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Abstract A domain decomposition method for large-

scale elastic–plastic problems is proposed. The proposed

method is based on a quasi-Newton method in conjunc-

tion with a balancing domain decomposition precondi-

tioner. The use of a quasi-Newton method overcomes

two problems associated with the conventional domain

decomposition method based on the Newton–Raphson

method: (1) avoidance of a double-loop iteration algo-

rithm, which generally has large computational com-

plexity, and (2) consideration of the local concentration

of nonlinear deformation, which is observed in elastic–

plastic problems with stress concentration. Moreover,

the application of a balancing domain decomposition

preconditioner ensures scalability. Using the conven-

tional and proposed domain decomposition methods,

several numerical tests, including weak scaling tests,

were performed. The convergence performance of the

proposed method is comparable to that of the conven-

tional method. In particular, in elastic–plastic analysis,

the proposed method exhibits better convergence per-

formance than the conventional method.
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1 Introduction

Large-scale nonlinear finite element analysis on com-

plex and realistic structural models is useful to identify

the global and localized structural responses in the pro-

cesses of design and maintenance, as well as accident in-

vestigation. When a source of stress concentration such

as a crack, a hole or an inclusion exists in the structure,

material in the vicinity of the source suffers from severe

stress concentration, resulting in plastic deformation. In

contrast, a most portion far from the stress concentra-

tion source remains in elastic deformation. This prob-

lem would be significant especially in large-scale anal-

ysis. Moreover, such a problem can also be observed

in other engineering fields such as stress concentration

at structurally discontinuous parts and welding with a
moving heat source. However, a conventional nonlinear

finite element method that is based on the Newton–

Raphson method cannot consider this problem. In the

conventional method, a huge linear system of equa-

tions should be solved at every Newton–Raphson iter-

ation step. Large amount of computational complexity

is devoted evenly to the whole analysis model, regard-

less of whether the region is elastic–plastic or not. For

this problem, the authors have proposed the partitioned

coupling method [43,45,46], in which an analysis model

is decomposed into two nonoverlapping domains, i.e.,

global and local domains. The local domain, which con-

tains the crack, is modeled as an elastic–plastic body,

whereas the uncracked global domain is modeled as an

elastic body. The two domains are solved iteratively

in the context of a nonlinear solution method such as a

quasi-Newton method. Similar approaches can be found

in the literature. Nishikawa et al. [32] analyzed a weld-

ing problem by using the iterative substructure method,

in which the vicinity of a welding heat source is sepa-
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rated from an analysis model, and the two domains are

analyzed iteratively. Nikishkov and Atluri [31] and Pyo

et al. [36] presented the elastic–plastic finite element al-

ternating method, in which a mesh without cracks and

analytical solutions of an elastic–plastic crack are solved

iteratively. Yumoto et al. [41, 42] and Yusa et al. [44]

analyzed stress concentration and crack problems by

using the coupling-matrix-free iterative s-version finite

element method, which is a modification of the s-version

finite element method [16]. A local mesh that models

a local feature such as a hole or a crack and a global

model without the local feature are solved iteratively.

This iteration is accelerated by a linear or nonlinear so-

lution method such as the Gauss–Seidel method or a

quasi-Newton method [44]. From aforementioned stud-

ies, it can be stated that the use of a local domain with

an iterative method appears to be a key in reducing

computational time to solve large-scale elastic–plastic

problems involving local nonlinearity.

However, such a global–local iteration approach has

a difficulty such that the analyst should determine the

local domain manually before the analysis. The size

of the local domain must be affected by the size of a

plastic zone, which is unknown before the analysis. To

overcome this difficulty, the authors propose a multi-

domain iteration approach in the present study. In this

approach, an analysis domain is decomposed into mul-

tiple subdomains. Some subdomains experience plastic

deformation, whereas other subdomains do not. This

approach appears to be related strongly to the domain

decomposition method (DDM) [37,38]. The domain de-

composition method has been studied for many years

in the field of mathematics [3,4,8,11–13,22–25,37–39],

and has been applied to large-scale computational solid

mechanics problems in engineering [1, 6, 7, 18, 28, 34,

40]. The DDM decomposes an analysis domain into

multiple subdomains, which are assigned to process-

ing elements (PEs) of a parallel computer. From the

point of view of a domain decomposition procedure,

the DDM can be classified into two methods, i.e., over-

lapping and nonoverlapping methods [37,38]. The over-

lapping DDM [3, 4, 8, 24, 37, 38] allows overlapping be-

tween adjacent subdomains, whereas the nonoverlap-

ping DDM [11,22,23,25,37–39] does not. In both meth-

ods, nonlinear problems have also been studied in the

mathematical literature [3, 4, 8, 12, 13, 22–24]. In the

present study, the nonoverlapping DDM is considered,

due to the compatibility with the aforementioned par-

titioned coupling method [43,45,46]. In practical large-

scale analysis, scalability is indispensable in solving a

problem in computational time that the analyst can

wait for. For example, design analysis generally requires

smaller computational time than one night (off hours).

In order to ensure scalability, several coarse-grid-correction-

based preconditioners for the nonoverlapping DDM, such

as balancing domain decomposition (BDD) [25], BDD

with diagonal scaling (BDD-DIAG) [33], BDD by con-

straints (BDDC) [11], finite element tearing and inter-

connecting (FETI) [15], and dual–primal FETI (FETI-

DP) [14], have been proposed. These preconditioners

have been used to solve large-scale computational solid

mechanics problems in engineering. Approaches of the

DDM in computational solid mechanics applications

including the use of these preconditioners were sum-

marized by Gosselet and Rey [18]. BDD and BDD-

DIAG have been implemented in the software mod-

ules of the ADVENTURE System [1, 40], which is a

computational mechanics system for large-scale anal-

ysis and design. Ogino et al. [34] solved a dynamic

problem involving a nuclear pressure vessel under a

seismic load by using the ADVENTURE System on

the Earth Simulator. Akiba et al. [2] were selected as

one of the ACM Gordon Bell Prize finalists in Super-

computing Conference 2006 (SC2006) by using AD-

VENTURECluster, which is a commercial version of

the ADVENTURE System, on the Blue Gene/L su-

percomputer. FETI and FETI-DP have been imple-

mented in Salinas [6,7], which is a massively parallel im-

plicit structural mechanics/dynamics software. Bhard-

waj et al. [7] earned a Gordon Bell Award for special

accomplishment in Supercomputing Conference 2002

(SC2002) by using Salinas on the ASCI Red and White

supercomputers.

Although the capability of the DDM with a coarse-

grid-correction-based preconditioner for the practical

computational solid mechanics applications has been

demonstrated as described above, most previous stud-

ies examined linear elastic problems. In this sense, the

DDM can be regarded as a linear system solver. When

a nonlinear problem, such as an elastic–plastic prob-

lem, is to be solved by the DDM, the Newton–Raphson

method is usually used to linearize the nonlinear sys-

tem of equations of the discretized principle of virtual

work [28]. At every Newton–Raphson iteration step, the

linearized system of equations, i.e., a linear elastic prob-

lem, is solved by the DDM. However, there exists a

problem such that a double-loop iteration algorithm is

required in this method. The outer loop is a Newton–

Raphson iteration, whereas the inner loop is an itera-

tion to solve a linear system of equations, e.g., a conju-

gate gradient iteration. In general, a double-loop algo-

rithm has large computational complexity. This prob-

lem is usually not encountered in small-scale nonlinear

finite element analysis due to the use of a direct linear

system solver. In practice, the use of an iterative lin-

ear system solver is indispensable in large-scale analy-
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sis. In order to avoid a double-loop iteration algorithm,

other nonlinear system solvers, such as quasi-Newton

methods, may be useful. Although pure quasi-Newton

methods also require a double-loop iteration algorithm

due to the necessity of linear system solution, limited-

memory implementation [21] of quasi-Newton methods

with an easily invertible initial Jacobian matrix (e.g.,

the identity matrix) does not require linear system so-

lution. Quasi-Newton methods for nonlinear finite ele-

ment methods were investigated early in nonlinear com-

putational solid mechanics research [5, 17, 26]. More-

over, the modified Newton method, which is simpler

than quasi-Newton methods, was investigated in the

same period [9,29]. At present, in the field of nonlinear

computational solid mechanics, quasi-Newton methods

appear to be advantageous for problems in which the

tangent stiffness matrix cannot be computed explicitly.

