
修 士 論 文 の 和 文 要 旨

研究科・専攻 大学院 情報理工 学研究科 情報学 専攻 博士前期課程

氏 名 Huang ShengKai 学籍番号 1830127

論 文 題 目
End-to-End Robotic Reinforcement Learning

 based on Rank Temporal Difference

 要 旨

強化学習とディープニューラルネットワークの開発するとともに、生セ

ンサーデータを直接活用するエンドツーエンドの方法に基づくロボッ

トの意思決定システムを構築することができます。タスクの目標を反映

できる報酬関数の設計は困難であり。

本論文では、エージェントが専門家が設計した状態の軌道に従って探索

し、エージェントの創造性とタスクの知識によって形成されるゲームの

厳格なルールとの間のバランスと取れる「Rank Temporal Difference」

方法を提案する。本論文では、単純なタスクと複雑なロボットアームの

把握タスクに関するアプローチを調査および評価します。本論文の実験

結果は、RankTD 方により方策収束が加速できる、報酬関数の設計が簡

単になれるという結論を得りました。

令和 2年度修士論文

End-to-End Robotic Reinforcement Learning

based on Rank Temporal Di�erence

情報理工学研究科 情報学専攻

学 籍 番 号 : 1830127

氏 名 : Huang ShengKai

主任指導教員 : 工藤 俊亮 准教授

指 導 教 員 : 末廣 尚士 教授

提出年月日 : 令和 2年 7月 27日 (月)

Contents

1 Introduction 4

1.1 Background . 4

1.2 Previous Research . 6

1.3 Objectives . 7

1.4 Thesis Layout . 7

2 PPO and Parallelize Rollout 8

2.1 Background . 8

2.1.1 Reinforcement Learning . 8

2.1.2 Two di�culties in Robot Learning . 9

2.2 Proximal Policy Optimisation . 10

2.3 Parallelize Rollout . 13

2.4 Summary . 16

3 Rank Temporal Di�erence 18

3.1 Policy Invariance and Potential-Based Reward Shaping 18

3.2 Mathematical Model of Rank-TD . 19

3.3 Summary . 20

4 Experiment: Toy Tasks 21

4.1 Toy Task Description . 21

4.2 Reward Setting . 21

1

4.3 Bottleneck Issue . 24

4.4 Summary . 25

5 Experiment: Pick and Place Task 26

5.1 Environment . 26

5.2 Task Description . 26

5.3 Reward Setting . 31

5.4 Implemention . 31

5.5 Result . 33

5.5.1 Bad Case . 36

5.6 Summary . 36

5.7 Conclusion and Future work . 38

5.7.1 Conclusion . 38

5.7.2 Future work . 38

List of Figures

1.1 Conventional Approach of Robotic Grasping System 5

1.2 End-to-End learning-based approachs . 5

2.1 Taxonomy of model-free RL algorithms . 9

2.2 System Overview of OpenAI Five . 15

2.3 The parallelization solution for single machine single GPU 16

3.1 Whether the reward shaping has the Policy Invariance guarantee? 18

2

4.1 Toy case: agent exists in a world with 21 discrete states spaces. The agent

can choose one from action space A = {⇐⇐,⇐,⃝,⇒,⇒⇒}. The goal is to

arrive state 20. 21

4.2 Toy task with Sparse, StateTD and RankTD reward setting solved by PPO.

RankTD reward setting has a faster convergence. 24

4.3 More complex state transform of the task makes it more di�cult for the agent

to explore. When applied in complex problems, if we fail to grasp the scale

or granularity of the rank function, agents are unable to learn the good policy. 25

5.1 Objects for Training and Testing Phase . 27

5.2 Internal state and Observation . 28

5.3 Vision-Based Robotic Grasping . 30

5.4 Add 0.5 level random noise to camera and robot base-coordinate system during

training. Then test in di�erent random level. 34

5.5 The upper is the training curve, and the lower is the pre-grasp behavior, which

avoids hitting the basket. 35

5.6 The illustration of the Embarrass Area and Legal Area. 37

List of Tables

4.1 Dynamic Transform Table . 22

4.2 Narrower Version Dynamic Transform . 24

5.1 rank function . 32

5.2 PPO Hyperparameters of Pick and Place task 33

3

1 Introduction

1.1 Background

Intelligent robots are expected not only to sense their environment, but also to interact

with it.

Humans have an good ability to manipulate objects, just as dexterously as our arms and

hands. Among all these abilities, the mastery of objects is the most basic and important,

because it will bring great productivity to the society. For example, industrial robots can

pick up boxes from heavy human labor, and domestic robots can help disabled people with

daily grasping tasks.

The importance of robotic grasping has been studied for a long time. This includes conven-

tional approachs, recent End-to-End learning-based approachs, and the hybrid approachs,

which learning-based approach replace some parts of the conventional approach.

The conventional manipulator grasping system consists of the following several sub-systems

[5]: the grasp detection system, the grasp planning system and the control system. As Fig.1.1

illustrate, the grasp detection system is divided into three tasks: target object localization,

pose estimation and grasp point detection. Each system is programmed separately, solved

by di�erent approachs.

Instead of using this pipeline of steps, one of the recent breakthroughs in robotics is

leverage End-to-End learning-based approach, expecially Reinforcement Learning, where

robotic could can reason a appropriate action directly from raw sensory observations, such

as camera images. Typically as Fig.1.2 Sergey Levine lets a robot successfully complete some

4

Figure 1.1: Conventional Approach of Robotic Grasping System

complex tasks, by single system, which the input is an raw image, the output is the robot's

joint torque.

