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ABSTRACT In this paper, we introduce salient object detection with importance degree (SOD-ID),
which is a generalized technique for salient object detection (SOD), and propose an SOD-ID method. We
define SOD-ID as a technique that detects salient objects and estimates their importance degree values.
Hence, it is more effective for some image applications than SOD, which is shown via examples. The
definition, evaluation procedure, and data collection for SOD-ID are introduced and discussed, and we
propose its evaluation metric and data preparation, whose validity is discussed with the simulation results.
Moreover, we propose an SOD-ID method, which consists of three technical blocks: instance segmentation,
saliency detection, and importance degree estimation. The saliency detection block is proposed based
on a convolutional neural network using the results of the instance segmentation block. The importance
degree estimation block is achieved using the results of the other blocks. The proposed method accurately
suppresses inaccurate saliencies and estimates the importance degree for multi-object images. In the
simulations, the proposed method outperformed state-of-the-art methods with respect to the F-measure for
SOD; and Spearman’s and Kendall rank correlation coefficients, and the proposed metric for SOD-ID.

INDEX TERMS Saliency detection, salient object detection, instance segmentation, convolutional neural
network (CNN), rank correlation metric

I. INTRODUCTION

SALIENCY detection (SD) is an image processing tech-
nique that estimates salient local regions in images [1]–

[7]. Salient regions are generally defined as areas that attract
human attention with respect to characteristics such as high
contrast, unique orientation, and distinctive color. Detecting
these regions is important for image applications, such as hu-
man eye fixation estimation and context-aware image coding.

Recently, several methods have been proposed for salient
object detection (SOD) which is similar to SD [8]–[28].
Instead of estimating local regions, SOD identifies char-
acteristic objects, such as a tall man, a red car, or signs.
Some image processing applications require not only salient
information but also important object locations [29]–[32].
For example, image retargeting uses the object locations and
resizes images while retaining their shapes. Thus, SOD has
been shown to be more useful than SD for some applications.

Moreover, Islam et al. proposed an expansion of SOD

[26], which is called RSOD in this paper, and studies have
shown that it has high potential for image applications. SOD
classifies estimated objects as salient or non-salient, whereas
RSOD estimates salient object contours and their importance
scores. Importance scores are useful for several applications,
which we show in Fig. 1, where (a) is an input image, (b)
and (c) are its ideal saliency map in SOD and RSOD, and
(d) and (e) are the retargeting results for (a) using (b) and (c)
according to [31], respectively. In (b), the white and black
areas represent salient and non-salient regions, respectively,
whereas in (c), the white, gray, and black areas represent first
salient, second salient, and non-salient regions, respectively.
In (d), a part of the dog, which seems to be the most important
object in (a), is cropped because the chair and dog are given
the same importance value by SOD shown in (b). By contrast,
because of the different scores in (c), the dog is completely
preserved in (e). Fig.1 shows one advantage of the expansion,
and we experimentally understand that it has high potential
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(a) Input image

(b) Map of SOD (c) Map of SOD-ID

(d) Result based on (b) (e) Result based on (c)

FIGURE 1: Retargeting simulation based on SOD and SOD-
ID.

not only for image retargeting but also, for example, for
content-aware image coding and image representation.

However, the discussion of RSOD was not sufficient in
[26] to introduce it as a new theme of computer vision.
The authors presented the expansion with little detail as a
supplement to the main topic. The details of its definition
were omitted, and its significance was not discussed. As the
evaluation metric, Spearman’s rank correlation coefficient
[33] was use simply, but, unfortunately, its validity was
not discussed. This inadequate discussion is a problem for
tackling the new theme.

In this paper, we call the technique, which is denoted by
RSOD, SOD with importance degree (SOD-ID); refine it to
introduce a new theme via discussing its definition, signifi-
cance, and assessment; and propose an SOD-ID method that
outperforms state-of-the-art methods. First, we discuss and
construct the definition and significance of SOD-ID using
several pieces of evidence and application examples. We
define the importance score as represented in N degrees,
and refer to this as the importance degree. Based on this dis-
cussion, we present the evaluation procedure and the dataset
preparation of SOD-ID. We also propose an assessment index
based on the squared error and Kendall rank correlation
coefficient [34], and create a dataset based on those of SD
and instance segmentation. Finally, we propose an SOD-ID
method based on deep learning and instance segmentation.

Our contributions are summarized as follows:

• We introduce and define a new theme, SOD-ID, via a
discussion and examples.