Quasi-Newton methods have also been used in the field

of fluid–structure interaction [10,27], in which a nonlin-

ear system of equations on the fluid–structure interface

is defined from continuity and equilibrium. This non-

linear system of equations is solved by a nonlinear so-

lution method, such as a quasi-Newton method. Quasi-

Newton methods have been numerically demonstrated

to provide better performance than Newton–Raphson

method in some fluid–structure interaction problems.

Another problem with using the Newton–Raphson

method is the local nonlinearity. Some nonlinear prob-

lems, such as stress concentration problems, crack prob-

lems, and welding problems, produce the local concen-

tration of nonlinear deformation. High-stress regions

experience strongly nonlinear deformation, whereas low-

stress regions remain in linearly elastic or weakly non-

linear deformation. This feature appears to be signifi-

cant, especially in large-scale problems. However, in the

DDM using the Newton–Raphson method, a global lin-

ear system of equations is solved several times, even

in linear elastic subdomains. Furthermore, the num-

ber of Newton–Raphson iteration steps would be influ-

enced by the region that has the strongest nonlinearity.

This problem was also indicated in the literature of the

DDM [3,8,22,23,30,35]. To overcome this problem, sev-

eral approaches have been proposed so far. In the addi-

tive Schwartz preconditioned inexact Newton (ASPIN)

method [3,8], a nonlinear system of equations is precon-

ditioned nonlinearly by the additive Schwartz precondi-

tioning technique, and then solved by the inexact New-

ton method. In nonlinear nonoverlapping DDMs [22,

23,30,35], a nonlinear system of equations is precondi-

tioned by a coarse-grid-correction-based preconditioner

such as BDDC or FETI-DP.

In the present study, for large-scale elastic–plastic

problems, a DDM that is based on a quasi-Newton

method with a BDD preconditioner is proposed. The

use of a quasi-Newton method overcomes two prob-

lems associated with the conventional DDM. First, a

quasi-Newton method based on limited-memory imple-

mentation [21] is able to eliminate linear system solu-

tion, resulting in the avoidance of a double-loop itera-

tion algorithm. Several vector operations rather than

linear system solution are computed at every quasi-

Newton iteration step. Second, this method requires to

solve subdomain-wise nonlinear systems of equations.

Some subdomains experience elastic–plastic deforma-

tion, whereas other subdomains remain in linear elas-

tic deformation. An optimal number of nonlinear it-

eration steps is automatically devoted to each subdo-

main, enabling the consideration of local concentra-

tion of nonlinear deformation. This idea is an exten-

sion of the global–local iteration approach in the par-

titioned coupling method [46]. Moreover, a BDD pre-

conditioner ensures scalability, which is indispensable

in large-scale analysis. In addition, the methodology

includes two original elemental techniques. The first

is the derivation of an interface nonlinear system of

equations for a quasi-Newton method from the princi-

ple of virtual work. This nonlinear system of equations

is equivalent to the linear system of equations of the

conventional DDM when the problem is linearly elas-

tic. In this sense, the proposed DDM can be regarded

as an extension of the conventional DDM. The second

technique is the application of a BDD preconditioner

to a quasi-Newton method. To the best of the authors’

knowledge, BDD preconditioners have not been used

in quasi-Newton methods. Although the idea and the

methodology of the present study is partly similar to

some DDMs that are modified for nonlinear problems,

such as the ASPIN method [3,8] and nonlinear nonover-

lapping DDMs [22,23,30,35], there are two major con-

tributions in the present study. The first one is the use

of a quasi-Newton method with a balancing domain de-

composition preconditioner, and the second one is its

engineering application to a realistic structural model.

In the present paper, the conventional DDM and the

proposed DDM are first explained. This discussion in-

cludes the derivation of the nonlinear and linear systems

of equations to be solved, the application of the BDD

preconditioner, and the description of algorithms. Sev-

eral numerical tests are then performed. Linear elastic

and elastic–plastic problems are presented, and weak

scaling tests are performed. The results of these nu-

merical tests provide a basic understanding of the con-

vergence performance and scalability of the proposed

method.
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Fig. 1 Decomposed analysis domain.

2 Conventional domain decomposition method

based on the Newton–Raphson method in

conjunction with conjugate gradient method

Before presenting the proposed DDM, we explain the

conventional DDM [1,28,34,40]. The conventional DDM

mentioned in the present study is a nonoverlapping

DDM that is based on the Newton–Raphson method

with the conjugate gradient method. In general, the

DDM is a linear system solver due to the use of static

condensation. Therefore, the Newton–Raphson method

should be used to linearize a nonlinear system of equa-

tions. At each Newton–Raphson iteration step, a lin-

ear system of equations is statically condensed by the

DDM. The condensed linear system of equations is then

solved using the conjugate gradient method. The conju-

gate gradient method is frequently used in the field of

computational solid mechanics, whereas other Krylov

subspace methods can be used for unsymmetric and/or

non-positive-definite problems.

As mentioned above, huge linear systems of equa-
tions should be solved several times, even if nonlinear

phenomena such as plasticity occur locally. Further-

more, as the nonlinearity becomes strong, the number

of Newton–Raphson iteration steps tends to increase.

Moreover, the conventional DDM requires a double-

loop iteration algorithm. The outer loop is a Newton–

Raphson iteration, whereas the inner loop is a conjugate

gradient iteration. In general, a double-loop algorithm

has large computational complexity.

2.1 Nonlinear and linear systems of equations to be

solved

First, an analysis domain, Ω, is decomposed into mul-

tiple non-overlapping subdomains, Ωi (i = 1, 2, . . . , N),

for parallel computing, as shown in Fig. 1. The sub-

domain interface, which is represented by the dashed

lines, is Γ . Traction forces and enforced displacements

are prescribed on Γt and Γu, respectively.

Then, the principle of virtual work is introduced as∫
Ω

δεTσdΩ −
∫
Γt

δuTtdΓ −
∫
Ω

δuTbdΩ = 0. (1)

In this equation, σ, t, and b are stresses, traction forces,

and body forces, respectively. Moreover, δu and δε are

variations of displacements and strains, respectively.

Although Eq. (1) assumes infinitesimal strain, large-

strain problems can be dealt with in a similar manner.

Equation (1) can be discretized by a shape function

matrix, N , and a strain–displacement matrix, B, as∫
Ω

BTσdΩ −
∫
Γt

NTtdΓ −
∫
Ω

NTbdΩ = 0. (2)

This is the nonlinear system of equations to be solved by

the Newton–Raphson method. A residual vector, r, an

internal force vector, f int, and an external force vector,

f ext, are defined as

r = f int − f ext, (3)

f int =

∫
Ω

BTσdΩ (4)

and

f ext =

∫
Γt

NTtdΓ +

∫
Ω

NTbdΩ, (5)

respectively. In the Newton–Raphson method, the un-

known displacement vector, u, is updated at the k-th

iteration step, as

u(k+1) = u(k) +∆u(k). (6)

In this equation, ∆u(k) is the solution of a linear system

of equations:

K(k)∆u(k) = −r(k), (7)

where

K(k) =
∂r(k)

∂u
. (8)

If K(k) cannot be computed explicitly, another nonlin-

ear system solver, such as the inexact Newton method,

the modified Newton method, or the quasi-Newton method,

is used to solve Eq. (2).