Figure 1.2: End-to-End learning-based approachs

The most interesting thing is that this technique would allow the next generation of robots

learn to accomplish new tasks directly, without hand-engineering steps to perform each sub-

systems. In other words, the robot would accept the raw data from sensors, such as RGB

camera images and directly infer the low level action(e.g. motor velocities) by a task agnostic

learning algorithm.

Compire with End-to-End learning-based approach conventional approach also have many

issues, which is easy for End-to-End approach.

5

* It is kind of error-prone, because the errors propagate from one step to another (e.g.

inadequate grasp point results in poor or unsuccessful grasp).

* It relaies on cumbersome and strict sensor calibration(e.g. camera calibration, point

cloud registration). And sensor can not be moved after calibration, which makes it

di�cult to adapt to complex environments.

* It requires di�erent pipelines to deal with di�erent tasks under di�erent situations.

1.2 Previous Research

Reinforcement learning (RL) has recently achieved widespread success in sequential decision-

making problems in robot.

In some works, the input is raw data(images, joint-angle, etc.), and the output is a low-

level, high-dimensional continuous action(joint-angle, joint-velocity, o�set of end-e�ector,

etc.).

Deirdre Quillen et al. [13] evaluate the performance of Vision-Based Robotic Grasping

benchmark with many o�-policy RL approachs. Jan Matas et al. [8] combine many state-of-

the-art o�-policy RL algorithms to solve the problem of deformable objects manipulation.

Mel Vecerik et al. [19] leverage demonstrations with Deep Deterministic Policy Gradient

(DDPG) algorithm, and realized deformable-clip insertion task in real robot setting.

Meanwhile, in some work, the output is a high-level, low-dimensional discrete action

macro(push, grasp, retract etc.). such as Ameya Pore et al. [12] learn the pick and place

task by behaviour-based reinforcement learning approach.

6

1.3 Objectives

In this thesis, we describe an RL method that can be applied to pick-and-place tasks,

generally, the goal-orientation sequential decision making RL scenario, although there are

several di�culties to apply RL methods to pick-and-place tasks, the details of which will be

discussed in the later section.

The method we proposed called Rank Temporal-Di�erence (Rank-TD), which allows agents

to explore by following the expert-roughly-designed state trajectory. Furthermore, it can

combine with any model-free RL algorithm.

We build its mathematical model and prove the correctness of the Rank-TD based on policy

invariance theory [9]. Then, We discuss some sensable and useful property by analyzing a

toy case. Finally, we train an agent with an image-based policy on pick-and-place task. We

employed domain randomization in simulation to guarantee the potential of policy transfer

from simulation to the real world without further training.

1.4 Thesis Layout

The core part of this Thesis starts with Charpter 2, where Chapter 2 we brie�y cover the

basic concepts of RL in a limited space, and introduce Proximal Policy Optimisation (PPO)

brie�y, which adopt in �nal pick and place task. In Chapter 3, introduces the derivation

process of the method and design a series of toy experiment to verify method. Then Chapter

4 is our main experiment, in which we train and evaluate a End-to-End image-based picking

policy. Finally, in Chapter 5, we summarise the work we have done to achieve our results,

and we follow up with a couple of suggestions for future work. in Chapter 6, we summarise

our work and disscuss the future work.

7

2 PPO and Parallelize Rollout

2.1 Background

2.1.1 Reinforcement Learning

Deep reinforcement learning is a speci�c branch of machine learning applicable to robot

operation tasks. In general, RL is based on behavioral psychology, which studies how to

teach an agent to perform behaviors that bring the highest cumulative reward. In practice,

it means that engineers would only have to de�ne what the robot's goal was, and the robot

would learn how to achieve it itself. This greatly reduces the amount of work compared to

the traditional approach, in which engineers design and implement every subtask needed to

achieve a goal.

In addition, robot learning is used for error-prone tasks because robots can learn how to

recover from mistakes. By contrast, the traditional approach requires preparation in advance

to hard-code every possible error. Otherwise, the goal will not be achieved.

Then, we brie�y cover the basic concepts of RL in a limited space.

Optimize Objective of RL The classic RL setting that can be represented as a Markov

Decision Process (MDP) de�ned as a 6-tuple (S,A,P , R, γ,O), where S is the set of

full states of the environment, A is the set of actions, R : S × A × S → R is the

reward function, γ is a discount factor, and P : S × A → S is a deterministic state

transition function. The decision process is partially observable and the agent receives

observations o from the set of observations O, followed by a sample process o ∼ G (s).

8

The goal of optimization is to �nd a policy π, which maps states to actions to maximize

the expectation of accumlated discounted reward ηπ.

ηπ = Eτ∼π

[
∞∑
t=0

γtrt

]
(2.1)

Figure 2.1: Taxonomy of model-free RL algorithms

Model-Free RL Figure 2.1 shows a taxonomy of model-free RL algorithms (algorithms

that do are not based on a dynamics model). At the top level, we have two di�erent

approaches for deriving RL algorithms: policy optimization and dynamic program-

ming.

2.1.2 Two di�culties in Robot Learning

Sparse Reward and Reward Engineering A sparse reward signal is series of rewards

produced by the agent interacting with the environment, where most of the rewards

received are non-positive. This makes it extremely di�cult for RL algorithms to con-

nect a long series of actions to a distant future reward.