• We introduce the importance degree using N , which is
the generalized importance degree of SOD, and show its
efficacy and advantages.

• We introduce valid dataset preparation and an effectual
evaluation procedure for SOD-ID to evaluate methods
without actually applying them to image applications,
which contributes to the development of this theme.

• We propose an SOD-ID method via combining instance
segmentation and SD based on deep learning as a sepa-
rable system, which is also useful for SOD.

In simulations, the proposed method perceptually demon-
strated N -degree salient objects, and objectively outper-
formed RSOD [26]. The proposed method accurately de-
tected salient objects and estimated their values of impor-
tance degree. The proposed method was objectively com-
pared with RSOD for Spearman’s rank correlation coefficient
[33], the Kendall rank correlation coefficient [34], and the
proposed metric, and obtained better scores. Moreover, in
the evaluation procedure of SOD, the results of the pro-
posed method were objectively comparable with state-of-the-
art SOD methods; therefore, we demonstrated that it is as
effective as SOD.

The remainder of this paper is organized as follows: In
Section II, we provide an overview of existing methods of
SD, SOD, fixation estimation, semantic segmentation, and
instance segmentation. In Section III, we briefly present the
fundamentals of SOD and RSOD. In Section IV, we discuss
the definition, significance, evaluation metric and dataset
of SOD-ID. In Section V, we explain the proposed index,
dataset, and method. Finally, we present experimental com-
parisons in Section VI, and conclude this paper in Section
7.

II. RELATED WORKS
In this section, we explore existing methods of SD, SOD,
semantic segmentation, and instance segmentation. First, we
describe SD and human eye fixation. Second, we explain two
types of SOD and RSOD. Finally, we discuss the difference
between semantic segmentation and instance segmentation,
and review their recent methods.

SD is similar to human eye fixation; that is, they estimate
regions of interest that correspond to human attention [1]–
[7], [35], [36]. The traditional SD method uses characteristic
features, such as high contrast, unique orientation, and dis-
tinctive color [1]. Harel et al. proposed a method that uses a
graph-based algorithm, calculates activation maps based on
several features, and combines them to generate one saliency
map [2]. Recently, methods based on a convolutional neural
network (CNN) have been proposed, and effectively extract
global and complex features as a result of training using a
large number of images and their corresponding gaze infor-
mation [6], [7]. Although they accurately estimate human
interest, they cannot estimate object contours.

SOD simultaneously estimates object regions and whether
they are salient [8]–[25], [27], [28]. Traditional SOD meth-
ods use the propagation algorithm [11], [22], [37]. They iter-
atively propagate salient and background information based
on color similarities between neighboring pixels and the
Markov absorption probability. However, they often produce
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inaccurate results along object boundaries. Recent methods
based on fully convolutional network (FCN) architectures
have successfully reduced inaccurate detection. Liu et al.
proposed a deep hierarchical saliency network that realizes
coarse-to-detailed estimation for salient objects [21]. An-
other method adopts a recurrent network to consider the
connection of salient pixels [16].

Although a major SOD dataset contains the importance
degree for objects [10], existing methods produce binary
results; that is, they classify detected objects into salient or
non-salient. The PASCAL-S dataset provides integer saliency
values in [0, 255] with object contours. However, SOD meth-
ods disregard the priority of each object, and instead focus on
estimating the contours of salient objects. Because detecting
salient objects and their correct contours is a challenging
task, researchers generally propose the estimation of the
priority of each detected object as future work.

Semantic segmentation is a technique that identifies cate-
gories to which pixels belong, such as human, tree, and car
[38]–[40]. Traditional semantic segmentation uses contour
detection and the histogram of oriented gradients feature
[38]. Recently, the FCN, which is a breakthrough approach
for semantic segmentation, has been used to successfully
detect image regions [39]. However, semantic segmentation
methods cannot separate objects that belong to the same
category.

Instance segmentation is derived from semantic segmen-
tation and can identify not only object classes but also their
instances [41], [42]. A basic instance segmentation method
uses an FCN to detect small windows that each include one
object [42]. Another method uses the recurrent architecture to
iteratively detect object regions based on previous detection
results [41]. Although instance segmentation and SOD simi-
larly detect object contours, instance segmentation disregards
their importance; therefore, the purposes of the approaches
has been shown to be different.

