1, 4, 2, 3, 5, 6) to cB in public.

5) Bob reveals the first bit in public. If it represents 0, then output the
2nd bit. Otherwise, output the 3rd bit.



Chapter 3

Securely Computing Logic

Gates

3.1 Introduction

In traditional card-based cryptography, it is necessary for an n-bit input

protocol to use at least 2n cards since two cards are required for the arbitrary

expression of a 1-bit value. This restriction is due to the assumption that

all operations are performed in public, and as a result, face-down cards are

the only way to secure input representation. On the other hand, we remove

this assumption by introducing PP. PP allows us to represent an input value

in another way, e.g., privately permute cards only when the input value is 1

and makes it possible to construct a protocol with fewer cards than the lower

bounds of traditional card-based cryptography.

In this chapter, we demonstrate that 2-bit input protocols can be con-

structed with less than four cards. Proposed protocols are for logic gates,

which are the main focus of study in card-based cryptography. First we

describe the three-card AND protocol proposed by Marcedone, Wen, and

Shi [29]. They introduced the private operation to card-based cryptography

39
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Table 3.1: Summary of Our Results in Chap. 3

Protocol References # of PPs # of comm. # of Cards

AND Mizuki et al. [35] 3 2 4
Marcedone et al. [29] 2 1 3

OR Mizuki et al. [35] 3 2 4
This work [Sect. 3.3] 2 1 3

XOR Mizuki–Sone [38] 2 1 4
This work [Sect. 3.3] 2 1 2

independently and succeeded in reducing the number of cards. We construct

three-card OR protocol by applying De Morgan’s law to their protocol. As a

result, our protocol becomes symmetrical to three-card AND protocol. Also,

we show that XOR protocol can easily be obtained with only two cards.

We summarize our result in Table 3.1. In this chapter, let a and b be the

binary inputs of Alice and Bob, respectively.

Organization: In Section 3.2 we introduce the three-card AND protocol

proposed by Marcedone, Wen, and Shi [29]. Based on their protocol, we

propose three-card AND and two-card OR protocols in Section 3.3. Section

3.4 is the summary of this chapter.

3.2 Our Idea: Three-card AND Protocol

In the Epilogue in [29] (Solution B), the three-card AND protocol is proposed

as shown in Protocol 3.*1 We note that step 2) is realized with following PP:

PP
[2]

Rbc
2
(c⃗, b) := c⃗′ (3.1)

where Rbc
2 := {π0, π1}, π0 := (1, 2) and π1 := (2, 1).

*1Slightly modified for later discussion, but essentially the same as the protocol in [29].
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Protocol 3 Three-card AND Protocol [29]

Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Alice has ♣♥. Bob has ♣.

1) Alice performs the following operation.

� If a = 0, sends face-down ♣ to Bob.

� If a = 1, sends face-down ♥ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, places face-down ♣ to the left side of the receiced card.

� If a = 1, places face-down ♣ to the right side of the receiced card.

3) Open the right card in public area.

� If this card is ♣, then a ∧ b = 0.

� If this card is ♥, then a ∧ b = 1.

Table 3.2 shows the correspondence between the card order at the end of

step 2) and the output of the protocol. Subscripts of ♣ and ♥ indicate the

player who had the card originally.*2

We also note that Bob’s input at step 3) in Protocol 3 is not represented

by the suit of the card but is represented by the action taken by Bob, i.e.,

Bob’s value corresponds to his choice of left or right where he places his ♣.

Table 3.2: Three-card AND protocol

a b Step 2) Output

0 0 ♣Bob ♣Alice 0 (♣Bob)
0 1 ♣Alice ♣Bob 0 (♣Alice)
1 0 ♣Bob ♥Alice 0 (♣Bob)
1 1 ♥Alice ♣Bob 1 (♥Alice)

*2Hereafter, we remove the frame of cards for simplicity.
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In this study, we utilize this idea to express a player’s input by his/her action

and succeed in reducing the number of cards compared to previous work.

Security Proof of three-card AND protocol: We present a brief overview of the

security proof for Protocol 3, which will be useful to understand the security

of the protocols proposed hereafter.

Since we compute AND, the player who inputs 1 can uniquely determine

the other player’s input at the end of the protocol. Meanwhile, for the player

who inputs 0, no information must leak out to the player, which we have to

check. When Alice inputs a = 0 (♣), the output is either ♣Alice or ♣Bob,

which is opened by Bob and is indistinguishable from Alice. When Bob

inputs b = 0, he places his ♣ on the left, and he simply shows his card to

Alice. Hence, he obtains no information on Alice’s input, which is discarded

at the end of the protocol.

It is clear that no information is obtained by the players other than Alice

and Bob (if such players exist) because the only information they can get is

the output. □

3.3 Logic Gate Protocols

In this section, we show the two types of card-based protocol for OR and

XOR operations. We first show how to obtain three-card OR protocol based

on the three-card AND protocol by De Morgan’s law. After that, we propose

two-card XOR protocol.

3.3.1 Three-card OR Protocol

Although the concept of PPs is implicitly used in [29], this paper only concen-

trated on the construction of card-based AND protocols, and no card-based

protocols were shown for the other logic gates. Hereafter, we show card-based
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Protocol 4 Three-card OR Protocol
Inputs: Alice has a ∈ {0, 1}, and Bob has b ∈ {0, 1}.
Setup: Alice has ♣♥. Bob has ♣.

1) Alice performs the following operation.

� If a = 0, sends face-down ♥ to Bob.

� If a = 1, sends face-down ♣ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, places face-down ♣ to the right side of the receiced card.

� If a = 1, places face-down ♣ to the left side of the receiced card.

3) Open the left card in public area.

� If this card is ♥, then a ∨ b = 0.

� If this card is ♣, then a ∨ b = 1.

protocols for computing OR and XOR, which are realized with three and two

cards, respectively.

To construct card-based OR protocols, we should recall De Morgan’s law:

a ∨ b = ¬(¬a ∧ ¬b). The card-based OR protocol can be obtained from this

identity by negating Alice’s input, Bob’s input, and the output. Specifically,

when Alice inputs a = 0, she should use ♥ (otherwise ♣), and when Bob

inputs b = 0, he should place ♣ to the right of the card he received. Finally,

Table 3.3: Three-card OR Protocol

a b Step 2) Output

0 0 ♥Alice ♣Bob 0 (♥Alice)
0 1 ♣Bob ♥Alice 1 (♣Bob)
1 0 ♣Alice ♥Bob 1 (♣Alice)
1 1 ♣Bob ♣Alice 1 (♣Bob)
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Protocol 5 Two-card XOR Protocol
Inputs: Alice has a ∈ {0, 1} and Bob has b ∈ {0, 1}.
Initial Setting: Alice has ♣♥. Bob has no card.

1) Alice performs the following operation.

� If a = 0, sends face-down ♣♥ to Bob.

� If a = 1, sends face-down ♥♣ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, do nothing.

� If b = 1, swaps the received cards.

3) Open the two cards in public area.

� If these cards are ♣♥, then a⊕ b = 0.

� If these cards are ♥♣, then a⊕ b = 1.

the output should be negated. Then, we have Protocol 4, where the different

parts from Protocol 3 are underlined.

The relation among the inputs, the card order at the end of step 2), and

the output is shown in Table 3.3. Security proof is not necessary since this

protocol is essentially the same as Protocol 3.

3.3.2 Two-card XOR Protocol

The proposed two-card XOR protocol is shown in Protocol 5. In this protocol,

PPs are used in steps 1) and 2). The relationships among the inputs, the

pair of cards at the end of step 2), and the output is shown in Table 3.4.

Security of Two-card XOR Protocol: For Alice and Bob, there is no infor-

mation to be kept secret because, if the value of XOR and one of the two

inputs are given, the other input is uniquely determined. Furthermore, no
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Table 3.4: Two-card XOR Protocol

a b Step 2) Output

0 0 ♣ ♥ 0 (♣♥)
0 1 ♣ ♥ 1 (♥♣)
1 0 ♥ ♣ 1 (♥♣)
1 1 ♥ ♣ 0 (♣♥)

information except for the output is known to the players other than Alice

and Bob.

It is clear that no information is obtained by the players other than Alice

and Bob (if such players exist) because the only information they can get is

the output. □

3.4 Results and Discussion

In traditional card-based cryptography, it is necessary to use at least 2n cards

to realize an n-bit input protocol. This lower bound is due to the constraint

that input values must be represented by cards. However, PP removes this

restriction and enables us to construct a protocol with less than the lower

bound. In Chapter 3, we showed the following 2-bit input protocols could be

constructed with less than four cards.

