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ABSTRACT 

In order to obtain a suitable design policy for the development of a next-generation polymer 

electrolyte fuel cell, we performed a visualization analysis of Pt and Co species following aging 

and degradation processes in MEA, using a same-view nano-XAFS‒STEM/EDS technique that 

we developed to elucidate durability factors and degradation mechanisms of a MEA Pt3Co/C 

cathode electrocatalyst with higher activity and durability than a MEA Pt/C. In the MEA Pt3Co/C, 

after 5,000 ADT-rec (rectangle accelerated durability test) cycles, unlike the MEA Pt/C, there was 

no oxidation of Pt. In contrast, Co oxidized and dissolved over a wide range of the cathode layer 
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(~70% of the initial Co amount). The larger the size of the cracks and pores in the MEA Pt/C, and 

the smaller the ratio of Pt/ionomer of cracks and pores, the faster is the rate of catalyst degradation. 

In contrast, there was no correlation between the size or Co/ionomer ratio of the cracks and pores 

and the Co dissolution of the MEA Pt3Co/C. It was shown that Co dissolved in the electrolyte 

region had an octahedral Co2+-O6 structure, based on a 150 nm × 150 nm nano-XAFS analysis. It 

was also shown that its existence suppressed the oxidation and dissolution of Pt. The MEA Pt3Co/C 

after 10,000 ADT-rec cycles had many cracks and pores in the cathode electrocatalyst layer, and 

about 90% of Co had been dissolved and removed from the cathode layer. We discovered a 

metallic Pt-Co alloy band in the electrolyte region of 300–400 nm from the cathode edge, and 

square planar Pt2+-O4 species and octahedral Co2+-O6 species in the area between the cathode edge 

and the Pt-Co band. Pt and Co chemical species in the Pt3Co/C cathode electrocatalyst in the MEA 

during the deterioration process, and a fuel cell deterioration suppression process by Co, were 

visualized for the first time at the nano scale using the same-view nano-XAFS‒STEM/EDS 

combination technique that can measure the MEA under humid N2 atmosphere, while maintaining 

the working environment for a fuel cell. 

 

Keywords: Visualization analysis, Same-view nano-XAFS−STEM/EDS combination technique, 
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INTRODUCTION 

Polymer electrolyte fuel cells (PEFCs) have attracted much attention as one of the most efficient 

clean energy generation systems to achieve an environmentally friendly, sustainable, and fossil-

fuel-free society, realizing low or even zero emissions; they are considered to be suitable for 

automotive applications due to the high power density at low temperatures. For widespread 

commercialization of PEFC vehicles, remarkable improvements in both oxygen reduction reaction 

(ORR) activity and durability of cathode electrocatalysts are indispensable for reducing the cost 

of PEFC stacking and increasing the long-term durability of PEFC.1-22 To understand and elucidate 

the key issues and mechanisms of the performance and degradation of PEFCs, in situ/operando 
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and ex situ characterization techniques, which can validate catalyst fabrications and prove 

fundamental issues in the development of next-generation PEFCs, are mandatory, and in particular, 

it is necessary to observe directly and spectroscopically the degradation process of cathodes in 

PEFCs.23-26 

In situ time-resolved X-ray absorption fine structure (XAFS) techniques are very powerful for in 

situ/operando and element-selective investigation of electronic states and local coordination 

structures and the fluctuations (structural kinetics and dynamics) of cathode electrocatalysts in the 

membrane-electrode assembly (MEA) under PEFC operating conditions, which are regarded to be 

relevant to ORR performance and durability of MEA electrocatalysts.27-39 Such issues cannot be 

obtained by alternative analysis techniques. Nevertheless, the information is averaged in an area, 

larger than ten-micrometers of the cathode irradiated with non-focusing X-rays. The key 

elementary reaction and degradation processes of the cathode in MEA, which regulates ORR 

performance and durability of PEFC, have been visualized to occur heterogeneously in the space 

of the cathode layer using a three-dimensional (3D) Laminography.40 Recently, the cathode 

degradation mechanism has become a more serious issue, and hence, the nanoscopic spatial place 

and mechanism of the dissolution and deterioration of cathode electrocatalysts in MEAs should be 

investigated to develop next-generation PEFCs with high performance and durability. To ascertain 

the degradation process of MEA cathode catalysts under PEFC working conditions, an operando 

3D tomography (CT) ‒hard X-ray absorption fine structure (XAFS) imaging technique has been 

developed and applied to 3D visualization of MEA Pt/C and Pt3Co/C cathodes.41-46 The technique 

has provided new insight into the spatially heterogeneous issue and mechanism for the ORR 

property and degradation of Pt/C and Pt-M alloy/C cathode electrocatalyst layers in PEFCs. 

Imaging techniques using X-rays as a probe, such as X-ray absorption spectro-microscopy,47-49 

scanning transmission X-ray microscopy,50,51 X-ray diffraction imaging,52,53 X-ray spectro-

ptychography,54,55 and atom probe tomography56 have also recently been applied to functional 

materials.  

