
Noname manuscript No.
(will be inserted by the editor)

Single Tag Scheme for Segment Routing in Software-Defined
Network

Nattapong Kitsuwan · Eiji Oki · Takashi Kurimoto · Shigeo Urushidani

Received: date / Accepted: date

Abstract This paper proposes a scheme to reduce a

size of a packet header for a segment routing (SR)

scheme in a software-defined network (SDN). The SR

scheme inserts a segment identification (SID) list into

the packet header to indicate a path for the source-

destination pair of the packet. The path can be split

into different segments to suit the service requirement

and the segments are carried by the SID-list whose

length increases with the number of segments. This

also increases the packet overhead, and an additional

packet is needed if the packet length exceeds the max-

imum transmission unit (MTU). Moreover, it may not

be possible to implement SR in SDN due to the limited

number of stacked labels provided by the switch ven-

dor. In the proposed scheme, the SID-list is replaced

by a single tag to indicate a node edge, called a swap-
ping node. The tag is replaced by a new tag at the

swapping node. With this scheme, the size of SID-list

is fixed and does not vary with the number of segments,

and no additional packets are required. A mathematic

model to balance the number of flow entries in each

swapping node is introduced by minimizing the max-

imum number of flow entries in each swapping node

over the network. We implement the proposed scheme

on the transmission-Japan science information network

(SINET5) and demonstrate confirms its functionality.

N. Kitsuwan
The Department of Computer and Network Engineering, The
University of Electro-Communications, 1-5-1 Chofugaoka,
Chofu-shi, Tokyo 182-8585, Japan.
E. Oki
Graduate School of Informatics, Kyoto University, Yoshida-
honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
T. Kurimoto · S. Urushidani
National Institute of Informatics 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo 101-8430, Japan.
E-mail: kitsuwan@uec.ac.jp

Keywords Software-defined network · Segment

routing · Multi-protocol label switching.

1 Introduction

Traffic engineering is an approach to optimize network

resources and to facilitate trustworthy network oper-

ations. It proceeds by predicting or analyzing of the

traffic flowing in the network. Unfortunately, network

protocols based on the shortest path algorithm, such

as interior gateway protocols (IGPs), are not able to

overcome the traffic congestion problem. End-to-end

approaches were proposed to resolve this problem.

Multi-protocol label switching (MPLS) [1] adopts

the end-to-end approach. MPLS allows packets to be

transmitted across layer-2. All the subsequent routing

switches perform packet forwarding based only on the

MPLS label, which is a number to identify a group of

IP packets which are to be forwarded in the same man-

ner, over the same path, and with the same forward-

ing treatment. Each packet is given an MPLS label at

ingress nodes. Nodes along the end-to-end path look for

the MPLS label, instead of IP header, and process the

packets based on the label. An egress node removes the

label and forwards the original IP packet to the destina-

tion. Label Distribution Protocol (LDP) and Resource

Reservation Protocol (RSVP) are signal protocols that

implement the label exchanging needed between nodes

in the network. Using these signal protocols raises the

operating cost of MPLS.

Segment routing (SR) was introduced as an approach

to provide flexible scalable and granular control to MPLS-

traffic engineer (MPLS-TE) networks [2]- [4]. It removes

the signal protocols in the MPLS control plane to sim-

plify the network, as the MPLS data plane remains

Click here to access/download;Manuscript;Single_tag.tex

https://www.editorialmanager.com/tels/download.aspx?id=79226&guid=a5945f5f-b2f7-4d11-919d-d43a1ab05d57&scheme=1
https://www.editorialmanager.com/tels/download.aspx?id=79226&guid=a5945f5f-b2f7-4d11-919d-d43a1ab05d57&scheme=1

2 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

static. SR implements MPLS without creating addi-

tional tunnels. Packet forwarding is achieved through

the use of segments, which represent a list of instruc-

tions. In SR, only the ingress label edge routers need

keep per-service state information. State management

requirements from the midpoint (label switch routers)

and tail end (egress label edge routers) are removed.

This allows SR to scale significantly better than RSVP-

TE while providing most of the same functions [5].

In the SR network, segments represent subpaths

that a router can combine to form a complete route to

a network destination. Each segment has an identifier,

called a segment identifier (SID), that is shared by the

entire network. SR leverages the existing MPLS data

plane. SIDs are equivalent to labels in MPLS. A path is

denoted by a stack of SIDs, called an SID-list. The SID-

list equals the label stack in the MPLS architecture [6].

The given path is divided into several segments. An SID

in the SID-list indicates the next hop. At each hop, the

next hop is indicated by the top SID in the SID-list.

A packet travels to the next hop using an IGP, i.e. an

open shortest path first (OSPF) or intermediate system

to intermediate system (IS-IS). The top SID is removed

from the SID-list when the top SID matches the router

ID.

Software-defined networking (SDN) is a network tech-

nology aimed at making the network as flexible and

as rapid as the virtualized server and storage infras-

tructure of the modern data center [7]. SDN strips the

control plane from switches and moves it to the cen-

tralized controller. The controller makes decisions from

its global view of the network. The administrators can

control and manage the network by using software on

the centralized controller.

SR is an SDN technology whose packet-forwarding

mechanism serves as an alternative to OpenFlow. In

OpenFlow, the controller distributes flow entries to nodes

along the path of a source-destination pair. Instead of

pushing the flow entries to all nodes on the path, SR

encodes the forwarding path as a loose source route

in an MPLS header and insert it into a packet only

at the ingress router. It is possible that the route of

a source-destination pair will have a large number of

segments and more segments means MPLS stack size

becomes larger. The maximum size of the MPLS stack

that a router can handle depends on the vendor. Some

SDN switches may not able to support large MPLS

stacks. For example, a Juniper switch [9, 10] can han-

dle up to five segments, while a Pica8 switch supports

only two segments [11]. Therefore, a route that contains

more than three segments cannot be realized by a Pica8

switch. This conflicts with the SDN concept that the

architecture and control be vendor-independent. More-

over, adding more segments extends the packet length

until it exceeds the maximum transmission unit (MTU).

This would necessitate the use of a new packet to carry

the data that exceeds the MTU. Therefore, network

overhead increases to the detriment of user data.

The preferred path routing (PPR), which aims to

mitigate the MTU and data plane processing issues

from the SR scheme, dedicates one MPLS label for the

strict explicit path or two MPLS labels for the loose

explicit path for each routing [12]. The total number of

MPLS labels required for PPR is V +C, where V is the

number of nodes in the network and C is the number

of requested pair of source and destination. In case of

full mesh requests, the total number of MPLS labels is

V +V (V −1). The number of MPLS labels may not be

enough to support all requests in a large network size

since it is limited.

This paper proposes a scheme that employs the sin-

gle stack approach of MPLS to reduce packet header

size in the SR scheme. In this scheme, a unique ID, an

MPLS label, is assigned to each node. The path com-

putation element (PCE), which can be implemented

in a dedicated server, computes a path for a source-

destination pair if it is requested by a user or a net-

work manager [13–16]. The path is divided into several

segments as in the SR scheme. In each segment, the

MPLS label is used to guide the packet to the edge of

the segment, called a swapping node. At the swapping

node, the MPLS label us replaced with the next label.

