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Abstract 

In this paper, a 3D J-integral based on the domain integral approach is presented for large 

deformation elastic-plastic fracture mechanics problems associated with residual stresses 

and spatially varying mechanical properties of a material. The proposed 3D J-integral has 

physical significance as the energy dissipation into the process zone. The derivations of 

the proposed J-integral are presented in detail. Through numerical examples, it is shown 

that the proposed J-integral is unconditionally path independent. The present formulation 

is a rigorous extension of the 2D-𝑇𝜀
∗ integral of Okada and Atluri to 3D. 
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Highlights 

⚫ The proposed 3D J-integral is unconditionally path-independent (PI). 

⚫ The PI property holds in large deformation elastic-plastic problems. 

⚫ The PI property is guaranteed for problems with residual stresses. 

⚫ The PI property is valid for problems with spatially varying mechanical properties. 

⚫ The PI properties are demonstrated in example problems. 

 

Keywords 

J-integral; Energy release rate; Domain integral method; Elastic-plastic fracture; 

Functionally graded material (FGM)  
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Nomenclature 

 

oB : Original undeformed configuration 

oV : Volume of the original undeformed configuration 

oX ( )1 2 3, ,o o oX X X : Position of a material point in the original undeformed configuration 

PriorB : Configuration after prior deformation 

PriorV : Volume of the configuration after prior deformation 

PriorX ( )Prior Prior Prior
1 2 3, ,X X X : Position of a material point in the configuration after prior 

deformation 

Prior
iu : Displacements of a material point, from the original undeformed configuration 

to that after prior deformation 

Prior
ijF : Deformation gradients at a material point, from the original undeformed 

configuration to that after prior deformation 

Mech
iu : Displacements of a point due to generation of a crack and applied loads 

Mech
ijF : Increments of the displacement gradients at a point due to generation of a 

crack and applied loads 

ij : Nominal stresses at a point (reference configuration is oB ) 

ijklQ : Fourth-order tensor expressing the increments of nominal stresses ij  with 

respect to those of deformation gradients klF  
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Prior
ij : Nominal stresses at a point after prior deformation (reference configuration is 

oB ) 

oW : Strain energy density referring to oB  

PriorW  and MechW : Strain energy densities due to prior deformation and due to 

generation of a crack and applied loads 

.IntU : Internal energy 

.ExtU : External work 

o
it  and 

o
iG : Prescribed tractions and body forces per unit volume 

a  and a : Crack length and its small increment 

G : Energy release rate 

D

Da
: Differential operator with respect to crack length a. 

o
tV : Traction prescribed boundary of volume o

V  

oV  and 
oV : Small volume (region) surrounding the crack tip and its outer boundary 

(2D), or inside a small cylinder of radius and length e  and its cylindrical surface (3D) 

 : Radius of 
oV  

iN
: Unit outward normal vector on 

oV  

o
it : Tractions on 

oV  

Ĝ : Energy dissipation into a process zone of radius   and width unity, per unit crack 

extension 
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( )oq X : A function of oX  which is continuous and piece-wise differentiable in the 

integral domain. It also expresses the virtual crack extension when oX is at the crack 

front. 

.
o
IntV : Region surrounding the crack tip 

 : Virtual crack extension at the crack tip 

( )end
oV
− +

  and 
( )end

oV
− −

 : End surfaces of 
oV  for the 3D problem 

ob : Length of 
oV  in the 3D problem 

oA  and 
oA : Small disk obtained by degenerating 

oV  and its periphery 

o
  and  : Small volume assumed for the proposed domain integral method and its 

length along the crack front 

o
Int : Volume of integral domain 

or : Radius of the assumed integral domain 

ow : Width of the assumed integral domain at the outer radius 

E  and Y : Young’s modulus and yield stress 
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1. Introduction 

 

In this paper, the computations of the three-dimensional J-integral for solids with residual 

stresses and with spatially varying mechanical properties of material are discussed. They 

are induced by deformation histories before the onsets of cracks. We call any 

deformations before the onsets of cracks prior deformations, in this article. Engineering 

structures are often subject to elastic-plastic or thermo-elastic-plastic deformations during 

their manufacturing processes. For example, the processes in welding generally involve 

very complex thermo-elastic-plastic deformations, as described in earlier literature on 

welding mechanics (Ueda et al. [1, 2]). As a result, residual stresses develop in the welded 

joints as well as in the vicinity of the welded joints. Research on the prediction of weld 

residual stress has been presented in previous studies (for example, Maekawa et al. [3,4] 

and Broussard [5]). The weld analyses are known to be very complex and difficult as they 

involve very complicated thermo-mechanical nonlinear analyses. Variabilities in analysis 

results have been an issue. Plastic works such as the cold expansion of a hole are known 

to generate compressive surface residual stress, enhancing the fatigue lives of structures 

(for example, Chakherlou and Vogwell [6], Pavier et al [7], and Marannano [8]). Other 

metal forming processes, such as drawing and stamping, are known to produce residual 

stresses as the finite element analyses were presented by Rasty and Chapman [9] and 

Yang et al. [10]. Hence, the influences of residual stresses in the structure need to be taken 

into consideration for the fracture parameter evaluations of real engineering structures, as 

presented by Nose et al. [11] as an example. In Nose et al. [11], the stress intensity factors 

were computed by the virtual crack closure-integral method (VCCM) proposed by Okada 

et al. [12] with the consideration of distributed weld residual stresses. 

 

The complex thermo-elastic-plastic deformation sometimes influences the mechanical 

properties of a material, such as yield stress. Metal forming processes are associated with 

plastic deformations, developing residual stresses. Numerous publications can be found 

in the literature. They include the measurements of spatially varying stress-strain 

relationships in the weld metal and the heat affected zone of the welded joint, as presented 

by Yonezu et al. [13] and Kim et al. [14]. In the case of functionally graded materials 

(FGMs), the mechanical properties of the material vary in a controlled manner. 

Functionally graded materials were proposed by researchers in the field of aerospace 

engineering to reduce thermal stress when the structure was subjected to a severe thermal 

environment. The early development of FGM is summarized in the review articles of 

Niino et al. [15] and Koizumi [16]. The production method of FGMs seems to be evolving 
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in recent years. We can find the centrifugal method to manufacture FGM pipes as 

described in the review article of Watanabe et al. [17]. More recently, the additive 

manufacturing technique was applied to produce FGM, as seen in the article of Zuback 

et al. [18]. One can assume that, due to the thermo-elastic-plastic deformation during the 

fabrication process, residual stresses develop in the structure, in addition to the spatially 

varying mechanical properties due to the material composition gradients.  

 

On the other hand, metallic structures generally deform largely in the event of structural 

failure. We can find a series of research reports of Hojo et al. [19, 20, 21]. The articles of 

Hojo et al. reported the ductile crack growth behaviors of compact tension specimens 

under large amplitudes of cyclic loads and their finite element analyses. The experimental 

specimens deformed largely. Other examples of fracture behaviors of metallic structures 

can be seen in the Sandia fracture challenge, as summarized in Boyce et al. [22, 23] and 

Kramer et al. [24]. Blind round-robin analyses were carried out. It has had three phases 

up to the present day. Here, 13, 14 and 21 teams participated in the first, second, and third 

phases, respectively. The first and second phases dealt with a martensitic stainless steel 

and titanium alloy specimens undergoing very complex fracture behaviors. The third 

phase was carried out on additive manufactured experimental specimens made of a 

stainless steel powder. In all cases, cracks propagated in complex manners as they were 

subject to mixed-mode conditions. Most importantly, the specimens were found to 

experience large deformations before complete fracture occurred.  

 

Thus, we defined our challenge in the present research as follows. As stated above, 

metallic structures often have residual stresses and spatially varying mechanical 

properties of the material. Furthermore, the structures often undergo large deformations 

before fracture. The objective of the present research is to develop a methodology to 

evaluate fracture mechanics parameter that is applicable to all of the aforementioned 

scenarios in a unified fashion. 