We have succeeded in mapping Pt chemical species in Pt/C cathode catalyst layers by using a 

scanning nano-XAFS mapping method and have obtained new insight into nano-spatial 

information concerning the site-preferential oxidation and leaching of Pt cathode nanoparticles in 

degraded PEFCs.57 More recently, we have developed a new same-view combination technique of 
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nano XAFS and STEM-EDS under humid N2 atmosphere using a new same-view stacking 

membrane cell and have also succeeded in performing same-view nano-XAFS and STEM-EDS 

imaging for MEA Pt/C cathode electrocatalyst layers.58-60 The complementary nano-XAFS and 

STEM-EDS imaging methods prompted the discovery of  unprecedented aspects of the 

spectroscopic, chemical and morphological visualization of the leached Pt2+ oxidation species and 

detached metallic Pt nanoparticles in the degradation process of MEA Pt/C cathode 

electrocatalysts58,59 and elucidated the site-selective area, sequence and relationship of the 

degradations of Pt nanoparticles and carbon support in the MEA Pt/C cathode layer.60 

In this study, the same-view nano XAFS-STEM/EDS combination technique was further extended 

to include a nano-scale visualization analysis of Pt and Co species in degraded MEA Pt3Co/C 

cathode electrocatalysts. We have visualized the high durability of metallic Pt species in the MEA 

Pt3Co/C by sacrificial oxidation and dissolution of Co species for 10,000 ADT-rec (rectangle wave 

accelerated durability test) cycles, and we have also determined the formation of  the Pt-Co alloy 

band in the electrolyte region, and the dissolution of square planar Pt2+-O4 species and octahedral 

Co2+-O6 species in the area between the Pt-Co band and the cathode layer edge in the degraded 

MEA Pt3Co/C after 90% Co dissolution from the cathode layer for 10,000 ADT-rec cycles. 

 

RESULTS AND DISCUSSION 

Same-View Nano-XAFS/STEM-EDS Maps of MEA Pt3Co/C After Aging (Conditioning).  

The Pt3Co/C cathode electrocatalyst is known to have higher activity and durability, which is 

especially important for a practical fuel cell, than the Pt/C. We performed electrochemical, 

TEM/STEM-EDS and XRD measurements during the degradation process, and, from the 

comparison with the Pt/C, examined characteristics of Pt3Co/C degradation. Figure 1 shows the 

results of the electrochemical analysis and TEM/STEM-EDS analysis and XRD analysis 

performed during the degradation process. The catalyst particle diameter estimated by TEM 

(Figure 1A) increased as the number of ADT-rec cycles increased for both Pt3Co/C and Pt/C. In 

response to the growth of catalyst particles, the rate of reduction in the particle surface area, 

geometrically estimated from particle size increase, was higher in the Pt/C than the Pt3Co/C 

(Figure 1B). Reduction of electrochemically active surface area (ECSA, Figure S1 and Table S1 
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in Supporting Information) in the Pt/C catalyst, obtained from a hydrogen desorption peak of CV, 

was almost the same as the reduction in the particle surface area obtained from catalyst particle 

diameter (Figure 1C). However, in the Pt3Co/C, compared to the rate of reduction in particle 

surface area obtained from the increase in catalyst particle diameter, the rate of reduction of ECSA 

was notably lower, and these two were not consistent. As shown in Figure 1C, the rate of reduction 

in the catalyst surface area, obtained from the particle diameter, was 24% after 5,000 ADT-rec 

cycles and 47% after 10,000 ADT-rec cycles. In contrast, the rate of reduction in ECSA was only 

8% after 5,000 ADT-rec cycles and remained at 23% after 10,000 ADT-rec cycles (Figure S1 and 

Table S1). The rate of reduction in the maximum power density due to the deterioration of ADT-

rec (Figure 1D and Figure S1) was smaller in the Pt3Co/C in comparison to the Pt/C, e.g. 0.3 

(reduction rate of Pt3Co relative to that of Pt/C) after 5,000 ADT-rec cycles and 0.4 (reduction rate 

of Pt3Co/C relative to that of Pt/C) after 10,000 ADT-rec cycles, and the Pt3Co/C had higher 

durability than the Pt/C. This suggests that the nanoparticle surface in the Pt3Co/C is different from 

the Pt/C. Figure 1E indicates that as the number of ADT-rec cycles increases more Co is dissolved 

from the Pt3Co/C, e.g. 70% after 5,000 ADT-rec cycles and 90% after 10,000 ADT-rec cycles. 

Figure S2 shows the changes in XRD pattern due to the ADT-rec process. Catalytic metal particle 

diameters calculated from XRD were consistent with particle diameters calculated from TEM for 

the Pt/C (Figure 1A). In contrast, such consistency only occurred with the Pt3Co/C after aging 

Figure 1. Degradation behavior of MEA Pt3Co/C (red) and MEA Pt/C (blue) by ADT-rec cycles (0, 5,000, 

and 10,000 cycles). (A) Mean catalyst particle sizes estimated by TEM (bars) and XRD (lines with circles & 

squares)), (B) morphological surface areas calculated from TEM results in (A), (C) electrochemical active 

surface areas (ECSA), (D) maximum power densities, and (E) Co quantity at the cathode in MEA Pt3Co/C.  
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(before ADT-rec cycles) and not in deteriorated samples after the ADT-rec cycles (Figure 1A). 