The new MPLS label specifies the next swapping node

on the requested path. The packet travels from swap-

ping node to swapping node on the shortest path. With

this scheme, packet header size is greatly minimized as

each packet holds only one MPLS label. Moreover, as

the maximum transmission unit (MTU) is never ex-

ceeded by routing information, no additional packets,

are needed. PPR [12] achieves the same explicit routing

as the proposed scheme. The proposed scheme is differ-

ent from PPR as follows. The proposed scheme does

not use a dedicated MPLS tag for requested routing.

The required number of MPLS tags is V . The number

of MPLS stack for both the strict explicit path and the

loose explicit path are only one.

The processing load of the swapping node is prob-

lematic and must be considered. We introduce a math-

ematic model to balance the number of flow entries in

each swapping node over the network by minimizing

the maximum number of flow entries in each swapping

node. The proposed scheme is implemented on the sci-

ence information network of SINET5, and a demonstra-

tion confirms its functionality.

The paper is organized as follows. Section 2 de-

scribes in detail the operation mechanism of SR. In

Single Tag Scheme for Segment Routing in Software-Defined Network 3

Section 3, the proposed single tag scheme is elucidated.

Section 4 introduces a mathematic model to balance

the number of flow entries in each swapping node over

the network. Section 5 illustrates the performance of

the proposed scheme and discusses the results. Sec-

tion 6 demonstrates of proposal as implemented on a

transmission-Japan network. Finally, section 7 provides

our conclusions.

2 Segment routing

The SR scheme is used to replace the MPLS-TE net-

work, so we dispense with the RSVP protocol in the

control plane and the need to maintain tunnel states at

each node in the data plane of the network. There are

two data plane applications for SR: MPLS and IPv6.

A segment is represented as a label in MPLS, and by

the IPv6 routing extension header in IPv6. SR elimi-

nates the need for label distribution protocols, such as

LDP and RSVP as well as the border gateway proto-

col (BGP). Their functionality is realized by segments

within link state IGP protocols. A route from a source

to a destination is divided into several segments. In each

segment, a route from the ingress node to the egress

node of that segment is determined by using the short-

est path method. In the SR scheme, each node and

link in the network is labeled by a unique identifier,

a 32 bit integer called Segment IDentifier (SID). There

are basically two types of SID [19]. The first, node-

SID, identifies a specific node in the network. The node

reads the node-SID from the packet header and for-

wards the packet to the corresponding node where the

route is determined by equal-cost multi-path (ECMP)

routing [8]. The second, adjacency-SID, specifies a link

between two adjacent nodes. The node forwards the

packet to a neighbor node through the corresponding

link. The set of SIDs, called SID-list, is pushed at the

ingress node of the first segment.

Figure 1 illustrates an example of packet routing in

the SR scheme. Source H1, which connects to node A,

sends a packet over a grid topology to destination H2

connected to node M . When an IP packet from H1

arrives at node A, node A sends a packet in to the con-

troller to ask for instructions. The controller requests

a route from PCE. PCE determines the route for this

traffic as ABCGHLPONM . The PCE determines an

MPLS stack for this request as {C,G,H, P,M}. The

MPLS stack is sent from the controller to node A to

push it as an SID-list to the packet. The packet travels

through nodes as in the SID-list to H2. At each node

that is listed in the SID-list, the top MPLS stack is

popped.

A D

M P

B C

E F G H

I J K L

N O

Data

M

Data

P

H

G

C

M

Data

P

H

G

C

M

Data

P

H

G

M

Data

P

H

M

Data

P

M

Data

M

Data

M

DataData

M

Data

P

Controller

Add rule

Communication

path

H2

H1

Fig. 1 Example of SR scheme

Match Action

MPLS=A Pop,

Resubmit

MPLS=B Out:3

MPLS=C Out:3

MPLS=D Out:3

MPLS=E Out:2

MPLS=F Out:2

MPLS=G Out:2

MPLS=H Out:2

MPLS=I Out:2

MPLS=J Out:2

MPLS=K Out:2

MPLS=L Out:2

MPLS=M Out:2

MPLS=N Out:2

MPLS=O Out:2

MPLS=P Out:2

IP=H1 Out:1

Node A

Match Action

MPLS=A Out:1

MPLS=B Pop,

Resubmit

MPLS=C Out:3

MPLS=D Out:3

MPLS=E Out:2

MPLS=F Out:2

MPLS=G Out:2

MPLS=H Out:2

MPLS=I Out:2

MPLS=J Out:2

MPLS=K Out:2

MPLS=L Out:2

MPLS=M Out:2

MPLS=N Out:2

MPLS=O Out:2

MPLS=P Out:2

Node B

Match Action

MPLS=A Out:1

MPLS=B Out:1

MPLS=C Pop,

Resubmit

MPLS=D Out:3

MPLS=E Out:2

MPLS=F Out:2

MPLS=G Out:2

MPLS=H Out:2

MPLS=I Out:2

MPLS=J Out:2

MPLS=K Out:2

MPLS=L Out:2

MPLS=M Out:2

MPLS=N Out:2

MPLS=O Out:2

MPLS=P Out:2

Node C

Match Action

MPLS=A Out:1

MPLS=B Out:1

MPLS=C Out:1

MPLS=D Out:1

MPLS=E Out:1

MPLS=F Out:1

MPLS=G Out:1

MPLS=H Out:1

MPLS=I Out:1

MPLS=J Out:1

MPLS=K Out:1

MPLS=L Out:1

MPLS=M Pop,

Resubmit

MPLS=N Out:3

MPLS=O Out:3

MPLS=P Out:3

IP=H2 Out:1

Node M

. . .

Match Action

IP=H2 Push_MPLS:M,P,H,G,C, Out:3Add flow

(a) Initial flow entries

(b) Flow entry after receiving packet

Fig. 2 Flow entries in SR scheme

Figure 2 shows the flow entries in each node in

the SR scheme. The initial flow entries are listed in

Fig. 2(a), and the flow entry received from the controller

after node A receives the packet is shown in Fig. 2(b).

For the initial flow table, an output port is specified to

each destination node. If the packet that the MPLS la-

bel is the node ID itself, the top MPLS label is popped

and the packet is reentered into the same table. As re-

gards the flow from the controller, if the destination

IP address of the packet is matched, the MPLS stack is

added to the packet header and the packet is forwarded

to the next node via the desired output port.

3 Proposed single tag scheme

The single tag scheme adopts one of the concepts of the

SR scheme, which is removing the signal protocol from

the MPLS architecture, while avoiding the problem of

4 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

A D

M P

B C

E F G H

I J K L

N O

Data

C

Data

C

Data G

Data

H

Data

P

Data

M

Data

M

Data

M

DataData

P

Data

Controller

Add rule

Communication

path

H2

H1

Fig. 3 Example of single tag scheme

large SID-lists. A route for a source-destination pair

is divided into several segments, as in the SR scheme.

The single tag scheme uses only one MPLS tag to guide

a packet from the source to the destination along the

determined route. The tag guides the packet from the

ingress node to the egress node (swapping node) of the

same segment using the shortest path. The tag, which

indicates the next swapping node, is pushed at the

ingress node of the first segment. The tag is replaced

by a new tag at each swapping node. It should be noted

that the set of swapping nodes is the same as the set

of SID-list in the SR scheme. It is popped at an egress

node of the last segment of the route. Nodes that are

not swapping nodes pass the packet to a neighbor node

without changing the tag. The number of nodes that

need an additional flow entry is the number of swap-

ping nodes - 1 (for the last swapping node) + 1 (for the

ingress node of the first segment). It is superior to the

SR scheme in that flow entries are needed only at the

ingress node of the first segment.

