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SUMMARY This paper proposes an optimization approach that de-
signs the backup network with the minimum total capacity to protect the
primary network from random multiple link failures with link failure prob-
ability. In the conventional approach, the routing in the primary net-
work is not considered as a factor in minimizing the total capacity of the
backup network. Considering primary routing as a variable when deciding
the backup network can reduce the total capacity in the backup network
compared to the conventional approach. The optimization problem exam-
ined here employs robust optimization to provide probabilistic survivabil-
ity guarantees for different link capacities in the primary network. The
proposed approach formulates the optimization problem as a mixed integer
linear programming (MILP) problem with robust optimization. A heuristic
implementation is introduced for the proposed approach as the MILP prob-
lem cannot be solved in practical time when the network size increases.
Numerical results show that the proposed approach can achieve lower total
capacity in the backup network than the conventional approach.
key words: link failure, optimization problem, backup capacity, probabilis-
tic survivability guarantee

1. Introduction

Link failure can lead to the loss of huge amounts of data.
In order to ensure recovery from failures, a backup network
with proper routes must be prepared prior to any link fail-
ure [1]–[3]. Link protection, which can recover link fail-
ures, has two main categories. The first category prepares
the resource on demand, upon request. It has the advantage
that the spare capacity is efficiently utilized. However, it
takes time to setup the connection since the necessary links
must be computed for every incoming request. The second
category is pre-planned link restoration, where routes in a
backup network are computed for each link failure in ad-
vance, and the computed routes are established prior to ser-
vice commencement. It is superior to the first approach in
terms of speed and simplicity of failure recovery, as no addi-
tional dynamic routing is necessary at the time of link failure
[4], [5].

A spare capacity allocation method to protect the pri-
mary network from single link failure was introduced in [6].
This method designs a backup network that offers adequate
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protection resources to recover the primary network from
any single link failure. When a failure occurs, the traffic
on the failed link in the primary network is switched to the
predetermined routes in the backup network. To reduce the
risk of the protection routes failing, it is advantageous to es-
tablish the routes in the primary and backup networks on
separate resources. The integer linear programming (ILP)
problem can be used to design a backup network with the
minimum cost [6]; the ratio of backup network capacity to
primary network capacity falls as the latter increases.

A protection approach to recover the primary network
from random multiple link failures with probabilistic surviv-
ability guarantees was presented in [7], [8]. The probability
of link failure in the primary is considered in [7], which ap-
plies the results of the optimization problem for a single link
failure from [6] to design the backup network for link fail-
ure. A mixed integer linear programming (MILP) formula-
tion to design the backup network was provided. Simulated
annealing (SA) [9], which is a heuristic approach, has been
used to solve the problem for large networks and reduce the
capacity of the backup network. This work considers only
backup network routing as a variable. Primary network rout-
ing is not considered as a variable. The work in [8] imposed
the condition that the primary network would have discrete
capacities for the backup network design problem in [7] to
suppress overestimating of the capacity of the backup net-
work. It also considers backup network routing as the only
variable.

Network operators design their networks to minimize
the total capacity of the backup network by considering the
traffic as an input to the design problem [10]. An optimiza-
tion approach to minimize the over-provisioning overhead
for the spare capacity assignment problem was introduced in
[11]; traffic conditions were given with some bounds. This
work established a backup network with capacity necessary
to protect the primary network against a single link failure.
A mathematical formulation to design the backup network
was introduced by taking into account the traffic conditions.
Several types of traffic conditions are considered in [12]–
[14].

The works on multiple link failures [7], [8] designed
the backup network with minimized capacity by consider-
ing that primary network routing is given. All traffic already
allocated on each link in the primary network is considered
to be protected. Considering the routing in the primary net-
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work as given parameter may not achieve the minimum total
capacity in the backup network.

We consider that the total capacity in the backup net-
work can be lower by taking both primary and backup net-
work routing as decision variables rather than by consid-
ering only the backup routing as a derision variable. Deter-
mining the primary network routing means that the traffic al-
location on each link in the primary network is determined.

This paper proposes an optimization approach that de-
signs the backup network with minimum total capacity to
protect the primary network from random multiple link fail-
ures where the probability of link failure is specified. This
paper is an extended version of [15]. The probabilistic sur-
vivability guarantee is provided by determining both pri-
mary and backup network routing, simultaneously. Robust
optimization is introduced to provide probabilistic surviv-
ability guarantees for different link capacities in the pri-
mary network. We formulate our optimization problem as
an MILP problem by using the robust optimization tech-
nique. We investigate how the probability of link failure
affects both primary and backup network routing. Since
the MILP problem cannot be solved in practical time when
the primary network is large, a heuristic method is added
to the proposal. Numerical results show that the proposed
approach yields a backup network with lower total capac-
ity than the conventional approach, in which the routing in
the primary network is not considered as a factor in mini-
mizing the total capacity of the backup network, for the link
failure probabilities examined in this paper. The results in-
dicate that the proposed approach yields highly efficient pri-
mary and backup network routing designs that well reflect
the given probability of link failure.