Particle diameter calculated from XRD was smaller than catalyst particle diameter calculated with 

TEM. In other words, it indicates that the surface Pt layer of the Pt3Co/C was disordered during 

the deterioration process. In addition, Table S2 shows the result of examining the crystal surface 

orientation of the Pt3Co/C and Pt/C. Both Pt3Co/C and Pt/C had (111) orientation, and there was 

no notable change during the deterioration process. Thus, difference in activity and durability of 

the Pt3Co/C and Pt/C was not due to variations in the crystal surface.  

Activity and durability of the MEA Pt3Co/C electrode catalyst are not necessarily the same for all 

Pt3Co nanoparticles in the cathode layer. Specifically, degradation in the MEA has been reported 

to be spatially heterogeneous.40-42,45,46 We have developed a same-view nano-XAFS/STEM-EDS 

combination technique that performs an analysis of chemical state via nano-XAFS and have 

performed an analysis of the shape and elements using STEM/EDS on the same location of the 

same MEA sample, and have visualized the degradation process of the MEA Pt/C cathode 

electrocatalyst.58-60 Figure 2 shows the results of the measurement and analysis of the bonding 

structure and electronic state of the MEA Pt3Co/C cathode before and after aging (before ADT-

rec cycle), and the related spatial information, after applying the same-view nano-XAFS/STEM-

EDS combined technique. As for the amount of Pt and Co, we performed linear combination fitting 

of the Lorentzian function and the arctangent function in XANES spectra (Pt: 11.550–11.600 keV, 

Co: 7.700–7.800 keV), and obtained the values for 11.600 keV or 7.760 keV of the calculated 

arctangent function. Valence of Pt was acquired from an approximation equation obtained from a 

linear fitting of the area of the white line for the reference samples, Pt0, PtO, and PtO2, using the 

area of the Lorentzian function determined in the aforementioned analysis as the white line peak 

area. Since Co K-edge XANES and EXAFS of Co ions in the polymer electrolyte membrane after 

5,000 ADT-rec cycles were consistent with those of [Co(H2O)6]2+(Figure S3), valence of Co was 

obtained by performing a linear combination analysis of the Pt3Co alloy (Pt3Co alloy plate, TKK) 

and [Co(H2O)6]2+ in the XANES spectra and using its compositional ratio. A STEM image of a 

wide area (50 μm × 20 μm) (Figure 2A), the map of Pt content (Figure 2B), and the map of Co 

content (Figure 2C) showed that in the cathode catalyst layer of the aging MEA Pt3Co/C prior to 

the ADT-rec process, C support, Pt, and Co were uniformly distributed. In addition, the map for 

Pt valence (Figure 2D) and Co valence (Figure 2E) showed that valence of Pt and Co were 0 and 

+0.2 (±0.1), respectively for the whole cathode electrocatalyst layer. The map of Co2+ content  
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(Figure 2F), calculated from the product of mole fractions of Co2+species obtained from the maps 

of Co content and valence, shows that there was an extremely small amount of Co2+ in the whole 

cathode catalyst layer. Co2+, which exists even if extremely small in quantity, was likely dissolved 

Figure 2. Same-view nano-XAFS and STEM/EDS results for the MEA Pt3Co/C cathode catalyst layer after aging 

(before ADT-rec). Nano-XAFS data: B-F, E1-1 & -2, ve, Ve, M1-1 & -2, vm, Vm, G1-G3, and H1-H3. STEM/EDS data: 

A, B(line profile), C(line profile), e1, e2, e, m1, m2, m, e3-1-3, and m3-1-3.   A: STEM image, B: Pt content map 

and EDS line profile, C: Co content map and Co line profile（the maximum amount of Co is normalized to the 

maximum amount of Pt, for easy viewing), D: Pt valence map, E: Co valence map, F: Co2+ content map. E1, E1, 

ve and Ve: boundary region between the cathode catalyst layer and electrolyte (3 m x 3 m). m1, M1, vm and 

Vm: middle region of the cathode catalyst layer (3 m x 3 m). e3-1 – e3-3: Pt EDS map, Co EDS map and Pt & 

Co line profiles for a single catalyst particle in the region e, respectively. m3-1 – m3-3 : Pt EDS map, Co EDS map 

and Pt & Co line profiles for a single catalyst particle in the region m, respectively. G1 – G3: Pt L3-edge XANES, 

EXAFS oscillations (black: observed; red: curve fitted) and their associated Fourier transforms (black solid lines: 

observed; black dotted lines: imaginary part; red solid and dotted lines: curve fitted, respectively) in the regions 

e (150 nm x 150 nm) and m (150 nm x 150 nm). H1 – H3: Co K-edge XANES, EXAFS oscillations (black: 

observed; red: curve fitted) and their associated Fourier transforms (black solid lines: observed; black dotted lines: 

imaginary part; red solid and dotted lines: curve fitted, respectively) in the regions e (150 nm x 150 nm) and m 