� Section 3.2: three-card AND protocol proposed by Marcedone et al. [29]

� Section 3.3.1: three-card OR protocol

� Section 3.3.2: two-card XOR protocol

In this chapter, we focus on logic gates, which are the mainstream in

previous works. We succeeded in reducing the number of cards in these basic

protocols. The remaining chapter shows that more advanced protocols, such
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as the threshold function and millionaires’ protocol, can also be improved

utilizing PP.



Chapter 4

Securely Computing Threshold

Function

4.1 Introduction

Chapter 3 showed that 2-bit input logic gates could be securely computed

with less than four cards. This result offers that PP is useful for reducing

the number of cards, using the basic protocols as an example. On the other

hand, the number of PPs and communications is not reduced since the logic

gates are basic functions, and thus there is no room for the reduction. In

this chapter, we propose a protocol for more advanced functions such as the

threshold function, which is efficient not only for the number of cards but

also for the number of PPs and communications.

Our Idea: The interesting points of card-based AND and OR protocols,

described in Chapter 3, are not only that we can substantially reduce the

number of cards, but we can also simultaneously realize AND and OR op-

erations. This simultaneous realization enables us to implement the 3-input

majority voting protocol with only four cards.

Our main idea for 3-input majority voting is to utilize the simultaneous

47
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realization of AND and OR operations. Observing the relations for a, b ∈
{0, 1},

a ∧ b = 1 ⇐⇒ a+ b ≥ 2

a ∨ b = 1 ⇐⇒ a+ b ≥ 1

it seems that a ∧ b and a ∨ b can be interpreted as the interim result of

the majority voting, respectively. Here, we consider the strategy that a ∧ b

and a ∨ b is passed to the third player, who holds c ∈ {0, 1}, for computing

the result of three-inputs majority voting. Then, we can understand that it

is different whether the desired value for the third player is a ∧ b or a ∨ b

depending on c from the following trivial relations,

if c = 0 then, a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 2,

if c = 1 then, a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 1.

Therefore, the third party should choose one of them depending on her input

c to obtain the result of the majority voting. Then, we note that the third

player needs not to use any card since she plays only the role of selecting a∧b

or a ∨ b, which are created by the other two players. In other words, we can

obtain a protocol for three-input majority voting without adding any cards

from simultaneous AND and OR protocol, i.e., we can construct it using only

four cards.

Our protocol for 3-input majority voting can be extended for more vot-

ers. Utilizing this fact, we construct a threshold function protocol by the

reduction to the majority votings. More formally, we utilize the following

property:

Let Πt,n be a protocol for threshold function where t is a threshold value

and n is the number of participants. Then Πt,n = Πt,n−1 holds if one of the

input values is fixed to 1.
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Table 4.1: Summary of Our Results in Chap. 4

Protocol References # of PPs # of comm. # of Cards

Majority Voting Nishida et al. [45] 5 3 8
with 3 inputs This work [Sect. 4.2] 3 2 4

Threshold Nishida et al. [44] 4n2 2n2 2n+ 2
Function This work [Sect. 4.3] n n− 1 n+ 1

This reduction is realized by setting up dummy participants whose in-

puts are fixed to 1. As a result, we obtain threshold function protocol with

n + 1 cards, which is fewer than the lower bound of traditional card-based

cryptography.

Organization: In Section 4.2, we first show how to obtain AND and OR

results simultaneously with four cards. We propose 3-input majority voting

protocol based on this protocol without additional cards. Also, we show that

this protocol can be extended to a protocol for the threshold function in

Section 4.3. Section 4.4 is the summary of this chapter.

4.2 Three-input Majority Voting Protocol with

Four Cards

Based on the observations on the three-card AND/OR protocols, we propose

a three-input majority voting protocol that uses only four cards. Consider

the scenario such that Alice, Bob, and Carol have their binary values a, b,

and c, respectively. They want to know the result of majority voting without

revealing their individual inputs.

Two types of realizations of such a majority voting protocol can be con-

sidered. One realization is computing the summation s := a+ b+ c and then

output s, which tells us which is the majority [32]. The other realization
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is to output 0 if the majority is 0, otherwise output 1 [58]. In this study,

we focus on the latter since it is more secure and theoretically interesting.

Specifically, we want to compute the following function maj(a, b, c) ∈ {0, 1}
securely:

maj3(a, b, c) =

{
0, if a+ b+ c ≤ 1

1, if a+ b+ c ≥ 2.
(4.1)

4.2.1 Idea behind Our Three-input Majority Voting

Protocol

Assume that Alice, Bob, and Carol vote a, b, and c, respectively, in this

order. We focus on the Carol’s vote c ∈ {0, 1}.
In the case of c = 0, the following relationship holds.

a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 2 ⇐⇒ a ∧ b = 1 (4.2)

This relationship implies that a∧ b is the result of the majority voting when

c = 0.

Meanwhile, in the case of c = 1, we have the following relationship:

a+ b+ c ≥ 2 ⇐⇒ a+ b ≥ 1 ⇐⇒ a ∨ b = 1 (4.3)

Hence, a ∨ b is the result of the majority voting when c = 1.

Summarizing, we have

maj3(a, b, c) =

{
a ∧ b, if c = 0

a ∨ b, if c = 1,
(4.4)

which can be calculated securely if we can merge the AND and OR protocols

in Protocols 3 and 4, respectively. In fact, such unification is possible by
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Protocol 6 Modified Three-card OR Protocol
Inputs: Alice has a ∈ {0, 1} and Bob has b ∈ {0, 1}.
Setup: Alice has ♣♥ and Bob has ♥.

1) Alice performs the following operation.

� If a = 0, sends face-down ♣ to Bob.

� If a = 1, sends face-down ♥ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, places face-down ♥ to the left side of the receiced card.

� If b = 1, places face-down ♥ to the right side of the receiced card.

3) Open the right card in public area.

� If this card is ♣, then a ∨ b = 0.

� If this card is ♥, then a ∨ b = 1.

using four cards, which will be explained in the next subsection.

4.2.2 Unifying AND and OR Operations

The unrevealed card in step 3) is not utilized in this step for the three-card

AND and OR protocols in Protocols 3 and 4. Our main idea to simultane-

ously obtain a ∧ b and a ∨ b is that the wasted card is also effectively used

for representing output value.

Table 4.2: Modified Three-card OR Protocol

a b Step 2) Output

0 0 ♥Bob ♣Alice 0 (♣Alice)
0 1 ♣Alice ♥Bob 1 (♥Bob)
1 0 ♥Bob ♥Alice 1 (♥Alice)
1 1 ♥Alice ♥Bob 1 (♥Bob)
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These protocols are essentially the same based on De Morgan’s law.

Hence, they are symmetric form, and so, the unrevealed card is on the same

side, i.e., the right side. We first modify our three-card OR protocol to resolve

this match since it will hinder the simultaneous realization of them.

Modification of Three-card OR Protocol.

To obtain the unified protocol, we should reverse the left and right of the

card Bob chose for output in step 3) of Protocol 4. Then, we note that the

format of output values for Protocols 3 and 4 must be the same, i.e., we

should also resolve the problem which the correspondence between the suit

and output value is reversed in this protocol as seen in Tables 3.2 and 3.3.

We exchange ♣ and ♥ in Protocol 4 based on the above discussion. More-

over, we swap the left and right side Bob selected in step 2) of Protocol 4 in

order to make a∨ b place on the right side, i.e., the opposite side of Protocol

3. Then, we obtain Protocol 6 from Protocol 4. The relationships among the

input and the output are shown in Table 4.2.

Four-card AND/OR Protocol.

Observe that the right card and the left card are discarded at the end of the

protocol in both Protocols 3 and 6, respectively. We also observe that Bob

has ♣ and ♥ at step 1) in both Protocols 3 and 6, respectively. From these

observations, we can merge Protocols 3 and 6 by letting Bob have both of

them, i.e., ♣ and ♥, in the initial setup. Then, we can implement the results

of AND and OR simultaneously with four cards, as shown in Protocol 7.

We show in the next section that this four-card AND/OR protocol is

useful in calculating the three-inputs majority voting with only four cards.
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Protocol 7 Four-card AND/OR protocol

Inputs: Alice has a ∈ {0, 1} and Bob has b ∈ {0, 1}.
Setup: Each of Alice and Bob has ♣♥.

1) Alice performs the following operation.

� If a = 0, sends face-down ♣ to Bob.

� If a = 1, sends face-down ♥ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, places face-down ♣ on the left side of the received card.

� If b = 1, places face-down ♥ on the right side of the received card.

3) Let 0 7→ ♣ and 1 7→ ♥. Then, the left card expresses a ∧ b and the right
card expresses a ∨ b.

4.2.3 Three-input Majority Voting Protocol with Four

Cards

Based on the four-card AND/OR protocol, it is easy to compute the majority

voting protocol. First, Alice and Bob compute a∧b and a∨b simultaneously,

where the result is concealed. Then, Carol chooses a ∧ b or a ∨ b depending

on c = 0 or c = 1, respectively, behind her back. The detailed algorithm is

shown in Protocol 8. Formally, step 4) is performed with the same PP as

(3.1) in Chapter 3. Then, the left card is the picked out card.

