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PAPER
Compression by Substring Enumeration Using Sorted Contingency
Tables∗

Takahiro OTA†a), Member, Hiroyoshi MORITA††b), Senior Member, and Akiko MANADA†††c), Member

SUMMARY This paper proposes two variants of improved Compres-
sion by Substring Enumeration (CSE) with a finite alphabet. In previous
studies on CSE, an encoder utilizes inequalities which evaluate the number
of occurrences of a substring or a minimal forbidden word (MFW) to be
encoded. The inequalities are derived from a contingency table including
the number of occurrences of a substring or an MFW. Moreover, codeword
length of a substring and an MFW grows with the difference between the
upper and lower bounds deduced from the inequalities, however the lower
bound is not tight. Therefore, we derive a new tight lower bound based
on the contingency table and consequently propose a new CSE algorithm
using the new inequality. We also propose a new encoding order of sub-
strings and MFWs based on a sorted contingency table such that both its
row and column marginal total are sorted in descending order instead of
a lexicographical order used in previous studies. We then propose a new
CSE algorithm which is the first proposed CSE algorithm using the new
encoding order. Experimental results show that compression ratios of all
files of the Calgary corpus in the proposed algorithms are better than those
of a previous study on CSE with a finite alphabet. Moreover, compression
ratios under the second proposed CSE get better than or equal to that under
a well-known compressor for 11 files amongst 14 files in the corpus.
key words: CSE, sorting, contingency table, lossless data compression

1. Introduction

Dubé and Beaudoin proposed Compression by Substring
Enumeration (CSE) [1], a two-stage lossless data compres-
sion algorithm with a binary source. CSE is a kind of enu-
merative code and encodes the number of occurrences of
all substrings and Minimal Forbidden Words (MFWs) in the
circular string of an input string. A set of MFWs, called
antidictionary, is used in antidictionary coding [2], [3].

There have been previous studies on CSE. For example,
its compression performance has been evaluated by com-
puter simulations [1], [4], and these simulations show that
the performance of CSE in [4] is better than that of a well-
known data compression application. Indeed, the CSE in [4]
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gives the best compression performance amongst all vari-
ants of CSE. Moreover, Yokoo proposed a modified CSE
which utilizes combined probabilistic models and proved
the asymptotic optimality of the modified CSE [5]. Fur-
thermore, Kanai et al. proposed a fast and memory-efficient
array-based CSE [6].

The CSE algorithms shown above work only for binary
alphabet, that is CSE over binary alphabet called binaryCSE.
As for finite CSE (CSE over q-ary alphabet with q > 2), it
was first produced from antidictionary coding [7], [8]. In [7],
an encoder of binary CSE is extended to that of finite CSE,
and it is proven that an encoder of antidictionary coding and
that of finite CSE are isomorphic. Moreover, both of the
asymptotic optimality of antidictionary coding and the finite
CSE are proven by extending Yokoo’s results for q = 2 to
those of q > 2. Iwata and Arimura modified in [9] the finite
CSE and derived the maximum redundancy rate for the k-th
order Markov sources. Furthermore, Sakuma et al. extended
the array-based CSE and the binary CSE in [4] to those of
finite CSE [10]. On the other hand, as for compression ratios,
no experimental result of finite CSE is better than that of the
original CSE in [1] (and clearly that of CSE in [4]) to the
best of our knowledge.

This paper proposes two variants of improved finite
CSE with respect to compression ratios. Previous studies on
finite CSE utilize inequalities derived in [9] in encoding for
providing a range of the number of occurrences of a substring
and an MFW. Clearly, the difference between the upper and
lower bounds of the inequalities has to be tight for better
encoding. However, the lower bound is not tight.

In this paper, we derive a new inequality which derives a
tighter lower bound, and present a new CSE algorithm using
the new inequality. Moreover, for improving compression
ratios, we propose a new encoding order of substrings and
MFWs which are sorted by row and column marginal totals
of the proper substrings and MFWs, while previous studies
on finite CSE uses an encoding order of them sorted in lex-
icographical order. The second proposed CSE uses the new
equality and the new order in encoding. We further examine
the proposed CSE algorithms by computer simulations.