III. FUNDAMENTALS OF SOD
A. PASCAL-S DATASET
The PASCAL-S dataset contains images, their fixation data,
and their SOD maps with multiple values that can be used
ground truth (GT) for SOD-ID [10]. It contains 850 natural
images whose full segmentation masks are provided in [43].
The fixation data were obtained by applying an eye-tracker
to eight subjects that were instructed to perform a free-
viewing task for images. In the SOD experiment, 12 subjects
were given images and asked to highlight salient objects by
clicking on them. The pixels of the SOD maps have integer
values in [0, 12], and they are linearly normalized in [0, 255]
for the png format. Therefore, we believe that PASCAL-S is
an SOD-ID dataset with 13 degrees.

B. FCN METHODS
The FCN was introduced for image classification based on
Visual Geometry Group (VGG) networks in [44], and then
several FCN architectures were proposed for several applica-

(a) (b)

FIGURE 2: (a) Input image and (b) GT map of SOD-ID.

TABLE 1: Number and percentage of images in the
PASCAL-S dataset [10] with respect to the number of salient
objects.

♯ Salient objects 1 2 3 4 5 6 7+
♯ Images 300 227 136 72 43 28 44

Distribution (%) 35 27 16 8 5 3 5

tions [6], [35], [36], [39]. The VGG architecture consists of
five blocks that each have two or three convolutional layers
and a pooling layer. The FCN architecture is constructed by
replacing the last layer of the VGG architecture with a one-
channel convolutional layer. Some methods that apply merge
and convolution layers to the FCN obtain superior results
to past methods because the layers realize both shallow and
deep convolutions; thereby, they can capture both global and
local features [6], [39].

C. LOCATION-BIASED DETECTION
In SD and SOD, the location assumption is generally used
as prior information [7], [11], [13], [15], [25], [37]. Photog-
raphers generally center interesting objects in images, and
thus natural images often present salient areas at their center.
To exploit this tendency, some SOD methods apply higher
weights to salient pixels closer to the center of images [13],
[25]. Following this strategy, in an SD method, a location-
biased convolution layer was introduced in the FCN, which
obtained superior results [7].

D. RSOD
The CNN model detects the contours of salient objects and
estimates their multiple saliency values because of its archi-
tecture [26]. The architecture recursively calculates saliency
maps from coarse to fine levels, and finally fuses the resultant
saliency maps. The calculation units are learned using the
multi-stage GT of the saliency maps that is generated from
PASCAL-S by thresholding its saliency maps at various
values. Therefore, the fused maps have various pixel values
that reflect saliency levels from coarse to fine.

As an additional process, the method estimates the impor-
tance score for each salient object from the output saliency
map [26]. In basic terms, the score value is calculated by
averaging the saliency values of pixels within the object as

Rank(S(X)) =

∑
i∈ΩX

χi

NX
, (1)
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where S, X , ΩX , χi, and NX denote a predicted saliency
map, candidate salient object, set of indices of pixels that
belong to X , saliency value of the i-th pixel, and total
number of pixels in X , respectively. It is unknown whether
the calculated values are normalized because this is not
clearly described in [26]. Note that the authors used the GT
segmentation masks in PASCAL-S in this process.

In experiments, the method simply uses conventional
methods for evaluation. Spearman’s rank correlation coeffi-
cient [33] is used as the evaluation metric, and the resultant
scores are linearly normalized in [0, 1]. PASCAL-S with-
out images used in training is directly used for testing the
method.

IV. DISCUSSION ON SOD-ID
A. DEFINITION OF SOD-ID
We define SOD-ID as a technique that detects the contours
of salient objects and estimates their importance degree. Its
methods produce a saliency map whose pixel values repre-
sent the importance degree scores of objects to which they
belong. SOD-ID is mostly similar to SOD, but in contrast to
the binary maps of SOD, its GT saliency maps have several
values for N -degree objects, as shown in Fig. 2. N -degree
means that the maps have integer values in [0, N −1], where,
clearly, zero indicates that the pixel of the map belongs to
a non-salient object, and N -degree is linearly normalized
according to the coding format As mentioned in Section
III-A, PASCAL-S seems to be an SOD-ID dataset which
N = 13 according to experiments. Moreover, note that SOD-
ID is a generalized version of SOD; that is, SOD is an SOD-
ID in N = 2.

In this paper, N = 7 is empirically used based on the char-
acteristics of natural images. Table 1 shows the distribution of
natural images in PASCAL-S [10] with respect to the number
of salient objects within them, where the first, second, and
last rows denote the number of salient objects, number of
images that include salient objects of the corresponding
number in the first row, and distribution, respectively, and
“7+” in the eighth column indicates seven or more salient
objects. From Table 1, natural images typically contain six
or fewer salient objects. They rarely contain seven or more
salient objects, but in most cases, some objects in one image
have the same saliency levels. Therefore, because 7 degrees
adequately realizes SOD-ID for natural images, N = 7 is
generally valid. Clearly, the value of N can be fixed flexibly
for various image applications.