(150 nm x 150 nm), respectively.  
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from the Pt3Co/C cathode during the aging process. In our previous studies of MEA Pt/C, the 

boundary cathode layer with the electrolytes was heavily deteriorated while the center of the 

cathode layer was relatively light. Hence, we visualized the central area of the cathode and the 

boundary between the cathode and electrolytes in the MEA Pt3Co/C sample. E1-1, E1-2, ve, and Ve 

in Figure 2 show the results of the same-view nano-XAFS‒STEM/EDS for the microscopic areas 

e1, E1, ve and Ve in a 3 μm × 3 μm area (Figure 2A-E) at the electrolyte boundary in the cathode 

electrocatalyst layer. In addition, m1, M1-1, M1-2, vm, and Vm, seen in Figure 2, show the results 

of the same-view nano-XAFS‒STEM/EDS for the 3 μm × 3 μm area near the center of the cathode 

catalyst layer (Figure 2A-E). The Pt content, Co content, Pt valence, and Co valence all had 

relatively uniform distribution.  

Furthermore, we present nano-XANES (G1 (Pt L3-edge) and H1 (Co K-edge) in Figure 2) and 

nano-EXAFS oscillations (G2 (Pt L3-edge) and H2 (Co K-edge) in Figure 2), and their Fourier 

transform (FT) (G3 (Pt L3-edge) and H3 (Co K-edge) in Figure 2) of a 150 nm × 150 nm area (e 

and m) in the 3 μm × 3 μm. Table 1 shows structural parameters obtained from the  EXAFS curve 

fitting analysis in R space. Since the Pt valence map (Figure 2D) shows the Pt valence was zero at 

the boundary with the electrolytes and at the center, we obtained structural parameters by 

performing curve-fitting of two waves (Pt-Pt and Pt-Co) in the Pt L3-edge nano-EXAFS analysis 

(Table 1). In fact, with three waves including Pt-O, the Pt-O coordination number (CNPt-O) and 

Debye Waller factor (2
Pt-O) both became negative, thus failing to provide reasonable fitting results 

(Table S3). In contrast to the Pt-Pt bond distance 0.273 nm (±0.001 nm) and Pt-Co bond distance 

0.267 nm (±0.001 nm), Pt and Co did not form uniform alloy nanoparticles. Co K-edge nano-

EXAFS analysis also showed that the bond lengths of Co-Pt and Co-Co were different (0.268 nm 

(±0.001 nm) and 0.265 nm (±0.002 nm), respectively), indicating that intermetallic compounds 

were formed, instead of random alloy, around the Co atoms. In the aging (conditioning) of MEA 

Pt3Co/C, prior to deterioration, not only bond length but CNPt-Pt, CNPt-Co, CNCo-Pt, CNCo-Co, and 

CNCo-O all had nearly identical values in the edge and center areas of the cathode layer, showing 

that the aging MEA Pt3Co/C cathode layer was uniform. From the EDS line profiles e3-3 and m3-

3 in Figure 2, we can see that the aging process leads to the dissolution of Co from the Pt3Co 

nanoparticle surface, forming a Pt surface layer (shell) and creating core-shell-type nano particles. 

This result is consistent with previous studies.61-63 Based on the ratio of CNPt-Co and CNPt-Pt from 
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Pt L3-edge EXAFS (Table 1), the mean Co/Pt composition for the entire catalyst particles was 

about 1/3.6. Based on the ratio of CNCo-Co and CNCo-Pt from Co K-edge EXAFS, the mean 

composition of Co/Pt in the core of the catalyst particles was about 1/2. Therefore, the calculation 

suggests that the Pt shell consisted of two layers. STEM-EDS analysis (Figure S4) indicates that 

the shell layer structure consisted of roughly two Pt layers. We put this aging MEA Pt3Co/C 

through a 5,000 cycle and a 10,000 cycle of 0.6-1.0 V ADT-rec and performed a visualization 

analysis of the degradation phenomenon using the same-view nano-XAFS‒STEM/EDS (reported 

in detail in the following sections). 

 

Same-View Nano-XAFS/STEM-EDS Maps After 5000 ADT-rec Cycles. Figure 3 shows the 

results of the same-view nano-XAFS/STEM-EDS visualization analysis for the MEA Pt3Co/C 

cathode after 5,000 cycles of 0.6–1.0 V rectangle ADT. Various sizes of cracks and pores existed 

that were hardly observed in the Pt3Co/C cathode layer in the aging sample, shown in Figure 3A. 

Cracks and pores in the cathode layer may be produced by carbon corrosion due to undesired 

Table 1. Curve fitting results of the EXAFS data for the MEA Pt3Co/C cathode electrocatalysts in the regions 

e and m (150 nm x 150 nm) and in the electrolyte region (150 nm x 150 nm) after aging (before ADT-rec) 

(Figure 2), 5,000 ADT-rec cycles (Figure 3) and 10,000 ADT-rec cycles (Figure 7). 
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heterogeneous potential ramping and/or gasification during ADT cycles. There were also many 

cracks and pores in the area of the cathode located at a slight medial from the boundary edge with 

the electrolyte (Figure 3 A). In the area with the cracks and pores, the Pt content decreased slightly 

(Figure 2 B and Figure 3 B), and the Co content decreased by approximately 70% (Figure 1E, 

Figure 2C and Figure 3C). The map of Pt valence (Figure 3D) shows that there was no oxidization 

of Pt in the whole cathode electrocatalyst layer. This result is notably different from the oxidation 

behavior of Pt recorded in our previous study on ADT-rec processed MEA Pt/C and the MEA Pt/C 

cathode electrocatalyst after 5,000 ADT-rec cycles from the present study (Figure 4C). In other 

words, in the MEA Pt/C after 5,000 ADT-rec cycles, Pt was oxidized in the area of large cracks 

and pores of 0.5 µm or larger and dissolved Pt2+ ions into the large cracks and pores were observed. 