Our proposed approach adopts detour routing. The de-
tour routing uses in the dedicated backup network, which
is different from a network that considers only the primary
network with redundant capacity on each link. The dedi-
cated backup network uses a lower capacity to provide the
protection against link failures than the primary network, as
backup resource sharing can be expected, which was ob-
served in [6], [7]. Thanks to the effect of backup resource
sharing, links in the backup network can be made more re-
liable by hardening or shielding than those in the primary
network [7]. In the network that considers only the primary
network, the reliability of the detour routing and the primary
routing are the same. In the network that considers the ded-
icated backup network, the reliability of the detour routing
in the backup network can achieve higher than that of the
primary routing. This is a benefit of the dedicated backup
network.

The structure of this paper is organized as follows. Sec-
tion 2 presents the network model with probabilistic failures
used in this paper. Section 3 introduces the optimization
problem used to find the optimal solution. Section 4 presents
the heuristic method. The performance of the proposed ap-
proach is evaluated in Section 5. Section 6 concludes our
paper.

2. Network model with probabilistic failures

Fig. 1 Network model.

We present the network model with probabilistic fail-
ures used in this paper. We basically use the same model
presented in [7], except that this paper considers the traffic
from each source node to each destination node, which is
given, and considers primary network routing as a decision
variable. We assume that explicit routing is adopted in both
primary and backup networks [16].

Let G(V, E) be a directed graph for the primary net-
work, where V is the set of nodes and E is the set of links.
Q ⊆ V is the set of edge nodes through which traffic is al-
lowed into the network. The link in the primary network
from node s ∈ V to node d ∈ V\{s} is denoted as (s, d) ∈ E.
P is the set of pairs of source node p ∈ Q and destination
node q ∈ Q\{p} in the primary network. The traffic demand
from edge node p ∈ Q to node q ∈ Q\{p} is denoted as
dpq. We assume that dpq is given. Let decision variable wpq

sd ,
where 0 ≤ wpq

sd ≤ 1, be the portion of traffic demand dpq
from node p ∈ Q to node q ∈ Q\{p} passing through link
(s, d) ∈ E. 0 < wpq

sd ≤ 1 means that (s, d) ∈ E is a link on
one of the routes for dpq. wpq

sd = 0 means that (s, d) ∈ E is
not a link on any route for dpq. If 0 < wpq

sd < 1, for at least
one (s, d), dpq is split over multiple routes.

Using the same set of nodes V and a new set of links Eb
construct backup network Gb(V, Eb), by establishing backup
network routes to protect the traffic carried by each primary
link (s, d) ∈ E. Sufficient capacity is allocated to every
backup link (i, j), where (i, j) ∈ Eb denotes a backup link
from node i ∈ V to node j ∈ V\{i}. A backup network route
is chosen if link (s, d) ∈ E fails; the traffic through link
(s, d) ∈ E in the primary network is switched to the backup
network route.

Figure 1 shows the example of a network model with
seven nodes, where node 1 and node 7 are edge nodes rep-
resented as nodes p ∈ Q and q ∈ Q\{p}, respectively. The
links (s, d) ∈ E for the route from p = 1 to q = 7 are (1, 2),
(2, 5), and (5, 7). To cover the case that primary link (2, 5)
in the primary network fails, the backup route in the backup
network from source node s = 2 and destination node d = 5
is designed as the route of (2→ 4→ 6→ 5).

The probability of link failure, κ, in the primary net-
work is given for each link (s, d) ∈ E; each link has indepen-
dent probability. Let Xsd be a random variable in the primary
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network. Xsd is equal to 1 if link (s, d) ∈ E in the primary
network fails, and 0 otherwise. Let binary variable bsd

i j = 1
if link (s, d) ∈ E uses backup link (i, j) ∈ Eb on the backup
network, and 0 otherwise. bsd

i j represents the route in the
backup network for primary link (s, d) ∈ E. We assume that
the traffic that is routed through the backup network against
each primary link failure is not split. This is because the
backup routing operation is required to be simple for fast
recovery.

We describe the idea of probabilistic survivability guar-
antee for the backup network design [7]. Let ϵ denote
the probabilistic survivability guarantee parameter, where
ϵ > 0. Let Yi j denote a random variable that is the capacity
required to completely protect the primary failure-link ca-
pacities, where the probability of failure for each link is κ.
Let CB

i j denote the required backup capacity of (i, j) ∈ E to
protect failed links (s, d) ∈ E; CB

i j is a decision variable. In
the probabilistic survivability guarantee, for each (i, j) ∈ Eb
the probability that Yi j is larger than CB

i j must be less than
or equal to ϵ. This work only the case of κ > ϵ, since the
requirement of backup is not necessary. This reason is as
follows. Suppose that each (s, d) ∈ E in the primary net-
work is protected by each backup route that uses only link
(s, d) ∈ Eb dedicatedly in the backup network. In the prob-
abilistic survivability guarantee, the primary link failure is
not required to protect within the probability ϵ. If κ ≤ ϵ, no
capacity in (s, d) ∈ Eb is required. We assume that no link
in the backup network fails, which is the same assumption
used in [7], for simplicity. To cover the case that a link in the
backup network fails, we can adopt the same idea described
in Section IV.B of [7].