This paper is organized as follows. Section 2 gives the
basic notations and definitions. Then, in Sect. 3, we review
conventional CSE algorithms. In Sect. 4, we propose two
new variants of CSE. Section 5 gives experimental results
of the proposed algorithms for files of Calgary corpus. Sec-
tion 6 summarizes our results.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 The circular string of x = 011021.

2. Basic Notations and Definitions

Let Σ be a finite source alphabet Σ = {0, 1, . . . , J − 1} such
that 0 < 1 < · · · < J − 1. For a string x over Σ, let |x | be
the length of the string; that is, |x | = n for x = x1 . . . xn.
We denote by Σn the set of all strings of length n over Σ, and
define the set of all finite strings over Σ to be Σ∗ = ∪n≥0Σ

n,
including the empty string ε of length 0.

For x ∈ Σn, x can be written as x = uvw in terms of a
concatenation of strings u, v, w ∈ Σ∗. In this case, v is called
a substring of x.

For u, v ∈ Σk (k ≥ 1), u is said to be smaller than
v in lexicographical order if and only if i) u1 < v1 or ii)
u1 = v1 and u′ is smaller than v ′ in lexicographical order,
where u = u1u

′, v = v1v ′, and u1, v1 ∈ Σ.
For a string w of length |w | ≥ 1, w can be written as

aw′ and w′′b for a, b ∈ Σ and w′, w′′ ∈ Σ∗. Note that when
|w | = 1 holds, a = b and w′ = w′′ = ε . If w satisfies the
following three conditions,

(a) w is not a substring of x,
(b) w′ is a substring of x,
(c) w′′ is a substring of x,

then w is called a minimal forbidden word (MFW) of x ∈
Σ∗ [2], [8].

For a given x = x1x2 . . . xn ∈ Σn, the string obtained
by circularly concatenating the last symbol xn and the first
symbol x1 is called the circular string of x. Figure 1 shows
the circular string of x = 011021.

Let Cw (x) be the number of occurrences of a string
w ∈ Σ∗ in the circular string of x, where Cε (x) is defined to
be |x | by convention. For convenience, we adopt the notation
Cw instead of Cw (x). For example, for the circular string
shown in Fig. 1, Cε = 6,C0 = 2,C1 = 3,C2 = 1, C10 = 2,
and Cw ≤ 1 otherwise. For a non-negative integer k and
v ∈ Σ∗, observe that∑

w∈Σk

Cw = n, (1)

Cv =
∑
a∈Σ

Cav =
∑
b∈Σ

Cvb . (2)

3. Review of CSE

3.1 The Upper and Lower Bounds on Cawb

Given an upper bound and a lower bound on Cawb , the

Fig. 2 A J × J contingency table ofCcwd (c, d ∈ Σ) for a given w and
a fixed awb.

difference between them is used to encode Cawb . Conse-
quently, the smaller the difference is, the fewer output bits
of codeword of Cawb is. We use a table representation of
Eq. (2) to explain the bounds because the formulas of the
bounds shown in [9] are complicated. Fig. 2 depicts a ta-
ble representation, called the J × J contingency table of
Ccwd (c, d ∈ Σ) for a given w and a fixed awb. Any v such
that Cv is within the thick lines implies that v is smaller than
awb in lexicographical order.

In the table in Fig. 2, the J elements of each row (resp.
column) from the left (resp. top) are sorted in lexicograph-
ical ascending order. Moreover, the rightmost side (resp.
bottom) element in the c-th row (resp. the d-th col-
umn) is the row (resp. column) marginal total (C(c−1)w =∑J−1

h=0 C(c−1)wh) (resp.Cw (d−1) =
∑J−1
g=0 Cgw (d−1)) which cor-

responds to Eq. (2). Note that Cw is the grand total in Fig. 2.
The table in Fig. 2 contains 16 subtables separated by

solid and thick lines. Note that the number of elements in
a subtable may not be equal to that in the other subtable.
Furthermore, we convert the J × J contingency table to the
3 × 3 simplified contingency table using a total of elements
in a subtable. Fig. 3 shows the 3 × 3 simplified contingency
table for the given J × J contingency table shown in Fig. 2,
where elements in Fig. 3 are defined by Definition 1.

Definition 1 (Relationship between elements in contingency
tables in Fig. 2 and Fig. 3).