There are two types of flow entries in the single tag

scheme: initial and additional flow entries. The initial

flow entry has a similar structure to the SR scheme,

which consists of a match field that matches the MPLS

tag or IP addresses of hosts connecting to the local

node, and an action that specifies the output port or

popping of the MPLS tag. The additional flow entries

matches the destination IP address or the request. The

action pushes an MPLS tag into the header and speci-

fies an output port. In case of a swapping node, a swap-

ping process is as follows. An MPLS tag is pop, and the

destination IP address is matched. If the destination IP

address does not belong to any host at the local node,

the node pushes a new MPLS to specify an egress node

of the next segment.

Figure 3 illustrates an operation example of the pro-

posed single tag scheme. The initial flow entries are con-

figured at every node as in Fig. 2. The packet is sent

from host H1 to host H2. When the packet reaches

Node Match Action

A IP=H2 Push_MPLS:C, Out:3

C IP=H2 Push_MPLS:G, Out:4

G IP=H2 Push_MPLS:H, Out:3

H IP=H2 Push_MPLS:P, Out:4

P IP=H2 Push_MPLS:M, Out:1

Fig. 4 Flow entries of single tag scheme

node A, A sends packet in to the controller. The con-

troller determines the red path to host H2. There are

five swapping nodes on the red path, which are nodes

C, G, H, P , and M . However, the controller sends

flow mod messages to add flow entries at node A and

the swapping nodes except for the last one. It should

be noted that a flow entry to pop the MPLS tag al-

ready exists at every swapping node due to the initial

flow. Therefore, a flow entry for popping the MPLS tag

is not required at each swapping node. The additional

flow entries are shown in Fig. 4. Node A pushes MPLS

tag C to the packet header and forwards the packet to

node B. The packet passes through node B to node C.

At node C, tag C is pop and tag G is pushed before

forwarding to node G. Node G pops tag G and pushes

tag H before sending the packet to node H. At node

H, tag H is pop and tag P is pushed before sending the

packet to node P via node L. Node P pops tag P and

pushes tag M and forwards the packet to node M via

nodes O and N . When the packet arrives at node M ,

the MPLS tag is popped, and node M sends the packet

to host H2.

Several notes on the proposed scheme are described

below. The proposed scheme does not downgrade the

topology complex. The requested explicit routing for

each pair of source and destination nodes is achieved by

the proposed scheme. In a network that considers per-

node and per-link as important factors, these factors are

incorporated in the requested explicit routing. There is

a case that packets for end-to-end are transferred more

than seven hops. For example, the Japanese photonic

network (JPN48) topology [17, 18], which is a network

across Japan, the southernmost node needs more than

10 hops to reach the northernmost node. The proposed

scheme achieves a lower size of a packet header for every

number of hops, compared to the SR scheme.

Single Tag Scheme for Segment Routing in Software-Defined Network 5

4 Problem of allocating flow entries in

swapping node

4.1 Overview

We consider the problem of allocating flow entries in

the swapping nodes. A set of paths, each of which has a

route including source and destination pair, is given. A

set of shortest paths from any node to all other nodes

in the network is given. Our objective is to allocate

flow entries to the swapping nodes so as to minimize

the maximum number of flow entries in each swapping

node, which will balance the processing loads of the

swapping nodes.

Figure 5 provides two examples of allocating flow

entries in swapping nodes. There are three requested

paths, A → D on path AEFGD, B → D on path

BAEFGD, and I → J on path IFGJ . We consider two

approaches. The first minimizes the number of swap-

ping nodes for each requested path, but ignores the

processing loads of swapping nodes. We introduce a

minimum flow per request (MFPR) algorithm for this

approach. Beginning with the end node of the previous

segment, or the source node, the MFPR algorithm fol-

lows the requested path until it deviates from the short-

est path to the destination and selects the next node on

the requested path as a swapping node; this node de-

fines the end of the current segment and the beginning

of the next segment. Based on this approach, node F is

set as a swapping node of path B → D and node G is

set as a swapping node of paths A→ D and I → J , as

shown in Fig. 5(a). The second approach minimizes the

maximum number of flow entries in each swapping node

to balancing the processing loads of swapping nodes. In

Fig. 5(b), the swapping nodes for those three paths are

balanced by setting nodes F , E, and G as swapping

nodes for paths B → D, A → D, and I → J , respec-

tively.

4.2 Integer linear programming problem

We consider directed graph G(V,E), where V is a set of

nodes and E is a set of links in the network. Let (i, j) ∈
E be a directed link from node i ∈ V to node j ∈ V .

Let p ∈ P be a path, where P is the set of paths. p ∈ P
is specified by a set of nodes rp = {r(p, h)|r(p, h) ∈
V, p ∈ P, h ∈ [0, Hp]}, where r(p, h) ∈ V is the h(> 0)th

transit node on p ∈ P , r(p, 0) is the source node of

p ∈ P , r(p,Hp) is the destination node of p ∈ P , and

Hp is the number of hops for p ∈ P . Since the shortest

path from one node to another node in the network

can be computed in advance, each node knows the next

hop node to the destination node. Let fvik be a flag to

A D

H J

B

F

I

E G

(a) Without balancing processing

load of swapping nodes

(b) With balancing processing load

of swapping nodes

C A D

H J

B

F

I

E G

C

A → D G

B → D F

I → J G

Path Swapping node
A → D E

B → D F

I → J G

Path Swapping node

1 flow
2 flows

1 flow 1 flow 1 flow

Fig. 5 Examples of allocating flow entries to swapping
nodes.

express the information of the next hop node. fvik is

set to one if k ∈ V : (v, k) ∈ E is the next hop node

at v ∈ V to destination i ∈ V \{v}, and zero otherwise.

Let xpv be a binary decision variable that is set to one

if p ∈ P uses v ∈ V as a swapping node, and zero

otherwise. Let yphh′ is a binary decision variable that is

set to one if there is no swapping node from (h + 1)th

hop to (h′ − 1)th hop of p ∈ P , where h ∈ [0, Hp − 1]

and h′ ∈ [h + 2, Hp], and zero otherwise. Let zphh′ be

a binary decision variable that indicates the product of

binary decision variables xpr(p,h′) and yphh′ , where h ∈
[0, Hp−1] and h′ ∈ [h+2, Hp] . zphh′ is set to one if both

xpr(p,h′) = 1 and yphh′ = 1, and zero otherwise. Let Sv

be the number of flow entries at v ∈ V . Let S be the

maximum number of flow entries in each swapping node

over the network, or S = maxv∈V Sv. To balance the

processing loads of swapping nodes, we formulate below

the optimization problem of minimizing the maximum

number of flow entries in the swapping nodes as an

integer linear programming (ILP) problem.

min S + ε
∑
v∈V

Sv (1a)

s.t. xpr(p,h+1) +

Hp−1∑
h′≥h+2

fr(p,h)r(p,h′)r(p,h+1)zphh′

+fr(p,h)r(p,Hp)r(p,h+1)yphHp
≥ 1,

∀p ∈ P, h ∈ [0, Hp − 1] (1b)

yphh′ ≥ 1−
h′−1∑
i≥h+1

xpr(p,i),∀p ∈ P,

h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp] (1c)

yphh′ ≤ 1− 1

|V |

h′−1∑
i≥h+1

xpr(p,i),∀p ∈ P,

h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp] (1d)

zphh′ ≤ xpr(p,h′),∀p ∈ P,

6 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp − 1] (1e)

zphh′ ≤ yphh′ ,∀p ∈ P,
h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp − 1] (1f)

zphh′ ≥ xpr(p,h′) + yphh′ − 1,∀p ∈ P,
h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp − 1] (1g)∑

p∈P
xpv = Sv,∀v ∈ V (1h)

