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Abstract

Opposition controlled fully developed turbulent flow along a thin cylinder is

analyzed by means of direct numerical simulations. The influence of cylinder

curvature on the skin-friction drag reduction effect by the classical opposition

control (i.e., the radial velocity control) is investigated. The curvature of the

cylinder affects the uncontrolled flow statistics; for instance, skin-friction co-

efficient increases while Reynolds shear stress (RSS) and turbulent intensity

decrease. However, the control effect in the case of a small curvature is similar

to that in channel flow. When the curvature is large, the maximum drag reduc-

tion rate decreased. However, the optimal location of the detection plane is the

same as that in a flat plate. Further, the drag reduction effect is achieved even

on a high detection plane where the drag increases in the flat plate. Although

a difference in the drag reduction effect can be observed with a change in the

curvature, its mechanism considered in this analysis based on the transport of

the Reynolds stress is similar to that of the flat plate.
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1. Introduction

Flow control to decrease skin-friction drag in turbulent flows is significant in

mitigating environmental impacts. To decrease wall turbulence, many control

techniques have been examined numerically and experimentally. In particular,

active control is of great interest because it has high performance and robustness.5

Opposition control is one of the active control methods based on the relationship

between wall-friction and streamwise vortices near the wall. The drag reduction

effect of the opposition control was identified in both fully developed turbulent

channel flow (Choi et al. [1]; Hammond et al. [2]; Chung et al. [3]; Deng et al. [4];

Ge et al. [5]; Wang et al. [6]) and boundary layer flow (Stroh et al. [7]; Xia10

et al. [8]) through direct numerical simulation (referred as DNS, hereafter) and

large eddy simulation.

Reducing skin-friction drag by opposition control was first proposed by Choi

et al. [1] in numerically simulated turbulent channel flows. The opposition con-

trol is formulized as

vw(x, z, t) = −v(x, y+d , z, t), (1)

where the subscript of ’w’ indicates the wall value, superscript ’+’ indicates the

non-dimensional value normalized by the wall viscous unit of the uncontrolled

flow, v is the wall-normal velocity, yd is the detection plane height, t is the time,15

and x and z denote the streamwise and spanwise coordinates, respectively. They

found that drag decreased 25% at the detection surface near the wall (y+d =

10) and increased at plane slightly away from the wall (y+d = 26). Hammond

et al. [2] investigated the optimal location of the detection plane where the drag

reduction rate was maximized; this was approximately y+d = 15 at Reτ = 180. In20

addition, they reported that the control, based on a detection plane far from the

wall (y+d > 20), responded strongly to sweep and ejection events and increased

the drag.

Chung et al. [3] and Deng et al. [4] extended Eq. (1) to investigate the am-

plitude dependence of the opposition control as follows:

vw(x, z, t) = −Av(x, y+d , z, t). (2)
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Here, A is the strength of wall blowing and suction. Chung et al. [3] conducted

a study in the range of 0 < A < 1. They showed that A drastically changed25

the drag reduction rate, indicating that it was a parameter as important as the

detection plane height. In fact, even along the detection plane height where

the drag increases when A = 1, a drag reduction was achieved by reducing A.

Furthermore, they found that there was a linear relationship independent of A

between the maximum root mean square (rms) value of wall-normal velocity30

(and vorticity) and the drag reduction rate. Deng et al. [4] studied the same

phenomenon in the range of 1 < A < 8. They reported that increasing A

decreased the drag regardless of the detection plane height. The maximum

drag reduction rate was 33% when y+d = 15 and A = 8.

Ge et al. [5] analyzed the energy transport through DNS in a turbulent chan-35

nel flow and proposed a mechanism by which opposition control causes drag re-

duction. They showed that the pressure strain term in the wall-normal direction

plays a key role in the dynamic evolution of turbulent flow with opposition con-

trol. Stroh et al. [7] and Xia et al. [8] performed DNS in a spatially developed

turbulent boundary layer flow with opposition control. Many previous studies40

on opposition control focused on fully developed turbulent channel flow. How-

ever, general external flow need to consider spatial development. They showed

that the drag reduction rate was similar to that of the turbulent channel flow,

while the net energy saving rate and gain were reduced. They argued that the

reason for the decreased net energy saving rate is that the turbulent boundary45

layer flow has high velocity and pressure fluctuations and require large power

for control.

The turbulent flow along cylinders are important from viewpoints of en-

gineering applications such as ship hulls, aircraft fuselage, sonar array, and

monofilament yarn. It is an established fact that due to curvature of the cylin-50

der the skin-friction drag coefficient differs from that of the flat plate and there

are two parameters to characterize the flow: γ (= δ∗/a∗) and a+. Here, the

superscript ’∗’ indicates the dimensional variable, δ is the boundary layer thick-

ness, and a is the radius of the cylinder.
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Neves et al. [9, 10] conducted a DNS for a turbulent flow along a cylinder.55

They compared the experimental results and investigated the effect of curvature

on the turbulent structure under the conditions of two cases (γ = 5, a+ = 42

and γ = 11, a+ = 21). Their DNS results revealed that when a+ was small,

the inner layer was considerably affected by curvature. In fact, as the curvature

increased, the skin-friction coefficient also increased while, on the other hand,60

the mean velocity gradient decreased in the log-law region. Furthermore, the

turbulent intensity and the Reynolds shear stress decreased, indicating the same

trend as the previous experimental results. Piquet et al. [11] and Afzal et al. [12]

categorized the effects of curvature on the flow:

− at γ ≲ 1 and a+ ≳ 250, influence of curvature is very small;65

− at γ ≫ 1 and a+ ≳ 250, curvature affects the outer layer;

− at γ ≫ 1 and a+ ≲ 250, curvature affects both the outer layer and the

inner layer.