3. Optimization problem

3.1 Definition of optimization problem

The objective is to minimize the total capacity in the backup
network by considering both backup and primary network
routing. Backup and primary network routing are deter-
mined by decision variables of bsd

i j and wpq
sd , respectively. We

consider the following assumptions. Each primary link is al-
ready facilitated. The allowable capacity of each facilitated
primary link is sufficiently large to accommodate traffic de-
mands. The backup network is designed to protect the traffic
demands routed through each primary link. That is why our
objective is to minimize the total capacity in the backup net-
work.

The optimization problem is written as:

min
∑

(i, j)∈Eb

CB
i j (1a)

s.t. P(Yi j > CB
i j) ≤ ϵ, ∀(i, j) ∈ Eb (1b)∑

j:(i, j)∈Eb

bsd
i j −

∑
j:( j,i)∈Eb

bsd
ji = 1,

i = s, ∀(s, d) ∈ E (1c)

∑
j:(i, j)∈Eb

bsd
i j −

∑
j:( j,i)∈Eb

bsd
ji = 0,

i , s, d, ∀(s, d) ∈ E (1d)∑
d:(s,d)∈E

w
pq
sd −

∑
d:(d,s)∈E

w
pq
ds = 1,

s = p, ∀(p, q) ∈ P (1e)∑
d:(s,d)∈E

w
pq
sd −

∑
d:(d,s)∈E

w
pq
ds = 0,

s , p, q, ∀(p, q) ∈ P (1f)
bsd

i j ∈ {0, 1} , ∀(i, j) ∈ Eb, (s, d) ∈ E (1g)

0 ≤ wpq
sd ≤ 1, ∀(p, q) ∈ P, (s, d) ∈ E. (1h)

Equation (1a) minimizes the objective value, which is the to-
tal capacity of the backup network. Equation (1b) expresses
the constraint of probabilistic survivability guarantees for
each link in the backup network. Equation (1b) demands
that the probability of Yi j being larger than CB

i j must be less
than or equal to probabilistic survivability guarantee param-
eter ϵ. Equations (1c)-(1d) express the flow constraints for
routing in the backup network at each source and each in-
termediate node, respectively [17]. Equations (1e)-(1f) ex-
press flow constraints for routing in the primary network at
each source and each intermediate node, respectively. Equa-
tions (1g)-(1h) indicate the ranges of decision variables for
bsd

i j and wpq
sd , respectively.

3.2 Unit link capacity

We first assume that the link capacity in the primary network
is unitary. The link capacity in the primary network, which
is determined by the optimization problem, means the total
traffic demands routed through this link. Let the number of
primary links (s, d) ∈ E that use backup link (i, j) ∈ Eb be
denoted as ni j. We have:

ni j =
∑

(s,d)∈E
bsd

i j . (2)

The number of failed links in the primary network using
backup link (i, j) as part of their route in the backup network
is equivalent to Yi j, which is expressed by:

Yi j =
∑

(s,d)∈E
bsd

i j Xsd. (3)

The probabilistic constraint, which is the capacity con-
straint, from which the backup capacities are computed, is
given by:

P(Yi j > CB
i j) =

ni j∑
y=CB

i j+1

(
ni j

y

)
κy(1 − κ)(ni j−y) ≤ ϵ,

∀(i, j) ∈ Eb. (4)

Equation (4) defines the probability that y links out of
ni j links have failed. G(ni j, κ, ϵ) be the minimum value of
CB

i j satisfying Eq. (4), which is computed as the capacity
allocated to each link (i, j) ∈ Eb in the backup network.
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Since the required capacity in the backup network depends
on which links of (s, d) ∈ E in the primary network are pro-
tected, in the case of general link capacity, this approach
cannot be applied directly. Fortunately, techniques from the
field of robust optimization can be used to formulate the
problem of general link capacity.

3.3 Robust optimization for general link capacity

Robust optimization is a technique that can find an optimal
solution for a problem where a degree of uncertainty is in-
volved. Robust optimization is employed in our optimiza-
tion problem to allow consideration of the general link ca-
pacities in the primary network.

We denote Γi j = G(ni j, κ, ϵ). In case of unit link ca-
pacity, G(ni j, κ, ϵ), which is introduced in section 3.2, is de-
termined by ni j, where κ and ϵ are given parameters. ni j is
determined by bsd

i j in Eq. (2). In section 3.4, we will give the
relationship between Γi j and bsd

i j , in linear form, where κ and
ϵ are given. In other words, Γi j is determined by bsd

i j , κ, and
ϵ.