S11 =
∑

c(<a)∈Σ,
d(<b)∈Σ

Ccwd, S12 =
∑

c(<a)∈Σ

Ccwb, S13 =
∑

c(<a)∈Σ,
e(>b)∈Σ

Ccwe,

S21 =
∑

d(<b)∈Σ

Cawd, S23 =
∑

e(>b)∈Σ

Cawe,

S31 =
∑

f (>a)∈Σ,
d(<b)∈Σ

Cf wd, S32 =
∑

f (>a)∈Σ

Cf wb, S33 =
∑

f (>a)∈Σ,
e(>b)∈Σ

Cf we,

S1. = S11 + S12 + S13, S3. = S31 + S32 + S33,

Caw = S21 + Cawb + S23,Cwb = S12 + Cawb + S32,

S.1 = S11 + S21 + S31, S.3 = S13 + S23 + S33.
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Fig. 3 The 3 × 3 simplified contingency table for a given w and a fixed
awb.

The inequalities used for encoding Cawb , which are
derived in [9], are given by

max(0,Caw − S21 − S.3,Cwb − S12 − S3.)
≤ Cawb ≤ min(Caw − S21,Cwb − S12). (3)

Note that the upper bound is given by min(Caw − S21,Cwb −

S12) − 1 when awb is a repetition of a single letter; that is,
awb = c . . . c for c ∈ Σ [9]. Let Nawb be the difference
between the upper and lower bounds on Cawb , that is,

Nawb=min{Caw−S21, S.3,Cw−S1.−Cwb+S12−S21,

Cwb − S12, S3.,Cw − S.1 − Caw + S21 − S12}. (4)

When Nawb =0,Cawb is calculable because the upper bound,
the lower bound, and Cawb turn out to be equal.

3.2 Encoding and Decoding Algorithm

The encoding algorithm for CSE runs as follows.
Algorithm CSE Encoding

input : an input string x ∈ Σn

output : the codeword (E(n), ε(rank(x)), e(x))
begin 1

/∗Step 1:Encode the length of |x |(= n) ∗/
Output n encoded by an integer coding such as [11]; 2

/∗Step 2:Encode the rank of x ∗/
Output the rank of x encoded using dlog2 ne bits; 3

/∗Step 3:Encode Ca for a ∈ Σ ∗/
for a := 0 to J − 2 do 4

Output Ca encoded using dlog2 ne bits; 5

/∗Step 4:Encode Cawb (Main Loop) ∗/
for |w | := 0 to n − 2 do (s.t. Cw > 0) 6

/∗w is selected in lexicographical order ∗/
for a := 0 to J − 1 do 7

for b := 0 to J − 1 do 8

if Nawb > 0 9

Output the encoding of Cawb ; 10

end. 11

We assume that an input string x consists of at least
two kinds of symbols. In the algorithm, E(n) represents the
encoding of n by an integer coding such as [11]. The rank
of x denoted by rank(x) in Step 3 (line 5 in the algorithm)
represents the number of strings of length |x | which appear
within the circular string of x and are smaller than x in
lexicographical order. The rank is used to retrieve x from
the substrings in decoding, and ε(rank(x)) represents the
encoding of rank(x). Moreover, e(x) represents a sequence
of encoded Ca and Cawb in encoding order.

There are some variations for encoding Cawb . For
example, methods [1], [4], [6] assign a probability to Cawb ,
and the probability is encoded by an entropy coding. The
method in [9] assigns a probability to the sequence of all
Ccwb for c, d ∈ Σ and fixed w, that is, the J × J contingency
table except the row and column marginal totals. Moreover,
the uniform distribution [1], [6] and a combination of the
uniform distribution and the hypergeometric distribution [9]
are used as a probabilistic model.

In any conventional CSEwith a finite alphabet, inequal-
ities (3) play a key role for encoding Cawb because the code-
word length of Cawb increases as the difference between the
upper and lower bounds of (3) grows. Therefore, by tighten-
ing the upper or lower bounds, performance on compression
ratios of any CSE with a finite alphabet can be improved.
We will tighten the lower bound and improve the difference
in Sect. 4.