Sv ≤ S, ∀v ∈ V (1i)

xpv ∈ {0, 1},∀p ∈ P, v ∈ V (1j)

yphh′ ∈ {0, 1},∀p ∈ P,
h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp] (1k)

zphh′ ∈ {0, 1},∀p ∈ P,
h ∈ [0, Hp − 1], h′ ∈ [h+ 2, Hp − 1] (1l)

Eq. (1a) indicates the objective function, where the

first term, S, which is the maximum number of flow

entries in the swapping nodes, is minimized first, and is

followed by minimization of the second term,
∑

v∈V Sv,

which is the total number of flow entries in the network.

ε is set to a sufficiently small value that is less than
1

|P ||V | so that the value of second term in Eq. (1a) can-

not affect the minimization of the first term. Eq. (1b) in-

dicates that a packet outgoing from r(p, h), h ∈ [0, Hp−
1], must be transmitted to the next hop on p ∈ P

by using a flow entry or by shortest path routing. If

the first term of the left hand side of Eq. (1b) is one,

r(p, h + 1), h ∈ [0, Hp − 1], has a flow entry for p ∈ P
as a swapping node. If the second term of left hand

side of Eq. (1b) is one or more, the next hop node from

r(p, h), h ∈ [0, Hp−1], for p ∈ P is equal to the next hop

node on the shortest path from r(p, h), h ∈ [0, Hp − 1]

to at least one of r(p, h′), h′ ∈ [h + 2, Hp − 1] that has

a flow entry as a swapping node under the condition

that there is no swapping node from (h + 1)th hop to

(h′ − 1)th hop of p ∈ P 1. If the third term of left hand

side of Eq. (1b) is set to one, the next hop node from

r(p, h), h ∈ [0, Hp−1], for p ∈ P is equal to the next hop

node on the shortest path from r(p, h), h ∈ [0, Hp − 1],

to r(p,Hp) under the condition of yphHp
= 1. Eqs. (1c)

and (1d) express that yphh′ is set to one if there is no

swapping node from (h + 1)th hop to (h′ − 1)th hop

of p ∈ P , and zero otherwise. Eqs. (1e)-(1g) express

that zphh′ is the product of binary variables xpr(p,h′)
and yphh′ , or zphh′ = xpr(p,h′) · yphh′ . Eq. (1h) indicates

that Sv is the sum of xpv over v ∈ V . Eq. (1i) expresses

S = maxv∈V Sv in cooperation with Eq. (1a) in a linear

form. Eqs. (1j)-(1l) indicate that xpv, yphh′ , and zphh′

are binary decision variables.

1 In the second term of left hand side of Eq. (1b), h = h′+1
is not included in the summation, This is because the first and
third terms consider the case of h = h′ + 1.

0 3

7 9

1

5

8

4 6

2

0

1

2

3

4 5

6

7

8 9

10

1112

13
14

1516

0

3
2

1

4
5

6

7
8

10

9

(a) Simple 10 nodes (b) JPN48

(c) German17 (d) Cost239

Fig. 6 Topologies for simulation.

Table 1 Result for simple 10 node topology

Avg. number of hops per request: 3.951
Avg. max. num-
ber of flows in
each node

Avg. total
number of
flows

Avg. computa-
tion time [sec]

ILP 10.707 40.993 0.056
MFPR 10.725 40.938 7.463 × 10−6

Table 2 Result for JPN48 topology

Avg. number of hops per request: 8.405
Avg. max. num-
ber of flows in
each node

Avg. total
number of
flows

Avg. computa-
tion time [sec]

ILP 113.147 2549.035 10.485
MFPR 131.425 2547.297 10.440 × 10−6

Table 3 Result for German17 topology

Average number of hops per request: 4.538
Avg. max. num-
ber of flows in
each node

Avg. total
number of
flows

Avg. computa-
tion time [sec]

ILP 21.050 181.991 0.121
MFPR 21.226 181.935 8.435 × 10−6

5 Performance evaluation

We evaluated the number of flow entries in a swapping

node when ILP was used to balance the processing load

of swapping nodes over the network. We then analyzed

the ratio of packet header and the number of extra pack-

ets for the proposed scheme and the SR scheme.

5.1 Balancing number of flow entries in swapping node

using ILP

The topologies in Fig. 6 were used to evaluate the per-

formance of two approaches: with/without balancing

Single Tag Scheme for Segment Routing in Software-Defined Network 7

Table 4 Result for Cost239 topology

Average number of hops per request: 3.219
Avg. max. num-
ber of flows in
each node

Avg. total
number of
flows

Avg. computa-
tion time [sec]

ILP 12.943 88.246 0.010
MFPR 13.424 88.022 6.995 × 10−6

the processing load of swapping nodes. The shortest

path is given. We randomly generate a number of re-

quests and their paths. The simulation was run 1,000

times. We evaluated the maximum number of flow en-

tries in each swapping node, the total number of flow

entries in the network, and the computation time.

Tables 1-4 show that the average maximum num-

ber of flows in each node is lower with ILP than with

MFPR. The average total number of flows is higher with

ILP than with MFPR. This is because more swapping

nodes are needed for path control while reducing the

maximum number of flow entries in each node. The av-

erage computation time of MFPR depends on the num-

ber of requested paths, |P |, and the number of hops in

those requests; the maximum number of hops is |V |−1.

The complexity of MFPR is O(|P ||V |). The computa-

tion time of ILP, as shown in Tables 1-4, can be ac-

cepted in our examined topologies. As the network size

increases, the computation time of ILP increases. In

case that a shorter computation time is required than

that of ILP, the introduced MFPR algorithm can be

an option to be implemented for the proposed scheme.

The average maximum number of flows in each node of

MFPR is at most 16%, for JPN48, higher than that of

ILP, in our examined topologies.

We note where the ILP problem is computed when

the ILP approach is adopted. The ILP computation el-

ement can be implemented in a computationally pow-

erful server different from a controller; the controller

sends the request of ILP computation to the server and

the server returns the solution to the controller.

5.2 Analysis of number of packets

The maximum transmission unit (MTU) is set to 1,500

bytes as default. The format of the Ethernet packet con-

sidered here is shown in Fig. 7. Ethernet frame size is

24 bytes, IPv4 header without any options is 20 bytes,

TCP header without any options is 20 bytes. The for-

mat of an MPLS label consists of 20 bits for the label

number field, 3 bits for EXP field, 1 bit for S field, and

8 bits for TTL field. In total, a single MPLS label oc-

cupies 32 bits (4 bytes). The length of a packet header

carrying an SID-list with n labels is 24+4n+20+20 =

64 + 4n bytes.

1500 bytes

24+4n+20+20 = 64+4n bytes d = 1500-(64+4n)

= 1436 – 4n bytes

Ethernet SID-list IP TCP Payload

Label number EXP S TTL

EXP: Experimental

S: Bottom of stack bit

TTL: Time to live

4 bytes

MPLS1 MPLS2 MPLS3 . . . MPLSn

24 bytes n x 4 bytes
20

bytes

20

bytes
1500

Fig. 7 Ethernet packet format with SID-list.