Thus, Designing a reward function that not only re�ects the task goal but is also

carefully shaped to avoid sparse reward is still a common challenge. For example,

Popov et al. [11] used a reward function that consists of �ve complicated terms carefully

weighed to get a stacking policy. It limits the applicability of RL because it takes much

9

time to shape an appropriate reward function. On the other hand, oversimpli�ed

reward functions such as a binary signal could cause serious sparse reward issues.

Although there are some data augmentation methods such as Hindsight Experience

Replay [2] that could solve the partial sparse reward issue, it, however, is not easy to

apply in the high-dimension state, such as images.

Demonstration Dependency The other tricky issue is that current image-policy-based

robot learning greatly depends on demonstrations, which is a frequently-used method

of Imitation Learning (IL). Demonstrations that are generated by a human to initialize

policy [8,19] or make a replica of the demonstration policy such as behavioral cloning

(BC).

BC or IL approaches, however, are limited because they do not consider the task or

environment. Furthermore, human demonstrations can be suboptimal because humans

also make mistakes or do some redundant actions. Moreover, agents will get into

trouble when they encounter states that do not belong to the demonstration set.

2.2 Proximal Policy Optimisation

In this section, we brief introduce the basis of Proximal Policy Optimisation (PPO) [17]

algorithm, which is adopted in our Toy task and Pick-Place task.

PPO [17] is a policy gradient RL methord, which follows the actor�critic architecture. It

based on the trust-region policy optimisation(TRPO) [15] algorithm. This aims of policy

gradient RL methord is to learn a stochastic policy πθ (at | st). If action space is continue,

πθ (at | st) maps states with Diagonal Gaussian Distribution over actions, and if action space

is discrete, πθ (at | st) maps states with Categorical Probability Distribution over actions. In

addition, the critic is a state value function Vω (st) that outputs the expectation of accumlated

return start in state st. PPO inherits the advantages of TRPO, but it is greatly simpler to

10

implement. The core idea of trust region-based optimization is that the output distribution

cannot deviate too much from the original distribution each time the policy improvement

updated.

Let rt (θ) denote the probability ratio de�ned in Equation (2.2), so that r (θold) = 1.

rt (θ) =
πθ (at | st)
πθold (at | st)

(2.2)

θold is the actor parameter before the update. The optimization objective of TRPO is to

maximise the surrogate objective function L (θ) de�ned in Equation (2.3). Here, E [...] means

the average over a �nite batch of samples. The advantage Ât is a kind of policy gradient

estimator, which called GAE−λ [16], was popularised by Schulman et al. it shows how good

the current action w.r.t. to the average performance of every action. The way to compute

the advantage is that, the agent executes a trajectory τ with T steps and computes them

according to Equation (2.4). GAE − λ has minimum bias and variance in current policy

gradient estimator [16]. The t is the time index of [0, T]. The γ is the discount factor, and

the T is the length of trajectory τ .

L (θ) = E
[
rt (θ) Ât

]
(2.3)

Ât = −Vω (st) + rt + γrt+1 + ...+ γT−t+1rT−1 + γT−tVω (sT) (2.4)

At each policy update, good action will have a higher probability if its advantage is positive.

On the contrary, bad action will have a lower probability because its advantage is negative.

If there is no any constraint, maximizing the objective function L (θ) could make policy

updates very unstable at each update step. PPO laverage clip function in the objective

function, which avoid radical changes of the policy. It keep rt (θ) close to 1 in each training

step.

There are two reasons of why must we maintain rt (θ) near to 1.

11

1. Objective function L (θ), which also be called surrogate objective, is the First-Order

Approximation of accumlated discounted reward ηπ (Equation (2.1)). That is rough

approximation, only if the ∆θ small enough, improving L (θ) will also improve ηπ.

▽θLθ0 (θ) |θ=θ0= ▽θηθ0 (θ) |θ=θ0

2. According to J.Schulman's Phd thesis [14], trust-region based policy optimization is

proposed based on Kakade and Langford's work [7], which call conservative policy

iteration, the new policy was de�ned to be the following mixture:

πnew (a | s) = (1− α) πold (a | s) + απ′ (a | s) (2.5)

where π′ = argmaxπ′ Lπold
(π′), with a critial Lower Bound is

η (πnew) ⩾ Lπold
(πnew)−

2ϵγ

(1− γ)2
α2 (2.6)

This Lower Bound tall us that if α ≪ 1, the policy update would have a monotonic

improvement guarantee. It is a really attractive conclusion. However the mixture

policy are rarely used in practice.

J.Schulman extends this imporvement guarantee to practical problems. The �rst prin-

cipal modi�cation is to replace α in Equation (2.5) with a measure between πold and

πnew, that is D
max
TV (πold, πnew). where

Dmax
TV (π, π̃) = max

s
DTV (π (· | s) ∥ π̃ (· | s)) (2.7)

Same as Kakade's Lower Bound, Equation (2.6), J.Schulman also deduces a Lower

Bound that

12

η (πnew) ⩾ Lπold
(πnew)− CDmax

KL (πold, πnew) (2.8)

where C = 2ϵγ

(1−γ)2
, which γ is discount rate and usually set as 0.99 or 0.98. Thus, γ

(1−γ)2

is a big number, it measures the horizon of agent. The farther the agent could see, the

greater this value will be. Only if the Dmax
KL (πold, πnew) small enough, improving L (θ)

could improve ηπ.

