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Abstract Performance assessments, in which raters assess examinee perfor-
mance for given tasks, have a persistent difficulty in that ability measurement
accuracy depends on rater characteristics. To address this problem, various
item response theory (IRT) models that incorporate rater characteristic pa-
rameters have been proposed. Conventional models partially consider three
typical rater characteristics: severity, consistency, and range restriction. Each
are important to improve model fitting and ability measurement accuracy,
especially when the diversity of raters increases. However, no models capa-
ble of simultaneously representing each have been proposed. One obstacle for
developing such a complex model is the difficulty of parameter estimation.
Maximum likelihood estimation, which is used in most conventional models,
generally leads to unstable and inaccurate parameter estimations in complex
models. Bayesian estimation is expected to provide more robust estimations.
Although it incurs high computational costs, recent increases in computa-
tional capabilities and the development of efficient Markov chain Monte Carlo
(MCMC) algorithms make its use feasible. We thus propose a new IRT model
that can represent all three typical rater characteristics. The model is formu-
lated as a generalization of the many-facet Rasch model. We also develop a
Bayesian estimation method for the proposed model using No-U-Turn Hamil-
tonian Monte Carlo, a state-of-the-art MCMC algorithm. We demonstrate the
effectiveness of the proposed method through simulation and actual data ex-
periments.
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1 Introduction

In various assessment contexts, there is increased need to measure practical,
higher-order abilities such as problem solving, critical reasoning, and creative
thinking skills (e.g., Muraki, Hombo, & Lee, 2000; Myford & Wolfe, 2003;
Kassim, 2011; Bernardin, Thomason, Buckley, & Kane, 2016; Uto & Ueno,
2016). To measure such abilities, performance assessments in which raters
assess examinee outcomes or processes for performance tasks have attracted
much attention (Muraki et al., 2000; Palm, 2008; Wren, 2009). Performance
assessments have been used in various formats such as essay writing, oral
presentations, interview examinations, and group discussions.

In performance assessments, however, difficulty persists in that ability mea-
surement accuracy strongly depends on rater and task characteristics, such as
rater severity, consistency, range restriction, task difficulty, and discrimina-
tion (e.g., Saal, Downey, & Lahey, 1980; Myford & Wolfe, 2003, 2004; Eckes,
2005; Kassim, 2011; Suen, 2014; Shah et al., 2014; Nguyen, Uto, Abe, & Ueno,
2015; Bernardin et al., 2016). Therefore, improving measurement accuracy re-
quires ability estimation considering the effects of those characteristics (Muraki
et al., 2000; Suen, 2014; Uto & Ueno, 2016).

For this reason, item response theory (IRT) models that incorporate rater
and task characteristic parameters have been proposed (e.g., Uto & Ueno,
2016; Eckes, 2015; Patz & Junker, 1999; Linacre, 1989). One representative
model is the many-facet Rasch model (MFRM) (Linacre, 1989). Although
several MFRM variations exist (Myford & Wolfe, 2003, 2004; Eckes, 2015), the
most common formation is defined as a rating scale model (RSM) (Andrich,
1978) that incorporates rater severity and task difficulty parameters. This
model assumes a common interval rating scale for all raters, but it is known
that in practice, rating scales vary among raters due to the effects of range
restriction, a common rater characteristic indicating the tendency for raters to
overuse a limited number of rating categories (Myford & Wolfe, 2003; Kassim,
2011; Eckes, 2005; Saal et al., 1980; Rahman, Ahmad, Yasin, & Hanafi, 2017).
Therefore, this model does not fit data well when raters with a range restriction
exist, lowering ability measurement accuracy. To address this problem, another
MFRM formation that relaxes the condition for an equal-interval rating scale
for raters has been proposed (Linacre, 1989). This model, however, still makes
assumptions that might not be satisfied, namely a same rating consistency for
all raters and same discrimination power for all tasks (Uto & Ueno, 2016; Patz,
Junker, Johnson, & Mariano, 2002). To relax these assumptions, an IRT model
that incorporates parameters for rater consistency and task discrimination has
also been proposed (Uto & Ueno, 2016). Performance declines when raters with
range restrictions exist, however, because like conventional MFRM the model
assumes equal interval scales for raters.

The three rater characteristics assumed in the conventional models—severity,
range restriction, and consistency—are known to generally occur when rater
diversity increases (Myford & Wolfe, 2003; Kassim, 2011; Eckes, 2005; Saal et
al., 1980; Uto & Ueno, 2016; Rahman et al., 2017; Uto & Ueno, 2018a), and
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ignoring any one will decrease model fitting and measurement accuracy. How-
ever, no models capable of simultaneously considering all these characteristics
have been proposed so far.

One obstacle for developing such a model is the difficulty of parameter esti-
mation. The MFRM and its extensions conventionally use maximum likelihood
estimations. However, this generally leads to unstable, inaccurate parameter
estimations in complex models. For complex models, a Bayesian estimation
method called expected a posteriori (EAP) estimation generally provides more
robust estimations (Uto & Ueno, 2016; Fox, 2010). EAP estimation involves
solutions to high-dimensional multiple integrals, and thus incurs high compu-
tational costs, but recent increases in computational capabilities and the de-
velopment of efficient algorithms such as Markov chain Monte Carlo (MCMC)
make it feasible. In IRT studies, EAP estimation using MCMC has been used
for hierarchical Bayesian IRT, multidimensional IRT, and multilevel IRT (Fox,
2010).

We therefore propose a new IRT model that can represent all three rater
characteristics and applies a developed Bayesian estimation method using
MCMC. Specifically, the proposed model is formulated as a generalization
of the MFRM without equal interval rating scales for raters. The proposed
model has the following benefits:

1. Model fitting is improved for an increased variety of raters, because the
characteristics of each rater can be more flexibly represented.

2. More accurate ability measurements will be provided when the variety of
raters increases, because abilities can be more precisely estimated consid-
ering the effects of each rater’s characteristics.

We also present a Bayesian estimation method for the proposed model us-
ing No-U-Turn Hamiltonian Monte Carlo, a state-of-the-art MCMC algo-
rithm (Hoffman & Gelman, 2014). We further demonstrate that the method
can appropriately estimate model parameters even when the sample size is
relatively small, such as the case of 30 examinees, 3 tasks, and 5 raters.

2 Data

This study assumes that performance assessment data X consist of a rat-
ing xijr ∈ K = {1, 2, · · · ,K} assigned by rater r ∈ R = {1, 2, · · · , R}
to performance of examinee j ∈ J = {1, 2, · · · , J} for performance task
i ∈ I = {1, 2, · · · , I}. Therefore, data X are described as

X = {xijr|xijr ∈ K ∪ {−1}, i ∈ I, j ∈ J , r ∈ R}, (1)

where xijr = −1 represents missing data.
This study aims to accurately estimate examinee ability from rating data

X. In performance assessments, however, a difficulty persists in that ability
measurement accuracy strongly depends on rater and task characteristics (e.g.,
Saal et al., 1980; Myford & Wolfe, 2003; Eckes, 2005; Kassim, 2011; Suen,



4 Masaki Uto, Maomi Ueno

2014; Shah et al., 2014; Bernardin et al., 2016; DeCarlo, Kim, & Johnson,
2011; Crespo, Pardo, Pérez, & Kloos, 2005).