B. SIGNIFICANCE OF SOD-ID
SOD-ID is a generalization of SOD and more suitable for
image applications than SOD. People ordinarily rank objects
in an image with respect to their interests. Similarly, it has
been observed in experiments that subjects sometimes rec-
ognize salient objects as non-salient because of the objects’
locations. SOD-ID estimates general results of this ranking,
and therefore saliency information produced by SOD-ID
is more related to human behavior than SOD. Moreover,

(a) Input image

(b) Map of SOD (c) Map of SOD-ID

(d) Result based on (b) (e) Result based on (c)

FIGURE 3: Retargeting simulation for multi-object images
based on SOD and SOD-ID.

by thresholding with various parameters as post-processing,
SOD-ID produces various saliency maps of SOD. SOD-
ID, which is used as pre-processing, results in a variety of
saliency information useful to image applications, such as
retargeting, content-aware coding, and summarizing.

For instance, SOD-ID is clearly more suitable than SOD
for image retargeting from our experiments. Similar to Fig. 1,
Fig. 3 shows retargeting results according to [31] for a multi-
object image. The input image in Fig. 3 (a) represents “dogs
pull a sled and a human rides” and therefore its important
words are “dog,” “pull,” “sled,” “human,” and “ride.” Image
retargeting should retain important words and sentences for
input images in its results. In that sense, Fig. 3 (d) shows
a failure because the dog is not clearly visible and hence,
unfortunately, it represents the wrong sentence, “something
pulls a sled and a human rides.” By contrast, in Fig. 3 (e),
the retargeting result for SOD-ID, accurately represents the
original sentence, “dogs pull a sled and a human rides.” For
other images and retargeting methods, the results sometimes
demonstrate the superiority of SOD-ID for image retargeting,
as shown in Figs. 1 and 3.

C. SUPERVISED EVALUATION METRIC
The supervised evaluation metric of SOD-ID should measure
the degree of similarity with respect to segmentation and the
importance degree. Because SOD-ID methods aim to detect
the contours of salient objects, they should be evaluated in
the same manner as segmentation. Additionally, they should
be evaluated when calculating the correlation and similarity
of values for scores of the importance degree. An object that
has higher scores than another object in the GT should have
higher scores in the results of SOD-ID methods, and smaller
is better in terms of the difference between the score values
between the GT and the results of SOD-ID methods. Unfor-
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FIGURE 4: Overview of the proposed method.

tunately, because conventional rank correlation coefficients
evaluate the correlation but ignore the similarity of scores,
Spearman’s rank correlation coefficient, which is used in
[26], is unsuitable for calculating the importance degree.

In this paper, we propose an evaluation metric for the
importance degree of SOD-ID. As the evaluation metric for
segmentation, conventional methods, for example, the F-
measure, can be used. An evaluation metric for SOD-ID is
defined as a linear combination of the F-measure and the
proposed metric, or the parallel use of them. The proposed
metric F is defined based on simply combining metrics for
the correlation and score similarity as

F (vp,vt) = αR(vp,vt) + (1− α)I(vp,vt), (2)

where R, I , α, vp, and vt denote the correlation and similar-
ity metrics, a balancing free parameter, and vectors for which
each element is the score value of each object, respectively.
We use the Kendall rank correlation coefficient as R [34]
because it straightforwardly evaluates the correlation and
therefore is more suitable than Spearman’s rank correlation
coefficient. For I , we use the squared error and define it as

I(vp,vt) =
1

N

N∑
i=1

exp(−(vpi − vti)
2/(2σ2)), (3)

where N , vpi, and vti denote the number of objects, and
the i-th element of vp and vt, respectively, and σ is a
free parameter that controls the variance of the Gaussian
distribution. R that outputs real values in [−1, 1] is linearly
normalized in [0, 1], I has real values in [0, 1] because of (3),
and α is restricted in [0, 1], and hence F outputs real values
in [0, 1]. The metric proposition requires much experimental
evidence, but because of the limited space in this paper, the
validity of F is briefly shown in Section 6 and a detailed
discussion on this topic remains as future work.

TABLE 2: Scores for the estimation methods of the impor-
tance degree for the PASCAL-S dataset [10].