In order to solve Eq. (7) by the DDM in conjunction

with the conjugate gradient method, Eq. (7) is permu-

tated for subdomain internal degrees of freedom, Ωi
(i = 1, 2, . . . , N), and subdomain interface degrees of

freedom, Γ , as

PK(k)PTP∆u(k) = −Pr(k). (9)
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Here, P is a permutations matrix. The entries of the

permutated linear system of equations can be described

as

PK(k)PT =



K
(k)
Ω1Ω1

0 · · · 0 K
(k)
Ω1Γ

0 K
(k)
Ω2Ω2

. . .
... K

(k)
Ω2Γ

...
. . .

. . . 0
...

0 · · · 0 K
(k)
ΩNΩN

K
(k)
ΩNΓ

K
(k)T

Ω1Γ
K

(k)T

Ω2Γ
· · · K(k)T

ΩNΓ
K

(k)
ΓΓ


,

(10)

P∆u(k) =



∆u
(k)
Ω1

∆u
(k)
Ω2

...

∆u
(k)
ΩN

∆u
(k)
Γ


(11)

and

−Pr(k) =



−r(k)Ω1

−r(k)Ω2

...

−r(k)ΩN

−r(k)Γ


. (12)

This equation can be statically condensed as

S(k)∆u
(k)
Γ = g(k), (13)

where

S(k) = K
(k)
ΓΓ −

N∑
i=1

K
(k)T

ΩiΓ
K

(k)−1

ΩiΩi
K

(k)
ΩiΓ

(14)

and

g(k) = −r(k)Γ +

N∑
i=1

K
(k)T

ΩiΓ
K

(k)−1

ΩiΩi
r
(k)
Ωi
. (15)

Equation (13) is referred to as a Schur complement sys-

tem, and S(k) is referred to as a Schur complement ma-

trix. This Schur complement system is to be solved by

the conjugate gradient method. At each iteration step

of the conjugate gradient method, the product of the

Schur complement matrix and a search direction vector

is computed using Eq. (14). For the summation term in

Eq. (14), every subdomain, Ωi, is analyzed in parallel

under assumed enforced displacements on the subdo-

main interface, Γ .

2.2 Balancing domain decomposition preconditioning

In order to accelerate convergence and ensure scala-

bility in large-scale analysis, a coarse-grid-correction-

based preconditioner for the DDM, such as BDD [25],

BDD-DIAG [33], BDDC [11], FETI [15], or FETI-DP [14],

should be applied to the Schur complement system.

In the present study, BDD and BDD-DIAG are used.

Moreover, a diagonal scaling preconditioner, which is

not based on coarse grid correction, is used for compar-

ison. At each iteration step of the conjugate gradient

method, a residual vector, r
(k,i)
Schur = g(k) − S(k)∆u

(k,i)
Γ ,

is preconditioned as

z
(k,i)
Schur = M (k)−1

r
(k,i)
Schur, (16)

where i is an iteration step of the conjugate gradient

method, M (k) is a preconditioning matrix, and z
(k,i)
Schur

is a preconditioned residual vector. Note that i is an it-

eration step of the conjugate gradient method, whereas

k is that of the Newton–Raphson method.

The explanation begins with diagonal scaling pre-

conditioning. The preconditioning matrix of diagonal

scaling is

M
(k)
DIAG = diag

(
K

(k)
ΓΓ

)
, (17)

which assumes

diag
(
S(k)

)
≈ diag

(
K

(k)
ΓΓ

)
. (18)

In these equations, the diag() operator extracts diago-

nal entries from the input matrix. Non-diagonal entries

are zero. Diagonal scaling preconditioning can be per-

formed completely in parallel because there is no inter-

action between subdomains.

BDD preconditioning ensures scalability by using

coarse grid correction. The inverse of the BDD precon-

ditioning matrix is

M
(k)−1

BDD =RT
0 S

(k)−1

0 R0

+
(
I −RT

0 S
(k)−1

0 R0S
(k)
)
M

(k)−1

NN

×
(
I −RT

0 S
(k)−1

0 R0S
(k)
)T

, (19)

where I is the identity matrix, R0 is a restriction oper-

ator to a coarse grid, S
(k)
0 is a coarse matrix, and M

(k)
NN

is a Neumann–Neumann preconditioning matrix. First,

the restriction operator, R0, is

R0 =

 Z
T
Ω1
DΩ1RΩ1Γ

...

ZT
ΩNDΩNRΩNΓ

 . (20)
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In this expression, RΩiΓ is a restriction operator from

the subdomain interface, Γ , to the i-th subdomain, Ωi,

and DΩi is a weight matrix that satisfies

N∑
i=1

RT
ΩiΓDΩiRΩiΓ = I. (21)

Here, ZΩi is a matrix that represents a coarse space

based on rigid-body motion. Then, the coarse matrix,

S
(k)
0 , is

S
(k)
0 = R0S

(k)RT
0 . (22)

Finally, the inverse of the Neumann–Neumann precon-

ditioning matrix is

M
(k)−1

NN =

N∑
i=0

RT
ΩiΓD

T
ΩiS

(k)†

Ωi
DΩiRΩiΓ , (23)

where S
(k)†

Ωi
is the generalized inverse of the local Schur

complement matrix, S
(k)
Ωi

. The Schur complement ma-

trix, S(k), in Eq. (14) can also be represented as

S(k) =

N∑
i=1

RT
ΩiΓS

(k)
Ωi
RΩiΓ . (24)

Since S
(k)
Ωi

is not a regular matrix, a regularization tech-

nique should be applied to S
(k)
Ωi

in order to obtain its

inverse. In the present study, the detailed computa-

tional procedures for obtaining R0, S
(k)
0 , and M

(k)
NN

follow Ogino et al. [33]. Here, the computational proce-

dure of BDD preconditioning can be divided into two

main parts. The first is coarse grid correction, and the

second is Neumann–Neumann preconditioning. First,

coarse grid correction is the solution of a linear system

of equations for which the coefficient matrix is S
(k)
0 .

This part is difficult to efficiently parallelize. A serial

or parallel direct linear system solver has been used for

this part [34]. Second, the Neumann–Neumann precon-

ditioning is the multiplication of M
(k)−1

NN and a vector.

In this part, every subdomain is analyzed in parallel

under assumed traction forces on the subdomain inter-

face.

BDD-DIAG preconditioning simplifies BDD precon-

ditioning by replacing the Neumann–Neumann precon-

ditioning matrix, M
(k)
NN, in Eq. (19) with the diagonal

scaling preconditioning matrix, M
(k)
DIAG, i.e.,

M
(k)−1

BDD-DIAG =RT
0 S

(k)−1

0 R0

+
(
I −RT

0 S
(k)−1

0 R0S
(k)
)
M

(k)−1

DIAG

×
(
I −RT

0 S
(k)−1

0 R0S
(k)
)T

. (25)

Local

solution

Interface displacement update

Convergence check

Local

solution

Local

solution

Displacement update

Convergence check

CG

Newton-

Raphson

Fig. 2 Flowchart of the conventional domain decomposition
method.

BDD-DIAG has an advantage in that its algorithm is

simpler than that of BDD. Moreover, its computational

time at each iteration step is shorter than that of BDD.

However, the number of iteration steps of BDD-DIAG

tends to be larger than that of BDD [33].

2.3 Algorithm

In the conventional DDM, a double-loop iteration al-

gorithm consisting of Newton–Raphson iteration and

conjugate gradient iteration is required. The computa-

tional procedures of the conventional DDM are summa-

rized in Fig. 2. In this algorithm, first, subdomain-wise

local problems (the multiplication of Eq. (14) and a vec-

tor) are solved in parallel. Second, based on the results

of the subdomain-wise local problems, the interface dis-

placement vector is computed by preconditioning (Eq.