Table 4.3 shows the pair of cards at the end of step 2) and the output.

Note that the third player, Carol, has no card for her input since her role is

to choose a ∧ b or a ∨ b by PP. Thus, our protocol for the three-inputs ma-

jority voting does not require any additional card from four-card AND/OR

protocol.
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Protocol 8 Three-input Majority Voting Protocol

Inputs: Alice has a ∈ {0, 1}, Bob has b ∈ {0, 1}, and Carol has c ∈ {0, 1}.
Setup: Alice and Bob each have a pair ♣♥. Carol has no card.

1) Alice performs the following operation.

� If a = 0, sends face-down ♣ to Bob.

� If a = 1, sends face-down ♥ to Bob.

2) Bob performs the following operation with PP.

� If b = 0, places face-down ♣ on the left side of the received card.

� If b = 1, places face-down ♥ on the right side of the received card.

3) Bob sends the two cards to Carol.

4) Carol performs the following operation with PP.

� If c = 0, picks out the left card of the received card.

� If c = 1, picks out the right card of the received card.

5) Open the picked out card in public area.

� If this card is ♣, then the output value is 0.

� If this card is ♥, then the output value is 1.

4.3 Card-based Threshold Function Protocol

In this section, we show a new protocol for the threshold function by general-

izing Protocol 8. Let x1, x2, . . . , xn be Boolean inputs of n players P1, . . . , Pn

respectively. Then, our (t, n)-threshold function protocol aims to compute

the following function without revealing input values.

f(t,n)(x1, . . . , xn) =

{
0, if

∑n
i=1 xi < t

1, otherwise
(4.5)
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Table 4.3: Three-input Majority Voting

a b c Step 2) Output

0 0 0 ♣Bob ♣Alice 0 (♣Bob)
0 1 0 ♣Alice ♥Bob 0 (♣Alice)
1 0 0 ♣Bob ♥Alice 0 (♣Bob)
1 1 0 ♥Alice ♥Bob 1 (♥Alice)
0 0 1 ♣Bob ♣Alice 0 (♣Alice)
0 1 1 ♣Alice ♥Bob 1 (♥Bob)
1 0 1 ♣Bob ♥Alice 1 (♥Alice)
1 1 1 ♥Alice ♥Bob 1 (♥Bob)

4.3.1 Extending to n-input Majority Voting Protocol

We first show that our three-input majority voting protocol, shown in Section

4.2.3, can be extended to n-input majority voting protocol. Here, we define

the function for n-input majority voting as follows. *1

majn(x1, . . . , xn) =

{
0, if

∑n
i=1 xi < n/2

1, otherwise
(4.6)

The first step for generalizing the number of inputs is to focus on the three

players, Alice, Bob, and Carol, in our three-input majority voting protocol.

We will discuss the roles of the first half players (Alice, Bob) who use cards

for input and the second half (Carol) who does not use cards for input. Here,

Table 4.4 summarizes the relationship between input and output focus on the

input values’ sum.

In Section 4.2, Carol’s operation was explained as an operation of “se-

lecting an output card,” but in this section, it is interpreted as the operation

of “removing unnecessary cards” for generalization. In other words, we in-

terpret Carol’s role as removing the right card if c = 0 and removing the left

*1Note that 1 is output if n is even and the number of inputs of 0 and 1 are the same.
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Table 4.4: Mechanism of Three-input Majority Voting Protocol

Received Cards Output Output
a+ b of Carol (c = 0) (c = 1)

0 ♣♣ ♣ ♣
1 ♣♥ ♣ ♥
2 ♥♥ ♥ ♥

Table 4.5: Mechanism of n-input Majority Voting Protocol (Case of n = 5)

Received Cards Output Output Output
x1 + x2 + x3 of P4 (x4 + x5 = 0) (x4 + x5 = 1) (x4 + x5 = 2)

0 ♣♣♣ ♣ ♣ ♣
1 ♣♣♥ ♣ ♣ ♥
2 ♣♥♥ ♣ ♥ ♥
3 ♥♥♥ ♥ ♥ ♥

card if c = 1. In the framework of n-input majority voting, the discussion is

based on the policy that the first half players Pi (1 ≤ i ≤ dn/2e) is “the play-
ers who have the input cards and adds one card” and the second half players

Pj (dn/2e < j ≤ n) is “the players who have no input card and removes one

card.” As a result, the last remaining card is the output.

Case Where n Is An Odd Number

We suppose that the first half of players Pi (i = 1, . . . , n) perform the same

operations as Alice and Bob in our three-input majority voting protocol.

Namely, for 1 ≤ i ≤ dn/2e, suppose that Pi performs the following operations

with PP sequentially.

� If xi = 0, then Pi places face-down ♣ on the leftmost of the received

cards, and sends the cards after processing to Pi+1.

� If xi = 1, then Pi places face-down ♥ on the rightmost of the received
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cards, and sends the cards after processing to Pi+1.

However, P1 only sends ♣ or ♥ to P2, like Alice, since there is no card sent

from the previous player.

We do not interpret Carol’s operation as “selecting an output card” but

“removing an unnecessary card,” and suppose the second half players Pi (i =

1, . . . , n) perform the same operation as her. Namely, for Pj (dn/2e < j ≤ n),

suppose that Pj performs the following operations with PP sequentially.

� If xj = 0, then Pj removes the rightmost card of the received cards,

and sends the cards to Pj+1.

� If xj = 1, then Pj removes the leftmost card of the received cards, and

sends the cards to Pj+1.

However, Pn only removes the rightmost or leftmost card and outputs the

remaining card.

For instance, in the case where n = 5, the input/output relationship

that the above procedures are applied is as shown in Table 4.5. This is an

extension of Table 4.4, and it can be seen that the correct output is obtained.

On the other hand, we can easily understand that the above procedures

cannot obtain correct output if n is an even number because the number

of “players who add one card” and “players who remove one card” is the

same, and no output card remains. The case where n is an even number is

explained in the next section. Here, we confirm that the above procedures

satisfy correctness and security when n is an odd number.

Correctness: Let s be the number of players whose input value is 0 among

the first half players Pi (1 ≤ i ≤ (n + 1)/2). Then, the card order received

by P(n+1)/2+1 is s cards are ♣ and (n + 1)/2 − s cards are ♥ from the left.

Also, let t be the number of players whose input value is 0 among the second

half players Pj ((n+ 1)/2 < j ≤ n).
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• If s+ t < (n+ 1)/2

Then, the number of players t to remove the rightmost card is less than

(n + 1)/2 − s. Therefore, the final remaining card is ♥ representing

1 as shown below, and it is confirmed that the correct output can be

obtained.

︸ ︷︷ ︸
removed

︸ ︷︷ ︸
t cards removed

s cards︷ ︸︸ ︷
♣ · · · ♣ ♥ · · · ♥ ♥ ♥ · · · ♥

• If s+ t ≥ (n+ 1)/2

Then, the number of players t to remove the rightmost card is (n +

1)/2 −s or more. Therefore, the final remaining card is ♣ representing

0 as shown below, and it is confirmed that the correct output can be

obtained.

︸ ︷︷ ︸
removed

︸ ︷︷ ︸
t cards removed

s cards︷ ︸︸ ︷
♣ · · · ♣ ♣ ♣ · · · ♣ ♥ · · · ♥

□

Security: It is trivial that no information beyond the output is leaked since

only the ourput card is opened and players’ operations are hidden by the

assumption of PP. □

Case Where n Is An Even Number

In order to realize n-input majority voting protocol where n is an even num-

ber, we utilize the following equivalence relation.

majn(x1, . . . , xn) = 1 ⇐⇒ majn+1(1, x1, . . . , xn) = 1 (4.7)



4.3. CARD-BASED THRESHOLD FUNCTION PROTOCOL 59

Namely, in the case where n is an even number, we realize n-input majority

voting protocol by reducing n+1-input majority voting protocol. The specific

procedure is the following:

Suppose the first player P ′
1 is a dummy player whose input is fixed at 1

in the n + 1-input majority voting protocol. The result of this protocol is

the same as the result of n-input majority voting by n players, excluding P ′
1,

from the above equivalence relation. Thus, we can realize n-input majority

voting protocol by executing n + 1-input majority voting protocol from the

state where P ′
1 inputs 1.

Note that the dummy player P ′
1 needs only ♥ since she does not input 0.

The reason for making the P ′
1, who is the role of adding a card, a dummy

is this reduction of the number of cards. It is possible to make a player in

the role of removing a card, e.g., P ′
n, as a dummy. However, in this case, one

more card is required than when P ′
1 is used as a dummy.