Sum. Ave.
Kendall score 0.846 0.726

Spearman’s score 0.864 0.737

TABLE 3: Construction details of the proposed CNN archi-
tecture.

Name Size Stride Channel
Conv. 1-1 3×3 1 64
Conv. 1-2 3×3 1 64

Pool. 1 2×2 2 64
Conv. 2-1 3×3 1 128
Conv. 2-2 3×3 1 128

Pool. 2 2×2 2 128
Conv. 3-1 3×3 1 256
Conv. 3-2 3×3 1 256

(a) Conv. 3-3 3×3 1 256
Pool 3 2×2 2 256

Conv. 4-1 3×3 1 512
Conv. 4-2 3×3 1 512
Conv. 4-3 3×3 1 512

Pool. 4 2×2 1 512
Conv. 5-1 3×3 1 512
Conv. 5-2 3×3 1 512
Conv. 5-3 3×3 1 512

(b) Conv. 6-1 3×3 1 512
Conv. 6-2 3×3 1 512
pPool. 1 2×2 2 512
pConv. 1 3×3 1 64
pPool. 2 2×2 4 512
pConv. 2 3×3 1 64

(c) pPool. 3 2×2 5 512
pConv. 3 3×3 1 64
Conv. 7-1 3×3 1 512
Conv. 7-2 3×3 1 64
Conv. 7-3 3×3 1 1

D. DATASET PREPARATION
To create SOD-ID datasets, the procedure of PASCAL-S
mentioned in Section III-A is suitable. The segmentation
masks are simply obtained manually, and the importance

VOLUME 4, 2016 5



Umeki et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5: Architecture of the proposed CNN method.
TABLE 4: Correlation scores of pairs of arbitrary vectors.

Vectors Spearman’s [33] Kendall [34] Prop. metric
[2,6,3] [1,5,3] 1.000 1.000 0.961
[4,1,6] [4,2,4] 0.834 0.667 0.748
[6,2,7] [2,1,3] 1.000 1.000 0.692
[2,1,3] [1,3,2] 0.250 0.333 0.562

degree is determined as follows: By the strict rules, the sub-
jects of experiments are asked to collect and rank interesting
objects in one image. The strict procedure requires several
subjects, but unfortunately, it is a difficult task for them.
By contrast, the procedure of PASCAL-S only asks subjects
to collect interesting objects. For an object, the number of
subjects that recognize it as salient is directly determined as
its values of the importance degree, and to create a GT map
of SOD-ID, pixels within each salient object have their scores
based uniformly on the segmentation mask. If M subjects are
applied, the resultant map has M degrees. This is simple and
useful, but a large number of subjects are required to create
general datasets.

To avoid experiments using subjects, we introduce a prepa-
ration procedure for the SOD-ID dataset based on existing
SD data. As mentioned above, subjective experiments have
the troublesome characteristic of requiring many people and
large costs. To avoid this, we use existing SD data to produce
the SOD-ID maps. The proposed procedure calculates the
sum of pixel values within objects in the GT maps of SD,
and resultant values are considered as their scores of the
importance degree, which is defined in one image as

Degi =

∑
j∈Ωi

sj

maxi{
∑

j∈Ωi
sj}

, (4)

where Degi, sj , and Ωi denote the score of the i-th object,
i-th pixel value of the SD map, and a set of indices of pixels
within the i-th object, respectively. To produce the SOD-ID
map, pixel values within the i-th object are uniformly set as
Degi, and the resultant map is linearly quantized using N .
Because the GT maps of SD represent the degree of saliency

for each pixel, the summation values within an object are
approximately recognized as the degree of interest for the
object. Similarly, a pixel value within an object in the GT
maps of SD is approximately considered as the number of
subjects that recognize the object and categorize it as salient,
and therefore, in the case of a large number of subjects,
the summation procedure is recognized as the same as that
of PASCAL-S for SOD mentioned in Section III-A. Based
on the above assumptions, we believe that the proposed
procedure is valid for creating SOD-ID datasets.

We experimentally show that the proposed procedure men-
tioned above has high validity compared with the RSOD
procedure mentioned in Section III-D [26]. Using these pro-
cedures, SOD-ID maps are produced using the full segmen-
tation masks and fixation data of PASCAL-S. Table 2 shows
this comparison, where “Sum.” and “Ave.” denote the results
of the proposed and RSOD procedures; that is, they show
values of the evaluation metrics between the SOD maps
of PASCAL-S and their resultant maps, respectively. For
simplicity, we use Spearman’s and Kendall rank correlation
coefficients as the metrics [33], [34]. From Table 2, the pro-
posed procedure is clearly better than the RSOD procedure
and thus our opinions mentioned above has been shown to be
valid.