(16)) and several vector operations in the context of

the conjugate gradient method. Some parts of these

procedures, such as diagonal scaling preconditioning,

Neumann–Neumann preconditioning, and some vector

operations, can be parallelized. The convergence of con-

jugate gradient iteration is then confirmed. After con-

jugate gradient iteration converges, the displacement

vectors at whole degrees of freedom are updated using

Eq. (6). Finally, the convergence of Newton–Raphson

iteration is checked.
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Yielding
zone

Elastic
subdomains

Elastic-plastic
subdomain

Fig. 3 Decomposed analysis domain of a stress concentration
problem in elastic–plastic analysis.

3 Proposed domain decomposition method

based on a quasi-Newton method

In this section, we propose a DDM that is based on

a quasi-Newton method. The proposed DDM can con-

sider the local concentration of nonlinear deformation,

which is caused by stress concentration. Here, a schematic

view of a stress concentration problem is illustrated

in Fig. 3. In this figure, the analysis domain is de-

composed into multiple subdomains. Then, we assume

that some subdomains experience elastic–plastic defor-

mation with yielding zones, whereas other subdomains

remain in linear elastic deformation. For these subdo-

mains, subdomain-wise nonlinear finite element analy-

ses are performed in parallel at each quasi-Newton iter-

ation step. When a subdomain is in nonlinear deforma-

tion, such as elastic–plastic deformation, the subdomain

is analyzed by nonlinear iteration, such as Newton–

Raphson iteration, modified Newton iteration, or quasi-

Newton iteration. When a subdomain is in linear elas-

tic deformation, the number of nonlinear iteration steps

becomes one. Moreover, due to the use of a quasi-Newton

method, there exists another advantage, namely, the

avoidance of a global double-loop iteration algorithm,

which is required in the Newton–Raphson method in

conjunction with the conjugate gradient method. Note

that we consider the case in which many subdomains

are in linear elastic deformation. This is due to the lo-

cal nonlinearity. If the problem is totally nonlinear, then

the proposed DDM should also be regarded as involving

a double-loop iteration algorithm.

3.1 Nonlinear system of equations to be solved

First, a nonlinear system of equations to be solved by

a quasi-Newton method is introduced. This nonlinear

system of equations is defined for the subdomain in-

terface degrees of freedom. This idea is similar to the

partitioned coupling method [46] and a quasi-Newton-

based fluid–structure interaction analysis method [10,

27]. The former method defines a nonlinear system of

equations on the interface of global and local domains,

whereas the latter method defines a nonlinear system

on the fluid–structure interface. However, the mathe-

matical procedure of the proposed method for deriving

the nonlinear system of equations is different. Moreover,

when the problem is linearly elastic, the proposed non-

linear system of equations becomes linear and equiva-

lent to Eq. (13) in the conventional DDM.

The explanation begins with the principle of virtual

work (Eq. (1)). Although Eq. (1) assumes infinitesimal

strain, geometrical nonlinear problems with finite strain

theory are available, as far as the principle of virtual

work can be defined. Moreover, additional terms such as

an inertia term and a damping term in dynamic analysis

with a time discretization method can be considered in

the methodology. Moreover, a constitutive equation is

not assumed. The proposed method assumes that non-

linear phenomena are observed locally. Thus, the target

problems of the present study are elastic–plastic prob-

lems. Then, in Eq. (1), the variation of displacements,

δu, is decomposed additively as

δu = δuΩ1 + · · ·+ δuΩN + δuΓ . (26)

Here, δuΩi is nonzero in the i-th subdomain, Ωi, and

on its traction-prescribed boundary, Γti . However, δuΩi
vanishes in other subdomains, Ωj (j = 1, . . . , i− 1, i+

1, . . . , N), on their traction-prescribed boundaries, Γtj
(j = 1, . . . , i − 1, i + 1, . . . , N), and on the subdomain

interface, Γ . Then, δuΓ is nonzero on the subdomain

interface, Γ . Using Eq. (26), Eq. (1) can be decomposed

into N equations, as∫
Ωi

δεTΩiσdΩ −
∫
Γti

δuT
ΩitdΓ −

∫
Ωi

δuT
ΩibdΩ = 0

(i = 1, . . . , N) . (27)

These equations are then discretized by a shape func-

tion matrix, N , and a strain–displacement matrix, B,

as

rΩi =

∫
Ωi

BTσdΩ −
∫
Γti

NTtdΓ −
∫
Ωi

NTbdΩ = 0

(i = 1, . . . , N) .

(28)

Here, rΩi is a residual vector in the i-th subdomain,

Ωi. Equation (28) can be solved by subdomain-wise

nonlinear finite analyses under assumed enforced dis-

placements, uΓ , on the subdomain interface, Γ . As a

result, displacements, u, at whole degrees of freedom,

Ω = Ω1 ∪ · · · ∪ΩN ∪ Γ , are obtained. Using these dis-

placements, u, the residual vector, r, at whole degrees



8 Yasunori Yusa et al.

of freedom in Eq. (3) can be evaluated. This resid-

ual vector is then permutated by a permutation ma-

trix, P , for subdomain internal degrees of freedom, Ωi
(i = 1, . . . , N), and subdomain interface degrees of free-

dom, Γ , as

Pr =


rΩ1

...

rΩN
rΓ

 . (29)

Since Eq. (28) has already been solved, rΩi = 0 (i =

1, . . . , N) under the displacements, u. Hence, in the

present study, the nonlinear system of equations to be

solved is defined as

rΓ = 0. (30)

The unknown vector of this nonlinear system of equa-

tions is uΓ .

In this paragraph, it is briefly proved that Eq. (30)

becomes equivalent to Eq. (13) when the problem is lin-

early elastic. The subdomain-wise residual vector (Eq.

(28)) under enforced displacements, uΓ , on the subdo-

main interface, Γ , can be expressed as

rΩi =
[
KΩiΩi KΩiΓ

]{uΩi
uΓ

}
− f ext

Ωi = 0. (31)

In this equation, uΩi is an unknown displacement vec-

tor in the i-th subdomain. f ext
Ωi =

∫
Γti
NTtdΓ+

∫
Ωi
NTbdΩ

is an external force vector. KΩiΩi =
∫
Ωi
BTDBdΩ

is a stiffness matrix of subdomain internal degrees of

freedom, Ωi, and KΩiΓ is a stiffness matrix of subdo-

main interface degrees of freedom, Γ . Here, σ = DBu,

where D is an elasticity matrix. Note that, in Eq. (28),

enforced displacements are not expressed explicitly, be-

cause δuΩi vanishes on Γ . Enforced displacements are

processed algebraically. Then, Eq. (31) can be rewritten

as

uΩi = K−1
ΩiΩi

(
f ext
Ωi −KΩiΓuΓ

)
. (32)

Using this equation, the interface residual vector, rΓ ,

can be evaluated as

rΓ =
[
KT
Ω1Γ · · · K

T
ΩNΓ KΓΓ

]

uΩ1

...

uΩN
uΓ

− f
ext
Γ

=

N∑
i=1

KT
ΩiΓuΩi +KΓΓuΓ − f ext

Γ

= SuΓ − g
= 0. (33)

Here,

S = KΓΓ −
N∑
i=1

KT
ΩiΓK

−1
ΩiΩi

KΩiΓ (34)

and

g = f ext
Γ −

N∑
i=1

KT
ΩiΓK

−1
ΩiΩi

f ext
Ωi . (35)

Therefore, Eq. (30) becomes equivalent to Eq. (13) when

the problem is linearly elastic.

3.2 Balancing domain decomposition preconditioning

To accelerate convergence and ensure scalability in large-

scale analysis, a coarse-grid-correction-based precondi-

tioner, such as BDD [25] or BDD-DIAG [33], is applied

to the proposed DDM. In addition, a diagonal scal-

ing preconditioner is applied for comparison. Although

BDD and BDD-DIAG have been used for linear sys-

tems of equations in previous studies, they are applied

to a nonlinear system of equations in the present study.

