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We propose a control method in which an articulated wheeled mobile robot moves inside straight,
curved and branched pipes. This control method allows the articulated wheeled mobile robot to
inspect a larger area. The articulated wheeled mobile robot comprises pitch and yaw joints is and
propelled by active wheels attached to the robot. Via the proposed control method, the robot takes on
two different shapes; one prevents the robot from slipping inside straight pipes and the other allows
movement in a pipe that curves in any direction. The robot is controlled by a simplified model for
the robot’s joint angles. The joint angles of the robot are obtained by fitting to a continuous curve
along the pipe path. In addition, the angular velocity of the robot’s active wheels is determined by
a simplified model. The effectiveness of the proposed the control method was demonstrated with a
physical implementation of the robot, and the robot was able to move inside straight, curved and
branched pipes.
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1. Introduction

Many pipes are installed in buildings and industrial facilities. It is difficult to enter and inspect
the interiors of these pipes. Robots that inspect the inside pipe have therefore been developed
[1]. The robots in [1] have different types of moving mechanisms; i.e., wheeled, tracked, legged,
inchworm, snake and screw mechanisms. Inside pipes, the robots are prevented from slipping so
they can move in various directions.

Thus, the robots dedicated to the pipe inspection have highly mobile performance inside pipes.
The robots in [2-7] press against the pipe wall with active wheels and move inside the pipes by
rotating these wheels. In [3], the wheel is a crawler type, and in [4] the wheel units are connected
to each other. In [5-7], the robot wheels are linked with the joints, and the robot bends each
joint alternately to form a zigzag shape that prevents it from slipping; additionally, these robots
can rotate around the direction of movement.

These robots, which are specialized in terms of moving inside a pipe, have difficulty moving
outside a pipe. Articulated mobile robots can move in narrow spaces and on uneven terrains, and
these robots are used for pipe inspection, as described in [8-14]. The locomotion produced by a
sinusoidal wave drive [8] allows a snake-like robot without wheels to move inside vertical pipes,
pipes with different diameters, and curved pipes. A snake-like robot moves inside a straight pipe
with concertina movement [15]. In this movement, parts of a snake body repeatedly lock and
loosen from the head to tail, and the robot moves forward. In [9], the concertina movement
was investigated in terms of self-locking when the snake robot climbs in a narrow space. The
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KAEROT-snake IV [10] climbs inside a vertical pipe using an inchworm motion. In [11, 12], to
move on and inside pipes, a robot forms its shape into a helix to match its size to the pipe
diameter, and then it laterally rolls its body to move forward. This method allows the robot
to move through on a pipe with a branch [16], inside a T-joint pipe [11], and inside pipes with
different diameters [13]. In addition, the robot moves over a pipe with a flange, on uneven terrain,
and over ladders [14, 17].

A pipe-inspection robot needs to move along various routes before reaching the pipe entrance
and after exiting from the pipe. Thus, its performance requirement includes moving both over
complex terrain and inside pipes. Active-wheeled robots, which can move over the complex
terrain, have been proposed for pipe inspection [18, 19].

We have developed an articulated wheeled mobile robot that can be used for both site inspec-
tion during disasters and equipment inspection in daily use [20, 21]. The robot can enter a narrow
space or horizontal pipe, move over obstacles, climb steep stairs, and turn a valve by a wireless
remote control. Industrial facilities have various terrains and inspection targets. If the robot
can move inside pipes, the area that the robot can reach enlarges. Pipes contain obstacles, such
as pipe joints, and have various shapes, for example, circular and rectangular. The articulated
wheeled mobile robot, which can move over complex terrain [20, 21], is expected to be useful for
pipe inspection. However, this robot does not have a mechanism specialized for pipe inspection,
for example, a mechanism that pushes against the pipe wall to avoid slippage between the robot
and pipe wall. Thus, it is difficult for this type of robot to move inside pipes, especially vertical
pipes and curved pipes, by the existing control method. In addition, the helical rolling motion
of [11, 12] cannot be applied for this articulated wheeled mobile robot.