There was a formation of a Pt band in electrolytes near the cathode edge (Figures 4A and 4B), and 

Pt2+ ions were found in the area between the cathode edge and the Pt band (Figure 4C). In the 

EXAFS analysis (Figures 4E and 4F) of the 150 nm × 150 nm nano area (edge area e), Pt-O bond 

(0.205 nm) was observed and CNPt-O was 3.2 ± 0.5, indicating a Pt2+ species similar to a four-

coordinated Pt2+-O4 (probably square planar) structure in the area of large cracks and holes 

previously reported.58,59 Other than in the area of cathode edge, many Pt2+ species were also 

observed (vm in Figure 4) in the pores of the cathode layer (m1–m2 in Figure 4). In contrast, in the 

MEA Pt3Co/C after 5,000 ADT-rec cycles, there was no formation of a Pt band and the Pt atoms 

of the cathode were not at all oxidized (Figures 3A and 3B, and ve and vm in Figure 3D). Meanwhile, 

Co was oxidized in a wide area of the cathode (Ve and Vm in Figure 3E), and Co2+ ions were 

identified in the large cracks and pores in the area of the cathode near the edge (Ve in Figure 3E). 

It was also discovered that Co2+ ions were dissolved and distributed for 4 µm or more in the 

polymer electrolyte membrane (Figures 3C and 3E). In the Figure 2E depicting the aging sample 

(before the ADT-rec process), the whole cathode layer was uniform. In contrast, Figure 3E shows 

the map of heterogeneous valence of Co. Co2+ ions were found across the whole cathode 

electrocatalyst layer though the content varied (Figures 3E and 3F). Specifically, there were a large 

number of Co2+ ions from the boundary with electrolytes ~4 μm into the cathode (Figure 3F). In 

contrast, the area toward GDL from the center of the cathode had many domains, in which metallic 

Co atoms with a mean valence close to zero existed.  
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We performed same-view nano-XAFS/STEM-EDS measurements for an area of 3 μm × 3 μm in 

two typical locations with different degrees of degradation; for example, the edge against 

electrolytes (e1 in Figure 3A) and the central area of the cathode electrocatalyst layer (m1 in Figure 

Figure 3. Results of the same-view nano-XAFS and STEM/EDS measurements of the MEA Pt3Co/C cathode 

electrocatalyst layer after 5,000 ADT-rec cycles. nano-XAFS data: B-F, E1-1 & -2, ve, Ve, M1-1 & -2, vm, Vm, G1-G3, 

and H1-H3. STEM/EDS data: A, B(line profile), C(line profile), e1, e2, e, m1, m2, m, e3-1-3, and m3-1-3.  A: STEM 

image, B: Pt content map and EDS line profile（decrease from Figure 2B), C: Co content map and EDS line 

profile (decrease from Figure 2C), D: Pt valence map, E: Co valence map, F: Co2+ content map (the same color 

bar in 3C).  e1, E1, ve and Ve: boundary region between the cathode electrocatalyst layer and electrolyte (3 m 

x 3 m)。m1, M1, vm and Vm: middle region of the cathode electrocatalyst layer (3 m x 3 m). e3-1– e3-3: Pt 

EDS map, Co EDS map and Pt & Co line profiles for a single catalyst particle in the region e, respectively. m3-

1– m3-3 : Pt EDS map, Co EDS map and Pt & Co line profiles for a single catalyst particle in the region m, 

respectively. G1 – G3: Pt L3-edge XANES, EXAFS oscillations (black: observed; red: curve fitted) and their 

associated Fourier transforms (black solid lines: observed; black dotted lines: imaginary part; red solid and dotted 

lines: curve fitted, respectively) in the regions e (150 nm x 150 nm) and m (150 nm x 150 nm). H1 – H3: Co K-

edge XANES, EXAFS oscillations (black: observed; red: curve fitted) and their associated Fourier transforms 

(black solid lines: observed; black dotted lines: imaginary part; red solid and dotted lines: curve fitted, 

respectively) in the regions e (150 nm x 150 nm) and m (150 nm x 150 nm), respectively. 
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3A). Results are shown in e1, E1-1, E1-2, ve and Ve, and m1, M1-1, M1-2, vm and Vm of  Figure 3, 

respectively. In the area of cathode about ~400 nm from the electrolyte edge, the Co content 

decreased (E1-2), where Co was dissolved into electrolytes as Co2+ ions (Ve). Meanwhile, although 

there was some heterogeneity in Pt distribution, there was little change in the Pt content (E1-1), 

and the valence of Pt remained at zero (ve). We presented XANES spectra at Pt L3-edge (G1) and 