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
at

io
 o

f
p

ac
k
et

 h
ea

d
er

Size of SID-list (n)

SR scheme

47%

22%
Reference for single tag scheme

Fig. 8 Ratio of packet header with different SID-list lengths.

Figure 8 plots the packet header ratio, which is

the length of the packet header divided by the packet

length. The plots in the SR scheme are obtained by
64+4n
1500 . The dash line indicates the constant value of

0.04533, which is obtained by 64+4
1500 , of the proposed

scheme. The packet header ratio in the SR scheme lin-

early increases with SID-list length, but in the proposed

single tag scheme the ratio is independent of SID-list

length. When SID-list holds 16 entries, the proposed

single tag scheme improves the packet header ratio by

47%, which is derived as follows(
(64+(4×16))

1500 − 64+4
1500

64+(4×16)
1500

)
× 100 = 46.875% ≈ 47%. (2)

It should be noted that the ratio of packet header of

the single tag scheme has an affect if the packet size

exceeds the MTU size due to the SID-list. If the SID-

list does not make the packet size exceed the MTU size,

the ratio of packet header between the SR and single

tag schemes are the same.

The number of swapping nodes increases with the

network size. The original data is split into chunks.

Each chunk is put into the payload of a packet. If the

packet size exceeds the MTU size due to the SID-list,

data chunk size (in bytes), d, must be reduced to fit

the MTU. d is computed by the MTU size without the

8 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

packet header.

d = (1500− (64 + 4n)) = 1436− 4n, (3)

where n is the number of tags in the SID-list. n in the

proposed scheme is the same as that in the MPLS-TE,

i.e., one. A slight increasing in a packet header size may

trigger the use of additional packets. The number of

required packets, P , for payload length (in bytes), D,

is:

P =
D

d
. (4)

In the proposed scheme, n is one so that d is

d = (1500− (64 + 4)) = 1432 bytes. (5)

The required number of packets in the proposed scheme,

Pprop, is obtained by substituting Eq. (5) into Eq. (4)

as follows

Pprop =
D

1432
packets. (6)

The required number of packets in the SR scheme, PSR,

increases with n, which is obtained by substituting Eq. (3)

into Eq. (4) as follows

PSR =
D

(1436− 4n)
packets. (7)

The number of additional packets, E, in the SR scheme

compared to the proposed scheme is obtained from the

difference between Eq. (6) and Eq. (7), which is given

by:

E = PSR − Pprop. (8)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

er
 o

f
ex

tr
a

p
ac

k
et

s

Millions

Size of SID-list (n)

Fig. 9 Number of additional packets needed in SR scheme
compared to single tag scheme.

We compare the SR and proposed single tag schemes

in terms of the number of additional packets. Figure 9

plots the number of additional packets when 100 Gbytes

of data is sent, which is obtained by Eq. (8). The num-

ber of additional packets increases with SID-list size in

the SR scheme, whereas the single tag scheme needs

no additional packets. If the SID-list has six entries,

S1

HOST_Hokkaido

S3

S2

HOST_Tokyo

CTRL

OVS_Fukuoka

OVS_Tokyo

OVS_HokkaidoHTTP Traffic

SSH Traffic

S4

OVS_Osaka

#1

#2

#3

#2

#2

#1

#2#1#1

Pop
Swap

Push

Pass

(2)

(1)

(2)

(2)

Fig. 10 Topology for demonstration.

the SR schemes needed approximately one million addi-

tional packets than the single tag scheme. If the SID-list

has 16 entries, the SR scheme needs three million more

packets than the single tag scheme. This inefficiency in

packet transmission is a significant problem.

6 Demonstration

The proposed scheme was demonstrated on Science In-

formation Network 5 (SINET5) [20], provided by the

National Institute of Informatics (NII) [21] to confirm

its functionality. Seven virtual machines (VMs) were de-

ployed across Japan. One VM in Tokyo acted as a con-

troller. Two VMs in Hokkaido and Tokyo were hosts.

The other four VMs acted as OpenFlow switches, lo-

cated in Hokkaido, Tokyo, Osaka, and Fukuoka. Open

vSwitch version 2.5.2 [22] was installed on each switch.

Information of IP address and switch ID is listed in Ta-

ble 5 The network topology used in the demonstration

is illustrated in Fig. 10. The numbers in brackets repre-

sent link cost. The controller ran an MySQL database.

Table 5 Information of VMs for demonstration.

VM name Location IP address switch ID
HOST Hokkaido Hokkaido 192.168.0.34 -

HOST Tokyo Tokyo 192.168.0.17 -
OVS Hokkaido (s1) Hokkaido 192.168.1.37 101

OVS Osaka (s2) Osaka 192.168.1.4 102
OVS Tokyo (s3) Tokyo 192.168.1.17 103

OVS Fukuoka (s4) Fukuoka 192.168.1.29 104
CTRL Fukuoka 192.168.1.24 -

The database used in the demonstration had three

tables, as shown in Fig. 11. The first table, named

“path”, kept the information of paths and switches for

each source-destination pair and protocol. The second

table “port” kept the information of port number in

each switch. The third table “sw detail” stored the dat-

apath id (dpid), and MPLS id number for each switch.

Single Tag Scheme for Segment Routing in Software-Defined Network 9

mysql> select * from path;

+----+--------------+--------------+-------+-------------+----------+

| id | nw_src | nw_dst | proto | path | set_sw |

+----+--------------+--------------+-------+-------------+----------+

| 1 | 192.168.0.34 | 192.168.0.17 | 22 | s1,s3 | s1,s3 |

| 2 | 192.168.0.34 | 192.168.0.17 | 80 | s1,s4,s2,s3 | s1,s2,s3 |

+----+--------------+--------------+-------+-------------+----------+

mysql> select * from port;

+----+------+----------+--------+

| id | sw | neighbor | output |

+----+------+----------+--------+

| 1 | s1 | s3 | 2 |

| 2 | s1 | s4 | 1 |

| 3 | s1 | host | 3 |

| 4 | s2 | s3 | 2 |

| 5 | s2 | s4 | 1 |

| 6 | s3 | s1 | 1 |

| 7 | s3 | s2 | 2 |

| 8 | s3 | host | 3 |

| 9 | s4 | s1 | 1 |

| 10 | s4 | s2 | 2 |

+----+------+----------+--------+

mysql> select * from sw_detail;

+----+------+-----------------+---------+

| id | sw | dpid | mpls_id |

+----+------+-----------------+---------+

| 1 | s1 | 63866552046920 | 101 |

| 2 | s2 | 108297769848384 | 102 |

| 3 | s3 | 152739915257422 | 103 |

| 4 | s4 | 178844403451471 | 104 |

+----+------+-----------------+---------+

Fig. 11 Database structure.

We created a scenario in which HOST Hokkaido

transferred data to HOST Tokyo. Two types of traffic,

hypertext transfer protocol (HTTP) and secure shell

(SSH), were transmitted along different routes, as shown

in Fig. 10. Normally the controller would compute the

path between source and destination, based on sev-

eral parameters such as traffic condition. However, path

computation was dropped in the demonstration. Paths

between HOST Hokkaido and HOST Tokyo with dif-

ferent traffic characteristics were assumed and manually

input into the database. HTTP traffic packets were sent

from HOST Hokkaido via OVS Hokkaido, OVS Fukuoka,

OVS Osaka, and OVS Tokyo, to reach HOST Tokyo.