The traditional method of controlling an articulated mobile robot is shift control, in which the
motion of the head unit shifts from the head to tail of the robot. The operator easily operates
the robot with shift control by providing only the head motion. In a method of approzimating
a continuous curve [22], the target of the body shape is represented as a continuous curve
(backbone curve in [23]) and the joint angle of the robot is calculated by approximately fitting
the body of the robot to the continuous curve. Shift control is then performed by shifting the
area representing the body of the robot on the target curve. However, if the robot moves inside
pipes using shift control, it is difficult to prevent the robot from slipping inside a vertical pipe.

In this paper, we aim at enlarging the inspection area of an articulated wheeled mobile robot
and propose a control method by which the robot can move inside straight, curved and branched
pipes. The robot uses two different shapes, one for straight pipe and the other for curved pipes.
The shape for a straight pipe prevents the robot from slipping inside a straight pipe, and the
shape for a curved pipe allows movement inside pipes that curve in any direction. The robot
moves inside pipes with both straight and curved sections by switching between the two shapes
with proper timing and active wheel turning. The effectiveness of the proposed the control
method was demonstrated with experiments. In [24, 25|, switching between scaffold-based lo-
comotion and concertina locomotion was accomplished on a two-dimensional surface using the
decentralized control scheme. Adopting this method, the behavior of the robot is affected by
the influence of the surrounding environment without changing the parameters. As a result,
the robot moves in an environment where both terrain with several pegs and a narrow aisle
exists. Using this method, the robot moves in various environments using the same parameters,
and there are thus few opportunities to set parameters. In contrast, because the parameters
are determined by trial and error, the initial setting is performed several time and it is difficult
to specify the moving speed and route of the robot’s head accurately. Meanwhile, because the
method proposed in this paper expresses the target route using a continuous curve, it can be
linked to the movement using the three-dimensional steering method in [20]. This means that
the articulated mobile robot with the structure of [20] can move through a pipe as well as on
conventional terrain. Although [24, 25] and our research have different approaches, the goal of
a single robot moving in various environments is the same. The advantage of our method over
[24, 25] is that the operator can freely design the moving direction and velocity of the head of
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Figure 1. An articulated wheeled mobile robot.

the robot using a continuous curve. Sensors and a camera are generally mounted on the head of
a robot. The method is therefore effective in the explicit design of the leading movement path
when performing remote control and inspection using sensors.

2. Model and environment

Figure 1 shows the model of an articulated wheeled mobile robot [20, 26]. The links of the robot
are connected in series by alternating pitch and yaw joints. Two wheels are attached to the robot
at the pitch joints coaxially and at the tail units. One or both of the two side wheels of each unit
are active simultaneously. The wheels of the head unit are not driven. The robot is propelled by
active wheels and the robot’s shape is changed by rotating the joints. The configuration of the
robot’s joints and wheels is similar to that in the ACM-R4 series [27, 28]. Robots adopting this
configuration have accomplished the avoidance of movable obstacles by switching the allocation
of grounded wheels [26]. In addition, it can climb a high step and stairs because the rotational
range of the pitch joint of the robot is wide [20].

Each unit ¢ includes the 2i — 1-th link, ¢-th yaw joint, 2¢-th link, and i-th pitch joint. Note that
the tail (n-th) unit does not have a pitch joint. Each pair of units, except the head (1st) unit,
forms a module; for example, the j-th module includes the 2j-th unit and the 25 + 1-th unit. Let
[ be the length of a link, L; be the length of a module, n be the number of units (i = 1,2,...,n),
and m be the number of modules (7 = 1,2,...,m). The values of n and m satisfy n = 2m + 1.
The angle of the i-th yaw joint and pitch joint are defined as ¢; and 1);, respectively.

The environment is the inside of the pipe composed of straight and curved segments, as shown
in Figure 2, where two straight segments are connected by a curved segment. The radii of the pipe
entrance and exit are equal. Constant values were assumed for the length of straight segments,
the curvature of the curved segment, and the radius of all segments. The initial position of the
robot is inside straight pipe because it can enter the pipe by the existing control method [20].

3. In-pipe locomotion

The robot moves inside a pipe that is vertical to the ground. In addition, the robot needs to
move in any direction along the pipe. The robot types PIKo [18] and OT-4 [19], which have
the active joints and the propulsion mechanism (active wheel or crawler), press the propulsion
mechanism against the inside pipe wall by bending at the joints and move inside a vertical pipe
by driving with the propulsion mechanism. When a robot inspects the interior of a pipe that
includes straight, curved, and branching segments, it needs not only to move inside a vertical
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Figure 2. Proposed in-pipe locomotion for an articulated wheeled mobile robot.

pipe but also to turn in any direction.