Monte et al. [13] derived the identity of the skin-friction coefficient in turbu-

lent flows along a cylinder (i.e., known as FIK identity, Fukagata et al. [14])70

and investigated the Reynolds number dependence of the mean flow and the

turbulent contribution term. Ohta [15] implemented DNS at low Reynolds

numbers (120 < Rea = a∗u∗
∞/ν∗ < 300). At their lowest Reynolds number,

Rea = 120, the number of high- and low-speed streak pairs was only one; how-

ever, the turbulent structure was maintained. The mean streak spacing was75

always comparable to that of the flat plate. In addition, there are many in-

vestigations of uncontrolled turbulent flow along a thin cylinder. However, a

control aiming to decrease the skin-friction drag has not yet been examined for

turbulent flows along a cylinder.

In the present study, we performed the DNS in turbulent flow along the80

cylinder with opposition control and investigated the influence of the transverse

curvature on the drag reduction effect. For turbulent flow control, we employed a

classical opposition control technique (i.e., the so-called v-control, Choi et al. [1])
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for the sake of simplicity. Seven curvatures and six detection plane heights were

investigated at the same Reynolds number. In addition to the drag reduction85

effect, we also investigated the relationship between the turbulent statistics and

drag reduction rate, and the mechanism based on energy transport analysis.
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2. Direct Numerical Simulation

We performed the DNS of the turbulent flow along the cylinder. The govern-

ing equations are incompressible continuity equation and Navier-Stokes equa-

tions in a cylindrical coordinate system. The continuity equation is

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
= 0, (3)

where u is the velocity and r, θ, and z represent the radial, azimuthal, and axial

directions, respectively. The Navier-Stokes equations are

∂ur

∂t
= −hr −

∂p

∂r
+

1

Reb
dr, (4)

∂uθ

∂t
= −hθ −

1

r

∂p

∂θ
+

1

Reb
dθ, (5)

∂uz

∂t
= −hz −

∂p

∂z
− ∂P

∂z
+

1

Reb
dz. (6)

Here, t is the time, p is the pressure, h is the convection terms, and d is the diffu-

sion term. The mean pressure gradient −∂P
∂z is a driving force. The convection

and diffusion terms are given by

hr =
1

r

∂

∂r
(rurur) +

1

r

∂

∂θ
(uθur) +

∂

∂z
(uzur)−

u2
θ

r
, (7)

hθ =
1

r

∂

∂r
(ruruθ) +

1

r

∂

∂θ
(uθuθ) +

∂

∂z
(uzuθ) +

uruθ

r
, (8)

hz =
1

r

∂

∂r
(ruruz) +

1

r

∂

∂θ
(uθuz) +

∂

∂z
(uzuz), (9)

dr =
1

r

∂

∂r

(
r
∂ur

∂r

)
− ur

r2
+

1

r2
d2ur

dθ2
+

d2ur

dz2
− 2

r2
∂uθ

∂θ
, (10)

dθ =
1

r

∂

∂r

(
r
∂uθ

∂r

)
− uθ

r2
+

1

r2
d2uθ

dθ2
+

d2uθ

dz2
+

2

r2
∂ur

∂θ
, (11)

dz =
1

r

∂

∂r

(
r
∂uz

∂r

)
+

1

r2
d2uz

dθ2
+

d2uz

dz2
. (12)

The reference velocity and length are twice the bulk velocity 2u∗
b and the bound-

ary layer thickness δ∗, respectively. The DNS code is based on that by Fuk-90

agata et al. [16]: the governing equations are spatially discretized using the

finite-difference method with a second-order central differencing scheme (Ham

et al. [17]). Further, the second-order Crank-Nicolson scheme is employed for
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Figure 1: Schematic of opposition controlled flow along a thin cylinder.

the viscous terms and low-storage third-order Runge-Kutta scheme is employed

for the other terms (Spalart et al. [18]).95

Figure 1 shows a schematic of opposition controlled turbulent flow along a

cylinder. The computational domain size is L+
z ≈ 4000 in the axial direction

and δ = 1 in the radial direction. Non-uniform spaced grids are used only

in the radial direction, and the number of grid points is Nr × Nθ × Nz =

96 × 128 × 320. The curvature ratio of γ are six cases from 2 to 17. For100

comparison, the turbulent channel flow is also simulated as γ = 0. In the present

channel flow case, the DNS code is based on that by Fukagata et al. [19], the

computational domain is set to Lx × Ly × Lz = 4π × 2× 2π in the streamwise,

wall-normal, and spanwise direction, respectively. The number of grid points is

Nx×Ny×Nz = 256×192×256, and the skin-friction Reynolds number of Reτ ,105

based on the half channel width and wall-friction velocity, is set to 180. The

bulk Reynolds number of Reb is set to 5700–6580 for γ = 0–17 so that the free-

stream Reynolds number of Reδ based on the boundary layer thickness and the

free-stream velocity is approximately 3400. Details of the mean flow parameters

are shown in Table 1. Here, the superscript “+” indicates the wall units, a is110

the cylinder radius, and Cf,∞ = 2τ∗w/ρ
∗u∗2

∞ is the skin-friction coefficient.