Graphical Interpretation: Figure 4.1 shows that the mechanism of how to im-

plement our majority voting protocol with even number inputs, using n = 4

as an example. The vertical axis means the threshold value and the horizon-

tal one means the number of inputs. This figure shows the flow that reduces

to the next majority voting (or threshold) function each time an input value

is determined. The protocol is executed as a five-input majority voting, but

the result is the same as a four-input majority voting since the input value

of one player is fixed at 1 in advance.

4.3.2 Secure Computation for (t, n)-threshold Function

with n+ 1 Cards

The idea to construct the threshold function protocol is essentially the same

as the n-input majority voting protocol when n is even. We utilize the

following equivalence relation. Here, we can assume t < n/2 without loss of
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Figure 4.1: Graphical Interpretation of Four-input Majority Voting Protocol

Figure 4.2: Graphical Interpretation of Threshold Function Protocol
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generality since inputs 0 and 1 can be reversed if t ≥ n/2. Also, even if 0

and 1 are not reversed, it is possible to realize the reduction by fixing the

dummy input value to 0.

f(t,n)(x1, . . . , xn) = 1 ⇐⇒ f(t+1,n+1)(1, x1, . . . , xn) = 1 (4.8)

In other words, we realize the threshold function protocol by selecting an

integer d such that f(t+d,n+d) is the odd number input majority function and

reducing to (n+ d)-input majority voting protocol.

Let f(t,n) be the threshold function to be computed. Then, we reduce this

function to f(n−t+1,2n−2t+1) = maj2n−2t+1. Thus, we can obtain the result of

f(t,n) by executing the protocol for maj2n−2t+1 with n− 2t+1 dummy players

whose input values are 1. The specific procedure is shown in Protocol 9.

♥ × n − 2t + 1 possessed by P1 in setup are the inputs of dummy players.

This protocol is constructed with ♣× t and ♥× n− t+ 1.

Graphical Interpretation: Figure 4.2 shows that the mechanism of how to

implement our threshold function protocol. This figure shows the flow that

reduces to the next threshold function each time an input value is determined.

The protocol is executed as a (n− t+1, 2n− 2t+1)-threshold function, i.e.,

2n−2t+1-input majority voting, but the result is the same as (t, n)-threshold

function since the input values of n−2t+1 players are fixed at 1 in advance.

4.4 Results and Discussion

In the previous chapter, we succeeded in reducing the number of cards in the

basic protocols. Thus, this chapter showed that PP also works effectively in

constructing protocols for more advanced functions.

Chapter 4 proposed the following three protocols.

� Section 4.2: Simultaneous AND/OR protocol with four cards
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� Section 4.2: 3-input majority voting protocol with four cards

� Section 4.3: (t, n)-threshold function protocol with n− 1 cards

We first showed that the AND and OR protocols described in Chapter 3 could

be improved to four-card AND/OR protocol, which can be simultaneously

obtained AND and OR result in order to construct a protocol for 3-input

majority based on this protocol. Our protocol for 3-input majority voting

can be realized based on the AND/OR protocol without additional cards.

As a result, we realize the protocol for majority voting with only four cards.

This protocol can be extended to protocols for more voters. Utilizing this

fact, we construct a threshold function protocol with n − 1 cards, which is

fewer than the lower bound of traditional card-based cryptography. This

protocol is more efficient in terms of not only the number of cards but also

the number of PPs and communications than the existing protocol.
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Protocol 9 (t, n)-threshold Function Protocol

Inputs: Let x1, . . . xn ∈ {0, 1} be input values of each player.
Setup: P1, . . . , Pt each have a pair ♣♥. In addition, P1 has ♥× n− 2t+ 1.

1) For i = 1, . . . , t, repeat the following operation with PP to the received
cards.

� If xi = 0, Pi places face-down ♣ on the leftmost, and sends the cards
after processing to Pi+1.

� If xi = 1, Pi places face-down ♥ on the rightmost, and sends the
cards after processing to Pi+1.

Suppose that P1 only performs the operation to place a card.

2) For j = t+1, . . . , n, repeat the following operation with PP to the received
cards.

� If xj = 0, then Pj removes the rightmost card, and sends the cards
after processing to Pj+1.

� If xj = 1, then Pj removes the leftmost card, and sends the cards
after processing to Pj+1.

Suppose that Pn only performs the removal operation.

3) Open the remaining one card in public area.

� If this card is ♣, then the output value is 0.

� If this card is ♥, then the output value is 1.



Chapter 5

How to Solve Millionaires’

Problem

5.1 Introduction

In traditioanal card-based-cryptography adopts the private model that as-

sumes all operations are performed in public. Shuffle is the critical opera-

tion to achieve confidentiality even in this condition. However, card-based

cryptography principle becomes different from algebraic MPC shuffle is too

card-oriented operation.

The introduction of PP makes card-based cryptography closer to alge-

braic MPC. As a result, it is easier to mutually utilize knowledge between

them. We demonstrate that a new card-based protocol can be obtained by

converting Yao’s (algebraic) millionaires’ protocol into a card-based protocol

(Millionaires’ protocol I). This conversion can be easily derived if we under-

stand how his protocol works. Thus, we explain the outline of Yao’s protocol

before describing the proposed protocol.

It is the mainstream to propose logic gate protocols in traditional card-

based cryptography since it is known that every Boolean function can be

64
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computed with a combination of logic gates. Millionaires’ protocol can also be

constructed with a combination of logic gates. We compare our protocols and

the protocol based on Algorithm 10. This algorithm involves 2m−1 AND and

2m−2 OR times. When executing these logic gates, the COPY operation [38]

is necessary for copy ¬ai and bi in each comparison of bits. Summarizing,

6dlog de − 5 shuffles are necessary for total to implement Protocol 10. We

summarize our result in Table 5.1.

Although our protocol based on Yao’s solution succeeds in improving the

number of PPs and communications, the number of cards exponentially in-

creases from the existing protocol. Thus, we propose another millionaires’

protocol that also improves the number of cards (Millionaires’ protocol II).

We adopt the bitwise comparison for reducing the number of cards. Million-

aires’ protocol II compares bit by bit from the less significant bit, and the

compared results are recorded on cards, called storage. The results recorded

in the storage need to be kept secret from both Alice and Bob. Hence, we

show how to manipulate the storage privately by using PPs. It is very inter-

esting to note that the idea of Millionaires’ protocol II is the same as that of

the well-known logic puzzle “The fork in the road.” This observation will be

introduced when explaining the idea of Millionaires’ protocol II in Section

5.3.1.

Unfortunately, Millionares’ protocol II still requires the same number

of cards as the previous work, whereas the other measures are evidently

improved. Hence, we discuss how to reduce the number of cards in Section

5.3.3. The main idea of this improvement is that inputs are not represented as

the sequence of cards but are memorized in players’ mind. This improvement

enables Millionaires’ protocol II to realize with only six cards.

The remaining part of this chapter is organized as follows: In Section 5.2,

the card-based cryptography for the millionaires’ problem based on Yao’s

protocol is presented. Section 5.3 is devoted to the proposal of a new card-



66 CHAPTER 5. HOW TO SOLVE MILLIONAIRES’ PROBLEM

Protocol 10 Comparing Protocol Constructed by Logic Gates

Input: a = (am · · · a2 a1)2, b = (bm · · · b2 b1)2
f1 = ā1 ∧ b1
for i = 2 to m do
fi = āi ∧ bi ∨ (āi ∨ bi) ∧ fi−1 ;

end for
Output: fm
if fn = 0 then a ≥ b
if fn = 1 then a < b

Table 5.1: Summary of Our Results in Chap. 5
Protocols # of Comm. # of PP # of cards

logic gates (Algo. 10) 6m− 5 12m− 10 4m+ 2
Millionaires’ protocol I (Yao) 1 2 2 · 2m

Millionaires’ protocol II (storage) 2m 2m+ 1 4m+ 2
Improvement of millionaires’ protocol II 2m 2m+ 1 6

based cryptographic protocol with storage. We also show an improvement in

the proposed protocol that reduces the number of cards. We summarize this

chapter in Section 5.4.

5.2 Millionaires’ Protocol I: Card-Based Cryp-

tographic for Millionaires’ Problem Based

on Yao’s Solution

5.2.1 Our Idea Behind the Millionaires’ Protocol I

We propose a card-based cryptography that resolves the millionaires’ problem

by cards based on Yao’s original solution utilizing PPs. Before providing our

protocol, we explain Yao’s public key based solution [61] as follows:

Yao’s Solution to the Millionaires’ Problem. For a fixed integer m ∈ N,
assume that Alice and Bob have wealth represented by positive integers a
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and b, respectively, where a, b ∈ [d]. Let X := [2N − 1] be a set of N -bit

integers where, 2N/2 > 2d is necessary to hold |zu − zv| ≥ 2 in step 〈4〉 for

all distinct u, v ∈ [d]. (EncA,DecA) is a public-key encryption of Alice. That

is, EncA : X → X is an encryption under Alice’s public-key, and DecA is a

decryption under Alice’s private-key.