V. PROPOSED SOD-ID METHOD
A. OVERVIEW

The proposed SOD-ID method is briefly shown in Fig. 4. The
system consists of three technical blocks: instance segmenta-
tion, SD, and importance degree estimation. First, instance
segmentation is applied to an input image to detect object
contours, and its arbitrary method can be used here such as
that in [41], [42], [48], [49]. Second, the salient regions of the
input image are detected by the proposed CNN method using
object contours detected in the first block. Finally, using the
results of the first and second blocks, the proposed method
outputs an SOD-ID map with N degrees through the esti-
mation block of the importance degree. The technical blocks
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TABLE 5: F-measure scores of the SOD methods for the DUTS dataset [45].

Image HDCT [15] RFCN [16] DHS [21] DSSOD [25] RSOD [26] Prop.
Image 1 0.120 0.253 0.745 0.608 0.000 0.000
Image 2 0.396 0.330 0.945 0.933 0.000 0.000
Image 3 0.732 0.794 0.750 0.748 0.875 0.875
Image 4 0.669 0.614 0.894 0.898 0.904 0.904
Average 0.521 0.509 0.761 0.746 0.711 0.686

TABLE 6: F-measure scores of the SOD methods for the PASCAL-S dataset [10].

Image HDCT [15] RFCN [16] DHS [21] DSSOD [25] RSOD [26] Prop.
Mini bike 0.875 0.704 0.879 0.911 0.840 0.840

Car 0.284 0.283 0.597 0.919 0.960 0.960
Dog 0.575 0.728 0.749 0.917 0.940 0.940

Horse 0.885 0.699 0.928 0.898 0.928 0.928
Traffic 0.687 0.688 0.772 0.935 0.965 0.965

Average 0.623 0.584 0.778 0.788 0.793 0.794

TABLE 7: F-measure scores of the SOD methods for the SALICON-based dataset [46], [47].

Image HDCT [15] RFCN [16] DHS [21] DSSOD [25] RSOD [26] Prop.
Parking 0.687 0.501 0.766 0.736 0.755 0.781

Party 0.565 0.684 0.817 0.736 0.902 0.937
Woman 0.696 0.719 0.876 0.731 0.936 0.936

Bag 0.702 0.753 0.839 0.876 0.944 0.944
Man 0.528 0.600 0.495 0.372 0.419 0.528

Baseball 0.784 0.654 0.842 0.873 0.776 0.941
Average 0.526 0.581 0.708 0.727

can be independently developed, and therefore the system
provides suitable expandability and serves as a fundamental
design of SOD-ID methods.

B. PROPOSED CNN METHOD FOR SD
In this section, we explain the proposed CNN method for SD
in the second block that uses the detected contours of the first
block. The architecture uses the contours as a part of the input
and extracts their multi-resolution features to estimate the
saliency values. The loss function imposes different weights
for object and background regions based on the contours.
Note that the proposed CNN method considers location bias
similar to conventional SD and SOD methods.

1) Architecture
Fig. 5 and Table 3 show the architecture of the proposed
CNN method and its parameters, respectively. Figs. 5 (a)–
(c) correspond to Tables3 (a)–(c), respectively. In Table 3,
“Conv.”, “Pool.”, and “p∗” indicate convolution, max pooling
layers, and the pyramid pooling module, respectively. The
rectified linear unit [50] is used as the activation function
in the convolution layers. A VGG-based method is used to
extract image features in Fig. 5 (a). The results of the first
block and the features after Pool.3, Pool.4, and Conv.5-3 are
merged along the channel direction, and input merged signals
into Conv. 6-1. The signals after Conv. 6-2 are transformed
using the pyramid pooling module proposed in [40], and
the resultant signals are resized to the same size as the
signals after Conv. 6-2. Finally, the resized signals and those

after Conv. 6-2 are merged along the channel direction, and
processed through Conv. 7-1, 2, and 3.