Co K-edge (H1) and EXAFS oscillations at Pt L3-edge (G2) and Co K-edge (H2), and their Fourier 

transforms and curve fittings (G3 (Pt L3-edge) and H3 (Co K-edge) for the 150 nm × 150 nm nano 

area in the e and m areas in Figure 3 e2 and m2, respectively. Table1 shows the structural 

parameters obtained from the EXAFS curve-fitting analysis. In addition, we performed particle 

analysis with STEM-EDS for the areas inside the nano areas (e and m) measured using nano-

XAFS. Dissolution of Co from the Pt3Co electrocatalyst particles was notable in the boundary 

containing electrolytes, but also occurred in the central area of the cathode electrocatalyst, where 

the number of Pt shell layers increased with dissolution of Co (Figure S5). In the central area of 

the cathode layer, the Co/Pt ratio for the overall nanoparticles was estimated as 1/15.8 via CNPt-Pt 

and CNPt-Co obtained from the Pt L3-edge EXAFS analysis, and the Co/Pt ratio near the electrolyte 

edge of the cathode layer was estimated as 1/50. On the other hand, the Co/Pt ratio was 1/5.8 at 

the core of nanoparticles in electrocatalyst nanoparticles in the center of the cathode based on 

CNCo-Co and CNCo-Pt obtained from Co K-edge EXAFS analysis, and 1/1.9 in nanoparticles near 

the edge (Table 1). Therefore, the Pt shell layer of the core-shell nanoparticles near the cathode 

edge and near the center of the cathode was estimated to be seven layers and four layers, 

respectively. The Co/Pt ratio of the core, calculated from the aforementioned EXAFS analytical 

result, was larger than the composition calculated from EDS (0.15). This was because, in the EDS 

estimation, the mean Co/Pt includes the shell layer on the surface of particles, while in the Co K-

edge EXAFS it analyzes the Co/Pt ratio of the core alone. 

As shown in Table 1, even after 5,000 ADT-rec cycles, there were only Pt-Pt bonds (0.273±0.001 

nm) and Pt-Co bonds (0.265±0.001 nm) in the nanoparticles at the boundary with the electrolytes 

and at the center of the cathode, and there were no Pt-O bonds observed. Similar to the aging MEA 

Pt3Co/C, Pt was not oxidized, instead it maintained a metallic state. It exhibited a notable contrast 

to the MEA Pt/C that did not contain Co, where after 5,000 ADT-rec cycles, Pt was oxidized to 

Pt2+ ions and dissolved (Figure 4). As for Co, 5,000 ADT-rec cycles led to an 85% reduction in the 

amount of Co at the boundary with the electrolytes and a 60% reduction at the center of the cathode 
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layer. Remaining Co species showed Co-Pt bond (0.268±0.002 nm) and Co-Co bond (0.265±0.002 

nm) in the center of the cathode layer, similar to the aging sample prior to ADT-rec. However, the 

coordination numbers of Co-Pt and Co-Co (CNCo-Pt and CNCo-Co) increased from 4.7 in the aging 

sample to 8.2, or decreased from 2.5 to 1.4, respectively. Furthermore, the coordination number of 

Co-O (CNCo-O) was not identified in the range of error (Table 1). The results mean that, since Co 

was dissolved from the core of the nanoparticles and moved to the boundary with the electrolytes, 

the amount of Co in the core decreased, which in turn led to an increase in CNCo-Pt and decrease in 

CNCo-Co Co. In other words, dissolved Co2+ ions did not remain in the area around the original 

nanoparticles or pores but instead, rapidly moved away. In the samples following the 5,000 ADT-

rec cycles the Co2+ ions were present in relatively large amounts in the area from the boundary 

Figure 4. Results of nano-XAFS ans STEM/EDS of the referential MEA Pt/C after 5,000 ADT-rec. Nano-

XAFS data: B, C,  E2, ve, M2, vm, and D-F. STEM/EDS data: A, e1-e4, e, m1-m5.  A: STEM image, B: 

Pt content map, C: Pt valence map, e1-e5: STEM images for the boundary region between the cathode 

electrocatalyst layer and electrolyte, E2: Pt content map for e2, ve: Pt valence map for e2, m1-m5: STEM 

image of the middle region of the cathode electrocatalyst layer. M2: Pt content map for m2, vm : Pt valence 

map for m2, D: XANES of the boundary region (e5, 150 nm x 150 nm) and the middle region of the 

cathode electrocatalyst layer (m5, 150 nm x 150 nm), E: EXAFS oscillations of the boundary region (e5) 

and the middle region of the cathode electrocatalyst layer (m5) (black: observed; red: curve fitted), F: 

EXAFS Fourier transforms (black solid lines: observed; black dotted lines: imaginary part; red solid and 

dotted lines: curve fitted, respectively). For EXAFS curve fitting analysis, k: 3-12 Å-1, R: 1.4 – 3.2 Å. 
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with the electrolytes to approximately ~4 μm inside the cathode (Figure 3F). In the nanoparticles 

near the cathode edge, CNCo-Pt and CNCo-Co remarkably decreased from 4.5 of the aging sample to 

1.5 and from 2.2 to 0.8, respectively, and CNCo-O (Co-O: 0.210 nm) notably increased from 0.5 of 

the aging sample to 4.3. Near the edge, most Co atoms were oxidized to Co2+ (Ve in Figure 3). 