We propose the in-pipe locomotion shown in Figure 2 for an articulated wheeled mobile robot.
This locomotion allows the robot to move inside pipes that curve in any direction while avoiding
slippage between the robot wheels and the pipe wall. The robot uses two shape modes, one
for straight segments, as shown in Figure 2(a), and the other for curved segments, as shown in
Figure 2(b). The shape mode for a straight pipe is used to avoid slippage between the robot
wheel and pipe wall. We call this the anti-slip mode. In this mode, the yaw-joint angle is zero,
and the body shape is made to zigzag by rotating the pitch joints. The robot presses its wheels
against the inside pipe wall to prevent slipping. In contrast, the shape mode for a curved pipe,
as shown in Figure 2(b), is called the normal mode. The reason for using the normal mode is
that the yaw-joint angle of a module cannot be changed when the module is in anti-slip mode.
Thus, when a robot module passes through a curved pipe, we change its mode from anti-slip
to normal, as shown in Figure 3(a). As a result, the yaw joint can rotate without limitation. A
module that is in normal mode can bend in any direction inside a curved pipe by changing the
angle of the pitch and yaw joints.

In the proposed locomotion, the shape is appropriately switched between the two modes. First,
all modules of the robot in a straight pipe are made anti-slip mode. As the robot moves forward,
part of it enters a curved segment. Then, the modules that are in the curved segment are switched
from anti-slip mode to normal mode, as shown in Figure 3(a). As the robot continues to move
forward, some modules exit from the curved segment and enter the next straight segment. Then,
the modules that have entered the straight segment are switched from normal mode to anti-slip
mode to prevent the robot from slipping, as shown in Figure 3(b).

Each module of the robot should be switched the mode at an appropriate timing. In this paper,
the motion that changes a module from anti-slip mode to normal mode is called extension, and
the motion that changes a module from normal mode to anti-slip mode is called contraction.
Because the assumed environment has only one curved segment, extension is always performed
before a module enters the curved segment and contraction is always performed after a module
exits from the curved segment. We assume that extension and contraction are not performed
at the same time. If they overlap each other, the extension is performed after contraction is
complete.

The PIKo [18] and OT-4 [19] types avoid slipping in a vertical pipe by adopting a wave shape
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Figure 3. The robot uses two shape modes inside a pipe.

as the overall posture. In contrast, the locomotion proposed in this paper uses as few as two units
to avoid in-pipe slipping. If two units do not generate enough force to avoid slipping, the force for
avoiding slippage can be increased by increasing the number of units that are in anti-slip mode.
In addition, the robot can generate a large propulsion force because all active wheels of modules
that are in anti-slip mode are in contact with the pipe wall. Moreover, the physical relationship
between the number of modules that are in anti-slip mode and the force for avoiding slippage
can be analyzed. For a robot using the helix rolling motion [11, 12], the head camera laterally
rotates and its view needs to be adjusted for operation. In contrast, the proposed method avoids
the need to adjust the direction of the camera view.

4. Simplified model for shift control

The robot in [22, 29] locomotes by shifting its head position on the continuous curve (backbone
curve in [23]) from head to tail. However, if the method of [22, 29] is directly used, the robot
cannot locomote in a vertical pipe because the robot cannot maintain the zigzag posture of the
module in an anti-slip mode. Figure 4 shows an example of motion when using the method of
[22, 29]. We therefore shift motion not by link but by module to keep the zigzag posture. When
a module is switching between modes or it is in anti-slip mode, the motion of the module is
shifted module by module. When a module is in normal mode, the motion is shifted link by link.
As a result, the shift control is performed without changing the zigzag posture of modules that
are in anti-slip mode.

In this paper, we use a simplified model, which is the model simply representing the shape of
the robot for the shift control, as shown in Figure 5. For a module that is in normal mode, the
positions of the joint of the simplified model is located at the positions of the yaw and pitch
joints. For a module that is in anti-slip mode, the center pitch joint and the two yaw joints are
ignored in the simplified model. In the simplified model, the number of the joints and the j-th
module length (defined as L;) change when the module mode changes.