The reason why BDD and BDD-DIAG can be applied

to a nonlinear system of equations is its equivalence to

Eq. (13), which was proved in the previous subsection.

Here, a preconditioning matrix, M , operates on the in-

terface residual vector, rΓ , in Eq. (30), as

zΓ = M−1rΓ , (36)

where zΓ is a preconditioned residual vector.

In nonlinear analysis,MBDD (Eq. (19)),MBDD-DIAG

(Eq. (25)), and MDIAG (Eq. (17)) can change at each

quasi-Newton iteration step, due to the change of the

stiffness matrix. However, regenerating the precondi-

tioning matrix at every quasi-Newton iteration step takes

very long computational time. Thus, we generate the

preconditioning matrix by assuming linear elastic de-

formation. Once a preconditioning matrix is generated,

it remains throughout the quasi-Newton iteration.

3.3 Quasi-Newton-based solution

In the proposed DDM, the preconditioned interface non-

linear system of equations,

zΓ = 0, (37)

is solved by a quasi-Newton method. A quasi-Newton

method is adopted in order to avoid a double-loop iter-

ation algorithm and because of the consideration of the

local nonlinearity. Moreover, the Jacobian matrix, ∂zΓ∂uΓ ,
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cannot be computed explicitly. Among various quasi-

Newton methods, the Broyden method, as well as the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,

are used in the present study due to their popularity.

Since a pure quasi-Newton method requires a double-

loop iteration algorithm due to linear system solution,

limited-memory implementation [21] with the identity

matrix as an initial Jacobian matrix is applied.

In a quasi-Newton method, the unknown displace-

ment vector, u, is updated at the k-th iteration step,

as

u
(k+1)
Γ = u

(k)
Γ +∆u

(k)
Γ , (38)

where

∆u
(k)
Γ = −J (k)−1

z
(k)
Γ . (39)

J is an approximate Jacobian matrix, i.e.,

J ≈ ∂zΓ
∂uΓ

. (40)

By the Broyden method, the approximate Jacobian

matrix, J , is updated as

J (k+1) = J (k) +
z
(k)
Γ ∆u

(k)T

Γ∥∥∥∆u(k)
Γ

∥∥∥2 . (41)

Since solving Eq. (39) by a linear iterative solver re-

quires a double-loop iteration algorithm, limited-memory

implementation [21] is used. In this implementation,

only several vector operations are required rather than

linear system solution. Here, the Sherman–Morrison for-

mula is introduced as(
A+ uvT

)−1
=

(
I − A−1u

1 + vTA−1u
vT
)
A−1, (42)

where A is an arbitrary square matrix, and u and v are

arbitrary vectors. Moreover, I is the identity matrix.

By applying this formula to Eq. (41), we can obtain

two recursive expressions:

∆u
(k)
Γ = −J (k)−1

z
(k)
Γ =

p(k,k−1)

1− ∆u(k−1)T

Γ p(k,k−1)∥∥∥∆u(k−1)
Γ

∥∥∥2

, (43)

p(k,i+1) = −J (i+1)−1

z
(k)
Γ = p(k,i)+

∆u
(i)T

Γ p(k,i)∥∥∥∆u(i)
Γ

∥∥∥2 ∆u
(i+1)
Γ .

(44)

Their initial values are

∆u
(0)
Γ = −z(0)Γ (45)

and

p(k,0) = −z(k)Γ . (46)

The initial value of the approximate Jacobian matrix,

J (0), is assumed to be the identity matrix. In the limited-

memory Broyden method, ∆u
(i)
Γ (i = 0, . . . , k) should

be stored in the memory.

Similarly, by the BFGS method, the approximate

Jacobian matrix, J , is updated as

J (k+1) = J (k)−
J (k)∆u

(k)
Γ

(
J (k)∆u

(k)
Γ

)T
∆u

(k)T

Γ J (k)∆u
(k)
Γ

+
y(k)y(k)T

∆u
(k)T

Γ y(k)
,

(47)

where

y(k) = z
(k)
Γ − z

(k−1)
Γ . (48)

By applying Eq. (42) to Eq. (47), we can obtain three

recursive expressions:

∆u
(k)
Γ = −q(k,k−1), (49)

q(k,i+1) = q(k,i) +
(
γ(i) − β(i)

)
∆u

(i)
Γ , (50)

p(k,i) = p(k,i+1) − γ(i)y(i+1). (51)

In these equations,

β(i) =
y(i+1)Tq(k,i)

y(i+1)T∆u
(i)
Γ

(52)

and

γ(i) =
∆u

(i)T

Γ p(k,i+1)

∆u
(i)T

Γ y(i+1)
. (53)

The initial values of ∆uΓ , q, and p are

∆u
(0)
Γ = −z(0)Γ , (54)

q(k,0) = p(k,0), (55)

and

p(k,k) = z
(k)
Γ . (56)

In the limited-memory BFGS method,∆u
(i)
Γ (i = 0, . . . , k),

as well as y(i) (i = 0, . . . , k) and γ(i) (i = 0, . . . , k),

should be stored in the memory.
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3.4 Convergence criterion

A general convergence criterion of a quasi-Newton method

is∥∥∥z(k)Γ

∥∥∥∥∥∥z(0)Γ ∥∥∥ ≤ ε. (57)

The left-hand side is a relative residual, whereas the

right-hand side, ε, is a tolerance. However, this sort

of convergence criterion depends upon the selection of

preconditioners, as well as the number of subdomains.

Hence, we adopt a preconditioner- and subdomain-independent

convergence criterion:∥∥r(k)∥∥∥∥r(0)∥∥ =

∥∥r(k)∥∥∥∥f ext
∥∥ ≤ ε. (58)

This convergence criterion has another advantage in

that comparing the proposed DDM with the conven-

tional DDM becomes fair. Note that, in the conven-

tional DDM, we use

∥∥∥g(k)−S(k)
∆u(k,i)

Γ

∥∥∥
‖g(0)‖ as a relative

residual in the convergence criterion of inner-loop con-

jugate gradient iteration, because convergence is guar-

anteed by outer-loop Newton–Raphson iteration.

3.5 Algorithm

In the proposed DDM, a double-loop iteration algo-

rithm, which is required in the conventional DDM (Fig. 2),

is not required. The computational procedures of the

proposed DDM are summarized in Fig. 4. First, subdomain-

wise local problems (Eq. (28)) are solved in parallel by

a nonlinear system solver such as the Newton–Raphson

method, a modified Newton method, or a quasi-Newton

method. Based on the results of the subdomain-wise lo-

cal solutions, the interface residual vector is evaluated

by Eq. (3). Note that, in this procedure, an iteration al-

gorithm is required in subdomains that are in nonlinear

deformation. Second, from the interface residual vector,

the interface displacement vector is computed by pre-

conditioning (Eq. (36)) and quasi-Newton-based updat-

ing (Eq. (38)). A part of these procedures, such as diag-

onal scaling preconditioning, Neumann–Neumann pre-

conditioning, and some vector operations, can be par-

allelized. Finally, convergence is conformed using Eq.

(58).

4 Numerical tests

Several numerical tests were performed in order to nu-

merically demonstrate the effectiveness of the proposed

Fig. 4 Flowchart of the proposed domain decomposition
method.

DDM. First, in addition to performing a weak scaling

test, linear elastic problems were analyzed in order to

investigate the performance of the proposed DDM as a

linear system solver. These numerical tests offer a ba-

sic understanding of convergence performance, as well

as scalability. Second, elastic–plastic problems were an-

alyzed in order to investigate the performance of the

proposed DDM as a nonlinear system solver. These

problems are more practical than linear elastic prob-

lems. In elastic–plastic analysis, some subdomains ex-

perience nonlinear elastic–plastic deformation, whereas

other subdomains remain in linear elastic deformation.