2) Loss Function
The loss function of the proposed CNN method assigns high
and medium weights for salient and object regions, respec-
tively, and by contrast, low weights to background regions
because they are generally uninteresting. The loss function L
is formulated as

L(w) =
1

N

N∑
i=1

∥∥∥∥∥∥
ϕ(xi)

maxϕ(xi)
− yi

β − (Oi + yi)

∥∥∥∥∥∥ , (5)

where yi, xi, Oi, ϕ(·), and β denote true saliencies, es-
timated saliencies, object region masks, a normalization
function, and a free parameter, respectively. The masks are
produced by binarizing signals of the instance segmentation
results. ϕ(·) normalizes the estimated saliency values in
[0, 1]. We generally set β to 2 or a value that is the maximum
of Oi+yi. If the i-th pixel is in a salient object, β−(Oi + yi)
is a low value, and hence this pixel is assigned a high weight.

3) Training
For training, the loss function in Section V-B2 and the
training dataset of COCO and SALICON were used [46],
[47]. COCO contains natural images and their segmentation
masks, and SALICON has saliency maps that correspond to
them. The maps were binarized using a threshold value of
τ = 0.15, and their elements corresponding to background
pixels, which were detected by the masks, were set to zero.
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TABLE 8: Scores for the estimation of the importance degree for the PASCAL-S dataset [10].

Spearman’s [33] Kendall [34] Prop. metric
Image RSOD [26] Prop. RSOD [26] Prop. RSOD [26] Prop.

Mini bike 0.869 0.936 0.908 0.956 0.925 0.948
Car 0.146 1.000 0.000 1.000 0.471 0.902
Dog 0.146 1.000 0.000 1.000 0.261 1.000

Horse 0.000 0.834 0.000 0.908 0.321 0.822
Traffic 0.380 1.000 0.000 1.000 0.402 0.971

Average 0.372 0.419 0.300 0.327 0.457 0.467
TABLE 9: Scores for the estimation of the importance degree for the SALICON-based dataset [46], [47].

Spearman’s [33] Kendall [34] Prop. metric
Image RSOD [26] Prop. RSOD [26] Prop. RSOD [26] Prop.

Parking 0.574 0.607 0.698 0.786 0.461 0.779
Party 0.394 0.555 0.691 0.741 0.430 0.698

Woman 0.000 0.583 0.000 0.754 0.118 0.501
Bag 0.028 0.815 0.000 0.887 0.128 0.865
Man 0.586 0.701 0.758 0.887 0.511 0.859

Baseball 0.868 0.901 0.900 0.947 0.793 0.924
Average 0.321 0.562 0.434 0.490 0.478 0.507

Stochastic gradient descent was used as optimizing, where
Nesterov momentum, the weight decay, and the learning
rate were set to 0.9, 0.5, and 10−3, respectively [51]. β in
the loss function was set to 2.3, which was experimentally
determined from the ratios of salient, object, and background
regions.

C. ESTIMATION OF THE IMPORTANCE DEGREE
In the proposed method, the estimation block process is
defined similarly to the proposed procedure in Section IV-D.
Object contours are already detected in the first block and
their saliency values are estimated in the second block. In the
third block, the values within one object contour are summed
and the result is its score of the importance degree as given
in (4). Similar to the proposed procedure, SOD-ID maps are
created based on the resultant scores and linearly quantized
with N .

VI. SIMULATION
In this section, we compare the performance of the proposed
method and state-of-the-art methods for SOD and SOD-
ID. We present the comparisons in Section VI-B and VI-C,
respectively, and before that, we discuss the validity of the
proposed metric in Section VI-A by presenting some exam-
ples. For this simulation, we used the instance segmentation
method proposed in [41] in the first block of the proposed
method because it is not recent but has high accuracy. Based
on Section IV-D, we introduced a dataset from the test sets
of COCO and SALICON, which contain images with seg-
mentation masks and their SD maps, respectively, where the
proposed dataset is called a SALICON-based dataset in this
section. Note that the proposed method is also represented by
Prop. in this section.

A. VALIDITY OF THE PROPOSED METRIC
As mentioned in Section IV-C, the validity of the proposed
metric is briefly shown in this section. Table 4 shows scores
of pairs of arbitrary vectors in Spearman’s and Kendall rank

correlation coefficients, and the proposed metric. In Table 4,
the pairs from the top to the bottom, respectively, indicate
various scenarios as follows: same rank and slightly different
value, slightly different rank and value, same rank and quite
different value, and quite different rank and slightly different
value. As mentioned in Section IV-C, SOD-ID metrics have
to simultaneously evaluate the rank correlation and the value
similarity. In that sense, from the first and third pairs, the pro-
posed metric only satisfies the above property. We observed
from the second and fourth pairs that the Kendall coefficient
is too sensitive to the rank difference to be used as the SOD-
ID metric. The fourth pair shows that the rank correlation
is quite different, but its values are almost the same and
hence the importance of objects is also considered to be
comparable. However, the score obtained using Spearman’s
coefficient is rather bad and its weight for the rank correlation
and the value similarity has been shown to be unbalanced.
The proposed metric is clearly more suitable to be used as
the SOD-ID metric than the two coefficients.