SSH traffic packets were sent from HOST Hokkaido via

OVS Tokyo to HOST Tokyo. The initial flow entries in

each switch are shown in Fig. 12.

The scenario was performed as follows. HTTP traffic

packets were sent from HOST Hokkaido using the com-

mand “curl http://192.168.0.14/demonstration.html”.

Upon receiving the first HTTP packet, OVS Hokkaido,

OVS Hokkaido sent OpenFlow packet in to the con-

troller, to determine how to deal with this packet. The

controller retrieved the path “s1, s4, s2, s3” and the set

of switches to be configured, “s1, s2, s3”, from Table

“path”, datapath ID and switch ID from Table “sw detail”,

and an output port for each switch from Table “port”.

The controller sent an OFPFlowMod message, which

is a flow configuration message, to every switch that

needed to be configured by the addition of a flow entry,

as shown in Fig. 13. It should be noted that MPLS

swapping is used as an action in the demonstration

since there is only one pair of source and destination.

After switch configuration, the flow entry at s1 matched

the packet with the destination IP address and desti-

nation tcp port. The action pushed MPLS tag 102 to

the packet, and specified packet release from port #1,

which was connected to OVS Fukuoka. The flow entry

OVS_Hokkaido

OVS_Osaka

OVS_Tokyo

root@ovs-hokkaido2:/home/ubuntu/single_tag# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=88.785s, table=0, n_packets=0, n_bytes=0, idle_age=88,

tcp,nw_dst=192.168.0.34,tp_src=22 actions=output:3

cookie=0x0, duration=88.773s, table=0, n_packets=0, n_bytes=0, idle_age=88,

tcp,nw_dst=192.168.0.34,tp_src=80 actions=output:3

cookie=0x0, duration=88.798s, table=0, n_packets=0, n_bytes=0, idle_age=88,

priority=0 actions=CONTROLLER:65535

root@ovs-hokkaido2:/home/ubuntu/single_tag#

root@ovs-tokyo2:/home/ubuntu/single_tag# ovs-ofctl dump-flows s3

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=84.769s, table=0, n_packets=0, n_bytes=0, idle_age=84,

tcp,nw_dst=192.168.0.34,tp_src=22 actions=output:1

cookie=0x0, duration=84.768s, table=0, n_packets=0, n_bytes=0, idle_age=84,

tcp,nw_dst=192.168.0.34,tp_src=80 actions=output:2

cookie=0x0, duration=84.771s, table=0, n_packets=0, n_bytes=0, idle_age=84,

priority=0 actions=CONTROLLER:65535

root@ovs-tokyo2:/home/ubuntu/single_tag#

root@ovs-osaka:/home/ubuntu/single_tag# ovs-ofctl dump-flows s2

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=79.668s, table=0, n_packets=0, n_bytes=0, idle_age=79,

ip,nw_dst=192.168.0.34 actions=output:1

cookie=0x0, duration=79.656s, table=0, n_packets=0, n_bytes=0, idle_age=79,

priority=0 actions=CONTROLLER:65535

root@ovs-osaka:/home/ubuntu/single_tag#

OVS_Fukuoka
root@ovs-fukuoka:/home/ubuntu/single_tag# ovs-ofctl dump-flows s4

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=69.875s, table=0, n_packets=0, n_bytes=0, idle_age=69,

ip,nw_dst=192.168.0.34 actions=output:1

cookie=0x0, duration=69.781s, table=0, n_packets=0, n_bytes=0, idle_age=69,

mpls,mpls_label=102 actions=output:2

cookie=0x0, duration=69.634s, table=0, n_packets=0, n_bytes=0, idle_age=69,

priority=0 actions=CONTROLLER:65535

root@ovs-fukuoka:/home/ubuntu/single_tag#

Fig. 12 Initial flow entries in each switch.

OVS_Hokkaido

OVS_Osaka

OVS_Tokyo

cookie=0x0, duration=8.748s, table=0, n_packets=6, n_bytes=498, idle_age=7,

tcp,nw_dst=192.168.0.17,tp_dst=80 actions=push_mpls:0x8847,load:0x66-

>OXM_OF_MPLS_LABEL[],output:1

cookie=0x0, duration=11.620s, table=0, n_packets=6, n_bytes=522, idle_age=10,

mpls,mpls_label=103 actions=pop_mpls:0x0800,output:3

cookie=0x0, duration=13.447s, table=0, n_packets=6, n_bytes=522, idle_age=12,

mpls,mpls_label=102 actions=load:0x67->OXM_OF_MPLS_LABEL[],output:2

Fig. 13 Additional flow entries sent from controller to the
switches handling HTTP traffic.

at s2 (OVS Osaka) matched MPLS 102 of the packet

and swapped it with MPLS 103 before sending it to out-

put port #2, which was connected to OVS Tokyo. The

flow entry at s3 (OVS Tokyo) matched MPLS 103 of

the packet and popped the MPLS tag before sending it

to output port #3, which was connected to HOST Tokyo.

It should be noted that no additional flow entry is

needed in s4 (OVS Fukuoka) since s4 is on the shortest

path between s1 and s3. The packet is forwarded using

the initial flow entries in s4. After the flow entries were

sent to the corresponding switches, subsequent packets

traversed the path s1→ s4→ s2→ s3 to HOST Tokyo

using the above flow entries. Upon successfully receiv-

ing an HTTP packet, HOST Tokyo returns a response

message to HOST Hokkaido along the same route.

10 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

cookie=0x0, duration=22.540s, table=0, n_packets=41, n_bytes=5331, idle_age=7,

tcp,nw_dst=192.168.0.17,tp_dst=22 actions=push_mpls:0x8847,load:0x67-

>OXM_OF_MPLS_LABEL[],output:2

cookie=0x0, duration=27.136s, table=0, n_packets=41, n_bytes=5495, idle_age=12,

mpls,mpls_label=103 actions=pop_mpls:0x0800,output:3

OVS_Hokkaido

OVS_Tokyo

Fig. 14 Additional flow entries sent from controller to each
corresponding switch for SSH traffic.

The initial SSH traffic packet from HOST Hokkaido

was sent to HOST Tokyo by using the command “ssh

ubuntu@192.168.0.17”. The packet was sent to the con-

troller as an OpenFlow packet in, as for the HTTP traf-

fic. The controller retrieved the path “s1, s3”, the set

of switches that need to be configured (“s1, s3”), dat-

apath ID, switch ID, and output port of each switch

from the database. The controller sent an OFPFlow-

Mod message, which is a flow configuration message, to

add flow entries to s1 and s3, as shown in Fig. 14. At s1,

the destination IP address and destination tcp port of

the packet were matched. The action pushed MPLS tag

103 to the packet, and released the packet to port #2,

which was connected to OVS Tokyo. The flow entry at

s3 matched MPLS 103 of the packet and the MPLS

tag was popped before sending it to output port #3,

which was connected to HOST Tokyo. Subsequent SSH

packets traversed the path s1 → s3 to HOST Tokyo

using the above flow entries. Upon receiving an SSH

packet, HOST Tokyo returned a prompt for password

input back to HOST Hokkaido along the same route.