The periodic condition is imposed in the axial direction. At the outer bound-

ary of the computational domain, we imposed zero stress condition as,

∂

∂r

(uθ

r

)
= 0,

∂uz

∂r
= 0, ur = 0. (13)

On the cylinder surface, a no-slip condition is employed in the uncontrolled case,
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Table 1: Uncontrolled flow parameters employed in the present study

γ = δ∗/a∗ Lz L+
z Reb Reτ Reδ a+ Cf,∞

0 4π 2237 5700 180 3330 — 5.90× 10−3

2 6.4π 3979 6200 198 3380 99 6.04× 10−3

5 6π 4012 6400 213 3390 42 7.84× 10−3

8 5.7π 4044 6480 226 3400 28 8.80× 10−3

11 5.4π 4018 6500 237 3380 22 9.80× 10−3

14 5.2π 4033 6500 247 3370 18 10.72× 10−3

17 5π 4066 6580 259 3400 15 11.59× 10−3

whereas the wall-velocity is applied in the controlled cases as

ur,w(θ, z, t) = −ur(y
+
d , θ, z, t). (14)

ur,w corresponds to the v-control as suggested by Choi et al. [1], and y+d is the

location of the detection plane. In the computational procedure, the control

input is based on the velocity distribution detected in the previous time step.

Here, y+d is normalized by the uncontrolled wall-friction velocity. We examine115

the radial ur-control with six different detection planes (y+d = 5–30).

All the simulations start from a fully developed turbulent flow along the

thin cylinder. As the flow rate in the axial direction is kept constant, the drag

reduction effect corresponds to a decrease in the wall shear stress. By integrating

the kinetic energy equation temporally and spatially, the energy balance of the

entire system can be expressed as follows:[
−uz

∂P

∂z

]
T︸ ︷︷ ︸

Wp

+
2a

2a+ 1

⟨(
urp

′ +
1

2
u3
r

)
w

⟩
T︸ ︷︷ ︸

Wa

=
1

Reb
[ε]T . (15)

In this study, the averaging operators of ⟨ ⟩ and [ ] denote the uniform-spatial
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(in θ- and z- directions) and volume average, respectively:

⟨ϕ⟩(r, t) = 1

2πLz

∫ Lz

0

∫ 2π

0

ϕ(r, θ, z, t)dθdz,

[ϕ](t) =
2

2a+ 1

∫ a+1

a

⟨ϕ⟩(r, t)rdr. (16)

Here, ε is the viscous dissipation, Wa is the pumping power, Wp is the actuation

power, ϕ(r, θ, z, t) is an arbitrary variable, and the subscript “T” (e.g., ⟨ϕ⟩T )

represents the temporal average. The cost functions are the drag reduction rate

RD, the net energy saving rate S, and the energy gain G, as

RD =
Wp0 −Wp

Wp0
,

S =
Wp0 − (Wp +Wa)

Wp0
,

G =
Wp0 − (Wp +Wa)

Wa
, (17)

respectively. The subscript ’0’ shows the uncontrolled flow. Since the flow rate

is constant, RD is equal to the reduction rate of the wall shear stress.
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Figure 2: Turbulent statistics as compared with that of Neves et al. [9] and Kim et al. [20].

As shown in Fig. 2, statistics of uncontrolled flow in the present DNS are

compared with those of Kim et al. [20] and Neves et al. [9]. The cylinder radius120

a+ and cylinder curvature γ are set to be comparable to those of them. All

statistics decrease with increasing curvature, which is in good agreement with

the references.
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Figure 3: Grid number dependence of turbulence statistics.

To verify the grid dependency, calculations are performed with Nr × Nθ ×

Nz = 128× 256× 512 as a fine grid. A coarse grid means Nr ×Nθ ×Nz = 96×125

128×320. For γ = 5, the grid spacings of a fine grid are ∆z+ = 7.8, (r∆θ)+ = 1–

6.3, and ∆r+ = 0.4–2.5. Figure 3 shows the grid number dependency of the

turbulent statistics. The turbulent statistics are in good agreement with those

of the coarse grid case.
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3. Results and Discussion130

3.1. Control efficiency

Figure 4 shows the drag reduction rate RD, the net energy saving rate S, and

the energy gain G as a function of the detection plane height y+d . Figure 4(b),

(d), and (f) correspond to the enlarged view of Fig. 4(a), (c), and (e), respec-

tively. As shown in Fig. 4(b), the drag reduction rate peaks at y+d = 15 in all135

cases except γ = 11, while these are smaller than those in the case of γ = 0: the

maximum drag reduction rate by the v-control was about RD = 25% (present

DNS and Choi et al. [1]). As increasing the height of the detection plane, the

drag reduction rate decreases for both channel flow and flow along a cylinder.