Next, we show the decoding algorithm for CSE. The
decoding algorithm is a simplified algorithm shown in [8].
In the algorithm,W is a set of all substrings of x.
Algorithm CSE Decoding

input : a codeword (E(n), ε(rank(x)), e(x))
output : the decoded input source x

begin 1

/∗Step 0: Initialize ∗/ 2

W ← {ε } ; 3

/∗Step 1: Decode n ∗/ 4

Decode n from E(n) ; 5

/∗Step 2: Decode rank(x) ∗/ 6

Decode rank(x) from ε(rank(x)) ; 7

/∗Step 3: Decode Ca for a ∈ Σ ∗/ 8

for a := 0 to J − 2 do 9

Decode Ca from e(x); 10

C(J−1) ← n −
∑J−2

j=0 Cj ; 11

W ←W ∪ {a ∈ Σ : Ca > 0} ; 12

/∗Step 4: Decode Cawb for w ∈ Σ∗ ∗/ 13

for |w | := 0 to n − 2 do (s.t. w ∈ W) 14

/∗w is selected in lexicographical order ∗/
for a := 0 to J − 1 do 15

for b := 0 to J − 1 do 16

if Nawb > 0 17

Decode Cawb from e(x); 18

else 19

Cawb ← min(Caw − S21,Cwb − S12) ; 20

if Cawb > 0 21
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W ←W ∪ {awb} ; 22

/∗Step 5: Decode x ∗/ 23

x is selected in {w ∈ W : |w | = n} by rank(x) ; 24

return x ; 25

end. 26

4. Proposed CSE Algorithms

4.1 Tightening the Lower Bound

When Cawb is encoded under CSE Encoding, all the el-
ements in the thick lines in the table in Fig. 2 have been
already encoded because encoding Cawb is implemented in
string length ascending order of w and lexicographical order
for a given w. In other words, any element in the thick lines
can be used to determine the lower and upper bounds on
Cawb .

However, even though there are 11 elements in the
thick lines in the table in Fig. 3, the bounds in (3) are
determined by only six elements amongst them; that is,
Caw, S21, S.3,Cwb, S12, and S3.. Therefore, in this subsec-
tion, we propose a new inequality for Cawb , as denoted in
Proposition 1 below, to tighten the lower bound of (3) by
efficiently utilizing the remaining four elements S11, S13, S1.,
and S.1 except for Cw . We remark that S31 is not an element
in the thick lines but is calculable by elements S.1, S11, and
S21 because S31 = S.1 − S11 − S21.

Proposition 1. For a given awb,

max(0,Caw − S21 − S.3 + S13,Cwb − S12 − S3. + S31)
≤ Cawb ≤ min(Caw − S21,Cwb − S12).

Proof. The upper bound is the same as that of (3), so we
focus on showing

max(0,Caw − S21 − S.3 + S13,

Cwb − S12 − S3. + S31) ≤ Cawb .

From the table in Fig. 3, Cawb satisfies

Caw − S21 − S23 = Cawb, (5)
Cwb − S12 − S32 = Cawb . (6)

Since all elements are non-negative, S23 and S.3 − S13
satisfy the inequality (7), and S32 and S3. − S31 satisfy the
inequality (8)

S23 ≤ S23 + S33 = S.3 − S13, (7)
S32 ≤ S32 + S33 = S3. − S31. (8)

Replacing S23 in (5) with S.3 − S13, and S32 in (6) with
S3. − S31, we have

Caw − S21 − S.3 + S13 ≤ Cawb, (9)
Cwb − S12 − S3. + S31 ≤ Cawb, (10)

and therefore, we obtain

Fig. 4 A local contingency table forCawb, S23, S32, and S33.

max(0,Caw−S21−S.3+S13,

Cwb−S12−S3.+S31) ≤ Cawb

as required. �

Observe that the lower bound in Proposition 1 gives a
better bound of Cawb than that in (3). Furthermore, when
S13 > 0 and S31 > 0, the lower bound in (3) is strictly lower
than Cawb since (9) and (10) can be written by

Caw − S21 − S.3 < Caw − S21 − S.3 + S13 ≤ Cawb,

Cwb − S12 − S3. < Cwb − S12 − S3. + S31 ≤ Cawb .