〈1〉 Bob selects a random N -bit integer x ∈ X , and computes c := EncA(x)

privately.

〈2〉 Bob sends the number c− b+ 1 in the mod 2N sense to Alice.

〈3〉 For i = 1, 2, . . . , d, Alice computes privately the values of yi = DecA(c−
b+ i); each value c− b+ i is in the mod 2N sense.

〈4〉 Alice generates a random prime p ∈ [2N/2 − 1], and computes the

values zi := yi mod p, for i = 1, 2, . . . , d. If |zu − zv| ≥ 2 for all distinct

u, v ∈ [d], then go to the next step; otherwise generate another random

prime p and repeat the process until all zu differ by at least 2.

〈5〉 Alice makes z′ = (z1, z2, . . . , za, za+1+1, za+2+1, . . . , zd+1); each value

is in the mod p sense.

〈6〉 Alice sends p and the vector z′ to Bob.

〈7〉 Bob looks at the b-th number in z′. If it is equal to x mod p, then

a ≥ b, otherwise a < b.

〈8〉 Bob sends the result to Alice.

Our Idea Behind Millionaires’ Protocol I. We first point out that the key

steps of Yao’s protocol are 〈5〉–〈7〉, where Alice privately adds 1 to each of

za+1, za+2, . . . , zd in the m-dimensional vector, and sends the vector to Bob.

He privately checks the b-th value in the vector, and outputs the result. This
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private operation can be implemented by PP in card-based cryptography,

which corresponds to the step 〈3〉 in the following millioniares’ protocol I.

Note that, in Yao’s solution, 〈1〉–〈4〉 are necessary for realizing the key

steps 〈5〉–〈7〉 securely, since they prevent the vector z′ in 〈5〉 from leaking

Alice’s wealth a to Bob. However, in a card-based cryptography, these steps

can be replaced with single step since face down plays the role of encryption.

Furthermore, the communication in 〈8〉 can be removed in the card-based

protocol since face-up cards on the tabletop can immediately be recognized

by both Alice and Bob.

5.2.2 Millionaires’ Protocol I

Based on the ideas discussed in the previous section, we propose a card-based

protocol for the millionaires’ problem based on Yao’s solution (see Protocol

11). We refer to this protocol Millionaires’ protocol I. The definitions of a, b

and m are the same as the previous section. Let χge(·, ·) be a function such

that

χge(u, v) :=

1 if u ≥ v

0 otherwise,
(5.1)

for positive integers u, v ∈ [d].

Note that steps 1) and 2) in Millionaires’ protocol I correspond to steps

〈1〉–〈5〉, and the steps 3) and 4) correspond to steps 〈6〉 and 〈7〉, respectively,
which show that the step 2) considerably simplifies Yao’s protocol. We omit

the proof of correctness of the proposed protocol since it is almost obvious

from Yao’s protocol.

Note that (EncA,DecA) in Yao’s millionaires’ protocol must be public-key

encryption since a is obtained by Bob in step 〈6〉 if (EncA,DecA) is a private

key encryption. On the other hand, in Millionaires’ protocol I, such leakage
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Protocol 11 Millionaires’ Protocol I: Card-based Yao’s Solution

1) Alice prepares m pairs of ♣♥ and turn them all face down. This
preparation is represented in a vector form as (x⃗1, x⃗2, . . . , x⃗d) where
x⃗1 = x⃗2 = · · · = x⃗d = (♣,♥).

2) For i = 1, 2, . . . ,m, repeat the operation in which Alice swaps x⃗i if i >
a; otherwise does not. Each swap operation must be executed privately,
and it is described as the following PP with respect to Rbc

2 := {π0, π1}
which is given by (2.4) with v = 1:

PP
[2]

Rbc
2
(x⃗i, χ

ge(i− 1, a)), i = 1, 2, . . . , d, (5.2)

where χge(·, ·) is defined in (5.1), i.e., χge(i − 1, a) = 1 iff i > a.
As a result, Alice privately generates the sequence of cards x⃗′ :=
(x⃗′

1, x⃗
′
2, . . . , x⃗

′
m) where x⃗′

i := PP
[2]

Rbc
2
(x⃗i, χ

ge(i− 1, a)).

3) Alice sends x⃗′ to Bob.

4) Bob privately moves x⃗′
b to the first element of x⃗′, which is described as

the following PP:

PP
[2d]

Rmf
2d

(x⃗′, b− 1) = πb−1(x⃗
′) (5.3)

where Rmf
2d := {πi}d−1

i=0 such that πi : (1, 2, . . . , d) 7→ (i+1, 1, 2, . . . , i, i+
2, . . . , d).

5) Bob reveals the left most commitment of PP
[2m]

Rmf
2d

(x⃗′, b − 1), i.e., x⃗′
b. If

the value represented by x⃗′
b is 0, then a ≥ b, otherwise a < b.

The remaining cards are completely randomized by Alice or Bob in public in
order to discard the information of x⃗′ except for x⃗′

b. We call this operation
“the remaining cards are discarded,” hereafter.
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of a to Bob is prevented by requiring that all cards except x⃗′
b are completely

randomized in public by Alice or Bob at the end of the protocol.

Efficiency of Millionaires’ protocol I. In the proposed protocol, 2d cards are

used. The number of PPs and communications is constant, i.e., it does not

depend on the input length. We use two PPs in steps 2) and 4), and one

communication in step 3), and this outperforms the protocol based on logic

gates (see Algo. 10). We note that the steps 4) and 5) are necessary so that

Bob turns x⃗′
b face up publicly without making b public.*1

Theorem 1 Millionaires’ protocol I is perfectly secure; it satisfies (2.7) in

Definition 1.

Proof: Consider the randomness used by Alice and Bob denoted by RA and

RB, respectively. In this protocol, no randomness is used by Alice since

she only swaps the cards by using a and m. Hence, it is not necessary for

the simulator SA to simulate RA. We also find that Bob does not use his

randomness, and RB also need not be simulated by SB.

Regarding the public value Λ, observe that it is only the cards x⃗′
b revealed

in step 5), and the binary value represented by x⃗′
b is equal to the truth value

of a ≥ b. Hence, Λ is uniquely determined from the output, and it can

obviously be simulated, which completes the proof. □

Remark. Thanks to the special operations of card-based cryptography, e.g.,

face up, face down, and swap, etc., Millionaires’ protocol I is not only a di-

rect transformation of Yao’s protocol, but also is superior to the original one

from several aspects. For instance, Millionaires’ protocol I does not use any

randomness, whereas randomness is necessary for generating public/private

keys in the original solution by Yao. Furthermore, it is worth observing that

both Alice and Bob can know the output result simultaneously in Million-

*1Private selection of x⃗′
b and making it public are formally realized in this manner.
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aires’ protocol I, whereas Bob is required to announce his result to Alice in

Yao’s original protocol (see step 〈8〉).

5.3 Millionaires’ Protocol II: Card-Based Cryp-

tographic Protocol for Millionaires’ Prob-

lem with Storage

5.3.1 Ideas Behind Millionaires’ Protocol II

In order to reduce the number of cards to below 2d, it is natural to represent

the wealth of Alice and Bob as binary number with dlog de bits (i.e., 2dlog de
cards). This approach enables us to consider the strategy by comparing the

Alice’s and Bob’s wealth bit-by-bit starting from their least significant bits.

Let (am, . . . , a1) and (bm, . . . , b1) be the binary representation of the pos-

itive integers a and b, respectively, where m := dlog de and ai, bi ∈ {0, 1}, i =
1, 2, . . . ,m. For each i ∈ [m], assume that ai and bi are represented by pairs

of cards αi,lαi,r and βi,lβi,r, respectively, where αi,lαi,r, βi,lβi,r ∈ {♣♥,♥♣}.
For instance, ai = 1 is represented by cards as αi,lαi,r = ♥♣.

Note that, however, such a two-card representation of binary number is

redundant in a bit-by-bit comparison since we can represent 0 and 1 by ♣
and ♥, respectively.*2 In this one-card representation, αi,l and βi,l suffice to

represent ai and bi, respectively. Further, their negations, ¬ai and ¬bi, are
also represented by αi,r and βi,r, respectively. In the following, we consider a

scenario in which Alice prepares (am, . . . , a1) by using a two-card representa-

tion, but here, Alice and Bob use a one-card representation for comparison.