However, in the cases of γ ≥ 11, a positive drag reduction rate is obtained140

even at y+d = 30. It implies that the drag reduction effect can be achieved at

a higher detection plane in the large curvature case. A comparison of the drag

reduction rate and the net energy saving rate in Fig. 4(c) shows that actuation

power is extremely small at y+d ≤ 20 because of the similar distribution. At

y+d ≥ 25, as the magnitude of the actuation power increases, the net energy145

saving rate is further reduced compared to the drag reduction rate. As the

curvature decreases, the difference from the drag reduction rate increases. As

shown in Fig. 4(e), the energy gain summits at approximately y+d = 10–15. In

addition, in the case where the wall has a transverse curvature, the energy gain

is higher than that in the case of γ = 0.150
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Figure 4: Distributions of the (a-b) drag reduction rate, (c-d) net energy saving rate, and (e-f)

energy gain as a function of the detection plane height. (b), (d), and (f) denote the enlarged

view of (a), (c), and (e), respectively.
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3.2. Turbulent statistics

Figure 5 shows turbulent statistics at y+d = 15. All variables are normalized

by the uncontrolled wall-friction velocity uτ0. As shown as Fig. 5(a), in the

uncontrolled case, the mean axial velocity in the buffer layer (5 < y+ < 30) and

the log-law region (y+ > 30) decreases with an increase in the cylinder curva-155

ture (Neves et al. [9]). In both controlled cases, the mean velocity in the viscous

sublayer (y+ < 5) and the buffer layer decreases, whereas there is no change

in the log-law region, which is a similar trend to that in the controlled chan-

nel flow. As shown in Fig. 5(b)-(e), the Reynolds shear stress (RSS, ⟨−u′
zu

′
r⟩)

and the rms values of the velocities decrease with increasing curvature (Neves160

et al. [9]). It is found that the trend of the control effect is similar to that in

the channel flow: the rms values of the velocities and the RSS decrease in most

of the region. Because the RSS plays an important role in the skin-friction co-

efficient, a reduction in the RSS contributes to a decrease in the skin-friction

coefficient (Fukagata et al. [14] and Monte et al. [13]). Moreover, a local min-165

imum of the RSS and u+
r rms is established between the cylinder wall and the

detection plane. The location of the local minimum is known as the virtual

wall (Hammond et al. [2]). As compared with the channel flow case (γ=0), the

virtual wall approaches to the wall in the case of γ=11 because of the difference

in the friction Reynolds number. As presented in Fig. 5(f)-(h), although the170

rms values of vorticities also decrease with increasing curvature, quasi-stream

vortices exist near the wall (Ohta [15]). In the Rankine vortex model, the mean

radius of streamwise vortices is estimated from the distance between the peak

and valley positions of ω+
z rms and the strength is defined by the peak value

of it. Under the uncontrolled flow, the mean radius is smaller than that in175

the case of γ = 0. However, regardless of the curvature, the peak and valley

positions of ω+
z rms shift outward after control, and the mean radius is slightly

larger than that in the uncontrolled case. Furthermore, the strength defined by

the peak value of ω+
z rms is greatly attenuated by the control and the decrement

in the channel flow is larger than that in γ =11. The maximum positions of180

ω+
r rms move outward, which indicates that the streaks are kept away from the
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wall (Wang et al. [6]). Furthermore, ω+
r rms is distributed on the same linear

line near the wall regardless of the control.
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Figure 5: Turbulent statistics at y+d = 15. All variables are normalized by the uncontrolled

wall-friction velocity. For ω+
z,rms, local maximum and minimum peaks are denoted by ◦ and

△, respectively.
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Figure 6 shows turbulent statistics at y+d = 25. It is seen in Fig. 6(a) that

the mean axial velocity in the viscous sublayer and the buffer layer decreases for185

both curvature cases, and the decrement after control is slightly larger than that

at y+d = 15. As shown in Fig. 6(b)-(e), in the buffer region, the RSS and the

rms values of the velocities decrease by control at γ = 11, while they increase in

the channel flow. The peak position of u+
z rms corresponds to the position where

high- and low-speed streaks appear most often. In the channel flow, the peak190

value hardly changes, and the peak position shifts toward the wall, indicating

that the wall shear stress increases. When the drag is reduced, the peak value

is much smaller than that in the uncontrolled case, and the peak position moves

away from the wall. A local minimum of u+
r rms is established for all the control

cases, demonstrating that the virtual wall is formed independently of increasing195

or decreasing the drag. It can also be seen in Fig. 6(f)-(h) that the distribution

of ω+
z rms increases greatly in the channel flow, while it hardly changes at γ = 11.

The valley of ω+
z rms shifts outward for both curvature. However, the peak shifts

toward the wall and outward for the channel flow and γ = 11, respectively.

In addition, the peak increases significantly in the channel flow, while it is200

unchanged in γ = 11. The distribution of ω+
r rms increases and decreases with

respect to the cases of γ = 0 and γ = 11, respectively. At y+d = 15, ω+
r rms is

distributed on the same linear line near the wall as in the uncontrolled case.