This feature is also demonstrated numerically.

4.1 Linear elastic problem

Before the investigation with nonlinear problems, a lin-

ear elastic problem was analyzed by the conventional

and proposed DDMs. The problem involves a flat plate

with a circular hole under a tensile load. In linear prob-

lems, the number of Newton–Raphson iteration steps

of the conventional DDM is always one. Convergence

histories of the conventional DDM (conjugate gradi-

ent method) and the proposed DDM (quasi-Newton

method) are compared. Based on this numerical test,

a basic understanding of the convergence performance

of the proposed DDM can be obtained.

The dimensional parameters and boundary condi-

tions of the problem are depicted in Fig. 5. The mesh

with linear hexahedral elements is visualized in Fig. 6.

The numbers of elements and nodes are 4,096 and 5,440,

respectively. This mesh was decomposed by ADVEN-

TURE Metis [1,40], which is based on the METIS and

ParMETIS graph partitioning libraries [20]. The de-

composed mesh is visualized in Fig. 7. The number of
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Fig. 5 Dimension parameters and boundary conditions of a
plate with a hole.

Fig. 6 Mesh of a plate with a
hole.

Fig. 7 Subdomains of a plate
with a hole.

Fig. 8 Distribution of stress y with the deformation of a plate
with a hole in linear elastic analysis.

subdomains is 32. Young’s modulus and Poisson’s ra-

tio were set to be 200 GPa and 0.3, respectively. These

are typical material constants of steel. The tolerance

of the conjugate gradient method (conventional DDM),

as well as the Broyden and BFGS methods (proposed

DDM), was set to be 10−6.

The distribution of stress y computed by the pro-

posed DDM of the Broyden method with a BDD-DIAG

preconditioner is visualized in Fig. 8. Deformation is

magnified by 200 times. Stress concentration is observed

in the vicinity of the hole.

Convergence histories of the conventional DDM of

the conjugate gradient method with diagonal scaling
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Fig. 9 Convergence histories of the conjugate gradient
method (conventional DDM) of a hole problem in linear elas-
tic analysis.

Table 1 Numbers of iteration steps of the conventional and
proposed DDMs in linear elastic analysis.

DIAG BDD BDD-DIAG

CG (conventional DDM) 201 34 56
Broyden (proposed DDM) 474 178 99

BFGS (proposed DDM) 241 244 96

(DIAG), BDD, and BDD-DIAG preconditioners are plot-

ted in Fig. 9. Those of the proposed DDM of the Broy-

den method are plotted in Fig. 10, and those of the

BFGS method are plotted in Fig. 11. In these figures,

the horizontal axes represent the iteration step, whereas

the vertical axes represent the relative residual. The

numbers of iteration steps are summarized in Table 1.

In the conjugate gradient method, the BDD precondi-

tioner exhibits the best convergence performance. The

BDD-DIAG preconditioner showed the second-best per-

formance, and the diagonal scaling preconditioner showed

the worst performance. This tendency is similar to that

described by Ogino et al. [33]. However, in the Broy-

den and BFGS methods, a BDD preconditioner did not

exhibit good convergence performance. The BDD pre-

conditioner exhibited worse convergence performance

than the BDD-DIAG preconditioner and diagonal scal-

ing in the BFGS method. Thus, Neumann–Neumann

preconditioning appears not to be effective in the pro-

posed DDM. This would be affected by the computa-

tional procedure of the generalized inverse of the local

Schur complement matrix. In contrast, with the BDD-

DIAG preconditioner, the numbers of iteration steps of

the Broyden and BFGS methods are only twice as large

as that of the conjugate gradient method.
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Fig. 10 Convergence histories of the Broyden method (pro-
posed DDM) of a hole problem in linear elastic analysis.
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Fig. 11 Convergence histories of the BFGS method (pro-
posed DDM) of a hole problem in linear elastic analysis.

4.2 Weak scaling test of the linear elastic problem

Generally, an iterative method for large-scale analysis

should be scalable. In order to investigate the scalabil-

ity of the proposed DDM for a linear elastic problem,

a weak scaling test was performed. In this test, several

problems, for which the numbers of elements and sub-

domains are varied, are analyzed. However, the number

of elements of each subdomain remains approximately

the same. Then, the number of iteration steps is care-

fully examined. If an iterative method is scalable, then

the number of iteration steps remains approximately

constant, even though the number of subdomains in-

creases.

The problem involves a flat plate with multiple cir-

cular holes under a tensile load. Four problems were

analyzed. Some dimensional parameters and boundary

conditions of the problems are depicted in Fig. 12. Other

dimensional parameters and the numbers of elements,

nodes, and subdomains are described in Table 2. In

⌀50

10

100 MPa

x
y

z
y

Fig. 12 Dimension parameters and boundary conditions of a
plate with multiple holes.

Table 2 Parameters of the weak scaling test of multi-hole
problems in linear elastic analysis.

#1 #2 #3 #4

Plate size [mm] 200 400 800 1,600
# of holes 1 4 16 64

# of elements 4,096 16,384 65,536 262,144
# of nodes 5,440 21,425 85,045 338,885

# of subdomains 32 128 512 2,048

Fig. 13 Mesh of a plate with
64 holes.

Fig. 14 Subdomains of a
plate with 64 holes.

these problems, the stress concentration should be ob-

served in the vicinity of every hole. The mesh of the

problem with 64 holes is shown in Fig. 13. This mesh

was generated by mirroring the mesh of Fig. 6. This

mesh was decomposed by ADVENTURE Metis [1, 40]

into 2,048 subdomains, as shown in Fig. 14. Note that

the size of each subdomain slightly changes as the prob-

lem scales, because domain decomposition procedures

depend upon the graph partitioning algorithm. Only if

the size of subdomains per the size of elements remains,

the BDD preconditioner ensures scalability [25].

The distribution of stress y computed by the pro-

posed DDM of the Broyden method with a BDD-DIAG

preconditioner is visualized in Fig. 15. Deformation is

magnified by 200 times. Stress concentration is observed

in the vicinity of every hole.
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Fig. 15 Distribution of stress y with the deformation of a
plate with 64 holes in linear elastic analysis.

The numbers of iteration steps of the conventional

DDM (CG method) and the proposed DDM (Broyden

and BFGS methods) are plotted in Fig. 16. An en-

larged view is shown in Fig. 17. The horizontal axes

represent the number of subdomains, whereas the ver-

tical axes represent the number of iteration steps. Note

that the proposed DDM with a BDD preconditioner is

omitted because it did not show good convergence per-

formance in the previous subsection. Actually, the pro-

posed DDM could not achieve a converged solution in

cases involving ≥ 512 subdomains. In these figures, the

results of the conventional and proposed DDMs with

a diagonal scaling (DIAG) preconditioner are not scal-

able. The number of iteration steps increases rapidly

as the number of subdomains increases. Then, with the

BDD-DIAG preconditioner, the conventional DDM, as

well as the proposed DDM, provided almost scalable re-

sults. In addition, the conventional DDM with a BDD

preconditioner showed a scalable result. The number of

iteration steps of the Broyden and BFGS methods with

a BDD-DIAG preconditioner is only two to three times

larger than that of the CG method with a BDD-DIAG

preconditioner. The proposed DDM is comparable to

the conventional DDM in linear elastic analysis.

4.3 Elastic–plastic problem

An elastic–plastic problem was analyzed to investigate

the performance of the proposed DDM in nonlinear

analysis. In nonlinear analysis, the conventional DDM

requires a double-loop algorithm of Newton–Raphson

iteration and conjugate gradient iteration, as shown in

Fig. 2, whereas the proposed DDM does not require

such an algorithm. The proposed DDM uses a single-

loop algorithm of quasi-Newton iteration, as shown in

Fig. 4, even in nonlinear analysis.