3 Common rater and task characteristics

The following are common rater characteristics on which ability measurement
accuracy generally depends:

1. Severity: The tendency to give consistently lower ratings than are justified
by performance.

2. Consistency: The extent to which the rater assigns similar ratings to per-
formances of similar quality.

3. Range restriction: The tendency to overuse a limited number of rating cat-
egories. Special cases of range restriction are the central tendency, namely
a tendency to overuse the central categories, and the extreme response
tendency, a tendency to prefer endpoints of the response scale (Elliott,
Haviland, Kanouse, Hambarsoomian, & Hays, 2009).

The following are typical task characteristics on which accuracy depends:

1. Difficulty: More difficult tasks tend to receive lower ratings.
2. Discrimination: The extent to which different levels of the ability to be

measured are reflected in task outcome quality.

To estimate examinee abilities while considering these rater and task char-
acteristics, item response theory (IRT) models that incorporate parameters
representing those characteristics have been proposed (e.g., Uto & Ueno, 2016;
Eckes, 2015; Patz & Junker, 1999; Linacre, 1989). Before introducing these
models, the following section describes the conventional IRT model on which
they are based.

4 Item response theory

IRT (Lord, 1980), which is a test theory based on mathematical models, has
been increasingly used with the widespread adoption of computer testing. IRT
hypothesizes a functional relationship between observed examinee responses to
test items and latent ability variables that are assumed to underlie the observed
responses. IRT models provide an item response function that specifies the
probability of a response to a given item as a function of latent examinee
ability and the item’s characteristics. IRT offers the following benefits:

1. It is possible to estimate examinee ability while considering characteristics
of each test item.

2. Examinee responses to different test items can be assessed on the same
scale.

3. Missing data can be easily estimated.
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IRT has traditionally been applied to test items for which responses can be
scored as correct or incorrect, such as multiple-choice items. In recent years,
however, there have been attempts to apply polytomous IRT models to perfor-
mance assessments (Muraki et al., 2000; Matteucci & Stracqualursi, 2006; De-
Carlo et al., 2011). The following subsections describe two representative poly-
tomous IRT models: the generalized partial credit model (GPCM) (Muraki,
1997) and the graded response model (GRM) (Samejima, 1969).

4.1 Generalized partial credit model

The GPCM gives the probability that examinee j receives score k for test item
i as

Pijk =
exp

∑k
m=1 [αi(θj − βim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βim)]
, (2)

where αi is a discrimination parameter for item i, βik is a step difficulty pa-
rameter denoting difficulty of transition between scores k−1 and k in the item,
and θj is the latent ability of examinee j. Here, βi1 = 0 for each i is given for
model identification.

Decomposing the step difficulty parameter βik to βi + dik, the GPCM is
often described as

Pijk =
exp

∑k
m=1 [αi(θj − βi − dim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βi − dim)]
, (3)

where βi is a positional parameter representing the difficulty of item i and dik
is a step parameter denoting difficulty of transition between scores k − 1 and
k for item i. Here, di1 = 0 and

∑K
k=2 dik = 0 for each i are given for model

identification.
The GPCM is a generalization of the partial credit model (PCM) (Masters,

1982) and the rating scale model (RSM) (Andrich, 1978). The PCM is a special
case of the GPCM, where αi = 1.0 for all items. Moreover, the RSM is a special
case of PCM, where βik is decomposed to βi + dk. Here, dk is a category
parameter that denotes difficulty of transition between categories k− 1 and k.

4.2 Graded response model

The GRM is another polytomous IRT model that has item parameters similar
to those of the GPCM. The GRM gives the probability that examinee j obtains
score k for test item i as

Pijk = P ∗
ijk−1 − P ∗

ijk, (4)
P ∗
ijk = 1

1+exp (−αi(θj−bik))
k = 1, · · · ,K − 1,

P ∗
ij0 = 1,

P ∗
ijK = 0,

(5)
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Fig. 1 IRCs of the GPCM for four items with different parameters.

Table 1 Parameters used in Fig. 1.

αi βi di2 di3 di4 di5
Item 1 1.5 0.0 −1.5 0.5 0.8 1.2
Item 2 1.5 1.5 −1.5 0.5 0.8 1.2
Item 3 0.5 0.0 −1.5 0.5 0.8 1.2
Item 4 1.5 0.0 −1.5 0.5 0.0 2.0

In these equations, bik is the upper-grade threshold parameter for category k
of item i, indicating the difficulty of obtaining a category greater than or equal
to k for item i. The order of difficulty parameters is bi1 < bi2 < · · · < biK−1.

4.3 Interpretation of item parameters

This subsection presents item characteristic parameters based on the Eq. (3)
form of the GPCM, which has the most item parameters of the models de-
scribed above.

Figure 1 depicts item response curves (IRCs) of the GPCM for four items
with the parameters presented in Table 1, with the horizontal axis showing
latent ability θ and the vertical axis showing probability Pijk. The IRCs show
that examinees with lower (higher) ability tend to obtain lower (higher) scores.

The difficulty parameter βi controls the location of the IRC. As the value
of this parameter increases, the IRC shifts to the right. Comparing the IRCs
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for Item 2 with those for Item 1 shows that obtaining higher scores is more
difficult in items with higher difficulty parameter values.

Item discrimination parameter αi controls differences in response proba-
bilities among the rating categories. The IRCs for Item 3 in Fig. 1 show that
lower item discriminations indicate smaller differences. This trend implies in-
creased randomness of ratings assigned to examinees for low-discrimination
items. Low-discrimination items generally lower ability measurement accuracy,
because observed data do not necessarily correlate with true ability.

Parameter dik represents the location on the θ scale at which the adjacent
categories k and k − 1 are equally likely to be observed (Sung & Kang, 2006;
Eckes, 2015). Therefore, when the difference di(k+1) − dik increases, the prob-
ability of obtaining category k increases over widely varying ability scales. In
Item 4, the response probability for category 4 had a higher value than those
for other items, because di5 − di4 is relatively larger.

5 IRT models incorporating rater parameters

As described in Section 2, this study applies IRT models to three-way data X
comprising examinees × tasks × raters. However, the models introduced above
are not directly applicable to such data. To address this problem, IRT models
that incorporate rater characteristic parameters have been proposed (Ueno &
Okamoto, 2008; Uto & Ueno, 2016; Patz et al., 2002; Patz & Junker, 1999;
Linacre, 1989). In these models, item parameters are regarded as task param-
eters.

The MFRM (Linacre, 1989) is the most common IRT model that incor-
porates rater parameters. The MFRM belongs to the family of Rasch mod-
els (Rasch, 1980), including the RSM and the PCM introduced in Subsec-
tion 4.1. The MFRM has been conventionally used for analyzing various per-
formance assessments (e.g., Myford & Wolfe, 2003, 2004; Eckes, 2005; Saal et
al., 1980; Eckes, 2015).