Let Li j = {(s, d) | bsd
i j = 1} be the set of primary links

(s, d) ∈ E protected by backup link (i, j) ∈ Eb. S i j is a subset
of Li j with the largest capacities, where |S i j| = Γi j. For any
(s, d) ∈ S i j, we have:∑

(p,q)∈P
dpqw

pq
sd ≥

∑
(p,q)∈P

dpqw
pq
s′d′ ,∀(s′, d′) ∈ Li j\S i j. (5)

The required backup capacity to protect against any Γi j pri-
mary link failures is given by,

CB
i j =

∑
(s,d)∈S i j

∑
(p,q)∈P

dpqw
pq
sd . (6)

The above constraint can be expressed as the following com-
plete form:

CB
i j ≥ max

S i j |S i j⊆E,|S i j |=Γi j

∑
(s,d)∈S i j

∑
(p,q)∈P

dpqw
pq
sd bsd

i j ,

∀(i, j) ∈ Eb. (7)

The probability ensuring full protection from multiple link
failure is determined by the value of Γi j, which is fixed for
each link (i, j) ∈ Eb. The probabilistic constraint is replaced
by the capacity constraint in Eq. (7). The nonlinear opti-
mization problem is written as follows.

min
∑

(i, j)∈Eb

CB
i j (8a)

s.t. CB
i j ≥ max

S i j |S i j∈E,|S i j |=Γi j

∑
(s,d)∈S i j

∑
(p,q)∈P

dpqw
pq
sd bsd

i j ,

∀(i, j) ∈ Eb (8b)
Eqs. (1c)-(1h). (8c)

Since the backup capacity constraint in Eq. (8b) is non-
linear form, Eqs. (8a)-(8c) also are nonlinear form. We
reformulate the backup capacity constraint as a linear pro-
gramming (LP) problem using a duality technique. For fixed

bsd
i j and Γi j, the backup capacity of each link (i, j) ∈ Eb is

given as follows.

βi j(bi j,Γi j) = max
S i j |S i j∈E,|S i j |=Γi j

∑
(s,d)∈S i j

∑
(p,q)∈P

dpqw
pq
sd bsd

i j . (9)

Equation (9) can be written as the solution to the follow-
ing LP problem, where zsd

i j is the decision variable; bsd
i j and∑

(p,q)∈P dpqw
pq
sd are the given parameters.

βi j(bi j,Γi j) = max
∑

(s,d)∈E

∑
(p,q)∈P

dpqw
pq
sd bsd

i j zsd
i j (10a)

s.t.
∑

(s,d)∈E
zsd

i j ≤ Γi j (10b)

0 ≤ zsd
i j ≤ 1, ∀(s, d)∈E. (10c)

The Γi j primary links with the largest capacities among
the primary links (s, d) ∈ E that satisfy bsd

i j = 1 are chosen in
the LP problem by setting zsd

i j = 1 for those links (s, d) ∈ E.
If the number of primary links (s, d) ∈ E that satisfy bsd

i j = 1
is fewer than Γi j, zsd

i j is equal to 1 for each of these links and
the other (s, d) ∈ E satisfying zsd

i j = 1 are arbitrarily chosen.
We consider Eqs. (10a)-(10c) as a primal problem. It

is transformed into the dual problem (see Appendix) [17],
[18], which is formulated by:

min ϱi jΓi j +
∑

(s,d)∈E
ξsd

i j (11a)

s.t. ϱi j + ξ
sd
i j ≥

∑
(p,q)∈P

dpqw
pq
sd bsd

i j ,

∀(s, d) ∈ E (11b)
ξsd

i j ≥ 0, ∀(s, d) ∈ E (11c)
ϱi j ≥ 0, (11d)

where ϱi j and ξsd
i j are newly introduced dual decision vari-

ables. Dual decision variables of ϱi j and ξsd
i j are produced

in the transformation from the primal problem to the dual
problem as a result of mathematical operation. The trans-
formation from the primal problem to the dual problem is
explained in the Appendix.

By the duality theorem [17], [19], for a pair of primal
and dual problems, if there is an optimum solution of ei-
ther the primal problem or the dual problem, it is guaran-
teed that an optimum solution of the other problem exists.
Moreover, both optimum values of the objective functions
are the same. Therefore, the primal problem in Eqs. (10a)-
(10c) and its dual problem in Eqs. (11a)-(11d) have zero
duality gap. Function βi j(bi j,Γi j) is equal to the optimal ob-
jective value of the dual problem. In addition, since the
problem in Eqs. (8a)-(8c) minimizes βi j(bi j,Γi j) for each
(i, j) ∈ Eb, the problem in Eqs. (11a)-(11d) can be substi-
tuted into Eqs. (8a)-(8c) to obtain the following optimization
problem:

min
∑

(i, j)∈Eb

CB
i j (12a)
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s.t. CB
i j ≥ ϱi jΓi j +

∑
(s,d)∈E

ξsd
i j ,

∀(i, j) ∈ Eb (12b)