 

The J-integral (Rice [25]) was proposed as the energy release rate associated with the 

extension of a two-dimensional crack. A homogeneous elastic material was assumed in 

the derivation of the two-dimensional J-integral. The J-integral has the same integral 

formulation as the Energy Momentum Tensor of Eshelby [26] which was the general force 

on defect in solid. Cherepanov [27] also presented a contour integral formulation that 

expressed the energy release rete. The contour integral of Cherepanov [27] was essentially 

the same as the J-integral. The J-integral could be evaluated on an arbitrary integral 
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contour surrounding the crack tip. This is known as the “path-independent property” of 

the J-integral. It is the key feature of the J-integral. Although the J-integral of Rice [27] 

assumed a homogeneous material, one can show that the material needs to be 

homogenous only in the direction of crack. The two-dimensional J-integral was extended 

to the three-dimensional formulation by Blackburn [28]. In Blackburn [28], the three-

dimensional J-integral was represented by the contour integral accompanied by an 

integral over an area inside the integral contour. Amestoy et al. [29] gave further insights 

to the formulation for a nonlinear material case. Kubo, et al. [30] proposed the global J 

scalar which was based on a very similar concept as that of the domain integral approach.  

Kikuchi et al. [31, 32] and Ando et al. [3] presented the numerical evaluations of the J-

integral from the results of the three-dimensional finite element analysis. Kikuchi et al. 

[31] analyzed problems of semi-elliptical surface flaw developed at the inner wall of a 

pressure vessel. Then, they presented elastic-plastic analysis of CT specimen in their 

following article [32].  Ando et. al. [33] dealt with thermal-elastic-plastic facture 

problems. The domain integral method was proposed along with the concept of virtual 

crack extension (see, for example, Li et al. [34] and de Lorenzi [35]). The domain integral 

approach is especially suited to the finite element method, as the quadrature rules 

embedded in the finite element program can carry out the volume integral, as presented 

by Nikishkov and Atluri [36, 37]. The J-integral value is independent of the shape and 

size of the integral domain. Such a property is also called the path-independent property. 

The path independent property, in a rigorous sense, can be guaranteed for elastic materials 

only, whose elastic constants do not change in the direction of crack.  

 

For two-dimensional general nonlinear materials undergoing arbitrary deformation 

histories, the T  integral was proposed by Atluri, Nishioka and Nakagaki [38]. In Atluri, 

Nishioka, and Nakagaki [38], an integral formulation on an infinitesimally small contour 

surrounding the crack tip was formulated based on an arbitrary incremental constitutive 

law. It expressed the energy flowing into an infinitesimally small area surrounded by the 

integral path. The integral was converted to an integral on an arbitrary contour path 

associated with an area integral for which the integral domain is inside the contour. The 

T   integral was applied to various nonlinear fracture mechanics problems including 

elastic-plastic stable crack propagation and thermal fracture problem (Brust et al. [39, 

40]). Okada and Atluri [41] reformulated the T  integral as an integral on a small but 
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finite contour path surrounding the crack tip. Two kinds of small integral contours were 

proposed. One was the moving contour path. The other was the elongating contour path. 

The moving path moves with the location of crack tip as the crack extends. The elongating 

path extends its length as the crack propagates. Okada and Atluri [41] showed that the 

moving path expressed the energy release rate at the crack tip. The elongating path was 

the energy dissipated into the area surrounding the contour per unit crack growth. The 

size    of the integral contours was found to influence the value of the T  . They 

renamed this integral as the T

  integral.  It was applied to characterize stable crack 

propagations in metallic plates (Omori, et al. [42] and Okada, et al. [43]).  

 

The J-integral was applied to the finite strain problems by Carka and Landis [44] and 

Carka et al. [45]. They found that the J-integral lost its path-independent property in finite 

deformation problems. Koshima and Okada [46] presented a three-dimensional J-integral 

based on the domain integral method. To retain the path-independent property, the second 

integral, which contained the spatial derivatives of the strain energy density and the 

displacement gradients in its integrand, was introduced. The second integral recovered 

the path-independent property. A numerical scheme based on the superconvergent patch 

recovery method of Zienkiewicz and Zhu [47, 48] was introduced for the computation of 

the spatial derivatives. Recently, Arai, Okada, and Yusa [49, 50] proposed a three-

dimensional J-integral formulation that was path independent even for elastic-plastic 

solids undergoing large cyclic deformations. It was a rigorous extension of the two-

dimensional T

  integral to the three-dimensional problem using the domain integral 

method along with the virtual crack extension. Arai, Okada, and Yusa [51] extended the 

three-dimensional J-integral to the computation of J  for fatigue problems involving 

significant plastic deformations.  

 

For linear fracture mechanics problems, Yildirim [52] presented the J-integral approach 

for FGMs under thermal stresses. Moghaddam and Alfano [53] presented analyses of the 

3D-curved cracks in FGMs subject to thermal loading. Hein and Kuna [54] dealt with 

materials having temperature-dependent mechanical properties. Park et al. [55] presented 

a two-dimensional formulation in the presence of residual and thermal stresses. Jin and 

Dodds Jr. [56] extended the 3D J-integral formulation to the case of elastic-plastic 

problems in which the explicit derivatives of the strain energy density can be computed 
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by simple formulae. Wang and Nakamura [57] presented elastic-plastic problems of 

FGMs. Recently, Okada et al. [58] proposed a J-integral computation methodology based 

on the domain integral approach that can allow the spatial variations in mechanical 

properties of materials, including Young’s modulus, yield stress, and the stress-strain 

relationship. All studies listed in this paragraph are limited in infinitesimally small strain 

problems, and large-strain elastic-plastic problems were not considered. 

 

In the present investigation, appropriate ways to include the influences of the residual 

stresses and of spatially varying mechanical properties of material in the evaluation of the 

three-dimensional J-integral applicable to large deformation elastic-plastic fracture 

mechanics analysis have been sought. The domain integral method was adopted for its 

evaluation. Although the residual stresses are induced during the prior deformations, we 

assumed that the complete deformation histories were not known. However, the residual 

stresses and the shape of structure after the prior deformations were assumed to be known. 

The residual stresses may be measured by an experimental technique. Then, due to the 

applied load, the structure was assumed to undergo a large deformation for which the 

finite strain formulation based on the total Lagrange description was adopted in the J-

integral formulation. Under the assumptions on the prior-deformation histories, a three-

dimensional J-integral formulation having the path-independent property is proposed in 

this paper. The formulation of the proposed three-dimensional J-integral is derived in 

Section 2. Some numerical examples demonstrating the capabilities of the proposed J-

integral formulation are given in Section 3. Finally, some discussions and conclusions are 

given in Sections 4 and 5. The proposed J-integral formulation expresses energy 

dissipating into a small piped region surrounding a crack front of length unity per unit 

crack extension. 

 

2. Three-dimensional J-integral formulation for solids with residual 

stresses and spatially varying mechanical properties of a material 

undergoing large deformation  

 

In this section, some discussions on the notations of prior deformation histories are given 

first, followed by those on the two-dimensional J-integral formulation. Then, it is 

extended to the three-dimensional case. The two-dimensional J-integral is defined on a 

small integral contour    surrounding the crack tip. Then, the three-dimensional 

formulation based on the virtual crack extension and the domain integral method is 
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derived following Arai et al. [49, 50]. It is noted that the material is not assumed to be 

homogeneous in the processes of deriving the domain integral method. Therefore, the 

present J-integral formulation can be applied to problems with spatially varying 

mechanical properties of a material, such as Young’s modulus and yield stress. 

 

2.1 Notions of deformation: deformation gradients and displacement gradients 

 

Figure 1 schematically presents the deformations of the body from its original 

undeformed configuration to the final deformed state. In the original undeformed 

configuration Bo  , the body is assumed to be free from any strains and stresses. The 

volume and the coordinates of a material point in the configuration Bo  are denoted by 

V o  and X o ( )1 2 3, ,o o oX X X , respectively. In this configuration, the body does not have any 

cracks. We denote the configuration after the prior deformations by BPrior .  The body 

and the position of a material point are denoted by PriorV   and PriorX

( )Prior Prior Prior
1 2 3, ,X X X , respectively. Also, cracks do not exist in this configuration. The 

displacements of a point from Bo   to BPrior   are expressed by ui
Prior

 . Thus, the 

deformation gradients due to the prior deformation are expressed as follows: 

  
Prior

Prior i
ij ij o

j

u
F

X



= +


 ··························································· (1) 

Then, the deformations due to the generation of the crack and the mechanical loads follow. 