Several MFRM variations exist (Myford & Wolfe, 2003, 2004; Eckes, 2015),
but the most common formation is defined as a RSM that incorporates a rater
severity parameter. This MFRM provides the probability that rater r responds
in category k to examinee j’s performance for task i as

Pijrk =
exp

∑k
m=1 [θj − βi − βr − dm]∑K

l=1 exp
∑l

m=1 [θj − βi − βr − dm]
, (6)

where βi is a positional parameter representing the difficulty of task i, βr

denotes the severity of rater r, and βr=1 = 0, d1 = 0, and
∑K

k=2 dk = 0 are
given for model identification.

A unique feature of this model is that it is defined using the fewest param-
eters among existing IRT models with rater parameters. The accuracy of pa-
rameter estimation generally increases as the number of parameters per data
decreases (Waller, 1981; Bishop, 2006; Reise & Revicki, 2014; Uto & Ueno,
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2016). Consequently, this model is expected to provide accurate parameter
estimations if it fits well to the given data.

Because it assumes an equal interval scale for raters, however, this model
does not fit well to data when rating scales vary across raters, lowering mea-
surement accuracy. Differences in rating scales among raters are typically
caused by the effects of range restriction (Myford & Wolfe, 2003; Kassim,
2011; Eckes, 2005; Saal et al., 1980; Rahman et al., 2017). To relax the restric-
tion of equal-interval rating scale for raters, another formation of the MFRM
has been proposed (Linacre, 1989). That model provides probability Pijrk as

Pijrk =
exp

∑k
m=1 [θj − βi − βr − drm]∑K

l=1 exp
∑l

m=1 [θj − βi − βr − drm]
, (7)

where, drk is the difficulty of transition between categories k−1 and k for rater
r, reflecting how rater r tends to use category k. Here, βr=1 = 0, dr1 = 0, and∑K

k=2 drk = 0 are given for model identification. For convenience, we refer to
this model as “rMFRM” below.

This model, however, still assumes that rating consistency is the same for
all raters and that all tasks have the same discriminatory power, assumptions
that might not be satisfied in practice (Uto & Ueno, 2016). To relax these
constraints, an IRT model that allows differing rater consistency and task
discrimination power has been proposed (Uto & Ueno, 2016). The model is
formulated as an extension of GRM, and provides the probability Pijrk as

Pijrk = P ∗
ijrk−1 − P ∗

ijrk, (8)
P ∗
ijrk = 1

1+exp(−αiαr(θj−bik−εr))
k = 1, · · · ,K − 1,

P ∗
ijr0 = 1,

P ∗
ijrK = 0,

where αi is a discrimination parameter for task i, αr reflects the consistency
of rater r, εr represents the severity of rater r, and bik denotes the difficulty
of obtaining score k for task i (with bi1 < bi2 < · · · < biK−1). Here, αr=1 = 1
and ε1 = 0 are assumed for model identification. For convenience, we refer to
this model as “rGRM” below.

5.1 Interpretation of rater parameters

This subsection describes how the above models represent the typical rater
characteristics introduced in Section 3.

Rater severity is represented as βr in MFRM and rMFRM and as ϵr in
rGRM. The IRC shifts to the right as this parameter values increases, indicat-
ing that raters tend to consistently assign low scores. To illustrate this point,
Fig. 2 shows IRCs of the MFRM for raters with different severity. Here, we
used a low severity value βr = −1.0 for the left panel and a high value βr = 1.0
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Fig. 2 IRCs of MFRM for two raters with different severity.
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Fig. 3 IRCs of rMFRM for two raters with different range restriction characteristics.

for the right panel. Other model parameters were the same. Figure 2 shows
that the IRC for a severe rater is farther right than that for the lenient rater.

Only rMFRM describes the range restriction characteristic, represented
as drk. When dr(k+1) and drk are closer, the probability of responding with
category k decreases. Conversely, as the difference dr(k+1) − drk increases, the
response probability for category k also increases. Figure 3 shows IRCs of
the rMFRM for two raters with different drk values. We used dr2 = −1.5,
dr3 = 0.0, dr4 = 0.5, and dr5 = 1.5 for the left panel, and dr2 = −2.0,
dr3 = −1.0, dr4 = 1.0, and dr5 = 1.5 for the right panel. The left-side item
has relatively larger values of dr3−dr2 and dr5−dr4, thus increasing response
probabilities for categories 2 and 4 in the IRC. The right-side item shows that
the response probability for category 3 is increased, because dr4 − dr3 has a
larger value. The points presented above illustrate that parameter drk reflects
the range restriction characteristic.

rGRM represents rater consistency as αr, with lower values indicating
smaller differences in response probabilities between the rating categories. This
reflects that raters with a lower consistency parameter have stronger tenden-
cies to assign different ratings to examinees with similar ability levels. Figure 4
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Fig. 4 IRCs of rGRM for two raters with different consistency.

Table 2 Rater and task characteristics assumed in each model.

Rater characteristics Task characteristics
Severity Consistency Range Difficulty Discrimination

restriction
MFRM ✓ ✓
rMFRM ✓ ✓ ✓
rGRM ✓ ✓ ✓ ✓

shows IRCs of rGRM for two raters with different consistency levels. The left
panel shows a high consistency value αr = 2.0 and the right panel shows a
low value αr = 0.8. In the right-side IRC, differences in response probabilities
among the categories are small.

The interpretation of task characteristics is similar to that of the item
characteristic parameters described in Subsection 4.3.

5.2 Remaining problems

Table 2 summarizes the rater and task characteristics considered in the con-
ventional models. This table shows that all the models can represent the task
difficulty and rater severity, despite the following differences:

1. MFRM is the simplest model that incorporates only task difficulty and
rater severity parameters.

2. rMFRM is the only model that can consider the range restriction charac-
teristic.

3. A unique feature of rGRM is its incorporation of rater consistency and task
discrimination.

Table 2 also shows that none of these models can simultaneously consider
all three rater parameters, which are known to generally occur when rater
diversity increases (Myford & Wolfe, 2003; Kassim, 2011; Eckes, 2005; Saal
et al., 1980; Uto & Ueno, 2016; Rahman et al., 2017; Uto & Ueno, 2018a).
Thus, ignoring any one will decrease model fitting and ability measurement
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accuracy. We thus propose a new IRT model that incorporates all three rater
parameters.

5.3 Other statistical models for performance assessment

The models described above have been proposed as IRT models that directly
incorporate rater parameters. A different model, the hierarchical rater model
(HRM) (Patz et al., 2002; DeCarlo et al., 2011), introduces an ideal rating for
each outcome and hierarchical structure data modeling. In the HRM, however,
the number of ideal ratings, which should be estimated from given rating
data, rapidly increases as the number of examinees or tasks increases. Ability
and parameter estimation accuracies are generally reduced when the number
of parameters per data increases. Therefore, accurate estimations under the
HRM are more difficult than those for the models introduced above.

Several statistical models similar to the HRM have been proposed with-
out IRT (Piech et al., 2013; Goldin, 2012; Desarkar, Saxena, & Sarkar, 2012;
Ipeirotis, Provost, & Wang, 2010; Lauw, Lim, & Wang, 2007; Abdel-Hafez &
Xu, 2015; Chen, Guo, Tseng, & Yang, 2011; Baba & Kashima, 2013). However,
those models cannot estimate examinee ability, because they do not incorpo-
rate an ability parameter.

From the above, we are not concerned with the models described in this
subsection.