That is why in trust-region based algorithms, the new policy distribution cannot di-

verge too much from the original policy distribution during each parameter update of

the policy.

The objective function of PPO algorithm clip version is Equation (2.9), which is a trick

version of Equation (2.3) by laveraging clip function. It greatly simpli�es the implementation

of TRPO, without performance lost.

LCLIP (θ) = E
[
min

(
rt (θ) Â, clip (rt (θ) , 1− δ, 1 + δ) Â

)]
(2.9)

where the δ is a hyper-parameter that changes the clip range.

To update the value function Vω (s)(the critic), the squared-error loss function is used

(Equation (2.10))

J (ω) =
(
rt + γrt+1 + ...+ γT−t+1rT−1 + γT−tVω (sT)− Vω (st)

)2
(2.10)

2.3 Parallelize Rollout

A rollout is a simulation of a policy in an environment. It alternates between choosing

actions based (using some policy) and taking those actions in the environment. This part

will introduce the parallelization techniques, which used currently, and focus on the method

used in our research.

13

Algorithm 1 Proximal Policy Optimisation (PPO) with single worker.

for each e ∈ episodes do

Run a trajectory τ , which length is T time-steps, following πold;

Compute advantage estimates Â1...ÂT ;

Optimise critic's loss function J w.r.t. ω;

Optimise actor's loss function LCLIP w.r.t. θ;

end for

PPO is a on-policy RL Algorithm, that the data sampled from environment must be

generated from current policy. it can't learn from too old or external sample data. That

means on-policy RL Algorithm has the worst sample-e�ciency.

A e�cient, scalable distributed RL training framework(architecture) has become a kind

of necessity of RL industry application. By analyzing the single worker version PPO above

(Algorithm 1). we could see that if we just roll-out one trajectory τ , the variance of statistic

variable A (a, s) would extremly huge. Although GAE−λ help us soften the serious variance

of the tail of the trajectory, it is never enough for algorithm to update policy just use

one trajectory τ . Typically, a large number of workers are responsible for exploring the

environment in the real practical application with PPO based algorithms. For example

OpenAI trains a dexterous robot hand to solve Rubik’s Cube with 29,440 CPU cores(worker

process) [1], and trains OpenAI Five, which has started to defeat amateur human teams at

Dota 2 game [3] with 57,600 workers, which shown as Fig.2.2.

RL is inherently comprised of heterogeneous tasks: Running Environments, Model Infer-

ence, Model Training. Three parts depend on each other, usually locate in di�erent hardware

devices(CPU, GPU or TPU).

Running Environments The environment process(usually simulator) accepts an action at,

then simulate out the next state st+1 and reward rt+1, based on environment transform

P : S ×A → S and reward function R : S ×A×S → R. This part runs on the CPU.

14

Figure 2.2: System Overview of OpenAI Five

Model Inference Sample an action from the current policy π, which at+1 ∼ π (· | st). This

part is the forward calculation of a NN model, which usually run on GPU, if the model

is a large-scale neural network. As we all know, the overhead of data transform between

Host(RAM) and Device(GPU) is expensive. In order to make CPU and GPU more

e�ecient, we usually collect a batch of state then infer a batch of action at once, as

Fig.2.3(a). Thus we have to synchronous every actors to get a big batch of state. The

disadvantage is obvious the slowest worker would slow everyone down.

Model Training Training means forward calculate surrogate objective loss, and get the

gardent w.r.t. policy network weight θ. Then update the weight by using Stochastic

15

gradient descent(SGD). This part is usually run on GPU.

Fig.2.3 illustrates three kinds of calculate pattern. (a) and (b) are di�erent in synchronous

timing, (a) is synchronous every worker each step, and (b) is synchronous every worker after

each trajectory. The advantage of pattern (a) is it has better use of bandwidth, howerer,

the slowest worker would slow everyone down. The ideal computing pattern is (c), which is

provided by a framework call IMPALA [6], both the CPU and GPU are fully utilized.

Figure 2.3: The parallelization solution for single machine single GPU

In Pick and Place task, we adope calculate pattern (a), which synchronous every worker af-

ter each step. we use MPI to generate subprocess and control subprocess, with the primitives

such as fork, send, recv, etc.

Naturally, We have the multi-worker version of PPO (Algorithm 2).

2.4 Summary

In this chapter, we brie�y cover the basic concepts of RL in a limited space, then introduce

Proximal Policy Optimisation (PPO) algorithm. Then we analyze why policy should not be

16

Algorithm 2 Proximal Policy Optimisation (PPO) with Multi-Rollout worker.

for each e ∈ episodes do

// Asynchronous every step of each worker

for each w ∈ workers do

Run a trajectory τw, which length is T time-steps, following πold;

Compute advantage estimates Â1...ÂT ;

end for

Optimise critic's loss function J w.r.t. ω;

Optimise actor's loss function LCLIP w.r.t. θ;

end for

change too large during each policy improvement phase. Finally, we introduce the importance

of parallelization technology in RL, and we introduce the parallelization technology what we

adopted.

17

3 Rank Temporal Di�erence

3.1 Policy Invariance and Potential-Based Reward Shap-

ing

Figure 3.1: Whether the reward shaping has the Policy Invariance guarantee?