The body reaches the deformed configuration B , the volume of which is denoted by V . 

The displacements of a point from the configurations BPrior   to B   are expressed by 

u
i
Mech

. Hence, the deformation gradients ijF  can be expressed as follows: 

Prior Mech
Prior Mechi i i i

ij ij ij ij ijo o o o
j j j j

x u u u
F F F

X X X X
 

   
= = + = + + = +
   

 ········· (2) 

where 
Mech

Mech i
ij o

j

u
F

X


 =


 are the increments in the displacement gradients due to the 
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creation of the crack and the applied loads. 

 

 

 

Figure 1 Notions of the prior deformation and that due to the mechanical loads and the 

release of residual/initial stresses. 

 

2.2 Stresses and strain energy  

The nominal stresses having the reference configuration Bo  are denoted by ij . The 

nominal stresses can be expressed by their evolution equation: 

( )
0

ˆ ˆd
klF

ij ijkl mn klQ F F =   ·························································· (3) 

Here, equation (3) is a generic form to express the stress evolution. Moreover, ijklQ  are 

the components of fourth-order tensor expressing the increments of nominal stresses ij  

with respect to those of deformation gradients klF . While the mechanical loads are being 

applied to the body, we may write 
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 ( ) ( )
Mech

Prior Mech Mech

0

ˆ ˆd
klF

ij ij ijkl mn klQ F F 


= +   . ·························· (4) 

The strain energy density oW  per unit volume of the configuration oV  can be written 

in its generic from as 

 ( )
0

ˆ ˆd
ijFo

ij mn jiW F F=  . ······················································· (5) 

The strain energy density while the mechanical loads are being applied can be expressed 

by an alternative form as 

 Prior MechoW W W= + . ························································· (6) 

Here, W Prior  and WMech are the strain energy densities due to the prior deformation 

and due to the creation of the crack and the applied loads, respectively. They are expressed 

as 

 
( )

( )

Prior

Mech

Prior Prior Prior

0

Mech Mech Mech

0

ˆ ˆd

ˆ ˆd

ji

ji

F

ij mn ji

F

ij mn ji

W F F

W F F






=

=  





. ···································· (7) 

The strain energy density due to the prior deformation and to the mechanical loads can be 

decomposed, as shown in equation (7). 

 

2.3 Expressions for the energy release rate in the two-dimensional problem 

As a preliminary discussion, we first consider the two-dimensional crack propagation 

problem under the boundary conditions, as depicted in Figure 2 (a). The internal energy 

U Int. can be written as follows: 

. dVo
Int o o

V
U W=   ·································································· (8) 

External work U Ext. due to the prescribed tractions ti
o
  and the body forces per unit 

volume Gi
o
 acting in the body can be written as 
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( ) ( ). d d
o o

t

Ext o o o o
i i t i iV V

U t u V G u V


=  +  . ····································· (9) 

 

Following the discussions of Atluri, Nishioka, and Nakagaki [38], we discuss the change 

of energies while the crack extends for a small length a   in the 1
oX   direction. The 

energy G  released at the crack tip can be written as 

. .Ext IntDU DU
G a a a

Da Da
 =  −  . ··················································· (10) 

Here, 
D

Da
  is the differential operator with respect to the crack length a. Using equations 

(8) and (9), we can rewrite the expression (10) as 

 ( )d d do o o
t

o o o o oi i
i t iV V V

Du Du D
G t V G V W V

Da Da Da
=  + −   . ··················· (11) 

As shown in Figure 2 (a), we introduce the region 
oV  in the immediate vicinity of the 

crack tip. Hence, equation (11) can be shown in an alternative expression as 

 

( ) ( ) ( )

( )

( ) ( )

d d d

d

d d d

o o o o
t

o o

o o o

o o o o o o oi i i
i t i iV V V V

ji o o
ijV V

o o o o oi i
i iV V V

Du Du Du
G t V t V G V V

Da Da Da

DF
V V

Da

Du Du D
t V G V W V

Da Da Da

 



  

 



  



  −

−



=  −  + −

− −

+  + −

  



  

 . (12) 

In equation (12), the nominal stresses ij   are expressed using the relationships

iij jW F =     that can be obtained from equation (8). Moreover, 
oV   is the outer 

boundary of region 
oV  , as depicted in Figure 2(b). The tractions ti

o
  on 

oV   are 

expressed by the unit outward normal vector iN
 and the nominal stresses ij  as 

 o
i j jit N= . ······································································ (13) 
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When the body is in equilibrium, the following relationship holds: 

( ) ( )

( ) ( )

d0 d

d d

o o
t

o o o o

o o o oi i
i t iV V

jio o o o oi
i ijV VV V

Du Du
t V t V

Da

F
V

Da

DDu
G V V

a
V

Da D



 



 

 

− −

 − 

+ − − −

=  

 

  ·················· (14) 

This equation expresses the virtual work principle for the body 
o o

V V−   when 
Dui
Da

 are 

considered as the variations of the displacements. Hence, by letting the radius  of the 

volume 
oV  to be zero in the limit, the energy release rate at the crack tip G  can be 

expressed by the near crack tip integral only: 

 ( )
0

lim d d do o o
o o o o oi i
i iV V V

Du Du
G t V G V W V

Da Da D  
  

 →

 
=  + −  

    ················ (15) 

According to Atluri [59] and Okada and Atluri [41], equation (15) can be rewritten as 

 ( )1
0 0

1 1

lim d lim do o
o o oi i

j ji io oV V

u u
G WN N V G V

X X 

 
 

 


→ →

     
  = −  −  

        
  . ····· (16) 

The expressions for the strain energy density and the stresses in equations (2) and (6) are 

substituted into equation (16). One can reach the following expression: 

 

( )

( )

Mech
Mech

1
0

1

Prior
Prior

1
0 0

1 1

lim d

lim d lim d

o

o o

oi
j ji oV

o o oi i
i j jio oV V

u
G W N N V

X

u u
G V W N N V

X X



 

 




 
 

 





→

→ →

  
  = − 

    

    
  − + −  

        



 

 

  ···················································································· (17) 

The terms in equation (17) associated with Gi
o , W Prior   and 

Prior

1

i
o

u

X




  vanish. This is 

because they have weaker singularities than the other terms. It is noted that in the 

derivations presented here the assumption of self-similar crack propagation must hold. 

For the concept of self-similar crack propagation, the readers are referred to Atluri [59]. 
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Thus, we write the following expression, and let Ĝ  denote the energy dissipation into 

the small but finite volume 
oV  in the immediate vicinity of the crack tip, per unit crack 

extension: 

( )
Mech

Mech
1

1

ˆ do
oi

j ji oV

u
G W N N V

X

 




 
 = − 
  

  ··································· (18) 

Here, the terms associated with Gi
o, W Prior , and 

Prior

1

i
o

u

X




 are neglected because they 

are considered to be negligibly small. Hence, equation (18) expresses the energy 

dissipating into the small region 
oV  in the immediate vicinity of the crack tip while the 

crack extends for a unit length. 

We then introduce a function ( )oq X  that is continuous and piecewise differentiable in 

the region .
o o
IntV V−  and equals zero at the outer surface of .

o o
IntV V− .  Here, .

o
IntV  is a 

region surrounding the crack tip, as depicted in Figure 2(b). The term ( )oq X  takes a 

constant value   inside the small region 
oV , where   is the amount of virtual crack 

extension at the crack tip. By applying the Gauss divergence theorem, a domain integral 

formulation is derived as: 

 

( )

( )

( )

.

.

Mech
Mech

1

1

Mech
Mech

1 .

1

2 Mech MechMech

.