6 Proposed model

To address the problems described in Subsection 5.2, we propose a new IRT
model that incorporates the three rater characteristic parameters. The pro-
posed model is formulated as a rMFRM that incorporates a rater consistency
parameter and further incorporates a task discrimination parameter like that
in rGRM. Specifically, the proposed model provides the probability that rater
r assigns score k to examinee j’s performance for task i as

Pijrk =
exp

∑k
m=1 [αrαi(θj − βi − βr − drm)]∑K

l=1 exp
∑l

m=1 [αrαi(θj − βi − βr − drm)]
, (9)

In the proposed model, rater consistency, severity, and range restriction char-
acteristics are respectively represented as αr, βr, and drk. Interpretations of
these parameters are as described in Subsection 5.1.

The proposed model entails a non-identifiability problem, meaning that pa-
rameter values cannot be uniquely determined because different value sets can
give same response probability. For the proposed model without task param-
eters, parameters are identifiable by assuming a specific distribution for the
ability and constraining dr1 = 0 and

∑K
k=2 drk = 0 for each r, because this is

consistent with conventional GPCM in which item parameters are regarded as
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rater parameters. However, the proposed model still has indeterminacy of the
scale for αrαi and that of the location for βi+βr, even when these constraints
are given. Specifically, the response probability Pijrk with αr and αi engenders
the same value of Pijrk with α′

r = αrc and α′
i = αi

c for any constant c, be-
cause α′

rα
′
i = (αrc)

αi

c = αrαi. Similarly, the response probability with βi and
βr engenders the same value of Pijrk with β′

i = βi + c and β′
r = βr − c for any

constant c, because β′
i+β′

r = (βi+c)+(βr−c) = βi+βr. Scale indeterminacy,
as in the αrαi case, is known to be removable by fixing one parameter or by
restricting the product of some parameters (Fox, 2010). Furthermore, location
indeterminacy, as in the βi + βr case, is solvable by fixing one parameter or
by restricting the mean of some parameters (Fox, 2010). This study therefore

uses the restrictions
∏I

i=1 αi = 1,
∑I

i=1 βi = 0, dr1 = 0, and
∑K

k=2 drk = 0
for model identification, in addition to assuming a specific distribution for the
ability.

The proposed model improves model fitting when the variety of raters
increases, because the characteristics of each rater can be more flexibly repre-
sented. It also more accurately measures ability when rater variety increases,
because it can estimate ability by more precisely reflecting rater character-
istics. Note that ability measurement is improved only when the decrease in
model misfit by increasing parameters exceeds the increase in parameter esti-
mation errors caused by the decrease in data per parameter. This property is
known as the bias–accuracy tradeoff (van der Linden, 2016a).

7 Parameter estimation

This section presents the parameter estimation method for the proposed model.
Marginal maximum likelihood estimation using an EM algorithm is a com-

mon method for estimating IRT model parameters (Baker & Kim, 2004). How-
ever, for complex models like that used in this study, EAP estimation, a form
of Bayesian estimation, is known to provide more robust estimations (Uto &
Ueno, 2016; Fox, 2010).

EAP estimates are calculated as the expected value of the marginal pos-
terior distribution of each parameter (Fox, 2010; Bishop, 2006). The posterior
distribution in the proposed model is

g(θj , logαi, logαr,βi,βr,drk|X)

∝ L(X|θj , logαi, logαr,βi,βr,drk)g(θj |τθ)
g(logαi|ταi

)g(logαr|ταr
)g(βi|τβi

)g(βr|τβr
)g(drk|τd), (10)

where

L(X|θj , logαi, logαr,βi,βr,drk) = ΠJ
j=1Π

I
i=1Π

R
r=1Π

K
k=1(Pijrk)

zijrk , (11)

zijrk =

{
1 : xijr = k,

0 : otherwise.
(12)
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Therein, θj = {θj | j ∈ J }, logαi = {logαi | i ∈ I}, βi = {βi | i ∈ I},
logαr = {logαr | r ∈ R}, βr = {βr | r ∈ R}, and drk = {drk | r ∈ R, k ∈ K}.
Here, g(S|τS) =

∏
s∈S g(s|τS) (where S is a set of parameters) indicates a

prior distribution. τs is a hyperparameter for parameter s, which is arbitrarily
determined to reflecting analyst’s subjectivity.

The marginal posterior distribution for each parameter is derived marginal-
izing across all parameters except the target one. For a complex IRT model,
however, it is generally infeasible to derive the marginal posterior distribu-
tion or to calculate it using numerical analysis methods such as the Gaussian
quadrature integral, because doing so requires solutions to high-dimensional
multiple integrals. MCMC, a random sampling–based estimation method, can
be used to address this problem. The effectiveness of MCMC has been demon-
strated in various fields (Bishop, 2006; Brooks, Gelman, Jones, & Meng, 2011;
Uto, Louvigné, Kato, Ishii, & Miyazawa, 2017; Louvigné, Uto, Kato, & Ishii,
2018). In IRT studies, MCMC has been used for complex models such as hier-
archical Bayesian IRT, multidimensional IRT, and multilevel IRT (Fox, 2010;
Uto, 2019).

7.1 MCMC algorithm

The Metropolis-Hastings-within-Gibbs sampling method (Gibbs/MH) (Patz
& Junker, 1999) has been commonly used as a MCMC algorithm for param-
eter estimation in IRT models. The algorithm is simple and easy to imple-
ment (Patz & Junker, 1999; Zhang, Xie, You, & Huang, 2011; Cai, 2010), but
it requires long times to converge to the target distribution because it explores
the parameter space via an inefficient random walk (Hoffman & Gelman, 2014;
Girolami & Calderhead, 2011).

The Hamiltonian Monte Carlo (HMC) is an alternative MCMC algorithm
with high efficiency (Brooks et al., 2011). Generally, HMC quickly converges
to a target distribution in complex high-dimensional problems if two hand-
tuned parameters, namely step size and simulation length, are appropriately
selected (Neal, 2010; Hoffman & Gelman, 2014; Girolami & Calderhead, 2011).
In recent years, the No-U-Turn (NUT) sampler (Hoffman & Gelman, 2014), an
extension of HMC that eliminates hand-tuned parameters, has been proposed.
The “Stan” software package (Carpenter et al., 2017) makes implementation
of a NUT-based HMC easy. This algorithm has thus recently been used for
parameter estimations in various statistical models, including IRT models (Luo
& Jiao, 2018; Jiang & Carter, 2019).

We therefore use a NUT-based MCMC algorithm for parameter estima-
tions in the proposed model. The estimation program was implemented in
RStan (Stan Development Team, 2018). The developed Stan code is provided
in an Appendix. In this study, the prior distributions are set as θj , logαi,
logαr, βi, βr, and drk ∼ N(0.0, 1.02), where N(µ, σ2) is a normal distribution
with mean µ and standard deviation σ. Furthermore, we calculate EAP esti-
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mates as the mean of parameter samples obtained from 500 to 1,000 periods
of three independent MCMC chains.