We compare the bits of Alice and Bob by preparing a device (equipped

*2However, we note that a one-card representation cannot express arbitrary binary num-
bers. Hence, 4dlog de (i.e., 2dlog de cards for Alice and Bob) cards are at least necessary
when comparing arbitrary two binary numbers less than m.
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by a card as well) called comparison storage, denoted by cs ∈ {♣,♥}, that
records the bit-by-bit comparison results. Our idea is roughly described as

follows: We assume that Bob compares βi,l (i.e., bi) with Alice’s card αi,l

(i.e., ai) from i = 1 to n, and he overwrites cs with βi,l (i.e., bi) if βi,l 6= αi,l

(i.e., bi 6= ai) while cs remains untouched if this is not the case (i.e., bi = ai).

Recalling that Bob overwrites the comparison storage with his bit, Bob is

shown to be richer if the comparison storage is ♥ (i.e., 1) at the end of the

protocol. Similarly, Alice is shown to be richer if the comparison storage is

♣ (i.e., 0) at the end of the protocol. As is easily understood, however, this

rough idea has the following a problem:

P1) If Bob were to directly compare his bits with those of Alice, such a

comparison strategy would easily leaks Alice’s bits to Bob.

This problem can be avoided by considering the following modified ran-

domized strategy: Since Alice prepares (am, . . . , a1) by two-card representa-

tions, she sends Bob αi,l (i.e., ai) or αi,r (i.e., ¬ai) with probability 1/2. Such

a randomization is effective for concealing the value of Alice’s bit from Bob,

but we encounter another problem:

P2) Since Alice sends αi,w to Bob w ∈ {l, r} with a probability of 1/2, he

cannot tell from αi,w whether ai 6= bi or not.

Problem P2) is resolved by introducing another storage called dummy

storage, denoted by ds ∈ {♣,♥}, and communicating the pair of cs and ds

between Alice and Bob.

Hereafter, we refer to the pair consisting of cs and ds as storage. Bob

overwrites cs and ds corresponding to the result of ai 6= bi and ai = bi.

However, just adding a new storage is insufficient to resolve the problem that

Bob cannot determine whether ai 6= bi or ai = bi, i.e., he cannot determine

which one of cs and ds should be overwritten.
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Problem P2) can be rephrased using binary numbers as follows: Let

a′i ∈ {0, 1} be a binary number that Bob receives, but he does not know

whether a′i = ai (in the case of w = l) or a′i = ¬ai (in the case of w = r).

Our main object is to find ai 6= bi or ai = bi even if either one of a′i = ai or

a′i = ¬ai is sent.*3

Basic idea for resolving P2) is that Bob uses the fact that what he knows

is either αi,w 6= βi,l (i.e., a
′
i 6= bi) or αi,w = βi,l (i.e., a

′
i = bi). Making use

of this fact, Alice and Bob treat cs and ds as an ordered pair of face-down

cards, and assume that either (cs, ds) or (ds, cs) is determined by Alice’s

private random choice w ∈ {l, r} as follows:

� If Alice selects w = l and sends Bob αi,l ∈ {♣,♥} (i.e., ai), then she

sends him (cs, ds) with αi,l.

� If Alice selects w = r and sends Bob αi,r ∈ {♣,♥} (i.e., ¬ai), then she

sends him (ds, cs) with αi,r.

Note that αi,w is not necessary to be face-down when she sends it since

no information on a leaks to Bob from αi,w. We can see that the order of

cs and ds is synchronized with w ∈ {l, r} (i.e., ai and ¬ai) in Alice. Owing

to this synchronization, Bob can correctly overwrite cs only when ai 6= bi by

implementing the following strategy, even if he does not know which one of cs

and ds should be overwritten. Let (σl, σr) be the storage Bob receives from

Alice. Then Bob’s behavior after receiving αi,w from Alice is shown below.

� If αi,w 6= βi,l (i.e., a
′
i 6= bi) holds, Bob overwrites the left element σl of

the storage (σl, σr) with βi,l (i.e., bi).

� If αi,w = βi,l (i.e., a
′
i = bi) holds, Bob overwrites the right element σr

of the storage (σl, σr) with βi,l (i.e., bi).

*3This problem is very similar to the well-known logical problem “The fork in the road.”
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Table 5.2: Synchronization Mechanism in Millionaires’ Protocol II
(cs, ds), w = l (ds, cs), w = r

ai (αi,l) bi (βi,l) a′i (αi,l) a′i 6= bi Overwrite a′i (αi,r) a′i 6= bi Overwrite
0 (♣) 1 (♥) 0 (♣) True left = cs 1 (♥) False right = cs
1 (♥) 0 (♣) 1 (♥) True left = cs 0 (♣) False right = cs
0 (♣) 0 (♣) 0 (♣) False right = ds 1 (♥) True left = ds
1 (♥) 1 (♥) 1 (♥) False right = ds 0 (♣) True left = ds

Let (σ′
l, σ

′
r) be the storage overwritten by Bob, and he returns (σ′

l, σ
′
r) to

Alice. Then, by using w ∈ {l, r} that Alice generated, she privately rear-

ranges (σ′
l, σ

′
r) so as to place cs and ds on the left and the right, respectively.

After repeating these procedures from i = 1 to m, Bob is shown to be richer

if cs = ♥ (i.e., 1) whereas the contrary is true if cs = ♣ (i.e., 0).

It is easy to see from Table 5.2 that our synchronization strategy for

storage works well. This is best clarified by discussing the proposed protocol

by using binary numbers rather than cards. For instance, consider the case

where Alice compares her bit ai = 1 with Bob’s bit bi = 0 (the second line

in Table 5.2). If Alice selects w = l, Bob receives a bit a′i = ai = 1 and

compares it with Bob’s bit bi = 0. Since a′i 6= bi, the left-hand side element

of the storage, i.e., cs, is overwritten by bi = 0. On the other hand, if Alice

selects w = r, Bob receives a bit a′i = ¬ai = 0 and compares it with his bit

bi = 0. Since a′i = bi = 0, the right-hand side element of the storage, i.e.,

cs, is overwritten by bi = 0. Anyway, cs is correctly overwritten by bi = 0

(< ai = 1) as expected.

Remark. It is interesting to note that the logic of the above synchronization

strategy is the same as that of the well-known logic puzzle “The fork in the

road,” [19, p.25] (see footnote *8). Note that the point of the “The fork

in the road” is that we need to obtain the correct answer (correct branch)

from “yes-no-questions,” regardless of whether the native bystander tells the

truth. The one of the well-known answers to this puzzle is that the logician

should ask “if I ask the right way goes to the village, then do you answer
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YES?.” This question consists of two propositions as follows:

Q1) The right way goes to the village.

Q2) The bystander answers YES.

Suppose that the right way goes to the village. If the native bystander is a

truth-teller, then obviously the logician receives YES. On the other hand, the

logician have the same answer (YES) even if the bystander is a liar because

of the following double negation:

L1) The liar wants to say NO to Q1) because Q1) is true.

L2) The liar has to say YES because Q2) is false (due to L1)).

Namely, telling lies twice for Q1) and Q2), the liar says YES if the right

way goes to the village; NO otherwise. Our synchronization strategy has the

same structure with this puzzle. In Millionaires’ protocol II, Alice chooses

whether she sends ai (i.e., truth) or ¬ai (i.e., lie), which corresponds to L1).

If she chooses the lie, then she reverses the order of storage cards cd and ds,

which has the same effect with L2). Due to this structure of double negation,

Bob can correctly record the comparison result regardless of Alice’s choice.

Therefore, we can verify the correctness of Millionaires’ protocol II.

5.3.2 Millionaires’ Protocol II

Based on the discussion in the previous section, we propose the card-based

cryptography which uses storage and synchronization between the random

selection w ∈ {l, r} and the order of cs and ds, for the Millionaires’ problem

(see Protocol 12). For the upper bound d ∈ N of the wealth of Alice and

Bob, let m := dlog de.
*4This card can be arbitrary since it is a dummy card.
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Protocol 12 Millionaires’ Protocol II

1) Alice prepares a face-down ♣ and a face-down ♥*4 as the comparison
storage cs and the dummy storage ds, respectively. We call the pair
consisting of cs and ds storage. She also prepares a sequence of 2n
cards (αm,lαm,r, . . . , α2,lα2,r, α1,lα1,r), which is a binary representation
of her wealth a ∈ [d]. Bob also prepares the sequence of 2n cards
(βm,lβm,r, . . . , β2,lβ2,r, β1,lβ1,r), which is the binary representation of his
wealth b ∈ [d].

2) For i = 1, 2, . . . ,m, repeat the following operations (2-i)–(2-v):

(2-i) Alice privately chooses w ∈ {l, r} uniformly at random. Then,
execute the following PP with respect to Rbc

2 which is defined in
(2.4) with v = 1:

(σl, σr) := PP
[2]

Rbc
2
((cs, ds), χeq(w, r)) (5.4)

where χeq(w, r) = 1 if w = r, and χeq(w, r) = 0 otherwise.