Andrew Y. Ng [9] proposed a formal of reward shaping:

For a MDP M (S,A,P , R, γ), exists a transformed MDP M ′ (S,A,P , R′, γ), where R
′
=

R+F . And F : S×A×S 7→ R is a bounded real-valued function called the shaping reward

function.

As Fig.3.1 shows that, the core point is the reward function R inM is too sparse for agent

to �nd a optimal policy π∗, but it is easy in M′ with a shaped dense reward function R′.

If there is a consistency guarantee between π∗
M and π∗

M′ , which calls Policy Invariance for

18

shaping reward function F . That means we could �nd π∗
M by solving π∗

M′ .

Fortunately, Andrew Y. Ng provides a important Theorem with a serise clear proofs.

If there exists a real-valued function Φ : S 7→ R, that for all s ∈ S−{sgoal}, a ∈ A, s′ ∈ S,

F (s; a; s′) = γΦ (s′)− Φ (s) (3.1)

Then, F is a potential-based shaping function, which is the necessary and su�cient

condition of policy invariance.

In applications, Φ should of course be chosen using expert knowledge about the domain.

According to chapter 5 of Andrew Y. Ng's paper [9], it is possible that for certain problems, it

may be easier for an expert to propose a potential Φ for an "undiscounted" shaping function

Φ (s′)− Φ (s), even when γ ̸= 1.

Policy Invariance Theorem provides a solid theoretical foundation for the development of

Rank-TD method.

3.2 Mathematical Model of Rank-TD

Following the policy invariance theorem, under the goal-orientation sequential decision

making RL scenario, we assume MDPM has a sparse reward function R = {0, 0+}, which

0+ is a very small positive number, only get if agent achieve the goal.

Then we build a transformed MDPM′, which reward function R′ = R+F with a potential-

based shaping F . Because 0+ is a very small positive number, for simplicity, we ignore R,

then R′ = F (the explain here is that the elimination of R is not allowed in theory, but it does

not a�ect the numerical results.) F : rank (st+1)− rank (st) has a formal as equation(3.1) .

Here the rank inherits the nature of the potential Φ, but it develop and extend with other

limitation and practical sense.

The optimal policy π∗ ofM′ is consistent withM, which is:

19

π∗ .
= argmax

π
Prτ∼π (sT = goal) (3.2)

where trajectory τ (s0, o0, a0, s1, o1, a1 · · · st, ot, at · · · sT) is generated under the policy π
(
at

∣∣ ot).
Rank function is de�ned as a mapping rank : S → N, satis�ed that if trajectory τ is

generated under the optimal policy π∗, then

rank (s0) ⩽ rank (s1) ⩽ · · · ⩽ rank (st) ⩽ · · · ⩽ rank (sT)

The di�erence between rank and potential Φ is that, too many times inverse rank trans-

form is forbided during agent interact with the environment.

Finally, the reward R′ de�ned as

r (st, st+1)
.
=

 −1, st+1 = terminal condition

rank (st+1)− rank (st) , other

The objective of optimization is to �nd an a optimal policy π∗ (at ∣∣ ot).

max Prτ∼π (sT = goal)

s.t. cout(rank (st)> rank (st+1)) ⩽ ε, ε ∈ N .

ε is a hyper-parameter that restricts the times of inverse rank transform during roll-out.

When an episode arises more than ε times inverse rank transforms, the episode would be

terminated.

3.3 Summary

In this chapter we introduce the Theorem of Policy Invariance, and we expand RankTD

from potential-based reward shaping. We assume that RankTD has faster policy conver-

gence.

20

4 Experiment: Toy Tasks

4.1 Toy Task Description

We design a toy task (Fig.4.1) to verify the idea of Rank TD.

Figure 4.1: Toy case: agent exists in a world with 21 discrete states spaces. The agent can

choose one from action space A = {⇐⇐,⇐,⃝,⇒,⇒⇒}. The goal is to arrive state 20.

Assuming an agent exists in a world with state space S = {0, 1, ..., 20} and action spaceA =

{⇐⇐,⇐,⃝,⇒,⇒⇒} which means two steps backward, one step backward, stand

still, one step forward, two steps forward. The agent initialized in 0 state each

time, which p (st = 0|t = 0) = 1. The deterministic environment dynamic transform st+1 ←

P (st, at) de�ned as Table 4.1. Red "-1" means that the agent falls into a trap and terminates

the episode. Green "20" is the goal state for the agent. In this toy case, observation ot is

equivalent to the internal full state st, which ot = st.

4.2 Reward Setting

We prepared three kinds of reward functions. The �rst is that the agent gets a bonus of

1 only when it reaches the target state, or a penalty -1 when it falls into the trap, and 0 at

other times (Equation 4.1).

21

Table 4.1: Dynamic Transform Table

st

st+1 at
⇐⇐ ⇐ ⃝ ⇒ ⇒⇒

0 0 0 0 1 2

1 0 0 1 2 3

2 0 1 2 3 4

3 -1 -1 -1 4 5

4 2 3 4 5 6

5 3 4 5 6 -1

6 4 5 6 7 8

7 5 6 7 8 9

8 6 7 -1 -1 -1

9 7 8 9 10 11

10 8 9 -1 -1 -1

11 9 10 11 12 13

12 10 11 12 13 14

13 11 12 -1 -1 -1

14 12 13 14 15 16

15 13 14 15 16 17

16 -1 -1 -1 17 18

17 15 16 17 18 19

18 16 -1 -1 -1 -1

19 17 18 19 20 20

rsparse (st, st+1)
.
=


−1, st+1 = −1

0, other

1, st+1 = 20

(4.1)

The second reward is set as the temporal di�erence between the previous state and current

state, and -1 when it falls into the trap (Equation 4.2).

rstateTD (st, st+1)
.
=

 −1, st+1 = −1

st+1 − st, other
(4.2)

22

The 3th reward is set similar as the above setting(Equation 4.2), but we add a terminal

condition: inverse rank transform more than twice (Equation 4.3).