7.2 Accuracy of parameter recovery

This subsection evaluates parameter recovery accuracy under the proposed
model using the MCMC algorithm. The experiments were conducted as fol-
lows:

1. Randomly generate true parameters for the proposed model from the dis-
tributions described in Subsection 7.1.

2. Randomly sample rating data given the generated parameters.
3. Using the data, estimate the model parameters by the MCMC algorithm.
4. Calculate root mean square deviations (RMSEs) and biases between the

estimated and true parameters.
5. Repeat the above procedure ten times, then calculate average values of the

RMSEs and biases.

The above experiment was conducted while changing numbers of exami-
nees, tasks, and raters as J ∈ {30, 50, 100}, I ∈ {3, 4, 5}, and R ∈ {5, 10, 30}.
The number of categories K was fixed to five.

Table 3 shows the results, which confirm the following tendencies:

1. The accuracy of parameter estimation tends to increase with the number
of examinees.

2. The accuracy of ability estimation tends to increase with the number of
tasks or raters.

These tendencies are consistent with those presented in previous studies (Uto
& Ueno, 2018a, 2016).

Furthermore, we can confirm that the average biases were nearly zero in
all cases, indicating no overestimation or underestimation of parameters. We
also confirmed the Gelman–Rubin statistic R̂ (Gelman & Rubin, 1992; Gelman
et al., 2013), which is generally used as a convergence diagnostic. Values for
these statistics were less than 1.1 in all cases, indicating that the MCMC runs
converged.

From the above, we conclude that the MCMC algorithm can appropriately
estimate parameters for the proposed model.

8 Simulation experiments

This section describes a simulation experiment for evaluating the effectiveness
of the proposed model.

This experiment compares the model fitting and ability estimation accu-
racy using simulation data created to imitate behaviors of raters with specific
characteristics. Specifically, we examine how rater consistency and range re-
strictions affect the performance of each model. Rater severity is not examined
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Table 3 Results of the parameter recovery experiment.

RMSE Average bias
J I R θ αi αr βi βr βrk Avg. θ αi αr βi βr βrk Avg.
30 3 5 0.23 0.12 0.39 0.07 0.09 0.34 0.21 -0.01 0.00 -0.16 0.00 0.00 0.00 -0.03

10 0.17 0.06 0.36 0.06 0.11 0.35 0.18 -0.01 0.00 -0.09 0.00 -0.01 0.00 -0.02
30 0.11 0.03 0.41 0.04 0.12 0.41 0.19 0.00 0.00 -0.08 0.00 0.01 0.00 -0.01

4 5 0.22 0.25 0.31 0.10 0.14 0.30 0.22 0.00 -0.06 -0.21 0.00 0.01 0.00 -0.04
10 0.15 0.08 0.43 0.08 0.13 0.36 0.20 0.00 0.00 0.13 0.00 -0.01 0.00 0.02
30 0.10 0.06 0.31 0.04 0.10 0.37 0.16 0.01 -0.01 -0.09 0.00 0.00 0.00 -0.01

5 5 0.19 0.23 0.27 0.10 0.12 0.31 0.20 0.00 -0.06 -0.05 0.00 -0.01 0.00 -0.02
10 0.14 0.09 0.27 0.06 0.10 0.30 0.16 0.00 0.00 -0.05 0.00 0.01 0.00 -0.01
30 0.08 0.05 0.30 0.04 0.11 0.32 0.15 0.00 0.00 0.07 0.00 0.00 0.00 0.01

50 3 5 0.23 0.07 0.26 0.06 0.12 0.33 0.18 0.00 -0.01 -0.05 0.00 0.01 0.00 -0.01
10 0.19 0.05 0.31 0.06 0.11 0.38 0.18 0.00 0.00 -0.13 0.00 0.00 0.00 -0.02
30 0.10 0.04 0.25 0.03 0.09 0.34 0.14 0.01 0.00 -0.04 0.00 0.00 0.00 -0.01

4 5 0.21 0.08 0.18 0.07 0.10 0.23 0.14 0.00 0.00 0.07 0.00 0.00 0.00 0.01
10 0.15 0.06 0.19 0.05 0.10 0.29 0.14 0.00 0.00 -0.03 0.00 0.02 0.00 0.00
30 0.10 0.05 0.19 0.04 0.08 0.30 0.13 0.00 0.00 -0.02 0.00 0.00 0.00 0.00

5 5 0.18 0.13 0.25 0.09 0.09 0.24 0.17 0.00 -0.01 -0.13 0.00 0.00 0.00 -0.02
10 0.15 0.07 0.20 0.07 0.08 0.27 0.14 0.01 0.00 0.05 0.00 0.00 0.00 0.01
30 0.10 0.04 0.18 0.06 0.10 0.29 0.13 0.01 0.00 0.00 0.00 0.01 0.00 0.00

100 3 5 0.23 0.05 0.27 0.04 0.08 0.24 0.15 0.00 0.00 -0.11 0.00 0.00 0.00 -0.02
10 0.17 0.04 0.20 0.04 0.09 0.24 0.13 0.01 0.00 -0.03 0.00 0.00 0.00 0.00
30 0.10 0.02 0.16 0.03 0.07 0.26 0.11 0.00 0.00 -0.01 0.00 0.00 0.00 0.00

4 5 0.21 0.07 0.20 0.05 0.08 0.25 0.14 0.00 0.00 -0.04 0.00 0.00 0.00 -0.01
10 0.15 0.05 0.13 0.05 0.08 0.23 0.11 0.00 0.00 -0.05 0.00 -0.01 0.00 -0.01
30 0.09 0.03 0.18 0.03 0.07 0.24 0.11 0.00 0.00 -0.02 0.00 0.00 0.00 0.00

5 5 0.17 0.06 0.13 0.06 0.08 0.18 0.12 0.00 0.00 0.01 0.00 -0.01 0.00 0.00
10 0.13 0.04 0.12 0.06 0.08 0.21 0.11 0.01 0.00 0.02 0.00 0.00 0.00 0.00
30 0.08 0.03 0.13 0.03 0.06 0.22 0.09 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Table 4 Rules for creating rating data that imitate behaviors of raters with specific char-
acteristics.

Behavior pattern Transformation procedure
(A) Low consistency 50% of rater ratings are changed to randomly selected rating

categories.
(B) Strong range re-
striction

After randomly selecting two categories k′ and k′′, where k′ <
X̄r ≤ k′′ (X̄r is the average of ratings by rater r), 50% of the
ratings are changed to k′ if the rating is less than X̄r and to
k′′ otherwise.

(C) Both behaviors Both the above transformation rules are simultaneously ap-
plied.

in this experiment, because all conventional models have this parameter. We
compare performance of the proposed model with that of rMFRM and rGRM.
Note that MFRM is not compared because all characteristics assumed in that
model are incorporated in the other models. To examine the effects of rater
consistency and range restriction parameters in the proposed model, we also
compare two sub-models of the proposed model that restrict αr and drk to be
constant for r ∈ R.
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The experiments were conducted using the following procedures:

1. Setting J = 30, I = 5, R = 10, and K = 5, sample rating data from the
MFRM (the simplest model) after the true model parameters are randomly
generated.

2. For a randomly selected 20%, 40%, and 60% of raters, transform the rating
data to imitate behaviors of raters with specific characteristics by applying
a rule in Table 4.