1 1 1

ˆ d

d

d

o

o o
Int

o o
Int

oi
j ji oV

o oi
j ji Into oV V

j

o o oi i
ji i Into o o oV V

j

u
G W N N q V

X

u q
W V V

X X

u uW
G q V V

X X X X







 






 

 





−

−

 
 = − 
  

  
 = − − −
   

   − − + −
     







 ········ (19) 

It is noted that   is often set to be unity. 
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(a)  Boundary value problem      (b) Magnified view in the vicinity of the crack tip 

Figure 2  Boundary value problem described in the original undeformed configuration 

oB  and its magnified view in the vicinity of the crack tip showing the small volume 

oV  surrounding the crack tip and the integral domain .
o
IntV . [(a) Boundary value 

problem, and (b) Magnified view in the vicinity of the crack tip]  

 

2.4 Expressions for the energy dissipation Ĝ  in the three-dimensional problem 

Following the discussions for the two-dimensional problem, a three-dimensional 

formulation is derived in this section. A part of the present derivation follows Arai, Okada, 

and Yusa [49, 50] for the three-dimensional J-integral. For the three-dimensional problem, 

similar discussions as those for the two-dimensional case are carried out. The domain oV  

inside a small cylinder of radius and length   and 
ob , respectively, as depicted in Figure 

3, is considered. The volume 
oV  is surrounded by the surface of the cylinder 

oV  and 

the end surfaces 
( )end

oV
− +

  and 
( )end

oV
− −

 , as also shown in Figure 3.  
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  ···················································································· (20) 

Here, V o   and 𝜕𝑉𝑡
𝑜  are the volume of the body and the traction-described boundary, 

respectively. The notations are the same as the those for the two-dimensional problem. 

When the body is in equilibrium, equation (20) reduces to 

( ) ( )( ) ( )( )

( )

end end
end end

d d d

d d

o o o

o o

o o o o o o oi i i
i i iV V V

o o oi
iV V

Du Du Du
Gb t V t V t V

Da Da Da

Du D
G V W V

Da Da

  

 

  

 

− + − −
− + − −  

   =  +  +    
   

+ −

  

 

. 

  ···················································································· (21) 

As the volume oV  in the vicinity of the crack front is considered to be very small, the 

terms having no and weak singularities can be neglected. Hence, in the same fashion as 

the two-dimensional formulation, energy ˆ oGb   dissipating into the small volume 
oV  

surrounding the crack front is given by the following expression: 

 

( )

( )( ) ( )( )end end

Mech
Mech

1

1

Mech Mech

end end
1 1

ˆ d

d d

o

o o

o oi
j ji oV

o oi i
j ji j jio oV V

u
Gb W N N V

X

u u
N V N V

X X



 

 


 
 



 
− + − −



− + − − 

 
 = − 
  

     −  −     
      



 

 

  ···················································································· (22) 
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Figure 3  Infinitesimally small volume 
oV  and its boundaries 

oV , ( )-end +
oV , and 

( )-end
oV − .  

Then, following Arai et al. [49, 50], the length ob  of the small pipe is set to be zero in 

the limit. The first integral in the above equation degenerates to the contour integral at the 

periphery 
oA  of a small disk 

oA  , as illustrated in Figure 4. The second and third 

integrals reduce to the area integral inside 
oA  . Its integrand is the derivative of 

Mech

3

1

i
i o

u

X





 with respect to the coordinate 3

oX , which is in the tangential direction of 

the crack front curve. We can write the following expression:  

 ( )
Mech Mech

Mech
1 3

1 3 1

ˆ d do o
o oi i

j ji io o oA A

u u
G W N N A A

X X X 

 
  



    
   = −  −
        

   (23) 

 

Figure 4 Degenerated disk 
oA  by setting the length 

ob  of small volume 
oV  to be 
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zero in the limit. 

 

Then, a function ( )oq X  is introduced. Here, ( )oq X  is a function of 3
oX  in the small 

volume 
o
  and is set to be zero at both ends of 

o
 .  The length along the crack front 

line and radius of the volume 
o
   are    and   , respectively, as shown in Figure 5. 

After ( )oq X  is multiplied to both sides of equation (23), they are integrated for length 

  along the crack front. We obtain the following expression: 

 

( ) ( )

( )

Mech
Mech

1 3

1

Mech

3 3 3

3 1

1ˆ d

1
d d

o

o

o oi
j ji o

o o oi
io oA

u
G W N N q X

A X

u
q X A X

A X X





 












 
 = − 
   

 
 −
    



 

. ··················· (24) 

Here, A  is the area of virtual crack extension ( 3d oXA q


 =  ), and 
o
  is the surface 

of the cylindrical volume 
o
  of radius and length   and  , respectively. The second 

integral in the right-hand side of equation (24) can be converted to a simpler form after 

integrating by parts: 

( )
( )Mech Mech 3

3 3 3 3

3 1 1 3

d d do o

o

o o o oi i
i io o o oA

q Xu u
q X A X

X X X X 
  

 

  
  = − 
     

    ··· (25) 

 

Finally, we extend the definition of the function ( )oq X  such that it is a continuous and 

piecewise-differentiable positive function in the domain 
o
Int . Then, ( )oq X  is set to be 

zero at the outer surface 
o
Int   and outside the domain o

Int  . Then, by applying the 

Gauss divergence theorem, a domain integral expression is derived. It is noted that o
Int  
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contains the domain 
o
   inside of it. Finally, the energy dissipating into a small 

cylindrical region of radius and length   and unity, respectively, can be expressed by the 

domain integral formulation. Then, we redefine the three-dimensional J-integral in a 

domain integral expression as 

( )

Mech
Mech

1

1

2 MechMech

1

1ˆ d

1
d

o
Int

o o
Int

oi
j ji Into o

j

o oi
ji Into o o

j j

u q
J G W

A X X

uW
q

A X X X


 





 −

  
 = = − − 
    

  − −  −
     





. ······················ (26) 

The three-dimensional J-integral as redefined in equation (26) has a mean of rigorous 

extension of two-dimensional T

 of Okada and Atluri [41]. Thus, we may name it to be 

3DT


 which is the three-dimensional version of T

. 

 

As stated earlier, the material is not assumed to be homogeneous in the derivation of 

equation (26). The mechanical properties of the material may vary continuously. It is also 

noted that for the absence of prior deformation that equation (26) degenerates to the 

expression of the J-integral without the residual stresses. The formulation degenerates to 

the J-integral formulation as presented by Arai et al. [49, 50] as 

( )

1

1

2

1

1ˆ d

1
d

o
Int

o o
Int

oi
j ji Into o

j

o oi
ji Into o o

j j

u q
J G W

A X X

uW
q

A X X X


 





 −

  
 = = − − 
    

  − −  −
     





. ·························· (27) 

It is noted that when a hyper-elastic material is assumed, the second integral of equation 

(27) vanishes. The formulation degenerates to the case of classical J-integral formulation 

by the domain integral representation. 
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Figure 5 Integral domain .
o
Int  surrounding the crack front and the virtual crack 

extension ( )oq X . 

 

2.5 Variation of the function ( )oq X  and the spatial derivatives of the strain energy 

density and the displacement gradients 

 

According to the discussions in the preceding sections, the function ( )oq X  is assigned 

as follows. The cross section of the integral domain .
o
Int  is depicted in Figure 6(a). 

Then, the integral domain is defined by rotating the cross section about the crack front. 

The outer shape of the integral domain is depicted in Figure 6(b). The section of the small 

cylindrical region 
o
  of length and radius   and  , respectively, is also presented in 

Figure 6(a). The function ( )oq X  varies in the direction of the crack front direction 3
oX  

only, inside the small cylindrical region 
o
 . Moreover, ( )oq X  is unity at the center 
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and is zero at both ends of the segment  . The outer radius of the integral domain .
o
Int  

is denoted by or . The width of the integral domain at the outer radius or  is denoted by 

ow  . Here, or   and 
ow   are presented in Figure 6(a). The term 

ow   is larger than or 

equal to  . The magnitude of the function ( )oq X  linearly decreases from the outer 

surface of 
o
   to zero at the outer radius or   of .

o
Int  . The variation of ( )oq X   is 

schematically illustrated in Figure 6(a). When 
ow  is larger than  , there is a plateau of 

length ow −  at the center of the section of the integral domain.  