The dimensional parameters and boundary condi-

tions of the problem are the same as those in Section 4.1

and are depicted in Fig. 5. The mesh of the problem is
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Fig. 16 Number of iteration steps of the conjugate gradient
(CG), Broyden, and BFGS methods of multi-hole problems
in linear elastic analysis.
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Fig. 17 Enlarged view of Fig. 16.

also the same. The mesh and the decomposed mesh

are shown in Figs. 6 and 7, respectively. As an elastic–

plastic model, von Mises’ yield criterion, an associated

flow rule and linear isotropic hardening are used in this

numerical test. Young’s modulus and Poisson’s ratio

were set to be 200 GPa and 0.3, respectively. The ini-

tial yield stress and the hardening modulus were set

to be 200 MPa and 20 GPa, respectively. These are

respectively one thousandth and one tenth of Young’s

modulus, although real materials behave with a variety

of initial yield stresses and hardening moduli.

In the conventional DDM, the tolerance of the Newton–

Raphson method (outer iteration loop) and that of the

conjugate gradient method (inner iteration loop) were

set to be 10−6 and 10−7, respectively. In order to ob-

tain a converged solution in the outer iteration loop,

the tolerance of the inner iteration loop should prob-

ably be smaller than that of the outer iteration loop.

In contrast, in the proposed DDM, the tolerance of the

Broyden and BFGS methods was set to be 10−6. As
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Fig. 18 Distribution of stress
y with the deformation of a
plate with a hole in elastic–
plastic analysis.

Fig. 19 Distribution of equiv-
alent plastic strain with the
deformation of a plate with a
hole in elastic–plastic analy-
sis.

the subdomain-wise local solver, the Broyden method

was used, although any nonlinear system solver such

as the Newton–Raphson method can be used in the

methodology. The initial approximate Jacobian matrix

of the Broyden method was a stiffness matrix of a lin-

ear elastic body. This matrix was factorized once by the

LDL method before the global quasi-Newton iteration.

Then, in the global quasi-Newton iteration, many for-

ward and backward substitutions were performed. This

sort of nonlinear system solver can be faster than the

Newton–Raphson method [19]. The tolerance of this lo-

cal solver was set to be 10−7.

The distribution of stress y computed by the pro-

posed DDM of the Broyden method with a BDD-DIAG

preconditioner is visualized in Fig. 18. Deformation is

magnified by 200 times. In this figure, stress concentra-

tion is observed. The distribution of equivalent plastic

strain is shown in Fig. 19. Yielding zones are observed

in the vicinity of the hole.

The convergence histories of the conventional DDM

of the Newton–Raphson method are plotted in Fig. 20.

The horizontal axis represents the Newton–Raphson it-

eration step, whereas the vertical axis represents the

relative residual. Additionally, the results with a very

small CG tolerance (10−15) are plotted to numerically

demonstrate potential quadratic convergence. Practi-

cally, a CG tolerance of 10−7 seems to be sufficiently

small for a Newton–Raphson tolerance of 10−6. For any

preconditioners of the conjugate gradient method, the

Newton–Raphson method required five iteration steps

until convergence. At each Newton–Raphson iteration

step, a linear system of equations was solved by the

conjugate gradient method with a preconditioner. The

convergence histories of the conjugate gradient method

are plotted in Fig. 21. The horizontal axis represents

the accumulated CG iteration step, whereas the verti-

cal axis represents the interface relative residual. More-

over, the convergence histories of the proposed DDM of

the Broyden method are plotted in Fig. 22, and those
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Fig. 20 Convergence histories of the Newton–Raphson
method (conventional DDM) of a hole problem in elastic–
plastic analysis.

Table 3 Numbers of iteration steps of the conventional and
proposed DDMs in elastic–plastic analysis.

DIAG BDD BDD-DIAG

CG (conventional DDM) 747 132 193
Broyden (proposed DDM) 641 NA 83

BFGS (proposed DDM) 206 NA 75

of the BFGS method are plotted in Fig. 23. The hori-

zontal axes represent the quasi-Newton iteration step,

whereas the vertical axes represent the relative resid-

ual. Note that the BDD preconditioner is omitted in

the Broyden and BFGS methods, because the precon-

ditioner did not show good convergence performance,

even in the linear elastic analysis of Section 4.1. The

numbers of iteration steps are summarized in Table 3.

In the proposed DDM, the initial values of the quasi-

Newton iteration were set to be the solutions in elastic

deformation, due to the consideration of extrapolation-

based initial value prediction in incremental analysis.

Each number of iteration steps of the proposed DDM

is smaller than that of the conventional DDM. The

speedup from the conventional DDM to the proposed

DDM with a BDD-DIAG preconditioner is between two

and three times. These results are different from those

of the linear elastic analysis in Section 4.1 because the

conventional DDM requires Newton–Raphson iteration

in nonlinear analysis. The number of iteration steps in

the conventional DDM is larger than that for the linear

elastic analysis in Table 1, whereas those of the pro-

posed DDM remain approximately unchanged.

In the proposed DDM, subdomain-wise nonlinear fi-

nite element analyses are performed in parallel at each

quasi-Newton iteration step. In order to demonstrate

the suitability of the proposed DDM for the local non-

linearity, the number of linear system solutions of each
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Fig. 21 Convergence histories of the conjugate gradient
method (conventional DDM) of a hole problem in elastic–
plastic analysis.
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Fig. 22 Convergence histories of the Broyden method (pro-
posed DDM) of a hole problem in elastic–plastic analysis.
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Fig. 24 Distribution of the average number of linear system
solutions of each subdomain in elastic–plastic analysis.
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Fig. 25 Average number of linear system solutions of each
subdomain in elastic–plastic analysis.

subdomain was investigated. The distribution of the av-

erage number of linear system solutions of each subdo-

main is shown in Fig. 24 and plotted in Fig. 25 as a bar

graph. The horizontal axis represents the subdomain

ID, whereas the vertical axis represents the total num-

ber of linear system solutions divided by the number of

quasi-Newton iteration steps. This result was computed

by the Broyden method with a BDD-DIAG precon-

ditioner. The subdomain-wise local nonlinear system

solver was also a Broyden method, the initial approx-

imate Jacobian matrix of which was a stiffness matrix

of a linear elastic body. As shown in Figs. 24 and 25,

five subdomains in the vicinity of the hole experience

elastic–plastic deformation with a large number of lin-

ear system solutions, whereas the other 27 subdomains

remained approximately elastic throughout the quasi-

Newton iteration.

4.4 Weak scaling test of the elastic–plastic problem

Similarly to Section 4.2, weak scaling in elastic–plastic

analysis was investigated. In the weak scaling test, sev-

eral problems for which the mesh is the same as that
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Fig. 26 Distribution of stress
y with the deformation of a
plate with 64 holes in elastic–
plastic analysis.

Fig. 27 Distribution of equiv-
alent plastic strain with the
deformation of a plate with 64
holes in elastic–plastic analy-
sis.

in Section 4.2. Moreover, the number of subdomains in

elastic–plastic deformation divided by the total num-

ber of subdomains was set to remain approximately the

same as the problem scales.

The dimensional parameters, boundary conditions,

and numbers of elements, nodes, and subdomains are

the same as in Section 4.2 and are shown in Fig. 12 and

Table 2. In these problems, the stress concentration, as

well as yielding, should be observed in the vicinity of

every hole. The meshes are also the same as those in

Section 4.2. The mesh and the decomposed mesh with

64 holes are visualized in Figs. 13 and 14.

The distribution of stress y computed by the pro-

posed DDM of the Broyden method with a BDD-DIAG

preconditioner is visualized in Fig. 26, and that of equiv-

alent plastic strain is visualized in Fig. 27. Deforma-

tion is magnified by 200 times. Stress concentration and

yielding are observed in the vicinity of every hole.