3. Estimate the parameters for each model from the transformed data using
the MCMC algorithm.

4. Calculate information criteria for comparison of model fitting to the data.
As the information criteria, we use the widely applicable information cri-
terion (WAIC) (Watanabe, 2010) and an approximated log marginal like-
lihood (log ML) (Newton & Raftery, 1994), which have previously been
used for IRT model comparison (Uto & Ueno, 2016; Reise & Revicki, 2014;
van der Linden, 2016b). Note that we use an approximate log ML (Newton
& Raftery, 1994), which is calculated as the harmonic mean of likelihoods
sampled during MCMC, because exact calculation of ML is intractable due
to the high-dimensional integrals involved. The model minimizing criteria
scores is regarded as the optimal model. After ordering the models by each
information criterion, calculate the rank of each model.

5. To evaluate the accuracy of ability estimation, calculate the RMSE and the
correlation between true ability values and ability estimates as calculated
from the transformed data in Procedure 3. Note that the RMSE was cal-
culated after standardizing both the true and the estimated ability values,
because the scale of ability differs between the MFRM from which the true
values generated and a target model.

6. Repeat the above procedures ten times, then calculate the average rank
and correlation.

Table 5 and Table 6 show the results. In these tables, bold text represents
highest values for ranks, correlations, and lowest RMSEs, and underlined text
represents the next good values. The results show that the model performance
strongly depends on whether the model can represent rater characteristics
appearing in the assessment process. Specifically, the following findings were
obtained from the results:

– For data with rating behavior pattern (A), in which raters with lower
consistency exist, the models with rater consistency parameter αr (namely,
rGRM and the proposed model with or without the constraint drk) tend
to fit well and provide high ability estimation accuracy.

– For data with rating behavior pattern (B), in which raters with range
restrictions exist, the models with the drk parameter (namely, rMFRM
and the proposed model with or without the constraint αr) provide high
performance.

– For data with rating behavior pattern (C), in which both raters with range
restriction and those with low consistency exist, the proposed model pro-
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Table 5 Results of model comparison using information criteria. (Values in parentheses are
the standard deviation of the rank.)

WAIC
Rate of Behavior Proposed model rMFRM rGRM

changed data pattern No restriction drk fixed αr fixed
20% (A) 1.7 (0.5) 1.3 (0.5) 4.4 (0.5) 4.6 (0.5) 3.0 (0.0)

(B) 2.2 (1.0) 3.8 (0.6) 2.2 (0.8) 1.8 (0.9) 5.0 (0.0)

(C) 1.1 (0.3) 2.1 (0.6) 4.3 (0.7) 4.1 (0.7) 3.4 (1.2)

40% (A) 1.4 (0.5) 1.6 (0.5) 4.4 (0.5) 4.6 (0.5) 3.0 (0.0)

(B) 1.8 (0.9) 4.0 (0.0) 2.4 (0.7) 1.8 (0.8) 5.0 (0.0)

(C) 1.0 (0.0) 2.5 (1.0) 4.4 (0.7) 3.4 (0.5) 3.7 (1.3)

60% (A) 1.1 (0.3) 1.9 (0.3) 4.2 (0.4) 4.0 (0.9) 3.8 (1.0)

(B) 1.8 (0.9) 4.0 (0.0) 2.4 (0.7) 1.8 (0.8) 5.0 (0.0)

(C) 1.0 (0.0) 3.8 (0.6) 3.1 (0.3) 2.1 (0.3) 5.0 (0.0)

log ML
Rate of Behavior Proposed model rMFRM rGRM

changed data pattern No restriction drk fixed αr fixed
20% (A) 1.2 (0.4) 1.8 (0.4) 4.4 (0.5) 4.6 (0.5) 3.0 (0.0)

(B) 1.2 (0.4) 3.9 (0.3) 2.4 (0.5) 2.5 (1.0) 5.0 (0.0)

(C) 1.0 (0.0) 2.2 (0.4) 4.4 (0.7) 4.0 (0.7) 3.4 (1.2)

40% (A) 1.0 (0.0) 2.0 (0.0) 4.5 (0.5) 4.5 (0.5) 3.0 (0.0)

(B) 1.0 (0.0) 4.0 (0.0) 2.5 (0.5) 2.5 (0.5) 5.0 (0.0)

(C) 1.0 (0.0) 2.5 (1.0) 4.3 (0.7) 3.5 (0.5) 3.7 (1.4)

60% (A) 1.0 (0.0) 2.0 (0.0) 4.3 (0.5) 3.9 (0.9) 3.8 (1.0)

(B) 1.2 (0.4) 4.0 (0.0) 2.3 (0.8) 2.5 (0.5) 5.0 (0.0)

(C) 1.0 (0.0) 3.8 (0.6) 3.0 (0.5) 2.2 (0.4) 5.0 (0.0)

vides the highest performance, because it is the only model that incorpo-
rates both rater parameters.

These results confirm that the proposed model provides better model fitting
and more accurate ability estimations than do the conventional models when
assuming varying rater characteristics. Furthermore, these results demonstrate
that rater parameters αr and drk appropriately reflect rater consistency and
range restriction characteristics, as expected.

9 Actual data experiments

This section describes actual data experiments performed to evaluate perfor-
mance of the proposed model.

9.1 Actual data

This experiment uses rating data obtained from a peer assessment activity
among university students. We selected this situation because it is a typi-
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Table 6 Accuracy of ability estimation in the simulation experiment.

RMSE
Rate of Behavior Proposed model rMFRM rGRM

changed data pattern No restriction drk fixed αr fixed
20% (A) 0.1277 0.1287 0.1557 0.1518 0.1444

(B) 0.1285 0.1309 0.1282 0.1254 0.1389
(C) 0.1508 0.1483 0.1863 0.1846 0.1651

40% (A) 0.1585 0.1578 0.2177 0.2146 0.1679
(B) 0.1332 0.1386 0.1321 0.1361 0.1522
(C) 0.1760 0.1810 0.2450 0.2432 0.1934

60% (A) 0.1793 0.1798 0.2606 0.2588 0.2005
(B) 0.1520 0.1582 0.1542 0.1542 0.1790
(C) 0.2112 0.2169 0.2944 0.2908 0.2539

Correlation
Rate of Behavior Proposed model rMFRM rGRM

changed data pattern No restriction drk fixed αr fixed
20% (A) 0.9913 0.9912 0.9872 0.9878 0.9888

(B) 0.9912 0.9908 0.9912 0.9916 0.9894
(C) 0.9878 0.9883 0.9814 0.9818 0.9854

40% (A) 0.9869 0.9870 0.9751 0.9758 0.9851
(B) 0.9907 0.9900 0.9907 0.9903 0.9878
(C) 0.9831 0.9822 0.9673 0.9679 0.9790

60% (A) 0.9829 0.9827 0.9643 0.9646 0.9787
(B) 0.9877 0.9864 0.9872 0.9873 0.9826
(C) 0.9765 0.9752 0.9541 0.9554 0.9660

cal example in which the existence of raters with various characteristics can
be assumed (e.g., Nguyen et al., 2015; Uto & Ueno, 2018b; Uto, Nguyen, &
Ueno, n.d.). We gathered actual peer assessment data through the following
procedures:

1. Subjects were 34 university students majoring in various STEM fields,
including statistics, materials, chemistry, engineering, robotics, and infor-
mation science.