ϱi j + ξ
sd
i j ≥

∑
(p,q)∈P

dpqw
pq
sd bsd

i j ,

∀(s, d) ∈ E, (i, j) ∈ Eb (12c)
Eqs. (1c) - (1h). (12d)
ξsd

i j ≥ 0, ∀(s, d) ∈ E, (i, j) ∈ Eb (12e)
ϱi j ≥ 0, ∀(i, j) ∈ Eb. (12f)

The derivation of Eq. (12b) is explained below. The right
hand side of Eq. (8b) is replaced by Eq. (11a), which must
be minimized, with Eqs. (11b) and (11c) as constraints. This
is because there is no duality gap in the optimal solution
by the duality theorem. To minimize the objective function
in Eq. (8a), CB

i j must be minimized, which means that the
objective function in Eq. (10a) must be minimized. Thus,
Eq. (12a) does not include “min”, which is covered by “min”
in Eq. (12a).

To write the product wpq
sd bsd

i j in Eq. (12c) in linear form,
a set of optimization variables is added. The positive vari-
able denoted as usd

i jpq is introduced that satisfies the follow-
ing constraints:

usd
i jpq ≥ w

pq
sd + bsd

i j − 1,
∀(i, j)∈Eb, (s, d)∈E, (p, q) ∈ P (13a)

usd
i jpq ≤ bsd

i j ,

∀(i, j)∈Eb, (s, d)∈E, (p, q) ∈ P (13b)
usd

i jpq ≤ w
pq
sd ,

∀(i, j)∈Eb, (s, d)∈E, (p, q) ∈ P (13c)
usd

i jpq ≥ 0,
∀(i, j)∈Eb, (s, d)∈E, (p, q) ∈ P. (13d)

Equation (13a) forces usd
i jpq ≥ w

pq
sd if bsd

i j = 1. Equa-
tions (13b) and (13d) force usd

i jpq to 0 if bsd
i j = 0. Equa-

tion (13c) forces usd
i jpq not to exceed wpq

sd . Thus, Eqs. (13a)-
(13d) force usd

i jpq = w
pq
sd if bsd

i j = 1, and usd
i jpq = 0 otherwise.

3.4 Mixed integer linear programming formulation

A table of Γi j values is numerically computed in which
the mth entry, Γm equals, the function of m, p, and ϵ as
G(m, p, ϵ). We provide an ILP problem that computes ni j
directly by indexing the table. Let m ∈ M, where M =

{0, · · · , |E|}, denote the number of failed links in the primary
network. To compute ni j, let xm

i j be a decision variable that
sets xm

i j = 1 if ni j = m, and 0 otherwise.
The following constraints are introduced:∑
m∈M

xm
i j = 1, ∀(i, j) ∈ Eb. (14)

Only one value of m for each backup link (i, j) ∈ Eb enforces
xm

i j = 1 in Eq. (14).∑
(s,d)∈E

bsd
i j =

∑
m∈M

mxm
i j, ∀(i, j) ∈ Eb. (15)

With Eq. (14), Eq. (15) selects only one xm
i j that is set to

one so that
∑

(s,d)∈E bsd
i j = m can be satisfied. xm

i j is zero if∑
(s,d)∈E bsd

i j , m. This selected m =
∑

(s,d)∈E bsd
i j as above is

equivalent to ni j by definition of ni j in Eq. (2). Γi j is repre-
sented as follow.

Γi j = G(ni j, p, ϵ) =
∑
m∈M

Γmxm
i j, ∀(i, j) ∈ Eb. (16)

The right hand side of Eq. (16) is equivalent to Γni j , where
ni j is restricted by Eqs. (2), (14), and (15).

Equation (12b), which is represented as the capacity
constraint, can be rewritten as below:

CB
i j ≥

∑
m∈M

ϱi jxm
i jΓm +

∑
(s,d)∈E

ξsd
i j , ∀(i, j) ∈ Eb. (17)

To represent the product of ϱi jxm
i j in linear form, another set

of optimization variables is added. LetΩm
i j be a non-negative

variable satisfying the following constraints:

Ωm
i j ≥ ϱi j + D(xm

i j − 1), ∀(i, j) ∈ Eb,m ∈ M (18a)
Ωm

i j ≤ Dxm
i j, ∀(i, j) ∈ Eb,m ∈ M (18b)

Ωm
i j ≤ ϱi j, ∀(i, j) ∈ Eb,m ∈ M (18c)
Ωm

i j ≥ 0, ∀(i, j) ∈ Eb,m ∈ M. (18d)

In the above equations, D is a sufficiently large value to
satisfy D ≥ max(s,d)∈E

∑
(p,q)∈P w

pq
sd dpq. If xm

i j = 0, then
Dxm

i j = 0, and the constraints in Eqs. (18b)-(18d) force Ωm
i j

to 0. The constraint in Eq. (18a) forces Ωm
i j ≥ ϱi j if xm

i j = 1.
The constraint in Eq. (17) is written as:

CB
i j ≥

∑
m∈M

Ωm
i jΓm +

∑
(s,d)∈E

ξsd
i j , ∀(i, j) ∈ Eb (19a)∑

m∈M

xm
i j = 1, ∀(i, j) ∈ Eb (19b)∑

(s,d)∈E
bsd

i j ≤
∑
m∈M

mxm
i j, ∀(i, j) ∈ Eb (19c)

xm
i j ∈ {0, 1} , ∀(i, j)∈ Eb,m∈ M (19d)

Eqs. (18a)-(18d). (19e)

The following is the MILP problem to protect against
random multiple link failures:

min
∑

(i, j)∈Eb

CB
i j (20a)

s.t. ϱi j + ξ
sd
i j ≥

∑
(p,q)∈P

dpqusd
i jpq,

∀(s, d) ∈ E,(i, j) ∈ Eb (20b)
Eqs. (13a)-(13d), (18a)-(18d), (19a)-(19d),

(1c)-(1h), (12e)-(12f). (20c)

It should be noted that κ and ϵ do not include in
Eqs. (20a)-(20c). These parameters are used to compute
Γm from Eq. (4) to be a given parameter as an input to
Eqs. (20a)-(20c).
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4. Heuristic method

The MILP formulation in Eqs. (20a)-(20c) cannot be solved
directly in practical time when the network size increases. A
heuristic method is employed to minimize the total backup
capacity with estimating both primary and backup network
routing.

The heuristic algorithm begins with the initial input of
backup network routing. A routing in the primary network
is obtained from LP problem in Eqs. (21a)-(21c), which
is modified from the MILP problem in Eqs. (20a)-(20c).
The heuristic algorithm starts by randomly selecting link
(s, d) ∈ E in the primary network and randomly selecting
the route in the backup network from node s to node d. We
employ the simulated annealing (SA) used in [7] to update
the backup network routing. bsd

i j and xm
i j are updated, and

then we solve the LP problem in Eqs. (21a)-(21c) to obtain
the primary network routing. The above procedure is iter-
ated by changing selected link (s, d) ∈ E and solving the LP
problem in Eqs. (21a)-(21c) to obtain the primary network
routing if bsd

i j and xm
i j are updated. The solutions at each it-

eration are both backup and primary network routing. This
iteration may reduce the total backup capacity. The iteration
is terminated if a condition of convergence is satisfied or if
the number of iterations reaches some maximum number of
iterations that is given in advance. Finally, the solution is
obtained.

The LP problem to determine the primary network
routing from the backup network routing is written as,

min
∑

(i, j)∈Eb

CB
i j (21a)

s.t. CB
i j ≥

∑
m∈M

ϱi jxm
i jΓm +

∑
(s,d)∈E

ξsd
i j ,

∀(i, j) ∈ Eb (21b)
Eqs. (11b), (1e) - (1f), (1h), (12e) - (12f), (21c)

where bsd
i j and xm

i j are given parameters and wpq
sd , ξsd

i j and ϱi j
are decision variables.

The initial state is set by giving the backup network
routing as follows.

1. bsd
i j and xm

i j are set as given parameters.
2. Solve the LP problem in Eqs. (21a)-(21c) to obtain the

initial primary network routing and the initial total ca-
pacity in the backup network as CB

total, which is given
by Eq. (21a).

Let k be an index that counts the number of iterations.
The heuristic algorithm proceeds as follows.

1. Set k=1.
2. Randomly select link (s, d) ∈ E in the primary network,

and randomly select the route in the backup network
from node s to node d. The updated values of bsd

i j and
xm

i j are set as given parameters in Eqs. (21a)-(21c).

3. Solve the LP problem in Eqs. (21a)-(21c) to update the
primary network routing and obtain the total backup
capacity CB′

total.
4. The new backup routing for (s, d) ∈ E obtained from

step 3 is accepted with probability of min(q, 1), where

q = exp(CB
total−CB′

total
∆·T ). A better solution is unconditionally

accepted, and a worse solution is accepted with prob-
ability of q. Parameter T represents the temperature
of the system. T decreases at each iteration from T to
∆ · T . ∆ is a coefficient to decrease the temperature,
where 0 < ∆ < 1.

5. Increase k by one and repeat from step 2 until a condi-
tion of convergence is satisfied or the number of itera-
tions, k, reaches the maximum number of iterations.

6. The algorithm outputs the total backup capacity and the
primary and backup network routing, and then termi-
nates.

5. Numerical results

This section evaluates the performance of the proposed ap-
proach and compares its results with those of the conven-
tional approach. We use Intel(R) Core(TM) i7-2600K CPU
@3.40GHz, 32GB memory for our evaluations. CPLEX is
used to solve the MILP formulation. We first compare the
results from both the MILP formulation and the heuristic
method in a four-node network. The objective values and
the computation times of our proposed approach between
the MILP formulation and the heuristic method are com-
pared. The MILP formulation in Eqs. (20a)-(20c) is not able
to solve in practical time when the number of nodes is in-
creased. We use the introduced heuristic method to demon-
strate its performance on larger scale networks.