However, at y+d = 25, the linear lines distributed are different, and the gradient

is steep.205
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Figure 6: Turbulent statistics at y+d = 25. All variables are normalized by the uncontrolled

wall-friction velocity. For ω+
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△, respectively.

18



(a)

-80

-60

-40

-20

 0

 20

 40

 0  0.2  0.4  0.6  0.8  1  1.2

R
D

 [
%
]

(ur, w)
+

rms

 γ = 0

 γ = 2

 γ = 5

 γ = 8

 γ = 11

 γ = 14

 γ = 17

(b)

 0

 10

 20

 30

 0  0.1  0.2  0.3  0.4  0.5

R
D

 [
%
]

(ur, w)
+

rms
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b and δ∗.

Figure 7 is showing the rms value of ur,w and the drag reduction rate for all

the cases. Figure 7(b) corresponds to the enlarged view of Fig. 7(a). When the

curvatures are different, the rms values of ur,w also differ greatly even at the

same detection plane height. However, the peak value of RD at each curvature

is in the range of 0.15 ≤ (u+
r,w)rms ≤ 0.25. For (u+

r,w)rms < 0.15, the correlation210

generally follows RD ∼ 1.5(u+
r,w)rms. These trends are observed regardless of

the curvature.

Figure 8 shows the correlation between the drag reduction rate, peak value

of ur rms, and ωr rms. The maximum values of ur rms and ωr rms are strongly

correlated with the drag reduction rate. Chung et al. [3] reported that these215
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are distributed on the same linear line regardless of the strength of blowing and

suction. However, in the present case, the peak values of ur rms are distributed

on a different linear line for each curvature, indicating that the influence of the

curvature on control efficiency cannot be discussed only by the difference in the

strength of blowing and suction. On the other hand, all of the peak values220

of ωr rms are distributed on one linear line only when ωr rms is normalized by

the 2ub and ν. In particular, there is a strong linear relationship in a range of

−RD < 0.
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(a) (b)

Figure 9: Instantaneous vortical structure defined by the isosurface of the second invariant of

the velocity gradient tensor at (a) γ = 5 at Q+ = 0.01 and (b) γ = 11 at Q+ = 0.004: (top

row) no control, (middle row) y+d = 15, (bottom row) y+d = 25.

3.3. Visualization of flow field

Figure 9 shows the instantaneous visualization of the vortical structure in225

the case of γ = 5 and 11. Here the vortical structure is defined by the isosur-

face of the second invariant of the velocity gradient tensor. Since the vorticity

intensity decreases as the curvature increases, the vortical structure is not de-

tected or is excessively detected if the same isosurface value is used. Therefore,

the isosurface values are set to Q+ = 0.01 and 0.004 for γ = 5 and 11, respec-230
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tively. Firstly, focusing on the case of γ = 5, the vortical structure at y+d = 15

is significantly suppressed compared to the uncontrolled case, indicating that

the high drag reduction rate is qualitatively obtained by the control. On the

other hand, at y+d = 25, the same amount of vortical structure is observed as

the uncontrolled case, indicating that the drag reduction effect is lower than235

at y+d = 15. Choi et al.[1] and Hammond et al.[2] reported that the vortical

structure increases when the detection plane is far away from the wall, and the

visualization of γ = 5 in the present study shows a similar tendency. Next,

paying attention to the case of γ = 11, the vortical structure is significantly

reduced in both cases of y+d = 15 and 25 compared to the uncontrolled case.240

This is different from the case of small curvature such as channel flow and γ = 5.

From these results, it is found that in the case of high curvature, the high drag

reduction effect is obtained even on the distant detection plane.

Figure 10 shows the instantaneous axial velocity fluctuations and velocity

vectors in the r−θ plane at γ = 5 and 11. As shown in Fig. 2, since the increase245

in the cylinder curvature weakens the turbulence intensity, the axial velocity

fluctuations in case of γ = 11 are smaller than those in case of γ = 5. At y+d =

15, the streaks are separated from the wall compared to the uncontrolled case

regardless of the curvature, and the vortical structure is suppressed. Moreover,

there are no streaks inside the virtual wall. Focusing on the case of γ = 5 and250

y+d = 25, streaks exist inside the virtual wall, and the vortical structure near

the wall is promoted. On the other hand, in the case of γ = 11 and y+d = 25,

the trend is similar to the result of y+d = 15. These results show that when

the streaks do not exist inside the virtual wall, significant suppression of the

vortical structure is obtained.255
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|v|=1

Figure 10: Contours of axial velocity fluctuations normalized by the uncontrolled wall-friction

velocity and velocity vectors of (ur, uθ) in the r− θ plane of the instantaneous at (left) γ = 5

and (right) γ = 11: (top row) no control, (middle row) y+d = 15, (bottom row) y+d = 25.

White line denotes the virtual wall defined as a local minimum of ur rms.
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Figure 11: Azimuthal two-point correlation of the axial velocity fluctuation at the peak posi-

tion of uz rms. In the legend box, y+ means the peak location of uz rms.