We can imagine that the rank function is a sequence of waypoints, which also represents

the completeness of a task, as de�ned by the expert according to the expert's understanding

of the task.

rRankTD (st, st+1)
.
=


−1, st+1 = −1 or

the times of inverse rank transform > 2

Rank (st+1)−Rank (st) , other

(4.3)

We try to �nd a policy π
(
at

∣∣ ot) by the PPO Algorithm under 3 kinds of reward settings

with same hyper-parameter, architecture, and random seed.

The result (Fig.4.2) shows that if the positive feedback signal is too sparse, the agent would

learn nothing. On the contrary, the immediate feedback signal (state temporal di�erence)

setting, which could re�ect the change of completing the task, allows learning to be more

smoothly. RankTD reward setting can reduce the scale of explorations and accelerate the

convergence of policy.

23

Figure 4.2: Toy task with Sparse, StateTD and RankTD reward setting solved by PPO.

RankTD reward setting has a faster convergence.

4.3 Bottleneck Issue

Secondly, we modify the toy case, get a useful conclusion.

If the state transitions between the adjacent ranks are not too complicated, it would

di�cult for agent to explore the path from one rank to a higher rank, in other words, when

the path becomes narrower, learning will be blocked. We call it bottleneck issue. For example,

if we change rows 2, 3, and 4 of the original state transform table, such as Table 4.2.

Table 4.2: Narrower Version Dynamic Transform

st

st+1 at
⇐⇐ ⇐ ⃝ ⇒ ⇒⇒

2 0 1 2 3 -1

3 -1 -1 -1 4 -1

4 -1 -1 -1 5 -1

The result (Fig.4.3) shows that as the process of state transform becomes more complex

and the ascending path becomes narrower, the di�culty of agent exploration increases.

24

Figure 4.3: More complex state transform of the task makes it more di�cult for the agent

to explore. When applied in complex problems, if we fail to grasp the scale or granularity

of the rank function, agents are unable to learn the good policy.

4.4 Summary

In this chapter we design a series toy tasks to verify the idea of RankTD. From the

comparison between sparse setting, StateTD and RankTD by PPO, we can see that

RankTD is much easier to learn the optimal strategy, and has faster policy convergence.

Then we disscuss the bottleneck issue, when state transform becomes more complex, or rank

function is too rough, agent is di�cult to �nd the optimal policy quickly.

25

5 Experiment: Pick and Place Task

In order to extend the theory to practical application. We design a Pick and Place robot

task, where the robot-arm grasps an object and puts it in a basket.

5.1 Environment

The robot environment, which developed and published by Google Brain [13] is built on

the PyBullet simulator. PyBullet [4] is a physical simulator developed for games, visual

e�ects, robotics and reinforcement learning.

There are a lot of di�erent scenarios for manipulator grasping. In learn-based fetching,

one of the most important challenges is generalization: Can a agent learn grasping patterns

and skills to successfully grasp new objects not seen in training? We prepared 90 di�erent

objects for the training phase and 10 for the testing phase. We want to know whether the

agent can generalize various grasping strategies for di�erent types of objects.

5.2 Task Description

Action A : The robot-arm is 7DOF kuka-iiwa. Because this task does not need to change

the orientation of the end-e�ector, thus the orientation is �xed vertically. The robot is

controlled by 5-dimensional action. The �rst three dimensions are the relative change of

cartesian coordinates(∆x,∆y,∆z) of the end-e�ector, while the fourth dimension is the

relative change of gripper's rotation angle(∆θ), and the last dimension is the instruction

of the gripper open and closed (negative for closing and positive for opening).

26

(a) Objects for Training Phase

(b) Objects for Testing Phase

Figure 5.1: Objects for Training and Testing Phase

27

(a) internal state S

(b) observe image O

Figure 5.2: Internal state and Observation

28

Internal Full State S : The Internal Full States of the simulator as in Fig.5.2(a),which

include

1. The distance between the gripper and object dto_obj;

2. The height of the object to be lifted h;

3. The distance between the gripper and basket dto_basket;

4. The collision detection of gripper-basket and gripper-object.

Observation O : The agent gets RGB observation with dimensions 256 × 128 × 3 as in

Fig.5.4(b), captured by two cameras that the one is located at the top-left of the

robot, and the other one is located at the shoulder of robot. The image obtained at this

location contains the relative positions of the basket, object, and gripper. Furthermore,

in order to train in headless mechine, we don't allow the GPU to render the shadow.

To increase the robustness of the model, during the training phase, the position of the

camera and the robot's base coordinate system will shake slightly.

Initial State Distribution : The gripper's initial position and the objects' scattered ran-

domly in the legal region. The location of the basket is �xed and immovable.

Success Condition (goal) : The object drops into the basket successfully.