Roundtrip time of SSH packets was measured as the

period from when the packet left HOST Hokkaido to

when acknowledgement was received by the same host.

The first packet took 1.01 seconds. This time includes

link propagation delay, processing at the controller, and

flow setup at corresponding switches on the path. Once

switches flow entries were added, later packets took only

10 ms.

Packets were captured at the output ports of switches

to confirm the functioning of the proposed scheme. For

the HTTP traffic, we captured the transmission packets

at port #1 of OVS Hokkaido, port #2 of OVS Fukuoka,

port #2 of OVS Osaka, and port #3 of OVS Tokyo,

as shown in Fig. 15. Packets for the flow configuration

messages and packet in were captured at the controller,

as shown in Fig. 16. This data confirmed that packet in

was received from OVS Hokkaido, and the correct flow

configuration messages were sent to OVS Hokkaido, OVS Osaka,

and OVS Tokyo. We also confirmed that the MPLS

label 102 was added to the packet at OVS Hokkaido.

The packet with MPLS label 102 was passed through

OVS Fukuoka. MPLS label 102 was swapped to MPLS

OVS_Hokkaido: MPLS 102 is push for HTTP traffic from

HOST_Hokkaido to HOST_Tokyo

OVS_Tokyo: MPLS is pop

OVS_Osaka: MPLS 102 is swap to 103

OVS_Fukuoka: Packet remains MPLS 102

Fig. 15 Handling of HTTP packets at each switch.

Packet_in at CTRL

Flow_MOD to OVS_Hokkaido, OVS_Osaka and OVS_Tokyo

Destination IP 192.168.0.17 (HOST_Tokyo)

Dst Port: 80 (HTTP)

Fig. 16 HTTP packets captured at controller.

label 103 at OVS Osaka. MPLS label 103 was popped at

OVS Tokyo. For the SSH traffic, the transmission pack-

ets were captured at OVS Hokkaido and OVS Tokyo,

as shown in Fig. 17. The flow configuration messages

and packet in were captured at the controller, as shown

in Fig. 18. This data confirmed that packet in was re-

ceived from OVS Hokkaido, and that the correct flow

configuration messages were sent to OVS Hokkaido and

OVS Tokyo. MPLS label 103 was added to the packet at

OVS Hokkaido, and the MPLS label 103 was popped at

OVS Tokyo. Roundtrip times of the SSH packets were

measured. The first packet took 1.09 seconds, subse-

quent packets took 31.8 ms.

Single Tag Scheme for Segment Routing in Software-Defined Network 11

OVS_Tokyo: MPLS is pop

OVS_Hokkaido: MPLS 103 is push for SSH traffic from HOST_Hokkaido to

HOST_Tokyo

Fig. 17 Handling of SSH packets at each switch.

Packet_in at CTRL

Destination IP 192.168.0.17 (HOST_Tokyo)

Dst Port: 22 (SSH)

Flow_MOD to OVS_Hokkaido and OVS_Tokyo

Fig. 18 SSH packets captured at controller.

7 Conclusions

This paper proposed a scheme to reduce a size of a

packet header for segment routing architecture in SDN.

The proposal uses only single tags to specify given paths

instead of using SID-lists holding multiple SIDs. The

tag is swapped with a new tag at an edge node of each

segment, called a swapping node. An ILP formulation

was introduced to minimize the maximum number of

flows that need to be held in each swapping node. Anal-

yses showed that the ILP formulation needs fewer flow

entries in each swapping node, on average, than MFPR,

but a greater total number of flow entries in the net-

work, on average. Our analyses indicate that the pro-

posal reduces the packet header by 47 percent com-

pared to SR scheme when the SID-list holds 16 entries.

The proposed scheme was implemented on SINET5 and

used to realize HTTP and SSH transmission. All func-

tions of the proposed scheme were confirmed.

References

1. Rosen, E., Viswanathan, A., & R. Callon (2001). Multi-
protocol Label Switching Architecture. RFC 3031.

2. Giorgetti, A., Sgambelluri, A., Paolucci, F., Cugini, F.,
& Castoldi, P. (2017). Segment routing for effective recov-

ery and multi-domain traffic engineering. In IEEE/OSA
Journal of Optical Communications and Networking, 9 (2),
A223-A232. https://doi.org/10.1364/JOCN.9.00A223

3. Cianfrani, A., Listanti, M., & Polverini, M. (2017).
Incremental Deployment of Segment Routing Into an
ISP Network: a Traffic Engineering Perspective. In
IEEE/ACM Transactions on Networking, 25 (5), 3146-
3160. https://doi.org/10.1109/TNET.2017.2731419

4. Schüller, T., Aschenbruck, N., Chimani, M., Horneffer, M.
& Schnitter, S. (2017). Traffic engineering using segment
routing and considering requirements of a carrier IP net-
work. In IFIP Networking Conference (IFIP Networking)
and Workshops.

5. Cianfrani, A., Listanti, M., & Polverini, M. (2016). Trans-
lating Traffic Engineering outcome into Segment Routing
paths: The Encoding problem. In IEEE Conference on
Computer Communications Workshops (INFOCOM WK-
SHPS) (pp. 245-250).

6. Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
Litkowski, S., & Shakir, R. (2017). Segment Routing with
MPLS data plane. IETF draft-ietf-spring-segment-routing-
mpls-10.

7. Kitsuwan, N., McGettrick, S., Slyne, F., Payne, D.B.,
& Ruffini, M. (2015). Independent transient plane design
for protection in OpenFlow-based networks. In IEEE/OSA
Journal of Optical Communications and Networking, 7 (4),
264-275. https://doi.org/10.1364/JOCN.7.000264.

8. (2014). IEEE Standard for Local and metropolitan
area networks - Media Access Control (MAC) Bridges
and Virtual Bridged Local Area Networks - Amend-
ment 22: Equal Cost Multiple Path (ECMP). IEEE Std
802.1Qbp-2014 (Amendment to IEEE Std 802.1Q-2011).
https://doi.org/10.1109/IEEESTD.2014.6783684

9. Configuring the Maximum Number of MPLS
Labels. Retrieved February 28, 2018 from
https://www.juniper.net/documentation/en US/junos/topics/
task/configuration/interfaces-mpls-maximum-labels.html.

10. Maximum-labels. Retrieved February 28, 2018 from
https://www.juniper.net/documentation/en US/junos/
topics/reference/configuration-statement/maximum-
labels-edit-interfaces-unit-family-mpls.html.

11. Configuring MPLS. Retrieved February 28, 2018 from
http://www.pica8.com/wp-content/uploads/2015/09/
v2.9/html/ovs-configuration-guide/#8195477.

12. Chunduri, U., Clemm, A., & Li, R. (2018). Preferred Path
Routing - A Next-Generation Routing Framework Beyond
Segment Routing. In IEEE Globbal Communications Con-
ference (GLOBECOM).

13. Farrel, A., Vasseur, J.P., & Ash, J. (2006). A path com-
putation element (PCE)-based architecture. RFC 4655.

14. Lee, Y., Le Roux JL., King, D., & Oki, E. (2009). Path
computation element communication protocol (PCECP) re-
quirements and protocol extensions in support of global
concurrent optimization. RFC 5557.

15. Oki, E., Takeda, T., Farrel, A., & Zhang, F. (2017). Ex-
tensions to the Path Computation Element Communication
Protocol (PCEP) for Inter-Layer MPLS and GMPLS Traf-
fic Engineering. RFC 8282.