Figure 11 shows the azimuthal two-point correlation of the axial velocity

R(u′
z, u

′
z) at the peak position of uz rms. The minimum peak of R(u′

z, u
′
z) cor-

responds a space of streaky structures of the velocity. Focusing on the case of

γ = 5, the local minimum of R(u′
z, u

′
z) is at 50◦, indicating that three or four

pairs of the streaky structures exist. In the case of γ = 11, since the local min-260

imum is at 80◦, there are two or three pairs. However, because the two-point

correlation is almost unchanged in the control cases, the control does not affect

the number of pairs of the streaky structures, which is similar to that in channel

flow (Choi et al.[1]). The number of pairs is unchanged in the controlled flow,

which is consistent with Fig. 10.265
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3.4. Contribution to skin-friction coefficient

Investigations on the drag reduction mechanism in the turbulent flow along

the cylinder are performed and compared with those in the channel flow. Ac-

cording to the report by Monte et al. [13], the skin-friction coefficient is identical

to the sum of the three terms (contributions of the inhomogeneous and the tran-

sient are negligible) as follows:

f(a)Cf,∞ = (a+ 1)

∫ a+1

a

1

Reδ

∂⟨uz⟩T
∂r

rdr − (δ⋆ + a)2

Reδ

+

∫ a+1

a

(a+ 1− r)⟨−u′
zu

′
r⟩T rdr. (18)

Here, all variables are normalized by the free-stream velocity u∗
∞ and the bound-

ary layer thickness δ∗, f(a) is the shape factor of the cylindrical geometry, δ⋆ is

the displacement thickness, these variables are defined by

f(a) =
a

4
− a

2a+ 1

(
1

24
+

a

6

)
,

(a+ δ⋆)2 − a2 = 2

∫ a+1

a

(
1− ⟨uz⟩T

u∞

)
rdr. (19)

Since f(a) is approximately equal to a linear distribution, f(a) decreases at

large curvatures (i.e., small radius). The shape factor is the unique variable in

the turbulent flow along the cylinder, and does not appear in the identity of the

channel flow and the boundary layer flow.270
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Figure 12 shows the cumulative contributions to the skin-friction coefficient.

Here, cumulative contributions are defined as,

CW
f (r) =

1 + a

f(a)

∫ r

a

1

Reδ

∂⟨uz⟩T
∂r

rdr,

CD
f = − 1

f(a)

(δ⋆ + a)2

Reδ
,

CT
f (r) =

1

f(a)

∫ r

a

(1 + a− r)⟨−u′
zu

′
r⟩T rdr, (20)

respectively, i.e., the sum of contributions at y = 1 (i.e., r = a+1) is equal to the

Cf . Focusing on the uncontrolled value at y = 1, CD
f is about −1.0× 10−3 for

all curvatures. When CD
f and CT

f at γ = 17 are compared with those in the case

of γ = 5, increases of about 1.0×10−3 and 3.0×10−3 are observed, respectively.

Therefore, the skin-friction coefficient increases as the curvature increases due

to the increase in CD
f and CT

f . Focusing on the change in contributions due

to the control, contributions of CW
f and CD

f are not affected regardless of the

curvature. Therefore, only the contribution of CT
f affects the change in the

skin-friction coefficient. In fact, in case where the high drag reduction rate is

obtained (for example, γ = 5 and y+d = 15), CT
f is greatly reduced. Moreover,

since CT
f is equivalent to the integration of weighted RSS, the decrease in RSS

is strongly related to the reduction in drag. Here, we compare it to the channel

flow. The identity in channel flow is given by

Cf,b =
12

Reb
+ 12

∫ 1

0

2(1− y)⟨−u′v′⟩T dy. (21)

In the channel flow, when the second term is reduced by the opposition control,

the drag reduction effect can be obtained (Fukagata et al.[14]). From the above

results, it is evident that with the channel flow, only the term related to RSS is

affected by the control.
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Figure 12: Cumulative contributions to skin-friction coefficient: (top) γ = 5, (middle) γ = 11,

(bottom) γ = 17.
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Figure 13: Distributions of the weighted Reynolds shear stress: (a) γ = 5, (b) γ = 11, (c)

γ = 17.

The weighted RSS is shown in Fig. 13. Here, weighted RSS is the integral275

function of CT
f including f(a). In contrast to the distribution of the RSS, with

an increase in the curvature, the weighted RSS increases because f(a) decreases,

and it causes an increase in the skin-friction coefficient. In the controlled cases,

since the blowing and suction create the RSS in the region near the wall, the

small peak appears. In the case of γ = 5, the increment at y+d = 25 cancels out280

the decrement of the weighted RSS; it results in the small drag reduction rate.

Contrarily, in the cases of γ ≥ 11, the increment at y+d = 25 of the weighted

RSS in the region near the wall is smaller than the decrement of the weighted

RSS. Therefore, the drag reduction effect can be obtained at a higher detection

plane.285
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3.5. Temporal variation of Reynolds stress

The analysis of the contribution to the skin-friction coefficient reveals that

in the turbulent flow along the cylinder, the term related to the RSS such as

the channel flow, is affected by the opposition control. Therefore, change in

RSS is strongly related to change in the skin-friction coefficient. Based on

these facts, the changing process of the RSS is investigated from the analysis

of energy transport. Immediately after the start of the opposition control, the

energy balance may not be balanced due to the strong blowing and suction

from the wall (Ge et al.[5]). In this study, by introducing temporal relaxation

for the control strength, a sudden change in physical quantity near the wall is

mitigated, and energy imbalance is avoided. The control formula is given by

ur,w(θ, z, t) = −ur(y
+
d , θ, z, t)(1− e−(t/T )2). (22)

Here, T is the relaxation time and it is set at T = 500. This formula is the

same as that used by Ge et al.[5]. The larger the T , more slowly the strength

of blowing and suction converges. When about 3T is elapsed since the start

of the control, the difference between the original control and the time-relaxed290

control is almost negligible. (The relaxation time T is not introduced in the

earlier sections.)
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Figure 14: Time trace of the integral value of the weighted Reynolds shear stress: (a) γ = 5,

(b) γ = 17.