5. Control

Figure 6 shows a flowchart for the robot control procedure. First, a target continuous curve that
follows the pipe path is designed. Second, the operator inputs sy adq and wadd, where sy, 544 is the
displacement of the robot’s head on the continuous curve and w,qq is the additional rotational
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Figure 4. Robot motion during link-based shift control (the physical simulator V-REP [30] is used).
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Figure 5. Simplified control model.

velocity of the active wheel. Third, the joint angles of the simplified model are calculated to fit the
robot’s shape to the target continuous curve by using a method of approximating a continuous
curve [22, 29]. Fourth, the joint angles of the realistic model are calculated by converting from
the simplified model to the realistic model. Finally, the rotational velocity of the active wheels
is determined.
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where s is the length variable along the curve; ds is the infinitesimal difference of s; and
c(s) is the positional vector that represents the coordinate of the continuous curve, which is
c(s) = [z(s),y(s),z(s)]T. The Cartesian coordinate system (e:(s),ep(s),ey(s)) represents the
posture of the robot’s model, where kp(s) and ky(s) are the curvature around the pitch and
yaw, respectively. On the continuous curve, the head position is s,(t), the position of the i-th
yaw joint is s = s; y, and the position of the i-th pitch joint is s = s; ,. Note that s, , represents
the tail position because the tail unit does not have a pitch joint.

5.2 Positions of the head, tail and joints

The timing of switching the modes is determined from sy, ,qq and the difference of the curvature
on the continuous curve. The module during extension or contraction moves in a direction away
from the curved pipe section. In Figure 3(a), which shows the extension of the first module, the
position of the first pitch joint is fixed, and the following modules move back. In Figure 3(b),
which shows the contraction of second module, the position of the fifth pitch joint is fixed, and
the modules from the head to the fifth yaw joint move back. The aforementioned motions are
performed by changing L;(t) and adjusting s,. L;(t) is designed as

where the time when the mode starts to change is t = ¢, k is a constant value, and k£ > 0 during
extension and & < 0 during contraction. When the jth module is in normal mode, L; = 4l.
When the jth module is in anti-slip mode, L; = Lyj,. When the jth module is extending or
contracting, Lyin < Lj < 4l. Ly, is the module length that prevents the robot from slipping
inside the pipe, and it is determined from the dimensions of the robot and pipe.

The adjustment of sy, is determined from sy aqq and the mode change. Thus, s;,(t) and s;(t)
are determined from sy, [, and L;.

5.3 Joint angles in simplified model

The joint angles in the simplified model are calculated by fitting the simplified model to the
continuous curve. Let ¢;" and 9;’ be the angles of the i-th yaw joint and i-th pitch joint, respec-
tively. The simplified model ignores some joints, which are the 2j-th yaw joint, 2j-th pitch joint,
and 25 4 1-th yaw joint at the j-th module, which is in anti-slip mode. In the fitting method of
[22], the joint angles of an articulated mobile robot are approximately calculated by using xp(s)
and ky(s) of a continuous curve. However, the method of [22] must be modified to apply it to the
simplified model. If the mode of the module changes, the integration interval of the curvature
of the curve of the simplified model at the calculated joint angles changes because the number
of joints and the module length in the simplified model change. Therefore, we consider the four
cases shown in Figure 8. The joint angle of the simplified model for each case is obtained as
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Note that ¢a;’, 125", and ¢aj4+1" of the jth anti-slip mode module are not determined in (3a)—
(3d). These joints are ignored in the simplified model, as shown in Figures 8(b) and 8(d).
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5.4 Joint angle of realistic model

By using ¢;" and 1/, the joint angles of the realistic model ¢; 4, and v; q are obtained as

bia = &'

Case A ' 4
comen) {5070 a
(Case B) ¢yqa =1 +¥;+ U, (4b)
(Case C) { $id = ¢i/ (4c)

Yia =i+ V¥
(Case D) thia =i’ +; (4d)

, where ¥; is the joint angle of the module that is in anti-slip mode, as shown in Figure 9, and

is calculated as
1 (L
T, = cos™* <4;> . (5)

In addition, ¢g;, 92, and ¢aj4+1 of the jth anti-slip mode module, corresponding to ¢o;’, 19,
and ¢2j+1’ in the simplified model, are calculated as

$2ja4 =0
Vaja = —2Y; (6)
$2j4+1,4 = 0.