Terminal Conditions :

1. The end-e�ector is outside the legal area;

2. The gripper collided with the basket;

3. Exceeds the maximum episode length (128).

The internal full state st is hard to measure or achieve in the real world but easy in

the simulator. Thus, we could leverage the expert's prior knowledge to de�ne a sequence

29

(a) The �rst line is the unrandomized observation sequence. The following two lines are the sequence of

observation with randomization.

(b) Actor Net Architecture. The agent learns an actor model in the simulator that only depends on the

observe image. We concatenate the last two layers of features for better using global features. Action a is

sampled from a Diagonal Gaussian Distribution, the mean µ, and the diagonal standard deviation σ only

depending on the input image.

Figure 5.3: Vision-Based Robotic Grasping

of waypoints by the simulator's internal full states, and then train an image-based policy,

which could also work in the real world.

Training an end-to-end model in the real world requires too many samples. The current

trend, therefore, is to learn an image-based policy in simulation and then transfer them to

the real world, which is called sim2real.

For overcoming the sim-real gap, which is caused by a di�erent sample process osim ∼

Gsim (s) and oreal ∼ Greal (s), we employed domain randomization [18] to facilitate a smooth

domain transfer of the learned policy.

30

5.3 Reward Setting

The rank function de�ned is based on the expert's understanding of the task, as Tab.5.1 ,

using the internal state of the simulator as in Fig.5.2(a).

1. First, the end-e�ector should move towards the object. The distance between the end-

e�ector and the object dto_obj is be used to measure and discribe the Rank function;

2. In the second step, the gripper should grasp the object at right condition in the right

time. The state gripper open or not is be used to measure and discribe the Rank

function;

3. Then, the agent needs to lift the object, The height of object from desktop h is be used

to measure and discribe the Rank function;

4. After that, the gripper that holds the object needs to move towards the target. The

distance between the end-e�ector and the basket dto_basket is be used to measure and

discribe the Rank function;

5. Finally, if the object drops into basket correctly, agent will get success, else fail in

current episode.

If the times of inverse rank transform more than the threshold ε , which cout(rank (st) >

rank (st+1)) > ε, episode would be terminated.

5.4 Implemention

The policy is parameterized as a DNN θ. We adopt the PPO algorithm to �nd the optimal

policy πθ → π∗. The policy net is shown as (Fig.5.3(b)). The padding way of CNN is all

valid. CNN extracts the features from high-dimensional images, and the full connection layer

interprets and uses the CNN features. After the tanh active function, the mean, and the

31

Table 5.1: rank function

rank Internal Full State

0 dto_obj > 57cm

1 37cm < dto_obj ⩽ 57cm

2 27cm < dto_obj ⩽ 37cm

3 18cm < dto_obj ⩽ 27cm

4 14cm < dto_obj ⩽ 18cm

5 9cm < dto_obj ⩽ 14cm

6 5cm < dto_obj ⩽ 9cm

7 gripper not open

8 gripper open

9 h ⩽ 1cm

10 1cm < h ⩽ 4cm

11 4cm < h ⩽ 7cm

12 7cm < h ⩽ 10cm

13 10cm < h ⩽ 15cm

14 dto_basket > 57cm

15 50cm < dto_basket ⩽ 57cm

16 40cm < dto_basket ⩽ 50cm

17 30cm < dto_basket ⩽ 40cm

18 23cm < dto_basket ⩽ 30cm

19 dto_basket ⩽ 23cm

20 object drop into basket

standard deviation of the gaussian distribution were output by the full connecting layer, and

action a was sampled from the gaussian distribution.

Input images are scaled in [0, 1] for stable training, and the last layer's weight of actor net

initialized with 0 before training, which means the mean and standard deviation initialized

with 0 before training.

During one training epoch, 40 Kuka workers roll-out episodes data that is based on current

policy πθt , and evaluate the policy, which updates the value function the same as the classic

PPO algorithm. Then, they update the policy to πθt+1 based on the Trust Region policy

optimization theory [15].

32

The discount γ in our experiment is 0.9; The inverse rank transform threshold ε is 3; max

episode length is 128.

Table 5.2: PPO Hyperparameters of Pick and Place task

Parameter Value

optimizer Adam

learning rate 2.5e-4

discount (γ) 0.9

inverse rank transform threshold ε 3

max episode length 128

To enhance the robustness of the model, during the training, we added noise to camera

and robot base-coordinate, as Fig.5.4. The noise come from a scaled uniform distribution,

as Equation (5.1).

Random Noise ∼ random level ∗ U [−5cm, 5cm] (5.1)

5.5 Result

We experiment on a platform with Intel i7-8700k, 32Gb RAM, GTX 1080Ti, with 48

workers and cost 72 hours for 3 000 000 times environment interaction.

The result shows that the agent can act following the expert expected manner.

The learning curve is shown in the upper of Fig.5.5(b). An interesting phenomenon is that

because there is a penalty for hitting the basket, the agent knows to avoid hitting the basket

before grasping the object.

We evaluate our model on the test scenario. The object is never encountered during

training. The success rate for the complete process was 83.14% (2993/3600).

33

(a) Add 0.5 level random noise to camera and robot base-coordinate system during training

(b) Then test in di�erent level Random Noise

Figure 5.4: Add 0.5 level random noise to camera and robot base-coordinate system during

training. Then test in di�erent random level.