Furthermore, in the electrolyte region, up to 6 μm from the edge, CNCo-Pt or CNCo-Co was scarcely 

observed, indicating that Co2+ had dissolved to single ions and, since CNCo-O was 5.7 ±1.3, 

dissolved Co2+ ions had an octahedral structure (Table 1).  

The Nano-XANES spectrum of the electrolyte region (150 nm × 150 nm) was consistent with the 

XANES spectrum of [Co(H2O)6]2+ (Figure 5). In Figure 5, we present the XANES spectra of 

Co(acac)3, Pt3Co alloy, Co3O4, CoO and Co foil as reference materials for comparison. In the MEA, 

in addition to H2O, there are Nafion ionomers; thus, its sulfonic group (Nfsul) may also be 

coordinated to Co2+; [Co(Nfsul)x(H2O)y]2+. Alternatively, sulfonate ions (Nfsulf
‒) may be stabilizing 

[Co(H2O)6]2+ as a counterion; [Co(H2O)6]2+(Nfsulf
‒)2. There results indicate that during the 5,000 

ADT-rec cycles, Co was preferentially oxidized and dissolved from the Pt3Co/C cathode and the 

Figure 5. A: XANES spectrum of the 150 nm x 150 nm electrolyte region 6 m away from the 

boundary with the cathode electrocatalyst layer of the Pt3Co/C MEA after 5,000 ADT-rect cycles 

(black) and XANES spectrum of [Co(H2O)6]2+ (red), B: XANES spectra of the reference 

materials, C and D: EXAFS oscillations (black: observed; red: curve fitted) and Fourier 

transforms (black solid lines: observed; black dotted lines: imaginary part; red solid and dotted 

lines: curve fitted, respectively) of the 150 nm x 150 nm electrolyte region in A (black: observed; 

red: curve fitted). For EXAFS curve fitting analysis, k: 3-12 Å-1, R: 1.4 – 3.2 Å. 
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dissolved Co2+ ions had octahedral structures, such as [Co(Nfsul)x(H2O)y]2+ and [Co(H2O)6]2+. 

Meanwhile, the oxidation and dissolution of Pt observed in the MEA Pt/C (Figure 4) were not 

observed in the MEA Pt3Co/C (ve and vm in Figure 3D), where the metallic Pt surface of the fuel 

cell activity was maintained. Although the Pt shell layer was slightly thicker than the three-atom 

layers with bulk Pt properties and the amount of Co reduced, the oxidation and dissolution of Pt 

was suppressed. This may indicate that [Co(Nfsul)x(H2O)y]2+ and [Co(H2O)6]2+ adsorbed on the Pt 

shell surface, suppressing the oxidation and dissolution of Pt.64 Alternatively, effective 

concentrations of Nfsul and Nfsulf
‒ of Nafion ionomers near the cathode edge and in the cracks and 

pores, which also stabilize Pt2+ and promote Pt dissolution from the carbon surface, were reduced 

by coordination to Co2+ ions, and as the result.57-60 

Comparison of the Oxidation and Deterioration Factors of Pt and Co in MEA Pt3Co/C and 

MEA Pt/C.  We found that, in regard to the oxidation of Pt and dissolution of Pt2+ associated with 

the deterioration of the MEA Pt/C, there is a threshold for the size of cracks and pores and for the 

Pt/ionomer ratio; Pt2+ ions dissolved when the size of cracks and pores was higher than 500 nm, 

Figure 6. Relation of Co and Pt valences with the crack/pore size or Co/ionomer ratio at the 

cathode layer for the MEA Pt3Co/C (A and C) after 5,000 ADT-rec cycles and relation of Pt 

valence with the crack/pore size or Pt/ionomer ratio at the cathode layer for the MEA Pt/C 

(B and D) after 5,000 ADT-rec cycles. A & C: Co valence (pink bar graph) and Pt valence 

(light blue bar graph). 
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while Pt in the size lower than 500 nm was metallic (detached as clusters/nanoparticles from 

carbon support), but Pt was not metallic and dissolved as Pt2+ ions when the Pt/ionomer ratio of 

cracks and pores was lower than 0.05.59 Therefore, we were able to plot the correlation between 

oxidation and dissolution of Pt or Co, associated with ADT-rec deterioration of the MEA Pt3Co/C, 

with the size of cracks and pores or Pt/ionomer in cracks and pores (Figure 6A and 6C). In the 

MEA Pt3Co/C, in contrast to the behavior of Pt in the MEA Pt/C (Figure 6B and 6D), there was 

no oxidation of Pt after 5,000 ADT-rec cycles, and only oxidation of Co progressed (Co2+ 

generation) (Figures 6A and 6C). In other words, oxidation and dissolution of Pt were suppressed 

by the sacrificial oxidation of Co. In addition, the relationship between the size of cracks/pores 

and metal oxidation observed in the Pt/C was not observed in the Pt3Co/C. Regardless of the size 

of cracks and pores, Co was non-selectively oxidized to Co2+ in any location containing the cathode. 