5.5 Wheel angular velocity

The wheel velocity depends on the wheel’s location with respect to the entire robot. The angular
velocity of each wheel is determined by using s;, at the same wheel position of the simplified
model. Let w; 4 be the target angular velocity of the active wheel that is mounted coaxially to
the i-th pitch joint. Then, w; q is designed as

5i,p

wid = + ¥ + Wadd, (7)
where r is the radius of the wheel and w,qq is the additional angular velocity that is used for
forward and backward movement to maintain the robot’s shape. The value of w,qq is provided
by the operator to cover the positional error of the robot caused by the wheel slip. Note that \iij
is not zero only during extension and contraction.

If the jth module is in anti-slip mode, wy;q cannot be obtained by (7) because sy;, is ignored

10
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Table 1. Parameters for forces acting on the robot’s
active joints and wheels.

Parameter Notation
Static friction force fi

torque of joint Ti,joint
torque of wheel Ti,wheel

mass My,
acceleration of gravity g
length of link l
normal force N;
pitch angle 0

(b)
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Figure 10. Forces acting on the robot’s active joints and wheels. (a) Forces acting on the active joints, (b) Forces acting
on the active wheels.

in the simplified model. Thus, wy; 4 is designed as

82541,
Wojd = — {er + wadd} : (8)

The rotational direction of the wheel depends on the position at which the wheel contacts the
pipe wall; for example, the rotational direction of the wheel of the first wheel axle is different
from that of the wheel of the second wheel axle in Figure 5. Therefore, a minus sign is used in

(®).

6. Static force analysis

We analyzed the force exerted by the modules that are in anti-slip mode. In this analysis,
the mechanical component of the robot is the same as the robot used in the experiments. A
conditional equation was developed for the robot to move inside a vertical pipe. We consider the
case where 1,--- , m-th modules are in anti-slip mode. First, the equation was developed for the
case where the robot avoids slipping by using the force generated by the robot’s joints. Table 1
shows the parameters and notations, and Figure 10 shows the forces and torques that act at the
robot’s modules.

From the equilibrium of force, the normal force when m = 1 and m > 2 is represented as

11



August 28, 2019

Advanced Robotics MainDocument
follows:
Tt (=)
1 Ti,join o
(if m=1) N;={ g (1=2) 9)
Ti—1,join .
— ey (1=3)
iy (i=1)
Ti,joint T T4 join ;
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Ti—1,join s
— ek (t=2m+1).

The total mass of the robot as M,,, is obtained as

My, = (2771 + 1)Munit + Mcaple, (11)
where Mt and Mc.ple are the mass of one unit and the cable, respectively.

In each unit of the actual robot used in the experiments, the active wheel is attached to the
robot on one side and the passive wheel is attached to the robot on the other side. All the active
wheels are not on the same side of the robot, they alternate. The passive wheel cannot prevent
the robot from slipping. Therefore, the maximum static frictional force of ¢-th unit is represented
as

1
fi= §M|Nz‘\7 (12)

where p is the coefficient of the maximum static frictional force. If all modules are in anti-slip
mode, the condition where the robot avoids slipping is obtained as follows from (10) and (12):

2m+1 LY

i=2 11,join
Z fi= 2 ll josé = Mg, (13)
i=1

As the robot moves inside a vertical pipe, each active wheel has to satisfy the following condition:

22m+1 T wheel
=1 1,whee.
Zei=l  Thwheel > pp o

- (14)

Fm,wheel =
The robot can move inside vertical pipe without slipping by satisfying (13) and (14). Dynamic
force analysis and dynamics-based design are left as topics for future study.

7. Experiments

Experiments were carried out to demonstrate the effectiveness of the control method. We used
a robot that was an improved version of the robot in [26]. Figure 11 shows the robot, and Table
2 provides the robot’s parameters. The configuration of the joints and wheels of the robot are
the same as that in the model. Each active wheel is driven by a servomotor through a timing
belt attached to one side of each unit. Dynamixel MX-64 servomotors were used for active joints
and wheels [31]. The computer sent control input to the servomotors and received the angles
of servomotor postures by RS485 serial communications. Electrical power was supplied by the

12
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Figure 11. Robot used for experimental verification.