B. COMPARISON OF THE PROPOSED METHOD WITH
SOD METHODS

Settings: HDCT [15], RFCN [16], DHS [21], DSSOD [25],
and RSOD [26] were used as SOD methods for comparison.
The methods were applied to the test sets of the DUTS,
PASCAL-S, and SALICON-based datasets [10], [45]–[47],
and the results were evaluated using the F-measure [52].
To calculate the F-measure, it is required that the saliency
maps of the PASCAL-S and SALICON-based datasets, and
the results of the methods are binarized. Because we set
N = 7 in this paper and the maps of PASCAL-S have integer
values in [0, 255] with N = 13, objects whose scores of
the importance degree were one or more were recognized
as salient for the SALICON-based dataset and therefore the
maps of PASCAL-S were binarized with a threshold value
of 36. According to the above, the results of HDCT, RFCN,
DHS and DSSOD were binarized with a threshold value of
0.14, and for RSOD and Prop., the value was 1.
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Image HDCT [15] RFCN [16] DHS [21] DSSOD [25] RSOD [26] Prop. GT

FIGURE 6: Resultant saliency maps for the PASCAL-S dataset [10].

Evaluation: Tables 5, 6, and 7 show the F-measure scores
of the methods for each dataset, and Figs. 6 and 7 show the
images, their GT maps, and their results before threshold-
ing, where “Average” denotes the average values over all
the images in each dataset. The images in the PASCAL-
S and SALICON-based datasets generally contain multiple
objects, and by contrast, those in the DUTS dataset gener-
ally contain one large object or two objects. From Table 5,
unfortunately, Prop. had worse scores for DUTS. However,
Prop. outperformed the other methods in Tables 6 and 7, and
we observed in Figs. 6 and 7 that Prop. accurately estimated
object contours. Particularly, Prop. suppressed the inaccurate
estimation in “Parking” and “Party” in Fig. 7. Unfortunately,
the instance segmentation method often detected nothing for
DUTS because of its above characteristic, as shown in the up-
per half of Table 5. However, the results of Prop. except that
case were equivalent to those of the other methods. Prop. can
solve this problem using an efficient instance segmentation
method that accurately detects objects.

C. COMPARISON OF THE PROPOSED METHOD WITH
SOD-ID METHOD

Settings: In SOD-ID, Prop. was compared with RSOD which
is the only existing SOD-ID method. The methods were
applied to the PASCAL-S and SALICON-based datasets, and
the results were evaluated using Spearman’s and Kendall
rank correlation coefficients and the proposed metric (2),
where α and σ were experimentally set to 0.5 and 2.0, respec-
tively. Clearly, the GT and resultant maps were uniformly
normalized with N = 7.

Evaluation: Tables 8 and 9 show the scores of RSOD and
Prop. in the metrics for each dataset, and Figs. 6 and 7 show
the images and GT maps in the datasets, and their resultant
maps, where high values of pixels in the maps indicate high

scores of the importance degree. Note that the rows in Tables
8 and 9 correspond to those in Figs. 6 and 7, respectively.
From Table 8 and 9, Prop. clearly outperformed RSOD in
terms of the metrics. From Figs. 6 and 7, Prop. accurately
estimated the importance degree of objects. Particularly, in
“Party,” “Woman,” and “Man,” Prop. estimated the impor-
tance degree of small objects that had low saliency scores
and were located in highly salient objects.

VII. CONCLUSION
In this paper, we introduced SOD-ID via discussing its defi-
nition, significance, dataset condition, and evaluation metric
property, and proposed its dataset, metric, and method. The
proposed metric consists of the Kendall rank correlation coef-
ficient and mean squared error, and simultaneously evaluates
the rank correlation and value similarity for SOD-ID. The
proposed dataset is generated using the proposed procedure
based on the COCO and SALICON datasets. The proposed
method of SOD-ID consists of three processing blocks: in-
stance segmentation, SD, and importance degree estimation.
We proposed a CNN-based SD method for the second block
that uses the results of the first block. With this strategy,
the proposed method objectively outperformed state-of-the-
art methods with respect to SOD and achieved an accurate
SOD-ID.
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