The difference Ñawb between the upper and lower
bounds of Cawb in Proposition 1 is given by

Ñawb=min{
Caw−S21, S.3−S13,Cw−S1.−Cwb+S12−S21−S31,

Cwb−S12, S3.−S31,Cw−S.1−Caw+S21−S12−S13}

= min{Caw−S21, S.3−S13,Cwb−S12, S3.−S31}. (11)

We explain Eq. (11) in detail by using Fig. 4 which
shows a local contingency table for Cawb , S23, S32, and S33.
Four values shown in local column and row marginal totals
exceptCawb+S23+S32+S33 are the samewith the four values
in the last formula in (11). Moreover, if one of four values
Cawb , S23, S32, and S33 is known, then the other three values
are calculable because local column and row marginal totals
are known in Fig. 4. Therefore, the difference between the
upper and the lower bounds of Cawb is equal to that of S23,
S32, and S33. Hence, we can obtain the difference between
the upper and lower bounds of Cawb by Ñawb .

For a binary source alphabet Σ = {0, 1} and a = b = 0,
Eq. (11) is given by min{C0w,C1w,Cw0,Cw1} which is equal
to the difference between an upper and a lower bound shown
in Eq. (7) in [5] where Cawb = C0w0, S23 = C0w1, S32 =
C1w0, S33 = C1w1, S.3 = Cw1, S3. = C1w , S21 = S13 = S12 =
S31 = 0, andCw = Cawb+S23+S32+C33 in Fig. 4. Therefore,
the proposed techniques shown in Sects. 4.1 and 4.2 cannot
improve the difference for a binary alphabet. On the other
hand, the techniques are effective for a q-ary alphabet with
q > 2.
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Fig. 5 A J × J sorted contingency table of Cc′wd′′ (c′, d′′ ∈ Σ) for
a given w and a fixed a′wb′′ such that C0′w ≥ · · · ≥ C(J−1)′w and
Cw0′′ ≥ · · · ≥ Cw (J−1)′′ .

4.2 Improving the Difference Ñawb Using a Contingency
Table with Sorted Marginal Total

We give a new encoding order of strings awb for improving
the compression ratio while the conventional CSE uses the
lexicographical order such as 0w0, . . . , (J−1)w(J−1) during
encoding. The difference Ñawb depends on the order of
strings in encoding because values of S21, S.3, S13, S12, and
S31 also depend on the order. We focus on S3. and S.3 for
reducing Ñawb because S3. (resp. S.3) is sum ofwide range of
the row (resp. col.) total. Hence, an order that makes S3. and
S.3 small derives a small value for Ñawb . Note that the value
may not be the minimum amongst all possible values for the
differences. For reducing S3. (resp. S.3), we sort elements of
the row (resp. col.) marginal totals such that

C0′w ≥ C1′w ≥ · · · ≥ Ca′w ≥ · · · ≥ C(J−1)′w, (12)
Cw0′′ ≥ Cw1′′ ≥ · · · ≥ Cwb′′ ≥ · · · ≥ Cw (J−1)′′, (13)

where c′ < d ′ when Cc′w = Cd′w and e′′ < f ′′ when
Cwe′′ = Cw f ′′ for c′, d ′, e′′, f ′′ ∈ Σ.

Figure 5 depicts the J × J contingency table such that
elements of row (resp. col.) marginal total are sorted in
descending order from the top (resp. the left) for a given w
and a fixed a′wb′′. Roughly speaking, elements having large
values tend to be gathered around the top-left in the table in
Fig. 5 while elements having small values such as zero tend
to be gathered around the bottom-right in the table in Fig. 5.

By using the table in Fig. 5, we obtain the second
proposed algorithm by using (0′, . . . , (J − 1)′) instead of
(0, . . . , J − 1) in lines 3 and 7 of CSE Encoding, and
(0′′, . . . , (J − 1)′′) is used instead of (0, . . . , J − 1) in line
8 of the encoding. Note that we build the table shown in
Table 5 before C0′w0′′ is encoded. Elements of row (resp.
column) marginal total in the converted table are sorted in
descending order, so that S3. (resp. S.3) in the table is smaller
than or equal to that in an unsorted contingency table.

Table 1 Compression ratios of the conventional CSE and the proposed
algorithms with a finite alphabet for the Calgary corpus.