Figure 14 shows the time trace of the integral value of the weighted RSS.

Here, integral operator of [ ]W is defined by

[ϕ]W =
1

f(a)

∫ a+1

a

(a+ 1− r)⟨ϕ⟩rdr, (23)

[ϕ]WT is the temporal average of the uncontrolled [ϕ]W. The control with

time relaxation is applied from t+ = 500. Focusing on the case of γ = 5,

[−u′
zu

′
r]W (normalized by [−u′

zu
′
r]WT ) at y+d = 15 decreases monotonically af-295

ter the start of control and eventually converges to about 0.7. In addition,

[−u′
zu

′
r]W at y+d = 30 decreases similarly to the case of y+d = 15 immediately

after the start of control, rapidly increases from t+ = 1200, and finally converges

to about 1.3. Chung et al. [3] reported that even with a high detection plane

where drag increases, reducing the strength of blowing and suction can achieve300

the drag reduction effect. [−u′
zu

′
r]W at y+d = 30 decreases once immediately

after the control (500 ≤ t+ ≤ 1000) because the strength of blowing and suction

is minimal. In the case of γ = 17, [−u′
zu

′
r]W at y+d = 15 and 30 decreases to

the range of 0.8 to 0.9. In all of the cases, the increase or decrease in [−u′
zu

′
r]W

corresponds to the change in skin-friction drag.305
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Figure 15: Time trace of transport of the weighted Reynolds shear stress at (top row) γ = 5

and (bottom row) γ = 17: (a) y+d = 15, (b) y+d = 30.

An analysis of transport of the weighted RSS is conducted to identify the

factors that caused the RSS to change over time. The transport equation of the

RSS is written as:

∂⟨−u′
zu

′
r⟩

∂t
= ⟨u′

ru
′
r⟩
∂⟨uz⟩
∂r︸ ︷︷ ︸

Production

+

⟨
−p′

(
∂u′

r

∂z
+

∂u′
z

∂r

)⟩
︸ ︷︷ ︸

Pressure strain

+
∂⟨u′

rp
′⟩

∂z
+

∂⟨u′
zp

′⟩
∂r︸ ︷︷ ︸

Pressure diffusion

+
1

r

∂

∂r
(r⟨u′

ru
′
zu

′
r⟩)−

⟨u′
zu

′
θu

′
θ⟩

r︸ ︷︷ ︸
Turbulent transport

+
1

Reb

{
1

r

∂

∂r

(
r
∂⟨−u′

zu
′
r⟩

∂r

)
+

⟨u′
zu

′
r⟩

r2

}
︸ ︷︷ ︸

Viscous diffusion

+
2

Reb

⟨
∂u′

r

∂r

∂u′
z

∂r
+

1

r

∂u′
z

∂θ

(
1

r

∂u′
r

∂θ
− u′

θ

r

)
+

∂u′
r

∂z

∂u′
z

∂z

⟩
︸ ︷︷ ︸

Viscous dissipation

. (24)

By applying [ ]W to both sides of Eq. (24), the transport equation relating to

the turbulent contribution of the skin-friction coefficient is obtained. Figure 15
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shows time trace of each term applied by [ ]W. The vertical axis is nondimen-

sionalized by twice of the bulk velocity and the boundary layer thickness. In

the case of γ = 5, the production term decreases at y+d = 15 and increases at310

y+d = 30, indicating that there is correlation between the changes in production

term and the weighted RSS. In addition, following the change of the production

term, the pressure strain changes at y+d = 15, and the viscous diffusion and vis-

cous dissipation change at y+d = 30. Although the production term at y+d = 30

hardly changes qualitatively, it is slightly reduced as compared to that in the315

uncontrolled case when evaluated by the temporal average. From these results,

it is clarified that the factor of the temporal change of the weighted RSS is the

production term.
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Figure 16: Time trace of contribution to the RSS production at (top row) γ = 5 and (bottom

row) γ = 17: (a) radial turbulent kinetic energy, (b) mean velocity gradient.