The four-node network with the given traffic demand
on each edge node (p, q) ∈ P in Fig. 2 is used for the com-
parison.

０

1

2

3

0 5 10 5

5 0 5 5

10 10 0 10

10 5 10 0

{dpq}=

(a) Four-node network (b) Traffic demand

Fig. 2 Four-node network and traffic demand.

Table 1 shows the required total backup capacity in the
four-node network for different values of probability of link
failure κ compared with the results of the conventional ap-
proach where ϵ = 0.005 and 0.01. The results show that
the proposal yields a smaller backup network than the con-
ventional approach when the value of the probability of link
failure κ is less than 0.1 when ϵ = 0.01, and κ is less than
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0.075 when ϵ = 0.005. The constraint becomes more le-
nient and more link failures in the primary network can be
tolerated, as ϵ increases. Thus, even lower required backup
capacity is expected. As the value of κ increases, the num-
ber of backup links needed to protect the failed links in the
primary network increases; greater total backup capacity is
required, as shown in Table 1. The maximum computation
time of MILP is set to 25000 [s]. The symbol of ∗ indicates
the best objective value obtained within the maximum com-
putation time; the optimality of solution is not confirmed.
The gap between the best objective value and the optimal
value is at most 35%, which is obtained by CPLEX. As κ
becomes larger and ϵ becomes smaller, no difference in re-
quired backup capacity between the proposed and conven-
tional approaches is observed. In this condition, the backup
resource sharing under the probabilistic survivability guar-
antee is not expected to be effective. It should be noted that
we consider that κ is greater than ϵ, as is explained at the
end of Section 2.

Table 2 shows the computation time results yielded by
MILP and the heuristic method. The symbol of * has the
same meaning as in Table 1; solution optimality is not con-
firmed. The results show that the computation time of the
heuristic method is less than that of MILP. The reduction
effect of the computation time by the proposed approach is
significant with ≥ 0.05 for both ϵ = 0.005 and 0.01. We
have the following observations on the computation times in
MILP and the heuristic method. In MILP, as ϵ decreases and
κ increases, the computation time increases. As ϵ decreases
and κ increases, Γm becomes large. This increases the num-
ber of decision variables in MILP. In the heuristic method,
as ϵ decreases, the computation time increases. This is be-
cause smaller ϵ requires larger Γm. This triggers an increase
in the computation time in Eqs. (21a)-(21c). It is notable
that the computation time does not strongly depend on κ. At
each iteration in the heuristic method, the backup network
routing is given, i.e., bsd

i j and xm
i j are set as given parame-

ters, the value of κ does not affect the computation time; the
number of decision variables is not varied.

Table 1 Required backup capacity in four-node network.

κ Method
ϵ=0.005 ϵ=0.01

Proposed
approach

Conventional
approach

Proposed
approach

Conventional
approach

0.025
MILP 53.75 55.00 45.00 45.00

Heuristic 53.75 60.00 46.65 50.00

0.05
MILP 72.50 75.00 62.50 65.00

Heuristic 75.00 75.00 62.50 65.00

0.075
MILP 85.00 85.00 72.50 75.00

Heuristic 85.00 85.00 75.00 75.00

0.1
MILP 100.00* 100.00* 85.00 85.00

Heuristic 100.00 100.00 85.00 85.00

*: Solution optimality is not confirmed.

Table 2 Computation times of MILP and heuristic method [s].

κ
ϵ=0.005 ϵ=0.01

MILP Heuristic MILP Heuristic

0.025 258.24 8.35 27.23 0.78
0.05 7537.99 7.94 3407.80 0.65

0.075 7371.49 7.71 4003.15 0.67
0.1 25000.00* 7.99 21972.80 0.75

*: Solution optimality is not confirmed.

The required capacities on each link in the backup
and primary networks for the four-node network yielded by
MILP with the probabilistic survivability guarantee param-
eter ϵ = 0.01 and different values of κ are shown in Figs. 3
and 4, respectively. Since the routing in the primary net-
work is changed with different values of κ, the capacity on
each link in the primary network is changed. The routing
in the backup network is changed if capacity of any link in
the primary network is changed. The capacity on each link
in the backup network is then changed. Figure 3 shows the
required capacity on each link in the backup network with
different values of κ. The results indicate that different val-
ues of κ affect the backup network routing. Figure 4 shows
that the required capacity on each link in the primary net-
work, which is determined by the routing, is affected by the
value of κ when κ < 0.1. From the results, the backup net-
work depends on the value of κ. Some values of κ, which
changes the required link capacity, affects the routing in the
primary network.