 

The values of ( )oq X  are assigned to the convex nodes of the finite element model, as 

discussed in Okada and Ohata [60], when the nodes are inside the integral domain .
o
Int . 

For the nodes outside of .
o
Int , their values of the function are set to be zero. The values 

of ( )oq X  at the mid-nodes are assigned by averaging those at the convex nodes. Then, 

( )oq X  inside each element is expressed using the shape functions of the element. Hence, 

the domain integrals of equations (26) and (27) are carried out using the Gauss quadrature 

performed on the finite elements. The integration is performed on all elements that have 

non-zero ( )oq X  values at their nodes. It is noted that the integral domain based on the 

elements may have an angular shape, as presented by Okada and Ohata [60]. The readers 

are referred to [60] for complete descriptions of the integral domain. 
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(a) Section and variation of the virtual crack extension function (q) 

 

(b) Outer shape of the integral domain .
o
Int  

Figure 6 Schematic illustrations of the section and the outer shape of the integral 

domain .
o
Int . The variation of function q is also illustrated. [(a) Section and variation 

of the function (q), and (b) Outer shape of the integral domain .
o
Int ] 

 

For the evaluations of the derivatives of the strain energy density and the displacements 

gradients in the second integrals of equations (26) and (27), the method proposed by 

Koshima and Okada [46] is adopted. It assigns values to the nodes using the 

superconvergent patch recovery method of Zienkiewicz and Zhu [47, 48]. Then, the shape 

functions of the finite elements are used for the computations of the derivatives. Further 
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details are described in Koshima and Okada [46]. 

 

3. Numerical examples for the problems with residual stresses and with 

spatially varying mechanical properties of a material 

 

All the numerical analyses that are presented in this paper were carried out using 

MSC.Marc 2016 [61]. The J-integral evaluations were performed by an in-house  

software developed by the authors. The finite element analysis results were passed to the 

in-house  software through the t19 post process file supported by MSC.Marc 2016 [61]. 

The t19 file is in a text format, and the data was therefore easily exported to the software. 

 

3.1 Example problem for structures with residual stresses: A plate subject to a 

bending moment followed by tension (A crack in a plate after spring back) 

In this section, an example problem for the J-integral evaluation under residual stresses 

is presented. The finite element analyses were performed by MSC.Marc 2016 [61]. A 

plate made of a mild steel was assumed. Young’s modulus, Poisson’s ratio, and the yield 

stress were set to be 206 GPa, 0.3, and 300 MPa, respectively. The linear isotropic 

hardening J-2 plasticity with the hardening modulus 0.3 MPa was assumed. The plate was 

subject to a gradually increasing applied moment at its end surface, which was released, 

as shown in Figure 7(a). The maximum value of the applied moment was 2.75 N m. Hence, 

residual stresses remained in the body. The residual stress data was stored in the “t19” 

post process file supported by MSC.Marc 2016. The magnitude of deformation due to the 

bending moment and the spring back were assumed to be small. Therefore, the 

deformation was neglected. Then, the residual stress data was introduced from the post 

process file to the original undeformed finite element model for the problem of plate with 

a crack. A semi-circular surface flaw, the depth of which was half of the plate thickness, 

was assumed. Finally, the plate was subject to a tensile deformation, as depicted in Figure 

7(b). A prescribed displacement was applied to the top surface of the plate. Its maximum 

value was 0.15 mm. The same finite element model was used for both the plate bending 

and tension problems. The double nodes were placed on the crack face. They shared the 

same degrees of freedom as the multiple point constraints while the bending moment was 

applied and released. Then, the constraints were deleted, generating the crack face. 

Although the crack face may have closed due to the compressive residual stress, we did 

not assign a contact condition to the crack face for the simplicity of the analysis. The 

finite element model is shown in Figure 8. Figures 8(a), 8(b), and 8(c) show an overall 

view of the finite element model, a magnified view of the surface point of the crack, and 



- 26 - 

 

the crack face, respectively.  

 

The deformation and the distribution of the equivalent plastic strain are depicted in Figure 

9(a) after the plate was subject to the applied moment. The distribution of the residual 

stress ( 33  ) is depicted in Figure 9(b). The figures show the central section and the 

surface of the plate. In Figure 10, the variation of the residual stress along a line 

connecting both surfaces of the plate at the central section is depicted. The solid line 

presents the results computed by the Euler-Bernoulli beam theory assuming one-

dimensional elastic-perfect plasticity. The values of residual stresses predicted by the 

finite element analysis and by the beam theory are very similar. 

 

Then, the plate with the semi-circular crack was subject to the tensile deformation, as 

depicted in Figure 7(b). Figure 11 presents the load-displacement curve while the plate 

was subject to the tensile deformation. It indicates that the plate has undergone a 

considerable amount of plastic deformation. The deformation and the distribution of the 

equivalent plastic strain are presented in Figure 12. Figure 12 is the magnified view in the 

vicinity of the crack. The surface and the central section of the plate are shown. It is seen 

that the crack mouth opened largely and that the plastic deformation accumulated in the 

vicinity of the crack front. A band having a relatively large magnitude of plastic strain is 

seen, indicating the formation of a shear band.  

 

J-integral evaluations were performed using three different sizes of integral domains. 

Their examples are depicted in Figures 13(a), 13(b), and 13(c) for small, medium, and 

large integral domains, respectively. Their representative outer radius or  is 10, 18, or 25 

times the width (0.03 mm) of elements along the crack front. They are 0.3 mm, 0.54 mm, 

and 0.75 mm, respectively. The representative width   of the integral domain along the 

crack front is 14 times the crack front element length. The value of 
ow  at the outer radius 

is 22 times the element size along the crack front. Here,   and 
ow  are 0.42 mm and 

0.66 mm, respectively. The details of how the integral domain is set up are described by 

Okada and Ohata [60]. The radius   of the inner region 
o
  was set to be three times of 

the element width along the crack front. That is 0.09 mm. The region of 
o
  is indicated 
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by red in the figures. 

 

In Figure 14(a), the results of the J-integral evaluations are presented. The distributions 

of the evaluated J-integral values when the magnitude of the tensile deformation was 

relatively small are presented. The applied displacement was 0.02 mm. In this case, due 

to the residual stresses, the results of the J-integral evaluation by its first integral of 

equation (27) strongly depend on the radii of the integral domains. When the second 

integral of equation (27) was included in the evaluation, the dependencies on the radii of 

the integral domain disappeared. It can be considered that the magnitudes of the residual 

stresses were greater than  those of the stresses that were induced by the applied loads. 

In Figure 14(b), the results of the J-integral evaluations when the crack opened largely 

are presented. In this case, the dependencies of the first integral on the radius of the 

integral domain were somewhat reduced. 

 

         

    

(a) Plate without a crack        (b) Plate with a crack  

          is subject to a bending moment      is subject to tensile deformation 

 

Figure 7 Schematic presentations of a plate subject to elastic-plastic deformation under 

an applied moment, producing residual stresses. Then, a semi-circular crack of radius is 

1.0 mm is assumed, and the plate is subject to a large elastic-plastic deformation under 

an applied tensile load. [(a) Plate without a crack is subject to a bending moment, and 

(b) Plate with a crack is subject to tensile deformation] 
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(a) Overall model   (b) Cross section near the crack tip   (c) Crack plane 

Figure 8  Finite element model for the plate subject to a bending moment and a tensile 

load. [(a) Overall model, (b) Cross section near the crack tip, and (c) Crack plane] 

 

             

 

(a) Equivalent plastic strain                (b)  Stress zz  

 

Figure 9  Distributions of equivalent plastic strain and stress zz  after bending and 

spring back. [(a) Equivalent plastic strain, and (b) Stress zz ] 
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Figure 10  Comparison between the distributions of the residual stress zz  in the x-

direction at the center of the plate, that computed under the assumption of the Euler-

Bernoulli beam theory, and that evaluated by the present finite element analysis.  