(2-ii) Alice sends Bob (σl, σr) in addition to αi,w. Here, αi,w need not
be face down.

(2-iii) Bob compares βi,l with αi,w in his mind. If they are different, he
privately overwrites σl with βi,l, otherwise he privately overwrites
σr with βi,l. This operation can be described as the following PP
with respect to Row1

3 := {π0, π1} where π0 : (1, 2, 3) 7→ (1, 3, 2)
and π1 : (1, 2, 3) 7→ (3, 2, 1):

(σ′
l, σ

′
r, η) := PP

[3]

Row1
3
((σl, σr, βi,l), χeq(βi,l, αi,w)) (5.5)

where χeq(·, ·) := 1−χeq(·, ·). The extra card η is discarded with-
out turning it face up.

(2-iv) Bob sends Alice (σ′
l, σ

′
r).

(2-v) Alice rearranges the storage cards privately depending on the ran-
dom value w chosen in (2-i), i.e., executes the PP such that

PP
[2]

Rbc
2
((σ′

l, σ
′
r), χ

eq(w, l)), (5.6)

which is used for the new storage cards (cs, ds).

3) Alice turns cs face up to output. If the card is♣, then a ≥ b. Otherwise,
a < b. After completing the protocol, ds is discarded without revealing.



5.3. MILLIONAIRES’ PROTOCOL II 77

Example of Millionaires’ protocol II. We show a simple example for under-

standing how the Millionaires’ protocol II works correctly. Consider the case

where we compare a = 0 of Alice and b = 2 of Bob, which are represented

by (α2,lα2,r, α1,lα1,r) := (♣♥,♣♥) and (β2,lβ2,r, β1,lβ1,r) := (♥♣,♣♥), re-

spectively, since (a2, a1) = (0, 0) and (b2, b1) = (1, 0). We also set (cs, ds) =

(♣,♥).

We first consider the case of i = 1. If Alice chooses w = l in step (2-i), (5.4)

becomes (σl, σr) = (cs, ds) = (♣,♥) since χeq(w, r) = χeq(l, r) = 0. Then,

she sends Bob (σl, σr) = (♣,♥) and α1,l = ♣ in step (2-ii). In step (2-iii),

Bob compares β1,l = ♣ with α1,l = ♣, which results in χeq(β1,l, α1,l) = 0.

Then, he outputs (σ′
l, σ

′
r) = (σl, β1,l) = (♣,♣) by overwriting the right

element of (σl, σr) = (♣,♥) with β1,l = ♣ privately, since (5.5) becomes

(σ′
l, σ

′
r, η) = (σl, β1,l, σr) due to χeq(β1,l, α1,l) = 0. Bob discards σr without

face up σr = ♥.

On the other hand, consider the case where Alice chooses w = r in step

(2-i); Then, (5.4) in step (2-i) becomes (σl, σr) = (ds, cs) = (♥,♣) since

χeq(w, r) = χeq(r, r) = 1. She sends Bob (σl, σr) = (♥,♣) and α1,r = ♥ in

step (2-ii). Bob compares β1,l = ♣ with α1,r = ♥, and outputs (σ′
l, σ

′
r) =

(♣,♣) by overwriting the left element of (σl, σr) = (♥,♣) with β1,l = ♣
privately as a result of (5.5).

Summarizing the case of i = 1, regardless of the selection of w ∈ {l, r},
storage becomes (cs, ds) = (♣,♣), which means that the dummy storage is

overwritten by the Bob’s bit since a1 = b1. Then, Bob sends it to Alice in

step (2-iv). In step (2-v), Alice sets (cs, ds) := (♣,♣) due to (5.6) for the

storage sent from Bob.

Next, consider the case of i = 2: If Alice selects w = l in step (2-i), she

generates (σl, σr) = (cs, ds) = (♣,♣) from (5.4), and sends it with α2,l = ♣ to

Bob in step (2-ii). Then, Bob compares β2,l = ♥ with α2,l = ♣ in step (2-iii).

Since β2,l 6= α2,l, he generates (σ
′
l, σ

′
r) = (β2,l, σr) = (♥,♣) by overwriting the
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left element of (σl, σr) = (♣,♣) with β2,l = ♥ privately according to (5.5).

Bob sends (σ′
l, σ

′
r) = (♥,♣) to Alice, and she obtains (cs, ds) := (♥,♣) due

to (5.6).

On the other hand, consider the case where Alice chooses w = r in step

(2-i); Then, she generates (σl, σr) = (ds, cs) = (♣,♣) from (5.4), and sends

it with α2,r = ♥ in step (2-iii). Since β2,l = α2,r, he generates (σ′
l, σ

′
r) =

(σl, β2,l) = (♣,♥) by overwriting the right element of (σl, σr) = (♣,♣) with

β2,l = ♥ privately according to (5.5). Bob sends (σ′
l, σ

′
r) = (♣,♥) to Alice,

and she obtains (cs, ds) := (♥,♣) due to (5.6).

Finally, the output value correctly becomes cs = ♥ as a < b regardless of

random choices of Alice.

Efficiency of Millionaires’ protocol II. This protocol requires two communi-

cations for every bit therefore it requires 2dlog de communications. We note

that steps (2-v) and (2-i), when i is incremented, can also be regarded as one

PP. Hence, this protocol requires 2dlog de + 1 PPs. The number of cards is

4dlog de+ 2.

Theorem 2 Millionaires’ protocol II is perfectly secure; it satisfies (2.7) in

Definition 1.

Proof: Consider the randomness used by Alice and Bob denoted by RA

and RB, respectively. From step (2-i), the value of RA = (W1,W2, . . . ,Wm)

where Wi is the random variable corresponding to w in the i-th loop in

step 2). Each random variable Wi, i = 1, 2, . . . ,m takes the value in {l, r}
with probability 1/2, and it is independent from the other random variables.

Hence, RA can obviously be simulated by SA by using n independent uniform

binary numbers. Similarly to Millionaires’ protocol I, Bob does not use any

randomness, and hence, SB does not have to simulate RB.

Regarding the simulation of public information Λ, observe that Λ is

the m values represented by the face-up cards in step (2-iii), i.e., Λ =
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(α1,W1 , α2,W2 , . . . , αm,Wm). Hence, Λ is easily simulated by SA by a which is

represented by her 2m cards, and the random variableRA = (W1,W2, . . . ,Wm).

On the other hand, for Bob, Λ = (α1,W1 , α2,W2 , . . . , αm,Wm) seems to be uni-

formly distributed over {♥,♣}m since he does not know the value ofWi = wi,

which is selected randomly by Alice. Hence, Λ is easily simulated by SB.

Since the simulators SA and SB can be explicitly constructed as above,

we complete the proof of the theorem. □

5.3.3 Millionaires’ Problem Can Be Solved with Only

Six Cards

Although Millionaires’ protocol II was improved in terms of the numbers of

PPs and communications, as is shown in Table 5.1, it still requires the same

number of cards with the previous work based on logic gates. However, we

show that Millionaires’ protocol II can be realized with only six cards in this

section.

Our main idea is to reuse the card η discarded by Bob in step (2-iii) of

Protocol 12.*5 We note that, however, η cannot be simply reused. If η is

reused simply and accessed by Alice and/or Bob, they can obtain information

about η which holds information on their inputs. For instance, in Protocol 12,

suppose that Bob could look at the front of η in step (2-iii) for i = 1. Noticing

that (cs, ds) = (♣,♥) is public information when i = 1, a1 completely leaks

to Bob since he can tell whether w = l or not. Inductively, η should not

be simply reused when i ≥ 1 because η also holds information about Alice’s

choice of w.

Therefore, we need to erase information about η for reusing it. However,

it is impossible to erase the information about η as long as we adopt the

*5In our setting, the randomization for reusing η is executed by participants, Alice and
Bob. If we are allowed to outsource this randomization to a trusted third party, the
number of cards can further reduced, which was pointed out in [47].
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one-card representation since a single card cannot be randomized as opposed

to the case of two-card representation. Hence, we should employ two-card

representation for the storage (and the input) in Protocol 12. Concretely, if

η is in two-card representation, Bob returns randomized η to Alice instead

of discarding it by Bob in Protocol 12. Then, she can reuse η.

One may think that this modification makes the protocol inefficient since

the number of storage cards increases. However, surprisingly, this modifica-

tion allows Alice and Bob to use η as his/her inputs if they hold inputs in

their mind ! Namely, at the cost of using six cards for (cs, ds) and η, Alice

and Bob do not necessary to have their cards to represent their inputs (if

they can remember the inputs). Therefore, six cards are sufficient to realize a

card-based protocol for millionaires’ problem with efficient memory and com-

munication cost. The improved protocol shown in Protocols 13. As shown

in the step 1), the storage cards are represented by two-card representation.