File Conventional Proposed Proposed
CSE CSE-P CSE-PS

J = 256 J = 256 J = 256
bib 0.27 0.26 0.24
book1 0.35 0.33 0.30
book2 0.29 0.28 0.25
geo 0.69 0.67 0.58
news 0.37 0.35 0.31
obj1 0.58 0.56 0.51
obj2 0.35 0.33 0.31
paper1 0.35 0.33 0.31
paper2 0.35 0.33 0.30
pic 0.13 0.12 0.12
progc 0.36 0.33 0.31
progl 0.23 0.22 0.21
progp 0.24 0.22 0.21
trans 0.21 0.19 0.19

5. Experimental Results

Table 1 shows compression ratios of the Calgary corpus [12]
under the conventional CSE using (3) (conventional CSE), a
proposed CSE using Proposition 1 (Proposed CSE-P), and a
proposed CSE using Proposition 1 and a sorting contingency
table (Proposed CSE-PS). Note that the three algorithms ex-
ecute over a one-byte alphabet (J = 256). The compression
ratio is given as the ratio of the compressed file size and
its original file size. All algorithms encode the probabil-
ity assigned to Cawb by an adaptive entropy coding such
as adaptive arithmetic coding of order-0 [13], sequentially.
The algorithms first use the uniform distribution and update
a non-negative frequency based upon the difference between
Cawb and the lower bound of Proposition 1.

As shown in Table 1, compression ratios get improved
for all files using the proposed algorithms. In particular,
the compression ratio of CSE-PS for the file (geo) is 11%
better than that of the conventional CSE. Moreover, CSE-PS
derives better compression ratios than CSE-P for 12 files
amongst 14 files.

Table 2 shows compression ratios for the proposedCSE-
PS, two conventional CSE algorithms [1], [4], and an well-
known data compression application (bzip2) [14] using the
Burrows-Wheeler transformation [15]. The proposed CSE-
PS and bzip2 execute compression over a one-byte alphabet
(J = 256) while the two conventional CSE algorithms do
over a binary alphabet (J = 2). The conventional CSE [1],
called BTF, encodes in a way similar to our proposed encod-
ing. More precisely, the CSE (BTF) encodes the probability
of Cawb , sequentially, by an adaptive entropy coding. How-
ever, the details are not described in [1]. The conventional
CSE [4], called EPA, is the best CSE with respect to com-
pression ratio.

As shown in Table 2, compression ratios under the pro-
posed CSE-PS get better than those under the CSE (BTF)
for 12 files and those under bzip2 for 11 files. These re-
sults show good performance on compression ratios for the
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Table 2 Compression Ratios of the proposed CSE-PS, conventional CSE
with a binary alphabet [1], [4], and a well-known data compression appli-
cation (bzip2) [14].

file Proposed CSE [1] CSE [4] bzip2 [14]
CSE-PS (BTF) (EPA)
J = 256 J = 2 J = 2 J = 256

bib 0.24 0.25 0.23 0.25
book1 0.30 0.28 0.28 0.30
book2 0.25 0.25 0.24 0.26
geo 0.58 0.69 0.57 0.56
news 0.31 0.32 0.30 0.31
obj1 0.51 0.56 0.49 0.50
obj2 0.31 0.34 0.31 0.31
paper1 0.31 0.32 0.30 0.31
paper2 0.30 0.30 0.29 0.30
pic 0.12 0.10 0.10 0.10
progc 0.31 0.33 0.30 0.32
progl 0.21 0.21 0.20 0.22
progp 0.21 0.22 0.21 0.22
trans 0.19 0.20 0.18 0.19

proposed CSE-PS.
However, compression ratios for 12 files under the pro-

posed CSE-PS do not overcome those under the CSE (EPA);
the maximum difference is 2% (geo and pic). To improve
compression ratios, a technique using divided blocks instead
of a whole file [1] can be applied to the proposed CSE-PS.

6. Conclusion

In this paper, we proposed a new inequality which derives
a tighter lower bound on the number of occurrences of a
substring and an MFW to be encoded. We then proposed a
new CSE algorithm using the new inequality. Moreover, for
improving compression ratios, we proposed a new encoding
order of substrings and MFWs which are sorted by row and
column marginal totals of the proper substrings and MFWs,
instead of lexicographical order used in previous studies. We
also proposed a new CSE algorithmwhich combines the first
proposed CSE algorithm and the new sorted encoding order.

Experimental results showed that for all files on Cal-
gary corpus, the proposed CSE algorithms exhibited better
compression ratios than those of a previous study on CSE
with a finite alphabet. Moreover, the proposed CSE using the
new inequality and sorted encoding order gave better com-
pression ratios for 11 files amongst 14 files in the corpus,
compared with a well-known data compression application
(bzip2).
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