 

 

Figure 11 Load-displacement curve when the plate was subject to a tensile load. 
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Figure 12  Distribution of equivalent plastic strain at Uz = 0.15 mm. 

 

      

(a) 
or  = 0.30 mm       (b) 

or  = 0.54 mm         (c) 
or  = 0.75 mm 

      (small)               (medium)                (large) 

Figure 13  Examples of integral domains having radii 
or  of the integral 

domain .
o
Int  of (a) 0.30 mm, (b) 0.54 mm, and (c) 0.75 mm. They are designated to 

be small, medium, and large integral domains, respectively. [(a) 
or  = 0.30 mm (small), 

(b) 
or  = 0.54 mm (medium), and (c) 

or  = 0.75 mm (large)] 
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(a) Applied displacement 0.02 mm 

 

(b) Applied displacement 0.150 mm 

Figure 14  Distributions of the evaluated J-integral values by the present formulation. 

[(a) Applied displacement: 0.02 mm, and (b) Applied displacement: 0.150 mm] 

 

3.2 Example problem for structures with residual stresses: A plate with a hole 

subject to cold work 
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 A cold work operation of enlarging a hole in a plate is considered in this section. During 

this cold work operation, a compressive residual stress at the periphery of the hole 

develops. The thickness of the plate and the radius of the hole were set up according to 

Pavier [11].  

 

A plate having a length, width, and thickness of 120 mm, 100 mm, and 6 mm was assumed, 

as depicted in Figure 15(a). An aluminum alloy was assumed. Young’s modulus and 

Poisson’s ratios were set to be 71.6 GPa and 0.28, respectively. The initial yield stress 

was 320 MPa, and a linear strain hardening law was adopted. The hardening modulus was 

set to be 0.33 MPa, which is a very small value. A circular hole having a radius of 3.175 

mm was placed at the center of the plate, as shown in Figure 15(b). The circular hole was 

expanded by the applied radial displacement at its surface. The magnitude of the 

displacement was 4% of its radius, as also illustrated in Figure 15(b). After the circular 

hole was expanded, the surface of the hole was set to be free from the surface traction. 

The residual stresses were generated by the cold work. It is noted that the circumferential 

residual stress was especially large. Then, two through cracks of length 1.588 mm were 

introduced at the hole edge. Due to the circumferential compressive residual stress, the 

crack face closes. Thus, a contact condition was set on the crack face. Following the 

introduction of the crack, the plate was subject to the tensile deformation. The top face of 

the plate was subject to the prescribed displacement, as illustrated in Figure 15(c). Due to 

the symmetry of the problem, 1/4 of the plate was considered. The value of the prescribed 

displacement was gradually increased, and its final value was set to be 0.5 mm. In Figure 

16, the finite element model that was used for both analyses is presented. There are a total 

of 256,775 nodes and 183,058 quadratic tetrahedral finite elements. The element width 

along the crack front was set to be 0.126 mm. 

 

In Figure 17, the variations of the radial and circumferential residual stress components 

with respect to the distance from the hole surface are depicted. In Figure 17, they are 

normalized by the value of the initial yield stress. It is seen that a large magnitude of 

circumferential residual stress at the hole surface developed due to the cold work, 

especially at the mid-thickness.  

 

Then, the plate was subjected to tensile deformation. The load-displacement relation is 

plotted in Figure 18. The load-displacement curve indicates that the plate underwent a 

significant amount of nonlinear deformation. The deformation and the accumulation of 

equivalent plastic strain in the vicinity of the crack are shown in Figure 19. As seen in the 
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figure, the crack mouth opened largely, and the material in the vicinity of the crack front 

experienced a large magnitude of plastic deformation.  

 

The J-integral evaluations were performed. Three different sizes of integral domains were 

set. Their representative sizes were set such that width   at the crack front was 0.38 

mm, which was three times the element size (0.126 mm) at the crack front. The width 

ow  at the outer radius or  was set to be 0.76 mm, which was six times the element size. 

The radius or  was 1.9 mm, 3.8 mm, or and 5.7 mm, which were, respectively, 15, 30, 

and 45 times the element size. The radius   of the small volume 
o
  was set to be 0.5 

mm, which was approximately three times the element size. Examples of the integral 

domains are shown in Figure 20. They are designated to be small, medium, and large 

integral domains.  

 

In Figure 21(a), the variations of the J-integral values when the applied displacement was 

0.2 mm are depicted. The values of the J-integrals evaluated by the first integral only are 

found to be strongly dependent on the radius of the integral domain. However, the total 

of the first and second integrals appears to be independent of the radius of the integral 

domain. 

 

The results of J-integral evaluations when the applied displacement was 0.5 mm are 

depicted in Figure 21(b). In this case, the results of the computations using the first 

integral only are seen to be less dependent on the radius of the integral domain compared 

with those presented in Figure 21(a). It can be considered that the magnitudes of the 

strains due to the applied displacement dominate those of elastic strains due to the residual 

stresses. The totals of the first and second integrals appear to be independent of the radius 

of the integral domain. It can be summarized that the results of the proposed J-integral 

evaluations are seen to be independent of the radius of the integral domain by the 

inclusion of the second integral. 
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(a) Geometries of the plate, the hole and the crack 

 

 

(b)  Problem of cold work     
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(c) Plate with a circular hole subject to a tensile load 

 

Figure 15  Schematic diagram of the problem of cold working of a circular hole in a 

flat plate. Then, a through crack is assumed at the edge of the hole, and the plate is 

subject to a tensile load. [(a) Geometries of the plate, the hole, and the crack, (b) 

Problem of cold work, and (c) Plate with a circular hole subject to a tensile load]  

   

 

Figure 16  Finite element model for the problem of cold work, followed by tensile 

deformation. 
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(a) At the surface 

 

 
 (b) At the mid-thickness 

Figure 17 Variations of the residual stresses with respect to the distance from the hole 

edge at the surface and at the mid-thickness. [(a) At the surface, and (b) At the mid-

thickness] 
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Figure 18  Relationship between the resultant force and the applied vertical 

displacement. 

 

    

Figure 19  Distribution of equivalent plastic strain when the applied displacement is 

0.5 mm. 
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(a) 
or  = 1.9 mm        

 

             (b) 
or  = 3.8 mm 
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(c) 
or  = 5.7 mm 

Figure 20  Examples of the integral domains for the problem of cold working followed 

by the tensile deformation. The radius   of the inner region 
o
  is 0.5 mm. [(a) 

or  

= 1.9 mm, (b) 
or  = 3.8 mm, and (c) 

or  = 5.7 mm] 

 

 

(a) Applied displacement 0.20 mm 
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(b) Applied displacement 0.50 mm 

Figure 21  Variations of the evaluated J-integral values along the crack front for the 

problem of the cold work followed by the tensile deformation. [(a) Applied 

displacement: 0.20 mm, and (b) Applied displacement: 0.50 mm] 

 

3.3 Example problems for a crack in a plate with a homogeneous or non-uniform 

material undergoing a large elastic-plastic deformation 

Some example problems are presented for further demonstration of the path-independent 

property of the present J-integral formulation. The problems of the CT specimen are 

considered. The geometries and the finite element discretization are shown in Figures 22 

and 23. The finite element model has a total of 232,270 quadratic tetrahedral elements 

and 322,129 nodes. The length of the element edge along the crack front is 0.25 mm. The 

finite element analyses were performed by MSC.Marc 2016. It is noted that the thickness 

of the CT specimen is 1/2 of the ordinary 1TCT geometry.   