Fig. 3 Required capacity on each link in backup network using ϵ = 0.01
with (a) κ = 0.025, (b) κ = 0.05, (c) κ = 0.075, and (d) κ = 0.1.
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Fig. 4 Required capacity on each link in primary networks using ϵ =
0.01 with (a) κ = 0.025, (b) κ = 0.05, (c) κ = 0.075, and (d) κ = 0.1.

The COST 239 networks and National Science Foun-
dation Network (NSFNET), as shown in Fig. 5, are used to
demonstrate the proposed approach. The traffic demand for
each pair of source and destination (p, q) ∈ P is uniformly
distributed in the range of 0 to 10.

Fig. 5 COST 239 with 11 nodes and NSFNET with 14 nodes.

The required backup capacity in the backup network
for COST 239 and for NSFNET are shown in Tables 3 and
4, respectively, with different values of probability of link
failure κ, compared with the conventional approach, where
ϵ = 0.005, 0.0075, and 0.01. Table 3 shows that, for ϵ =
0.005, 0.0075, and 0.01, when κ ≤ 0.05, κ ≤ 0.075, and κ ≤
0.075, respectively, the proposed approach achieves lower
backup capacity than the conventional approach for COST
239. Table 4 shows that, for ϵ = 0.005, 0.0075, and 0.01,

when κ ≤ 0.015, κ ≤ 0.015, and κ ≤ 0.05, respectively,
the proposed approach achieves lower backup capacity than
the conventional approach for NSFNET. We observe that the
trends of backup capacity of these networks in terms of the
dependency on κ and ϵ are the same as those observed in
Table 1.

The computation times using the heuristic method for
COST 239 and NSFNET are shown in Tables 5 and 6, re-
spectively. We observe that the trends in computation time
of these networks are, in terms of the dependency on κ and
ϵ, the same as those observed in Table 2.

6. Conclusion

This paper proposed an optimization approach that provides
probabilistic survivability guarantees while minimizing the
total capacity of a backup network. It proceeds by deter-
mining both primary and backup network routing, simul-
taneously. The backup network is designed to protect the
primary network from random link failures whose probabil-
ities are given. Our optimization problem introduces robust
optimization to provide probabilistic survivability guaran-
tees for different link capacities in the primary network. We
formulated our optimization problem as an MILP problem
so that the backup network is designed while considering
both primary and backup network routing. When the net-
work size increases, the MILP problem cannot be solved in
practical time. Thus, a heuristic method was introduced to
solve the backup network design problem. Numerical re-
sults showed that the proposed approach can reduce the to-
tal capacity of the backup network compared to the conven-
tional approach.
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Appendix A: Transformation from Eqs. (10a)-(10c) to
Eqs. (11a)-(11d)

The following steps are used to derive Eqs. (11a)-(11d)
from Eqs. (10a)-(10c) using the duality theorem. Let us ex-
press (s, d) ∈ E with e ∈ E to simplify all the related nota-
tions here. Therefore, zsd

i j , bsd
i j , and wpq

sd are expressed by ze
i j,

be
i j, and wpq

e , respectively.
Equations (10a)-(10c), which is the LP problem of

finding zi j = {z1
i j, · · · , z

|E|
i j } that maximizes Γi j primary links
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with the largest capacities among the primary links e ∈ E, is
represented with a matrix expression by,

max XT
i j zi j (A· 1a)

s.t. Azi j ≤ C (A· 1b)
zi j ≥ 0, (A· 1c)

where

zT
i j =

[
z1

i j · · · z
|E|
i j

]
(A· 2a)

χe
i j =

∑
(p,q)∈P

∑
e∈E

dpqw
pq
e be

i j

XT
i j =

[
χ1

i jχ
2
i j · · · χ

|E|
i j

]
(A· 2b)

A =


1 1 · · · 1
1 0 · · · 0
0 1 · · · 0

· · ·
0 0 · · · 1

 (A· 2c)

CT =
[
Γi j|1 · · · 1

]
. (A· 2d)

zi j is an |E| × 1 matrix. Xi j is an |E| × 1 matrix. A is a
(1 + |E|) × |E| matrix. C is a (1 + |E|) × 1 matrix. For A and
C, the first row corresponds to Eq. (10b). The next |E| rows
correspond to ze

i j ≤ 1,∀e ∈ (s, d), in Eq. (10c). ze
i j ≥ 0 in

Eq. (10c) is a part of the canonical form expression in the
maximizing problem [17].

The dual of the LP problem represented by Eqs. (A· 1a)-
(A· 2d) for (i, j) is:

min CT bi j (A· 3a)
s.t. AT bi j ≥ Xi j (A· 3b)

bi j ≥ 0, (A· 3c)

where

bT
i j =

[
ϱi j|ξ1i j · · · ξ

|E|
i j

]
. (A· 4a)

bi j is a (1 + |E|) × 1 matrix. Eqs. (A· 3a)-(A· 3c), (A· 2b)-
(A· 2d) and (A· 4a) are matrix expression of Eqs. (11a)-
(11d). ϱi j, and ξei j are newly introduced as dual decision
variables.
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