Table 2. Parameters of the robot

Parameter Value
Number of module m 5
Number of unit n 11
Number of yaw joints 11
Number of pitch joints 10
Length of link /[mm] 88
Wheel radius [mm] 37.5
Total mass® [kg] 8.99
Torque of servomotor® [N - m] 7.30

aThe total mass includes the body of the robot and cables.
bTorque of servomotor is stall-torque at 14.8V, 5.2A [31].
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[ [ Piwn { Pitch
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Active-wheel Active-wheel Active-wheel
Servomotor Servomotor Servomotor
Yaw Yaw Yaw
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Figure 12. Robot data communication systems and power supply wiring.

wiring system. The operator provided the robot with the input commands using a gamepad.
Figure 12 shows an overview of the communications system and electrical power supply. Figures
13 shows the piping, consisting of a curved pipe (VUDL200) or branched pipe (VUDT200), and
two straight pipes.

7.1 Number of modules

When the robot moves in a curved pipe, not all the modules are in anti-slip mode because some
modules are in normal mode. Let m be the total number of modules and m’ be the number of
modules in anti-slip mode. When the robot moves through the VUDL200 or VUDT200 pipe,
three modules have to be in normal mode. We consider the case where the 1, - -, m’-th modules
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Figure 13. Experimental environment.
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in order from the head are in anti-slip mode and the other modules are in normal mode. We
assume that the friction force generated by the modules in normal mode is zero.

We obtained Z?flﬂ fi in (13) by experimental measurement. In this experiment, we used a
robot consisting of only one module in a vertical straight pipe. We measured the static frictional
force while pullilng on the robot with a rope when the module was in anti-slip mode. Then, we
calculated Z?;nl“ fi and M,,g at (m,m’) = (4,1), (5,2), (6,3), and the experimental results
are shown in Figure 14.

Next, we calculated Fj, wheel in (14) from Table 2. In the case of m = 5 and m' = 2, we
obtained F wheet=973.33[N] and M,,g = 88.17[N].

From these results, we found that (13) and (14) were satisfied at m > 5. Thus, we used m = 5

14
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Figure 17. Experimental result for moving inside pipes in case 3.

as the number of modules for the experiments for in-pipe locomotion.

7.2 In-pipe locomotion

Figures 13 shows the experimental setup. In Figures 13, the z-y plane is parallel to the ground
and the z-axis is parallel to a straight pipe placed on the ground. Table 2 shows the robot
parameters.

We carried out experiments for six cases. In case 1 the initial posture of the robot was not
rotated around the z-axis and a curved pipe (VUDL200) was used. In case 2, the initial posture
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Figure 18. Additional angular velocity waqq of the active wheels in cases 1-3.

Figure 19. Experimental result for moving inside horizontal pipes in case 4.

of the robot was not rotated around the z-axis and a branched pipe (VUDT200) was used. In
cases 3 and 4, the posture was rotated —m/4[rad] and —7/2[rad] around the z-axis, respectively,
and a curved pipe (VUDL200) was used. In cases 1-4, the initial position of the robot was inside
the straight pipe before the entrance of the curved pipe. The target continuous curve in cases 1,
2 and 4 was designed so that the robot followed the wall inside the piping. In case 3, the target
continuous curve was designed to pass through the center axis of the cross-section of piping. The
experiments in case 1-4 were conducted three times for each case.

Figures 15, 16 and 17 show the results for cases 1, 2 and 3, respectively. All modules were in
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Figure 20. Additional angular velocity waqq of the active wheels in cases 5 and 6.

anti-slip mode inside the straight pipe at the initial position. The mode of each module changed
from anti-slip to normal when it reached the entrance of the curved pipe. Each module was in
normal mode when it was inside the curved pipe. The mode of each module changed from normal
to anti-slip after passing through the curved pipe. As a result, the robot could move through
the straight, curved and branched pipes adopting the proposed method.