The numbers of iteration steps of the conventional

DDM (Newton–Raphson method with the CG method)

and the proposed DDM (Broyden and BFGS methods)

are plotted in Fig. 28. An enlarged view is shown in

Fig. 29. The horizontal axes represent the number of

subdomains, whereas the vertical axes represent the

number of iteration steps. In these figures, the con-

ventional DDM (Newton-CG) achieved converged so-

lutions for any number of subdomains. Although the

Broyden-DIAG, BFGS-DIAG, and BFGS-BDD-DIAG

could not be converged in some problems, the Broyden-

BDD-DIAG established good convergence performance.

The number of iteration steps remained approximately

half that of the Newton–Raphson method in conjunc-

tion with the CG method with a BDD-DIAG precondi-

tioner. The proposed DDM of the Broyden method with

a BDD-DIAG preconditioner was demonstrated to be

scalable, and the number of iteration steps for the pro-

posed DDM is smaller than that for the conventional

DDM.
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Fig. 28 Number of iteration steps of the Newton–Raphson
method with the conjugate gradient (CG) method, the Broy-
den method, and the BFGS method of multi-hole problems
in elastic–plastic analysis.
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Fig. 29 Enlarged view of Fig. 28.

4.5 Elastic–plastic problem of a structural model

Finally, an elastic–plastic problem of a structural model

was analyzed to demonstrate the capability of the pro-

posed DDM for realistic complex-shape structural mod-

els. The dimensional parameters and boundary condi-

tions of the structural model are depicted in Fig. 30.

The structural model consists of a lower head of a pres-

sure vessel, a nozzle, and a curved pipe. The skirt of

the lower head is constrained, and a tensile load is pre-

scribed on the end of the pipe. Stress concentration

should occur at the nozzle, resulting in plastic defor-

mation. The mesh near the nozzle with linear hexa-

hedral elements is visualized in Fig. 31. A half model

was used due to symmetry. The decomposed mesh is

visualized in Fig. 32. The numbers of elements, nodes,

and subdomains are 91,200, 129,991, and 256, respec-

tively. Young’s modulus and Poisson’s ratio were set

to be 200 GPa and 0.3, respectively. The stress–strain
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Fig. 30 Dimension parameters and boundary conditions of
the structural model.

Fig. 31 Mesh near the nozzle
of the structural model.

Fig. 32 Subdomains of the
structural model.

curve adopted in this numerical test is

σy = σy0 +Hε̄p
n

, (59)

where σy is yield stress and ε̄p is equivalent plastic

strain. The initial yield stress, σy0 , the hardening mod-

ulus, H, and the hardening exponent, n, were set to

be 200 MPa, 1,300 MPa, and 0.45, respectively. These

material constants are typical values of stainless steel.
In this numerical test, BDD and BDD-DIAG precon-

ditioners were used in the conventional DDM, and a

BDD-DIAG preconditioner was used in the proposed

DDM. These three solvers established scalability in the

previous subsection. The tolerances of the Newton–Raphson

iteration (the conventional DDM) and the quasi-Newton

iteration (the proposed DDM) were set to be 10−6.

Those of the conjugate gradient iteration (the conven-

tional DDM) and the subdomain-wise local iteration

(the proposed DDM) were set to be 10−7. As the subdomain-

wise local solver, the Broyden method was used.

The distribution of equivalent stress computed by

the proposed DDM of the Broyden method with a BDD-

DIAG preconditioner is visualized in Fig. 33. In this fig-

ure, stress concentration is observed at the left (com-

pressive) and right (tensile) sides of the nozzle. The

right side experiences plastic deformation, which is vi-

sualized in Fig. 34. In this figure, the distribution of

equivalent plastic strain near the right side of the noz-

zle is visualized.

Fig. 33 Distribution of equiv-
alent stress in the structural
model analysis.

Fig. 34 Distribution of equiv-
alent plastic strain near the
nozzle in the structural model
analysis.

The convergence histories of the conventional DDM

of the Newton–Raphson method are plotted in Fig. 35.

The horizontal axis represents the Newton–Raphson it-

eration step, whereas the vertical axis represents the

relative residual. Four iteration steps were required un-

til convergence. Thus, four linear systems of equations

were solved by the conjugate gradient method with a

BDD or BDD-DIAG preconditioner. The convergence

histories of the conjugate gradient method are plotted

in Fig. 36. The horizontal axis represents the accumu-

lated CG iteration step, whereas the vertical axis repre-

sents the interface relative residual. The numbers of ac-

cumulated CG iteration steps of BDD and BDD-DIAG

preconditioners were 217 and 333, respectively. More-

over, the convergence histories of the proposed DDM

of the Broyden method are plotted in Fig. 37. The

horizontal axis represents the quasi-Newton iteration

step, whereas the vertical axis represents the residual

norm. The number of quasi-Newton iteration steps was

327. Therefore, the proposed method exhibited com-

parable convergence performance to the conventional

DDM in an elastic–plastic analysis on a realistic struc-

tural model.

5 Conclusion

In the present study, a domain decomposition method

for large-scale elastic–plastic problems was proposed.

Unlike conventional DDMs, the proposed method can

consider the local concentration of nonlinear deforma-

tion, which is observed in elastic–plastic problems. In

order to consider the local nonlinearity, we derived a

nonlinear system of equations of the subdomain inter-

face degrees of freedom from the principle of virtual

work. This nonlinear system of equations is equiva-

lent in linear elastic deformation to the statically con-

densed linear system of equations of the conventional

DDM. In order to solve the interface nonlinear sys-

tem of equations, a quasi-Newton method such as the
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Fig. 35 Convergence histories of the Newton–Raphson
method (conventional DDM) in the structural model anal-
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10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  50  100  150  200  250  300  350  400

BDD

BDD-DIAG

R
es

id
u

al

Iteration step

CG method (conventional DDM)

Fig. 36 Convergence histories of the conjugate gradient
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Fig. 37 Convergence histories of the Broyden method (pro-
posed DDM) in the structural model analysis.

Broyden method or the BFGS method was used. At

each quasi-Newton iteration step, subdomain-wise non-

linear finite element analyses are performed in paral-

lel. If a subdomain is in linear elastic deformation, the

number of subdomain-wise nonlinear iteration steps be-

comes one. Thus, each subdomain automatically se-

lects its deformation to be linearly elastic or elastic–

plastic and invests a number of nonlinear iteration steps

that is optimal for its nonlinearity. Moreover, the use

of a quasi-Newton method rather than the Newton–

Raphson method offers another advantage, namely, the

avoidance of a double-loop iteration algorithm, which

is required in the standard Newton–Raphson method

with a linear iterative solver. In general, a double-loop

algorithm has large computational complexity. After

that, a BDD preconditioner was applied to the quasi-

Newton method in order to ensure scalability. In the

literature, BDD preconditioners have been used in lin-

ear solution methods, whereas, in the present study, a

BDD preconditioner is applied to a nonlinear solution

method. Then, several numerical tests of linear elas-

tic and elastic–plastic problems were performed in or-

der to demonstrate the effectiveness of the proposed

method. The results of these numerical tests provide

a basic understanding of the convergence performance,

as well as the scalability, of the proposed method. The

convergence performance of the proposed method was

comparable to that of the conventional method. In par-

ticular, in elastic–plastic analysis, the proposed method

exhibited better convergence performance than the con-

ventional method. Moreover, scalability with regard to

the number of elements, as well as the number of subdo-

mains, was demonstrated numerically by weak scaling

tests of linear elastic and elastic–plastic problems.

In the future, numerical comparison on computa-

tional time should be performed after intensive perfor-

mance tuning on the proposed method, as well as the

conventional method. Although the convergence per-

formance of the proposed method was better than that

of the conventional method, the computational proce-

dures in an iteration step are totally different. In ad-

dition, another problem remains to be overcome. The

proposed method produces a significant load imbalance

in parallel computing due to the consideration of local

nonlinearity.
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