16. Oki, E., Le Roux, JL., & Farrel, A. (2009). Framework
for PCE-Based Inter-Layer MPLS and GMPLS Traffic En-
gineering. RFC 5623.

17. Japan Photonic Network Model. Retrieved September 04,
2019 from http://www.ieice.org/cs/pn/jpn/jpnm.html.

18. Arakawa, S., Sakano, T., Tsukishima, Y., Hasegawa, H.,
Tsuritani, T., Hirota, Y., & Tode, H. (2013). Topological
characteristic of japan photonic network model. In IEICE
Technical Report, 113(91), 7-12.

12 N. Kitsuwan, E. Oki, T. Kurimoto, S. Urushidani

19. Filsfils, C., Nainar, N. K., Pignataro, C., Cardona, J. C.,
& Francois, P. (2015). The Segment Routing Architecture.
In IEEE Global Communications Conference (GLOBE-
COM).

20. Science Information NETwork 5. Retrieved February 28,
2018 from https://www.sinet.ad.jp/en/top-en.

21. National Institute of Informatics. Retrieved February 28,
2018 from http://www.nii.ac.jp/en/.

22. Open vSwitch. Retrieved February 28, 2018 from
http://openvswitch.org/.

Nattapong Kitsuwan received B.E. and M.E. degrees

in electrical engineering (telecommunication) from Ma-

hanakorn University of Technology, King Mongkut’s

Institute of Technology, Ladkrabang, Thailand, and a

Ph.D. in information and communication engineering

from the University of Electro-Communications, Japan,

in 2000, 2004, and 2011, respectively. From 2002 to

2003, he was an exchange student at the University

of Electro-Communications, Tokyo, Japan, where he

performed research regarding optical packet switching.

From 2003 to 2005, he was working for ROHM In-

tegrated Semiconductor, Thailand, as an Information

System Expert. He was a post-doctoral researcher at

the University of Electro-Communications from 2011 to

2013. He worked as a researcher for the Telecommunica-

tions Research Centre (CTVR), Trinity College Dublin,

Ireland from 2013 to 2015. Currently, he is an assistant

professor at the University of Electro-Communications,

Tokyo, Japan. His research focuses on optical network

technologies, routing protocols, and software-defined net-

works.

Eiji Oki is a Professor at Kyoto University, Japan.

He received the B.E. and M.E. degrees in instrumen-

tation engineering and a Ph.D. degree in electrical en-

gineering from Keio University, Yokohama, Japan, in

1991, 1993, and 1999, respectively. In 1993, he joined

Nippon Telegraph and Telephone Corporation (NTT)

Communication Switching Laboratories, Tokyo, Japan.

He has been researching network design and control,

traffic-control methods, and high-speed switching sys-

tems. From 2000 to 2001, he was a Visiting Scholar

at the Polytechnic Institute of New York University,

Brooklyn, New York, where he was involved in design-

ing terabit switch/router systems. He was engaged in

researching and developing high-speed optical IP back-

bone networks with NTT Laboratories. He was with

The University of Electro-Communications, Tokyo, Japan

from July 2008 to February 2017. He joined Kyoto Uni-

versity, Japan, in March 2017. He has been active in

the standardization of the path computation element

(PCE) and GMPLS in the IETF. He wrote more than

ten IETF RFCs. Prof. Oki was the recipient of sev-

eral prestigious awards, including the 1998 Switching

System Research Award and the 1999 Excellent Paper

Award presented by IEICE, the 2001 Asia-Pacific Out-

standing Young Researcher Award presented by IEEE

Communications Society for his contributions to broad-

band network, ATM, and optical IP technologies, the

2010 Telecom System Technology Prize by the Telecom-

munications Advanced Foundation, IEEE HPSR 2012

Outstanding Paper Award, and IEEE HPSR 2014 Best

Paper Award Finalist, First Runner Up. He has authored/co-

authored four books, Broadband Packet Switching Tech-

nologies, published by John Wiley, New York, in 2001,

GMPLS Technologies, published by CRC Press, Boca

Raton, FL, in 2005, Advanced Internet Protocols, Ser-

vices, and Applications, published by Wiley, New York,

in 2012, and Linear Programming and Algorithms for

Communica- tion Networks, CRC Press, Boca Raton,

FL, in 2012. He is a Fellow of IEEE.

Takashi Kurimoto graduated from the Tokyo Insti-

tute of Technology, Japan, where he received B.E. and

M.E. degrees in applied physics 1992 and 1994, respec-

tively. In 1994, He graduated from Keio University where

he received the Ph.D. degree in 2012. He worked for

NTT Network Service Systems Laboratories and NTT

east plant planning department from 1994 to 2014. He

has been engaged in researching the switching technol-

ogy for high-speed computer networks and deployment

of the next generation network. He moved to NII in 2015

and is currently involved in the design and implementa-

tion of the Science Information Network (SINET). He

received the IEICE Switching System Research Award

in 1996.

Shigeo Urushidani is a professor and director at the

Research Center for Academic Networks of the National

Institute of Informatics (NII), Japan. He is also the

director at Cyber Science Infrastructure Development

Department of NII. He received B.E. and M.E. degrees

from Kobe University in 1983 and 1985, respectively,

and received a Ph.D. from the University of Tokyo in

2002. He worked for NTT from 1985 to 2006, where

he was engaged in the research and development of

ATM, AIN, IP/MPLS, and optical switching systems.

He moved to NII in 2006 and is currently involved in

the design and implementation of the Science Informa-

tion Network (SINET), as well as in the research and

development on network and system architecture for

ultra-high-speed green networks.

Responses to the reviewer’ comments

We would like to thank the reviewer for the careful and constructive comments. The paper has been improved

as a result. We have addressed every point raised by the reviewer. The revised parts are marked with blue

color.

Reviewer

Comment 1

There is no clarification about the equation 2 and 3 still.

Answer 1: We clarified how to obtain these equations, which become Eqs. (3)-(8) in the revised version.

We explained how to obtaine every value of these equations at paragraph 3 of section 5.2.

Comment 2

Authors are requested to justify the 47% improvement of packet header ratio. There was no any strong

background to justify this improvement.

Answer 2: We derived how to obtain the 47% improvement when n = 16 at Eq. (7) as follows:(
(64+(4×16))

1500 − 64+4
1500

64+(4×16)
1500

)
× 100 = 46.875% ≈ 47%. We added the background for this improvement at the end of

paragraph 2 of section 5.2.

Comment 3

Proposed equations and equations were not correlated.

Answer 3: First, we moved the explanation of Fig. 8 to paragraph 2 of section 5.2 before Eqs. (3)-(8), which

are used for Fig. 9, to avoid misunderstanding of the equations and result in Fig. 8. Second, we showed

the computation of each variable as an equation, and explained how to derive each equation by substituting

from which equation into which equation to show that Eqs. (3)-(8) are correlated.

1

Click here to access/download;Author’s Response to
Reviewers‘ Comments;answer.tex

https://www.editorialmanager.com/tels/download.aspx?id=79207&guid=b6249427-5338-4dc1-8d42-20d9f4a2b3d6&scheme=1
https://www.editorialmanager.com/tels/download.aspx?id=79207&guid=b6249427-5338-4dc1-8d42-20d9f4a2b3d6&scheme=1