 

An isotropic J-2 flow elastic-perfectly plastic constitutive law was assumed. It is noted 

that the elastic-plastic finite element analyses by MSC.Marc 2016 did not suffer from any 

serious convergence problems. Three analysis cases are presented in this paper. They 

assume homogeneous material and decreasing and increasing Young’s modulus E and the 

yield stress 𝜎𝑌. The variations of the material properties are expressed by exponential 

functions as Erdogan [62] assumed. The variations of Young’s modulus and the yield 
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stress when decreasing in the vicinity of the crack front are expressed as 

 

 
( )20.48 10

1000 10
x

E
− −

=   (GPa) and 
( )20.48 10

1000 10
x

Y
− −

=   (MPa) ····  (28) 

 

The variations of Young’s modulus and the yield stress when increasing in the vicinity of 

the crack front are expressed as 

 
( )20.48 10

10 10
x

E
−

=   (GPa) and 
( )20.48 10

10 10
x

Y
−

=   (MPa) ·········· (29) 

It is noted that the Young’s modulus and the yield stress were set to be 1,000 GPa and 

1,000 MPa, respectively, for both the cases in the region of 0 mm 5.48 mmx  . Linear 

variations were assumed between x = 5.48 mm and 20.48 mm, when the values increased 

in the vicinity of the crack front. Also, the values between x = 40.48 mm and 45.48 mm 

were assumed to vary linearly when they decreased in the vicinity of the crack front. At 

the crack front, the Young’s modulus and the yield stress were set to be 100 GPa and 100 

MPa, respectively, for all cases. The square and circular symbols in Figure 24 show the 

data points to specify the values of the Young’s modulus and the yield stress. The data 

points were placed every 5 mm. At the data points, the values were assigned by equation 

(28) or (29) in the vicinity of the crack front (20.48 mm ≤ x ≤ 40.8 mm). Then, the values 

were linearly interpolated between the data points. An analysis with a homogenous 

material was also performed for a comparison purpose. The values of Young’s modulus 

and the yield stress are shown by the dotted lines. They are 100 GPa and 100 MPa, 

respectively. 

 

    

(a) Geometries and the dimensions          (b) Simplified model of the CT 

of the CT specimen                      specimen 
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Figure 22 Geometry of the CT specimen and its simplified model. [(a) Geometries and 

the dimensions of the CT specimen, and (b) Simplified model of the CT specimen] 

 

   

(a) Overall view        (b) Magnified view         (c) Crack face 

of the FE model      of the vicinity of the crack 

Figure 23 Finite element discretization of the simplified CT specimen. [(a) Overall view 

of the FE model, (b) Magnified view of the vicinity of the crack, and (c) Crack face] 

  

Figure 24 Variations of the Young’s modulus and the yield stress. 
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(a) Small                    (b) Medium 

 

 

(c)  Large 

 

Figure 25 Outer surfaces of small, medium, and large integral domains with   = 1.0 

mm. [(a) Small, (b) Medium, and (c) Large] 

 

The integral domains for the J-integral evaluation were set as follows. The values of   

and 
ow  of the assumed integral domain were set to be 10 times the representative size 

h   of the finite element along the crack front. Here, h   was 0.25 mm in the present 

analysis. Therefore,    and 
ow   were 1.25 mm. Three different radii or   were set. 

They were 10, 20, and 40 times the element size h . They are designated to be small, 

medium, and large integral domains in this article. The examples of the actual integral 

domains are presented in Figure 25. In addition, three different radii    of the small 
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volume 
o

  surrounding the crack front are adopted. They are two, three, and four times 

the size h  of elements along the crack front. Therefore,   was 0.5, 0.75, or 1.0 mm. 

The small volume 
o

  is also indicated in Figure 25 in red for   = 1.0 mm.  

 

The results of J-integral evaluations for the homogeneous material case are presented first. 

The Young’s modulus and the yield stress were set to be 100 GPa and 100 MPa, 

respectively. In Figures 26 and 27, the load-displacement curve and the deformations of 

the specimen are depicted. The load-displacement curve shows that the specimen 

experienced highly nonlinear deformation. When the applied displacement reached 3 mm, 

the crack mouth is seen to open largely. Figures 28 (a)-(d) show the distributions of the 

evaluated J-integral values along the crack front when the deformations were small and 

large, respectively. Their load line displacements were 0.03 mm and 3.0 mm. Two 

different radii   of the small volume 
o

  surrounding the crack front were adopted. It 

is observed that when the deformation was small (load-line displacement: 0.03 mm) the 

evaluated J-integral values with the first integral only were almost the same for two 

different sizes of integral domains. The magnitudes of the second integrals were very 

small. The values do not depend on the radius   of the small volume 
o

 . When the 

deformation was large (load-line displacement: 3.0 mm), the first integral only depended 

on the radius of the integral domain, although the material was assumed to be 

homogeneous. However, the results of the proposed formulation including the second 

integral are seen to be independent of the size of the integral domain. The radius   of the 

small volume 
o

   has some influence on the J-integral value. The J-integral value 

slightly increased as the radius of   increased, as seen in the Figures 28 (b) and 28 (d).  
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Figure 26  Load-displacement relationship for the case of a homogeneous material. 

 

      

(a) Overall side view     (b) Magnified view of the vicinity of the crack front 

 

Figure 27 Deformation and distributions of equivalent plastic strain at a displacement of 

3.0 mm. [(a) Overall side view, and (b) Magnified view of the vicinity of the crack 

front] 

. 
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(a ) Displacement 0.03 mm and 0.5  mm =  

 

 

 

(b) Displacement 3.0 mm and 0.5  mm =  
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(c) Displacement 0.03 mm and 1.0  mm =  

 

 

 

(d) Displacement 3.0 mm and 1.0  mm =  

 

Figure 28 Distributions of the evaluated J-integral values along the crack front for 

various radii   of near the crack from domain 
o
  and for two magnitudes of the 

deformations of the CT specimen (0.03 mm and 3.0 mm). [(a) Displacement 0.03 mm 

and 0.5  mm = , (b) Displacement 3.0 mm and 0.5  mm = , (c) Displacement 0.03 mm 

and 1.0  mm = , and (d) Displacement 3.0 mm and 1.0  mm = ] 

 

Some results when the Young’s modulus and the yield stress were varied are presented 

next. As mentioned earlier, Young’s modulus and the yield stress were set to vary between 
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10 GPa and 1,000 GPa as well as 10 MPa and 1,000 MPa, respectively, in the vicinity of 

the crack front ( )20.48 mm 40.48 mmx  .  

 

The results of the analyses are presented in Figures 29, 30, and 31. Figure 29 shows the 

load-displacement relationships. In both cases, the slopes of the curves were almost flat 

after a certain amount of deformation, indicating that extensive plastic deformations 

occurred. The distributions of the equivalent plastic strain in both the cases are presented 

in Figure 30, when the applied displacements were 3.0 mm. Large magnitudes of plastic 

strains are seen to accumulate in the vicinity of the crack front and at the location of low 

Young’s modulus and yield stress. The distributions of the computed J-integral values are 

depicted in Figure 31. In Figure 31, the distributions of the J-integral values along the 

crack front are presented. In Figures 31(a) and 31(b), those when the load line 

displacement was 0.03 mm are presented. Figures 31(c) and 31(d) show the results when 

the load line displacement was 3.0 mm. Even when the applied displacement was small 

(0.03 mm), the results that were computed by the first integral strongly depend on the 

radius of the integral domain for both cases, as seen in Figures 31(a) and 31(b). However, 

the J-integral values that were computed by the present formulation are independent of 

the radius of the integral domain.  

 

Figure 31(c) presents the results of decreasing material constants at the location of the 

crack front when the applied load-line displacement was large (3.0 mm). The J-integral 

values computed by the first integral are seen to increase as the size of the integral domain 

enlarges. When the second integral was included, the evaluated J-integral values 

recovered the independence with respect to the radius of the integral domain. For the case 

that the values of the material constants increase, the results of J-integral computations 

are presented in Figure 31(d). When the large integral domain was adopted, the 

magnitudes of the first and second integrals were large, but their signs were opposite each 

other. As a result, the magnitude of the J-integral value was much smaller than the first or 

second integral alone. The magnitudes of the first and second integrals that were 

evaluated with the small and medium integral domains were much smaller than those 

computed with the large integral domain. The J-integral values for the totals of the first 

and second integrals are similar in the sense that they are both small. Therefore, the path-

independent property seems to hold in this example problem compared with the 

magnitudes of the first or second integrals when computed with the large integral domain.   
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From the numerical results presented in this section, it can be concluded that the proposed 

J-integral formulation can guarantee the path-independent property, even if the 

mechanical properties of the material have steep spatial variations in the vicinity of the 

crack front. The mechanical properties include the elastic moduli as well as those for the 

nonlinear deformation, such as the yield stress. 