The production term of the RSS is composed of the product of radial turbu-

lent kinetic energy (TKEr, ⟨u′
ru

′
r⟩) and average velocity gradient (MVG, ∂⟨uz⟩/∂r).320

Figure 16 shows the time trace of the TKEr and MVG spatially averaged in the

radial direction. In the results of γ = 5, at y+d = 15, TKEr and MVG decrease

to about 0.7 and 0.8, respectively, and at y+d = 30, these increase to about 1.4

and 1.8. Therefore, at y+d = 15, the TKE greatly contributes to the reduction of

the production term, while at y+d = 30, the increment of the MVG contributes325

to the increase in the production term. Focusing on the case of γ = 17, the

TKEr and MVG decrease at y+d = 15, while the MVG slightly increases at

y+d = 30. Since the drag reduction rate at y+d = 30 is about 10%, the TKEr

is more related to the change in the production term than the MVG. These

results for two different curvatures reveal that when the drag decreases, TKEr330

greatly contributes to the reduction in the production term, and similarly when

the drag increases, the MVG contributes to the increase.

The reason that the production term is reduced by the opposition control is
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Figure 17: Time trace of transport of the radial turbulent kinetic energy at (top row) γ = 5

and (bottom row) γ = 17: (a) y+d = 15, (b) y+d = 30.

that TKEr is attenuated. The transport equation of TKEr is given by

∂

∂t

(
1

2
⟨u′

ru
′
r⟩
)

=

⟨
p′

r

∂

∂r
(ru′
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. (25)

Figure 17 is representing time trace of each term applied by [ ]. Initially, consid-

ering the case of γ = 5, the pressure strain at y+d = 15 is greatly attenuated, the

turbulent transport decreases and viscous dissipation increases. At y+d = 30,335

the trend is opposite to the change at y+d = 15, while the pressure diffusion
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changes significantly due to the increased strength of blowing and suction. Sub-

sequently, in the case of γ = 17, no qualitative change is observed. However, the

pressure strain decreased by about 30% at y+d = 15 and about 5% at y+d = 30.

In particular, for y+d = 30, the drag reduction rate of about 10% is obtained340

despite the slight reduction in the pressure strain. Thus, these results clarify

that the reduction of the pressure strain contributes to the decline of drag even

in the case of large curvature. Therefore, the drag reduction mechanism is not

affected by the curvature.
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4. Conclusion345

The DNS of opposition-controlled turbulent flow along the controlled cylin-

der was performed to investigate the effect of wall curvature on the control

effect. Many studies have reported that y+d = 15 is the optimal height of the

detection plane for the channel flow, and similar results were obtained in cases

where the curvature is large. However, the drag reduction rate decreases as the350

curvature increases. Further, when the curvature is large, the turbulence inten-

sity is lower than that of the channel flow, and therefore a high drag reduction

rate is obtained even on the detection plane far from the wall.

In opposition control for turbulent flow along the cylinder, the peak val-

ues of the radial turbulence intensity and radial vorticity intensity are linearly355

related to the drag reduction rate. However, the peak values of radial turbu-

lence intensity are not distributed on the same linear line but are organized by

the curvature. Accordingly, the turbulence intensity decreases as the curvature

increases. On the other hand, the peak value of the vorticity intensity was

distributed on the same straight line.360

The FIK identity as well as transport of weighted RSS and turbulent kinetic

energy reveal that the drag reduction mechanism is similar to that of channel

flow. Due to the opposition control, the turbulent contribution of CT
f changes

significantly, while the other contributions of CD
f and CW

f barely change. In

addition, it is found that even when the curvature is large, the cause of drag re-365

duction is the decrease in radial pressure strain. The decrease in radial pressure

strain causes decrease in the radial turbulent kinetic energy, RSS production

term, and RSS, which in turn contribute to reduction in the drag coefficient.
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Nomenclature

[ ] Volume average

[ ]W Integral operator

δ Boundary layer thickness430

δ⋆ Displacement thickness

γ Curvature defined by ratio of δ to a

⟨−u′v′⟩ Reynolds shear stress of channel flow

⟨−u′
zu

′
r⟩ Reynolds shear stress of flow along a cylinder

⟨ ⟩ Uniform-spatial average435

T Relaxation time in opposition control

ν Kinematic viscosity

ϕ Arbitrary

p′ Pressure fluctuation

Rea Reynolds number based on u∞ and a440

Reb Reynolds number based on ub and 2δ

Reδ Reynolds number based on u∞ and δ

Reτ Reynolds number based on uτ and δ

ρ Density

τw Wall shear stress445

θ Azimuthal coordinate

ε Viscous dissipation

+ Normalization of wall coordinates
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∗ Dimensional variable

A Strength of wall blowing and suction450

a Cylinder radius

Cf,b Skin-friction coefficient based on ub

Cf,∞ Skin-friction drag coefficient based on u∞

d Diffusion term

f(a) Shape factor455

G Energy gain

h Convection term

Lz Computational domain in axial direction

Nθ Number of computational grid points in azimuthal direction

Nr Number of computational grid points in radial direction460

Nz Number of computational grid points in axial direction

P Mean pressure

p Pressure

Q Second invariant of the velocity gradient tensor

r Radial coordinate465

R(u′
z, u

′
z) Azimuthal two-point correlation of the axial velocity

RD Drag reduction rate

S Net energy saving rate

t Time

u∞ Free-stream velocity470
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uτ Wall-friction velocity

uθ Azimuthal velocity

ub Bulk velocity

ur Radial velocity

uz Axial velocity475

ur,w Wall-normal velocity on the wall

v Wall-normal velocity of channel flow

y Wall-normal coordinate

yd Detection plane height in opposition control

z Axial coordinate480
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