2. Subjects were asked to complete four essay-writing tasks from the Na-
tional Assessment of Educational Progress (NAEP) assessments in 2002
and 2007 (Persky, Daane, & Jin, 2003; Salahu-Din, Persky, & Miller, 2008).
No specific or preliminary knowledge was needed to complete these tasks.

3. After the subjects completed all tasks, they were asked to evaluate the
essays of other subjects for all four tasks. These assessments were con-
ducted using a rubric based on assessment criteria for grade 12 NAEP
writing (Salahu-Din et al., 2008), consisting of five rating categories with
corresponding scoring criteria.

In this experiment, we also collected rating data that simulate behaviors of
raters with specific characteristics. Specifically, we gathered ten other univer-
sity students and asked them to evaluate the 134 essays written by the initial
34 subjects following the instructions in Table 7. The first three raters are
expected to provide inconsistent ratings, the next four raters to imitate raters



A generalized many-facet Rasch model 19

Table 7 Instructions given to ten raters to obtain responses for specific characteristics.

Rater Index Instruction
1, 2, 3 Grade essays after quickly reading each essay (within 15 seconds).

4 Assign categories 2 and 4 for more than half of essays.
5 Assign categories 1 and 4 for more than half of essays.
6 Assign categories 1 and 5 for more than half of essays.
7 Assign categories 1, 2, and 4 for more than half of essays.

8, 9 Grade strictly to decrease the average score.
10 Grade leniently to increase the average score.

with a range restriction, and the last three raters to simulate severe or lenient
raters. For simplicity, hereinafter we refer to such raters as controlled raters.

We evaluate the effectiveness of the proposed model using these data.

9.2 Example of parameter estimates

This subsection presents an example of parameter estimation using the pro-
posed model. From the rating data from peer raters and controlled raters, we
used the MCMC algorithm to estimate parameters for the proposed model.
Table 8 shows the estimated rater and task parameters.

Table 8 confirms the existence of peer raters with various rater character-
istics. Figure 5 shows IRCs for four representative peer raters with different
characteristics. Here, Rater 17 and Rater 24 are example lenient and inconsis-
tent raters, respectively. Rater 4 and Rater 32 are raters with different range
restriction characteristics. Specifically, Rater 4 tended to overuse categories
k = 2 and k = 4, and Rater 32 tended to overuse only k = 4.

We can also confirm that the controlled raters followed the provided in-
structions. Specifically, high severity values are estimated for controlled raters 8
and 9, and a low value is assigned to controlled rater 10, as expected. Figure 5
also shows the IRCs of controlled raters 4, 5, 6, and 7, which confirm range
restriction characteristics complying with the instructions. Although we ex-
pected raters 1, 2, and 3 to be inconsistent because they need to perform
assessments within a short time, their consistencies were not low.

Table 8 also shows that the tasks had different discrimination powers and
difficulty values. However, parameter differences among tasks are smaller than
those among raters.

This suggests that the proposed model is suitable for the data, because
various rater characteristics are likely to exist.

9.3 Model comparison using information criteria

This subsection presents model comparisons using information criteria. We
calculated WAIC and log ML for each model using the peer-rater data and
the data with controlled rater data.
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Table 8 Parameter estimates

Parameters for peer raters

r α̂r β̂r d̂r2 d̂r3 d̂r4 d̂r5 r α̂r β̂r d̂r2 d̂r3 d̂r4 d̂r5
1 0.78 -0.32 -1.35 -0.04 0.17 1.21 18 1.52 -0.05 -1.20 -0.23 0.37 1.06
2 0.70 -0.10 -0.26 -0.56 -0.14 0.96 19 1.71 0.00 -1.93 -0.22 1.32 0.83
3 1.60 0.10 -0.74 -0.18 0.32 0.59 20 1.31 0.40 -1.27 -0.55 0.16 1.66
4 1.04 -0.16 -1.53 -0.36 0.06 1.84 21 0.69 -0.24 -1.04 0.08 0.52 0.44
5 0.80 -0.52 -1.73 -0.30 0.70 1.33 22 1.44 0.04 -1.67 -0.33 0.59 1.41
6 0.90 -0.30 -1.60 -0.14 0.36 1.38 23 0.96 0.01 -1.48 -1.32 0.84 1.95
7 0.71 0.52 -0.42 -0.44 0.74 0.12 24 0.48 -0.01 -1.16 -0.68 0.79 1.05
8 1.76 0.05 -1.34 -0.55 0.63 1.27 25 0.73 -0.34 -0.58 0.05 0.21 0.31
9 1.15 0.50 -1.61 -0.10 0.30 1.41 26 0.79 0.13 -0.77 -0.50 0.37 0.89
10 0.74 -0.33 -0.42 -0.14 0.14 0.42 27 0.73 -0.63 -1.71 -0.22 0.92 1.00
11 0.98 -0.40 -1.18 -0.61 0.49 1.30 28 1.35 -0.23 -1.31 -0.14 0.44 1.00
12 0.95 -0.39 -1.61 -0.59 0.54 1.65 29 0.82 -0.36 -0.75 -0.65 0.70 0.70
13 0.82 0.36 -1.05 -0.11 0.48 0.67 30 0.46 0.52 -1.19 0.17 0.14 0.88
14 0.81 0.01 -1.74 -0.09 0.56 1.28 31 0.80 -0.27 -0.92 0.08 -0.34 1.17
15 1.43 -0.32 -1.37 -0.66 0.51 1.53 32 0.73 -0.60 -0.53 -0.99 -0.34 1.85
16 1.12 -0.01 -0.01 -1.59 -0.27 1.87 33 1.30 -0.12 -1.14 -0.25 0.43 0.96
17 1.17 -0.56 -1.08 -0.76 0.46 1.37 34 0.81 -0.46 -1.47 0.65 -0.11 0.93

Parameters for controlled raters

r α̂r β̂r d̂r2 d̂r3 d̂r4 d̂r5 r α̂r β̂r d̂r2 d̂r3 d̂r4 d̂r5
1 1.16 -0.28 -1.54 -0.76 0.61 1.69 6 0.41 -0.38 1.68 0.50 -0.32 -1.86
2 1.34 -0.60 -0.28 -0.80 0.27 0.81 7 0.41 0.24 -1.34 0.34 -0.65 1.65
3 1.18 0.04 -0.70 -0.68 0.42 0.97 8 0.72 0.77 -1.58 -0.56 0.89 1.25
4 0.98 -0.07 -1.89 -0.20 -0.77 2.86 9 0.43 0.81 -0.71 -0.77 0.59 0.89
5 0.36 0.80 0.86 -0.41 -2.01 1.56 10 1.56 -0.67 -0.34 -1.14 -0.57 2.05

Task parameters
i = 1 i = 2 i = 3 i = 4

α̂i 0.820 1.095 1.070 1.041

β̂i 0.045 0.019 0.026 -0.090

Table 9 shows the results, with bold text indicating minimum scores. The
table shows that the proposed model presents lowest values for both infor-
mation criteria and for both datasets, suggesting that the proposed model is
the best model for the actual data. The table also shows that performance of
the proposed model decreases when the effects of rater consistency or range
restriction are ignored, indicating that simultaneous consideration of both is
important.