34

Figure 5.5: The upper is the training curve, and the lower is the pre-grasp behavior, which

avoids hitting the basket.

35

5.5.1 Bad Case

Because the orientation of the end-e�ector is �xed vertically, it is hard for robot to grasp

object near the base, where called Embarrass Area, as Fig.5.6(a).

5.6 Summary

In this chapter, we design a Pick and Place robot task and train a image-based policy

under RankTD reward setting. we design the rank function by human priori knowledge of

task. Finally, we test our model in test scenario, which the object is never be seen in train

phase, and we get 80% success rate.

36

(a) Because the orientation of the end-e�ector is �xed vertically, it is hard for robot to grasp object near the

base, where called Embarrass Area.

(b) Embarrass Area and Legal Area of Ene-E�ector

Figure 5.6: The illustration of the Embarrass Area and Legal Area.

37

5.7 Conclusion and Future work

5.7.1 Conclusion

In the begin of thesis, we address two issues of the conventional approach of robotic

grasping system, And we discusses an method, by which shaping a reward function much

more e�ciently, under the goal-orientation sequential decision making RL scenario.

In chapter 2, we brie�y cover the basic concepts of RL in a limited space, then introduce

Proximal Policy Optimisation (PPO) algorithm. Then we analyze why policy should not be

change too large during each policy improvement phase. Finally, we introduce the importance

of parallelization technology in RL, and we introduce the parallelization technology what we

adopted.

In chapter 3, we introduce the Theorem of Policy Invariance, and we expand RankTD from

potential-based reward shaping. We assume that RankTD has faster policy convergence.

In chapter 4, we design a series toy tasks to verify the idea of RankTD. From the comparison

between sparse setting, StateTD and RankTD by PPO, we can see that RankTD is

much easier to learn the optimal strategy, and has faster policy convergence. Then we

disscuss the bottleneck issue, when state transform becomes more complex, or rank function

is too rough, agent is di�cult to �nd the optimal policy quickly.

In chapter 5, we design a Pick and Place robot task and train a image-based policy

under RankTD reward setting. we design the rank function by human priori knowledge of

task. Finally, we test our model in test scenario, which the object is never be seen in train

phase, and we get 80% success rate.

5.7.2 Future work

There are still some parts could be improved. One is the representation of ovservation. We

can deduct high-dimensional observation to low-dimensional state vectors by some unsuper-

38

vised approach such as the AutoEncoder. Another is reducing the length of rank functions.

It is di�cult to construct the rank function of a complex task using single internal state vari-

ables. And if the rank is de�ned too long, it is hard to explore a high-rank state. One way to

relieve this problem is to modify initial state distribution p (s0), proposed in DeepMimic [10],

which makes high-rank state could aslo be fully explored.

39

Thanks

I would like to thank:

• Shunsuke Kudoh and Takashi Suehiro for their invaluable advice and encourage-

ment with regards to all aspects of my Master curriculum.

• Masaru Takizawa for his help with redacting the �nal ROBOMECH2020 publication

and many discussions of the project progress.

• Every member of Kudoh Suehiro lab for warmly welcoming me in their workspace and

sharing the compute resources without which this project would not be possible.

• My family, for their love and support.

40

Bibliography

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,

Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.

Solving rubik's cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. In Advances in neural information processing systems, pp.

5048�5058, 2017.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysªaw D¦biak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota

2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[4] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for

games, robotics and machine learning. http://pybullet.org, 2016�2019.

[5] Guoguang Du, Kai Wang, and Shiguo Lian. Vision-based robotic grasping from object

localization, pose estimation, grasp detection to motion planning: A review. arXiv

preprint arXiv:1905.06658, 2019.

[6] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom

Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable

distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint

arXiv:1802.01561, 2018.

41

[7] Sham Kakade and John Langford. Approximately optimal approximate reinforcement

learning. In ICML, Vol. 2, pp. 267�274, 2002.

[8] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning

for deformable object manipulation. arXiv preprint arXiv:1806.07851, 2018.

[9] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. In ICML, Vol. 99, pp.

278�287, 1999.

[10] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic:

Example-guided deep reinforcement learning of physics-based character skills, 2018. cite

arxiv:1804.02717.

[11] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron,

Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller.

Data-e�cient deep reinforcement learning for dexterous manipulation. arXiv preprint

arXiv:1704.03073, 2017.

[12] Ameya Pore and Gerardo Aragon-Camarasa. On simple reactive neural networks for

behaviour-based reinforcement learning. arXiv preprint arXiv:2001.07973, 2020.

[13] Deirdre Quillen, Eric Jang, O�r Nachum, Chelsea Finn, Julian Ibarz, and Sergey Levine.

Deep reinforcement learning for vision-based robotic grasping: A simulated comparative

evaluation of o�-policy methods. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pp. 6284�6291. IEEE, 2018.

[14] John Schulman. Optimizing expectations: From deep reinforcement learning to stochas-

tic computation graphs. PhD thesis, UC Berkeley, 2016.

42

[15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International conference on machine learning, pp.

1889�1897, 2015.

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation. arXiv

preprint arXiv:1506.02438, 2015.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-

imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[18] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. Domain randomization for transferring deep neural networks from simulation

to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 23�30. IEEE, 2017.

[19] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot,

Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging

demonstrations for deep reinforcement learning on robotics problems with sparse re-

wards. arXiv preprint arXiv:1707.08817, 2017.

43