However, the operator needed to input an additional rotational velocity for the active wheels
Wadd to make the in-pipe locomotion successful. The main reason for this problem was an error
between the target position and the actual position. Figures 18(a), 18(b) and 18(c) show the time
integration of w,qq. The input was almost always needed for the robot to be moving forward,
which means that the robot could not track the target. The main reason for this was slipping of
the timing belts between the active wheel and its servomotor. We heard the timing belt slipping
after the robot entered the vertical straight pipe. When the belt slips, the robot cannot obtain
the drive force from the servomotor through the timing belt. If the slippage could be suppressed,
the error between the target position and the actual position would decrease. However, the error
cannot be completely eliminated because the robot has feedforward control. If the position of
the robot were estimated by the method used in [32], the additional rotational velocity inputted
by the operator would not be necessary.

We carried out additional experiments in case 4, where the initial posture of the robot was
rotated —m/2[rad] around the z-axis. In the experiments, we used the curved pipe (VUDL200)
shown in Figure 13 (a) . The result was that the robot could not pass through the piping. A
wheel of the robot became stuck in the gap between the straight and curved pipes when the
first and second modules were in normal mode. As a result, the urethane rubber on the wheel
came off, and the module in anti-slip mode could not appropriately make contact with the wall
of the piping. In addition, there was an overload error for the actuators of the robot, and some
actuators stopped their motion. The reason why the wheel became stuck at the clearance gap
of the joint of the pipe is that some modules in normal mode droop under gravity. This was a
result of the lack of torque of the actuator used in the robot’s joint. When the first and second
modules are in normal mode such that the modules can enter the curved pipe, the yaw joint in the
fifth unit receives the weight of the first to fourth units. However, the modules from the first to
fourth units droop under gravity because of insufficient joint torque. It is expected that the robot
follows the target path if the joint torque is sufficient. In addition, we carried out experiments
in a horizontal pipe as shown in Figure 19. In this case, the modules in normal mode do not
droop under gravity and the robot maintains its posture. In the experiment, the robot could
locomote within the piping. It was thus confirmed that the robot can locomote in piping using
the proposed method if the joint torque of the robot is sufficiently large to maintain the posture
of the robot under the effect of gravity. Additional experiments were carried out to demonstrate
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the effectiveness of the developed interface system. Case 5 had the same experimental conditions
as case 1 while case 6 had the same conditions as case 4, with the operator using the interface
system in cases 5 and 6. In case 6, we carried out experiments in a horizontal pipe as shown in
Figure 19. In cases 5 and 6, the robot moved to the entrance of the curved pipe using w,qq and
moved in the pipe using sy, aqq and waqq. The skill level of the operator was low because it was
the first time that the operator had operated the robot. The operator operated the robot only
looking at the view provided by the camera and the interface system. The robot succeeded in
passing through in the piping in cases 5 and 6. Figure 20(a) and (b) shows the time integration of
Wadd- In this experiment, w,qq was also used to move to the initial position. Therefore, as shown
in Figure 20(a) and (b), the input before the robot arrived at the entrance of the curved pipe
was the input used to adjust the initial position. The operator adjusted the head position of the
robot to the entrance of the curved pipe according to the view of the camera. In addition, the
operator understood the difference between the present posture and target posture (i.e., error)
using the interface system and corrected the position of the robot using waqq.

8. Conclusions

This paper proposed a control method in which an articulated wheeled mobile robot moves inside
a pipe. The robot used two different shapes, anti-slip and normal, for each module. Modules in
anti-slip mode prevent the robot from slipping inside a straight vertical pipe. Modules in normal
mode allow movement through a curved pipe. The robot can move between straight and curved
pipes by switching modules between the two modes. The module mode switching was based on
a simplified model. The effectiveness of the control method was demonstrated by experiments.
The practical use of the robot in an actual pipe requires us to develop a method in which the
operator does not need to adjust the input velocity and to improve the robot for various types of
actual piping. These tasks are left as future work. An operator used an interface system that we
developed to pass a robot through piping without directly looking at the robot or see-through
pipe. The target continuous curve corresponding to the curved pipe comprised pre-designed
curves. It is considered that the robot can move in a pipeline using the proposed method if
the operator selects a target curve from various pre-designed curves as to fit a curved pipe or
branched pipe.
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