 

   

(a) Decreasing yield stress             (b) Increasing yield stress  

and Young’s modulus.                and Young’s modulus 

Figure 29 Load-displacement curves. [(a) Decreasing yield stress and Young’s modulus, 

and (b) Increasing yield stress and Young’s modulus] 

 

 

      
 

(a) Case of decreasing yield stress and Young’s modulus in the vicinity of the crack 

front (left: overall view, and right: vicinity of the crack front) 
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(b) Case of increasing yield stress and Young’s modulus in the vicinity of the crack 

front (left: overall view, and right: vicinity of the crack front) 

 

Figure 30 Deformations and the distributions of the equivalent plastic strain for the 

cases of decreasing and increasing yield stress and Young’s modulus in the vicinity of 

the crack front. [(a) Case of decreasing yield stress and Young’s modulus in the vicinity 

of the crack front (left: overall view, and right: vicinity of the crack front), and (b) Case 

of increasing yield stress and Young’s modulus in the vicinity of the crack front (left: 

overall view, and right: vicinity of the crack front)] 

 

 

(a) Decreasing yield stress and Young’s modulus; load line displacement: 0.03 mm 
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(b) Increasing yield stress and Young’s modulus; load line displacement: 0.03 mm 

 

(c) Decreasing yield stress and Young’s modulus; load line displacement: 3.00 mm 

 

(d) Increasing yield stress and Young’s modulus; load line displacement: 3.00 mm 

 

Figure 31 Distributions of the evaluated J-integral values along the crack front. [(a) 

Decreasing yield stress and Young’s modulus; load line displacement: 0.03 mm, (b) 

Increasing yield stress and Young’s modulus; load line displacement: 0.03 mm, (c) 

Decreasing yield stress and Young’s modulus; load line displacement: 3.00 mm, and (d) 

Increasing yield stress and Young’s modulus; load line displacement: 3.00 mm]  



- 52 - 

 

 

 

4. Discussions 

 

In the previous publication of Nose et al. [11], a linear fracture mechanics analysis 

methodology under weld residual stresses was presented. The stress intensity factors were 

evaluated by the virtual crack closure-integral method (VCCM) [12], which was valid 

only for linear elastic materials. It could include the effects of the weld residual stresses 

as initial stresses. It does not require any deformation-history-dependent parameters. In 

the present paper, a method to compute the J-integral under the influences of residual 

stresses is presented. Residual stresses are generally produced by processes such as plastic 

work and welding. The computation of the strain energy generally requires complete 

deformation histories. On the other hand, it is sometimes difficult to know the complete 

deformation history. Residual stresses are sometimes measured by experiment or 

estimated by empirical formula. In such cases, complete deformation histories are not 

known. The present paper describes such scenarios. In the numerical examples dealing 

with the problems of plate bending and cold work of a hole, only the residual stresses 

were transferred to the fracture mechanics analyses assuming the cracks. The results of 

the present J-integral evaluations showed the path-independent property. Hence, the 

proposed J-integral formulation of equation (26) is considered to be valid even when the 

complete deformation history is not known. However, it should be noted that the present 

formulation cannot deal with material property changes due to the deformation histories. 

In other words, without the information of complete deformation history, parameters 

including the yield stress and back stresses cannot be set because they depend on the prior 

deformation histories. In the present investigation, numerical examples were designed 

such that the influences of the changes of these parameters were very small. It was 

accomplished by assuming a very low hardening modulus. Therefore, the strain hardening 

could be assumed to be small and so was neglected. The issue of the material property 

change due to the prior-deformation history remains.  

 

When the deformations were very small, the influences of the residual stresses were so 

significant that the first integral of equation (26) strongly depended on the size of integral 

domain. The contribution of the second integral recovered the path-independent property. 

It was also found that the influences of the residual stresses weakened as the deformation 

progressed. The contribution of the second integral was found to decrease. It is, however, 

noted that the second integral was necessary to keep the path-independent property for 
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large strain elastic-plastic problems. 

 

In the example problems of the nonuniform mechanical properties of the material, the 

proposed J-integral was found to be path-independent for almost all cases. It was clear 

that the results of the first integral alone did not possess the path-independent property. 

The inclusion of the second integral recovered the path-independent property. It was a 

natural consequence of the way the present formulation was derived. No assumption was 

made on the material properties except that the material properties did not have any 

discontinuous spatial changes. Therefore, the present formulation is applicable to the 

cases of spatially changing material behavior, such as the functionally graded materials.  

 

The proposed three-dimensional J-integral formulation can deal with large deformation 

elastic-plastic fracture problems with residual stresses and with spatially changing 

mechanical properties of the material. Furthermore, we did not pose any assumptions on 

the constitutive model in the derivation. Therefore, the proposed three-dimensional J-

integral is applicable to any nonlinear fracture mechanics problem. On the other hand, the 

proposed J-integral expresses the deformation energy dissipating into the cylindrical 

shaped volume of radius    and length unity. We may consider    to be the 

representative radius of the process zone. Therefore, the evaluated J-integral value 

depends on the radius   . Hence, we may regard the proposed three-dimensional J-

integral as expressing the deformation energy dissipating into the process zone per unit 

crack extension. This feature is the same as the T

  integral for two-dimensional 

problems. Hence, we may name the present J-integral to be 
3DT


 which is the three-

dimensional version of T

. 

 

Although the J-integral formulation that has a mean of energy dissipation into the process 

zone and holds the path-independent property regardless of the magnitude of deformation 

and material property gradients, it has been known that the J-integral alone could not 

completely characterize the near-tip deformation field. Yang et al. [63] presented a higher 

order asymptotic crack tip solution for a power-law hardening material, leading to the 

establishment of the J-A theory. J-A theory is a two-parameter fracture mechanics model 

in which J-integral and A characterize the HRR field (see Hutchinson [64] and Rice and 

Rosengren [65]) and the higher order asymptotic solution, respectively. Nikishikov et al. 
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[66] demonstrated that the two-parameter J-A approach could characterize the near-crack 

tip stress distributions under various crack configurations, such as edge crack tension, 

center crack tension, three-point bend and compact tension specimens. The two-

parameter J-A approach was applied to the three-dimensional crack problems by 

Matvienko et al. [67]. It became clear through the series of investigations on the two-

parameter J-A approach, the J-integral alone could not fully characterize the crack tip 

deformation field. Although the present J-integral as 
3DT


  has a mean of energy 

dissipation into the process zone, it cannot fully characterize the singular deformation 

field in the vicinity of the crack front. Further investigations are needed to clarify the 

asymptotic fields in the vicinity of the crack front when the material undergoes a large 

deformation and has some spatial changes in its mechanical properties.   

 

 

5. Conclusions 

 

In this paper, a general formulation of the J-integral for solids with inhomogeneous 

materials and solids with some prior deformation histories is presented in a unified 

manner. We summarize the outcomes of the present investigation, as follows: 

 

⚫ The proposed J-integral formulation can be applied to large deformation elastic-

plastic problems with spatially varying mechanical properties of a material. 

⚫ The proposed J-integral formulation can be applied to problems with residual stresses. 

The complete deformation histories need not be known, even though the strain energy 

density is involved in the J-integral formulation.  

⚫ The proposed J-integral formulation expresses energy dissipation into a cylindrical 

volume of radius   and length unity. The value depends on the radius   of the 

cylinder. 

⚫ The proposed J-integral can be regarded as the deformation energy dissipating into 

the process zone, the size of which is characterized by radius  . 

⚫ Finally, the proposed J-integral can be considered to be a rigorous extension of the 

two-dimensional T

 integral of Okada and Atluri [41]. We may name it to be 

3DT


as the three-dimensional version of T

. Therefore, by considering the moving and 
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elongating process zone model as discussed in [41], the proposed 
3DT


 is expected 

give further insights into three-dimensional elastic-plastic crack propagation 

phenomena. 
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