The steps (2-v) and (2-viii) are executed for erasing information of η by Bob

and Alice.

Efficiency of the improvement of Millionaires’ protocol II. This protocol re-

quires two communications for every bit therefore it requires 2dlog de com-

munications. We note that the sequence of PPs executed in steps (2-iv) and

(2-v) can be regarded as one PP. Similarly, steps (2-vii) to (2-i), when i is

incremented, can also be regarded as one PP. Hence, this protocol requires

2dlog de+ 1 PPs.

5.4 Results and Discussion

This chapter proposed the following three efficient card-based protocols for

the millionaires’ problem by utilizing PP.

� Section 5.2: Millionaires’ protocol I (based on Yao’s solution [61])
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Protocol 13 Improvement of Millionaires’ Protocol II

1) Alice prepares two face-down ♣ and two face-down ♥ as the storage. First, let
cs = 0, ds = 0, i.e., cs and ds are expressed with two cards respectively. She also
prepares one ♣ and one ♥.

2) For i = 1, 2, . . . ,m, repeat the following operations.

(2-i) Alice chooses αi ∈ {0, 1} uniformly at random privately. Then, execute the
following permutation:

(σl, σr) := PP
[4]

Rbc
4
((cs, ds), χeq(αi, ai)) (5.7)

(2-ii) Alice turns remaining two cards face up and makes αi with them keeping on
face up.

(2-iii) Alice sends Bob (σl, σr) in addition to the two cards representing αi.

(2-iv) Bob compares bi with αi in his mind. If they are different, he replaces σl

with bi privately, otherwise he replaces σr with bi privately. Then, bi is
made of the two cards which is used for representing αi. This operation can
be described as the following PP with respect to Row2

6 := {π0, π1} where
π0 : (1, 2, 3, 4, 5, 6) 7→ (1, 2, 5, 6, 3, 4) and π1 : (1, 2, 3, 4, 5, 6) 7→ (5, 6, 3, 4, 1, 2):

(σ′
l, σ

′
r, η) := PP

[6]

Row2
6
((σl, σr, bi), χeq(bi, αi)) (5.8)

(2-v) Bob executes the following operation for erasing information about the stor-
age.

η′ := PP
[2]

Rbc
2
(η, rb) (5.9)

where rb ∈ {0, 1} is chosen uniformly at random.

(2-vi) Bob sends (σ′
l, σ

′
r, η

′) to Alice.

(2-vii) Alice rearranges storage cards privately depending on the random value αi

chosen in (2-i) as

PP
[4]

Rbc
4
((σ′

l, σ
′
r), χ

eq(αi, ai)), (5.10)

which is used for the new storage cards (cs, ds).

(2-viii) Alice executes the following operation for erasing information about the stor-
age.

η′′ := PP
[2]

Rbc
2
(η′, ra) (5.11)

where ra ∈ {0, 1} is chosen uniformly at random.

3) Alice turns cs face up to output. If cs = 0, then a ≥ b. Otherwise, a < b. After
completing the protocol, ds is discarded without revealing.
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� Section 5.3.2: Millionaires’ protocol II

� Section 5.3.3: Improvement of Millionaires’ protocol II

Millionaires’ protocol I is constructed by directly converting Yao’s solution

into card-based cryptography. This result is due to bridge the gap between

algebraic MPC and card-based cryptography by introducing PP. This is the

first achievement of constructing a new card-based protocol by converting

algebraic MPC into card-based cryptography.*6 Millionaires’ protocol suc-

ceeded in improving the number of PPs and communications. However, the

number of cards exponentially increases from the existing protocol. It is

worth mentioning that millionaires’ protocol I is not only a direct transfor-

mation of Yao’s protocol but is also superior to the original protocol in the

sense that randomness and the announcement of the result are not required

as opposed to Yao’s original protocol.

Millionaires’ protocol II is entirely novel. It consists of the communication

of two types of storage for recording the compared result between two players.

This proposed protocol is superior to the existing protocol based on logic

gates with respect to the number of communications and PPs, whereas the

number of cards is the same as the existing protocol. Furthermore, it is

interesting to remark that millionaires’ protocol II and the well-known logic

puzzle known as “The fork in the road” are deeply related. However, this

protocol is not made efficient from the viewpoint of the number of cards (see

Table 5.1). Hence we proposed a method to reduce the number of cards.

The improved protocol works only six cards by memorizing the inputs in

players’ minds without representing them using cards.*7 This protocol is the

*6After the conference version of this work was published, the protocol based on Yao’s
solution was proposed in public model [30].

*7In our setting, the randomization for reusing η is executed by participants, Alice and
Bob. If we are allowed to outsource this randomization to a trusted third party, the
number of cards can further reduced, which was pointed out in [48].
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most potent result to claim that PP is effective in improving the efficiency

of card-based cryptography.



Chapter 6

Conclusion

Traditional card-based cryptography is based on the assumption that all op-

erations are performed in public. Although this assumption has the advan-

tage of preventing cheats, it causes the lower bound of the number of cards

because it limits the input representation to use face-down cards. Also, tra-

ditional card-based cryptography utilizes “shuffle” to achieve confidentiality

in a situation where all operations are published. However, shuffle is based

on too card-oriented assumption, and thus it results that card-based cryptog-

raphy framework is different from algebraic MPC, which is based on “private

randomness.”

From the awareness of the above problem, we proposed a new card-based

cryptography model that is introduced a new operation, “private permuta-

tion (PP),” which is naturally derived from private randomness. The results

obtained by introducing PP are as follows:

Chapter 3: Card-based protocols for logic gates

PP allowed input values to be expressed without using face-down cards.

Chapter 3 focused on logic gates, which is the mainstream in previous work.

At least four cards were required to construct a logic gate protocol, but it

can be realized with a smaller number of cards by using PP as the input

84
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representation. The protocols proposed in Chapter 3 are as follows.

� Section 3.3.1: three-card OR protocol

� Section 3.3.2: two-card XOR protocol

Chapter 4: Card-based threshold function protocol

Chapter 3 succeeded in reducing the number of cards in the basic proto-

cols. Thus, Chapter focused on the more advanced function, the threshold

function. Then, it was a mainstream that advanced functions were realized

by a combination of logic gates. However, this general method has a problem

that the number of shuffles increases. Thus, we did not adopt this method

but a specific construction to improve efficiency. The protocols proposed in

Chapter 3 are as follows.

� Section 4.2: Simultaneous AND/OR protocol with four cards

� Section 4.2: 3-input majority voting protocol with four cards

� Section 4.3: (t, n)-threshold function protocol with n− 1 cards

Chapter 5: Card-based protocols for millionaires’ problem: PP re-

moved the card-oriented assumption of shuffle. As a result, card-based cryp-

tography framework became closer to algebraic MPC, and it became easier

to use techniques between them. We demonstrated that Yao’s algebraic mil-

lionaires’ protocol could be converted into a card-based protocol. Although

this protocol is improved in the viewpoint of the number of PPs and commu-

nications, the number of cards exponentially increases. Thus, we proposed

another millionaires’ protocol. This protocol was based on the bitwise com-

parison. Finally, we showed millionaires’ protocol could be realized with only

six cards. The interesting point of this protocol was to utilize the famous

logic puzzle “The fork in the road” in order to avoid information leaking in
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the bitwise comparison. This protocol was the most potent result of showing

the power of PP. The protocols proposed in Chapter 5 are as follows.

� Section 5.2: Millionaires’ protocol I (based on Yao’s solution [61])

� Section 5.3.2: Millionaires’ protocol II

� Section 5.3.3: Improvement of Millionaires’ protocol II

Finally, we describe the future work in the following.

� Generic construction in our model: We explained two directions for the

protocol construction, a generic one and a specialized one, in Section

1.1. All of our proposed protocols include in the generic construction.

Namely, it is not evident whether PP is also useful in generic construc-

tion, such as the combination of logic gates. Thus, it is required to

verify the usefulness by constructing generic protocols using PP. Then,

it is necessary to discuss the conditions for composing protocols se-

curely.

� New algebraic protocol based on card-based protocol: In this thesis, we

succeeded in obtaining a new card-based protocol by converting an

algebraic MPC protocol into a card-based protocol. However, there is

no example of creating a new algebraic MPC protocol from card-based

cryptography. Thus, it is a challenge to verify whether card-based

cryptography effectively contributes to the discovery of new algebraic

MPC protocols.

� Introduction of other private operations: In this thesis, we introduced

the only permutation as the private operation. On the other hand, we

can see other private operations by observing general card-games. For

instance, poker allows each player to look at the cards’ surface without
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showing it to other players. It is an interesting problem whether the

introduction of other private operations improves efficiency.
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