The experimental results show that the proposed model can improve the
model fitting when raters with various characteristics exist. This is because
consistency and range restriction characteristics differ among raters, as de-
scribed in the previous subsection, and because the proposed model appropri-
ately represents these effects.
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Fig. 5 IRCs for four representative peer raters with different characteristics.
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Fig. 6 IRCs for controlled raters with strong range restriction.

Table 9 Model comparison using actual data.

Proposed rMFRM rGRM
No constraint drk fixed αr fixed

peer-rater WAIC 11384.58 11492.09 11400.85 11401.92 11471.67
data log ML 11200.32 11380.25 11216.18 11242.64 11350.67

with controlled WAIC 14489.56 14817.64 14535.58 14547.59 14696.86
rater data log ML 14265.97 14683.99 14342.82 14352.92 14559.81

9.4 Accuracy of ability estimation

This subsection compares ability measurement accuracies using the actual
data. Specifically, we evaluate how well ability estimates are correlated when
abilities are estimated using data from different raters. If a model appropriately
reflects rater characteristics, ability values estimated from data from different
raters will be highly correlated. We thus conducted the following experiment



22 Masaki Uto, Maomi Ueno

Table 10 Ability estimation accuracy using actual data. (Values in parentheses are stan-
dard deviations.)

# of Proposed rMFRM rGRM Average
ratings No constraint drk fixed αr fixed score

peer-rater 5 0.651 0.604 0.607 0.617 0.620 0.597
data (0.082) (0.108) (0.115) (0.106) (0.090) (0.109)

- p < .001 p < .001 p < .001 p < .001 p < .001
10 0.774 0.730 0.759 0.764 0.754 0.723

(0.058) (0.072) (0.060) (0.070) (0.077) (0.070)
- p < .001 p < .001 p < .001 p < .001 p < .001

with 5 0.608 0.572 0.579 0.569 0.576 0.542
controlled (0.110) (0.101) (0.110) (0.115) (0.110) (0.105)
rater data - p < .001 p < .001 p < .001 p < .001 p < .001

10 0.752 0.710 0.713 0.705 0.713 0.672
(0.066) (0.090) (0.081) (0.088) (0.080) (0.089)

- p < .001 p < .001 p < .001 p < .001 p < .001

for each model and for two datasets, namely, the peer rater data and the data
with controlled rater data:

1. Use MCMC to estimate model parameters.
2. Randomly select 5 or 10 ratings assigned to each examinee, then change

unselected ratings to missing data.
3. Using the dataset with missing data, estimate examinee abilities θ given

the rater and task parameters estimated in Procedure 1.
4. Repeat the above procedure 100 times, then calculate the correlation be-

tween each pair of ability estimates obtained in Procedure 3. Then, calcu-
late the average and standard deviation of the correlations.

For comparison, we conducted the same experiment using a method in which
the true score is given as the average rating. We designate this as the average
score method. We also conducted multiple comparisons using Dunnett’s test to
ascertain whether correlation values under the proposed model are significantly
higher than those under the other models.

Table 10 shows the results. The results show that all IRT models pro-
vide higher correlation values than does the averaged score, indicating that
the IRT models effectively improve the accuracy of ability measurements. The
results also show that the proposed model provides significantly higher cor-
relations than do the other models, indicating that the proposed model most
accurately estimates abilities. We can also confirm that performance of the pro-
posed model rapidly decreases when the effects of rater consistency or range
restriction are ignored, suggesting the effectiveness of considering both char-
acteristics to improve accuracy.

These results demonstrate that the proposed model provides the most accu-
rate ability estimations when a large variety of rater characteristics is assumed.
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10 Conclusion

We proposed a generalized MFRM that incorporates parameters for three com-
mon rater characteristics, namely, severity, range restriction, and consistency.
To address the difficulty of parameter estimation under such a complex model,
we presented a Bayesian estimation method for the proposed model using a
MCMC algorithm based on NUT-HMC. Simulation and actual data experi-
ments demonstrated that model fitting and accuracy for ability measurements
is improved when the variety of raters increases. We also demonstrated the
importance of each rater parameter for improving performance. Through a
parameter recovery experiment, we demonstrated that the developed MCMC
algorithm can appropriately estimate parameters for the proposed model even
when the sample size is relatively small.

Although this study used peer assessment data in an actual data experi-
ment, the proposed model would be effective in various assessment situations
where raters with diverse characteristics are assumed to exist, or when suffi-
cient quality control of raters is difficult. Future studies should evaluate the ef-
fectiveness of the proposed model using more varied and larger datasets. While
this study mainly focused on model fitting and ability measurement accuracy,
the proposed model is also applicable to other purposes, such evaluating and
training raters’ assessment skills, detecting aberrant or heterogeneous raters,
and selecting optimal raters for each examinee. Such applications are left as
topics for future work.
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Appendix

Stan code for the proposed model.

data{
int <lower=0> J;// # of examinees
int <lower=0> I; //# of tasks
int <lower=0> R; //# of raters
int <lower=2> K;
int <lower=0> N; // # of total ratings
int <lower=1, upper=J> ExamineeID [N]; // list of examinee ID
int <lower=1, upper=I> ItemID [N]; // list of task ID
int <lower=1, upper=R> RaterID [N]; // list of rater ID
int <lower=1, upper=K> X [N]; // list of ratings
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}
transformed data{
vector[K] c = cumulative sum(rep vector(1, K)) − 1;

}
parameters {
vector[J] theta;
real<lower=0> alpha i [I−1];
real<lower=0> alpha r [R];
vector[I−1] beta i;
vector[R] beta r;
vector[K−2] beta rk [R];

}
transformed parameters{
real<lower=0> trans alpha i[I];
vector[I] trans beta i;
vector[K−1] category est[R];
vector[K] category prm[R];
trans alpha i[1] = 1.0 / prod(alpha i);
trans beta i[1] = −1∗sum(beta i);
trans alpha i[2:I] = alpha i;
trans beta i[2:I] = beta i;
for(r in 1:R){
category est[r, 1:(K−2)] = beta rk [r];
category est[r, K−1] = −1∗sum(beta rk [r]);
category prm[r] = cumulative sum(append row(0, category est[r]));

}
}
model{
trans alpha i ˜ lognormal(0, 1);
alpha r ˜ lognormal(0, 1);
trans beta i ˜ normal(0, 1);
beta r ˜ normal(0, 1);
theta ˜ normal(0, 1);
for (r in 1:R) category est [r,] ˜ normal(0, 1);
for (n in 1:N){
X[n] ˜ categorical logit(1.7 ∗trans alpha i[ItemID[n]]∗alpha r[RaterID[n

]]∗(c∗(theta[ExamineeID[n]]−trans beta i[ItemID[n]]−beta r[
RaterID[n]])−category prm[RaterID[n]]));

}
}
generated quantities {
vector[N] log lik;
for (n in 1:N){
log lik[n] = categorical logit log(X[n], 1.7 ∗trans alpha i[ItemID[n]]∗

alpha r[RaterID[n]]∗(c∗(theta[ExamineeID[n]]−trans beta i[ItemID[
n]]−beta r[RaterID[n]])−category prm[RaterID[n]]));

}
}