Oxidation and dissolution of Co were not influenced by the Co/ionomer ratio in cracks and pores. 

Compared to Pt, the oxidation potential of Co was low. Thus, other than potential, the impact of 

the electrode catalyst structure, composition, particle diameter, and carbon was minor. 

Same-View Nano-XAFS/STEM-EDS Maps After 10000 ADT-rec Cycles.  Figure 7 shows the 

result of the same-view nano-XAFS/STEM-EDS of the MEA Pt3Co/C cathode after 10,000 ADT-

rec cycles at 0.6–1.0 V. After 10,000 ADT-rec cycles, more cracks and pores formed in the cathode 

catalyst layer than the sample following the 5,000 ADT-rec cycles (Figure 7A), and the Pt and Co 

contents in the cracks and pores were less than in areas without dissolution (Figures 7B and 7C). 

Specifically, as shown in the EDS line profiles in Figure 1C and Figure 7C, ~90% of Co were 

dissolved and removed from the overall cathode layer, and ~1 % of Pt was dissolved as shown in 

Figure 1B and 7B.  Furthermore, in the boundary area with the electrolytes, a Pt band was not 

observed after 5,000 ADT-rec cycles, indicating no occurrences of oxidation, dissolution, and 

reduction of Pt (Figures 7B and 7D). If we look at the Pt band closely, there was zerovalent Co 

(Ve in Figure 7E). Zerovalent Co is supported by the XANES spectrum of the cathode edge, shown 

in Figure 7H (region e), and based on the XANES spectrum we can see that it was more 

comparable to the Pt3Co than Co foil (Figure 5B). Thus, there was overwhelmingly less Co than 

Pt, but this indicates that it formed a Pt100Co alloy band. In addition, positively-charged Pt and Co 

were observed in the area between the Pt100Co band and the cathode edge (ve and Ve areas in 

Figures 7D and 7E, respectively). This state was similar to the distribution of Pt2+ in the area 

between the Pt band and the cathode edge in the deteriorated MEA Pt/C after 5,000 ADT-rec 
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cycles (Figure 4C). In the MEA Pt3Co/C, after 10,000 ADT-rec cycles, there was oxidation of Pt 

in the cracks and pores of the cathode layer (Figure 7D). Co was largely dissolved from across the  

cathode electrocatalyst layer (~90%) and existed as Co2+ ions across the electrolytes (Figures 7C 

Figure 7.  Results of nano-XAFS and STEM/EDS measurement of MEA Pt3Co/C cathode electrocatalyst layer 

after 10,000 ADT-rec cycles. Nano-XAFS data: B-F, E1-1 & -2, ve, Ve, M1-1 & -2, vm, Vm, G1-G3, and H1-H3. 

STEM/EDS data: A, B(line profile), C(line profile), e1, e2, e, m1, m2, m, e3-1-3, and m3-1-3.  A: STEM image, 

B: Pt content map and EDS line profile (decrease from Figure 2B), C: Co content map and EDS line profile 

(decrease from Figure 2C), D: Pt valence map, E: Co valence map, F: Co2+content map（the same color bar in 

7C).  e1, E1, ve and Ve: boundary region between the cathode electrocatalyst layer and electrolyte (3 mm x 3 

mm). m1, M1, vm and Vm: the middle region of the cathode electrocatalyst layer (3 mm x 3 mm). e3-1– e3-3: Pt 

EDS map, Co EDS map and Pt & Co line profiles for a single catalyst particle in the region e, respectively. m3-

1– m3-3 : Pt EDS map, Co EDS map and Pt & Co line profiles for a single catalyst particle in the region m, 

respectively. G1- G3: Pt L3-edge XANES, EXAFS oscillations (black solid lines: observed; black dotted lines: 

imaginary part; red solid and dotted lines: curve fitted, respectively) and their associated Fourier transforms 

(black: observed; red: curve fitted) in the regions e (150 nm x 150 nm) and m (150 nm x 150 nm). H: Co K-

edge XANES spectra in the regions e (blue; 150 nm x 150 nm) and m (black; 150 nm x 150 nm), and in the 

electrolyte region (red; 150 nm x 150 nm), respectively. 
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and 7E). In the sample after 10,000 ADT-rec cycles, and not only in the cathode catalyst layer, Co 

was dispersed across the wide region of the electrolytes, which, in turn, reduced Co concentration 

in each location. This prevented us from performing a Co K-edge nano-EXAFS analysis. However, 

Co2+ distributed in electrolytes likely exists as [Co(Nfsul)x(H2O)y]2+ or [Co(H2O)6]2+ is similar to 

the result recorded after 5,000 ADT-rec cycles. 

The Co content in the cathode layer was extremely low, and it is clear that it dissolved in areas 

other than the metallic nanoparticle cores. Although the Co content in the cathode electrocatalyst 

layer was low, zerovalent Co existed in the Pt-Co alloy core (Vm in Figure 7) and Co2+ ions in the 

cracks and pores of the cathode layer (Figures 7E and 7F). Table 1 shows the structural parameters 

obtained from the Pt L3-edge EXAFS analysis of the area m in Figure 7e2 (150 nm × 150 nm). 

The CNPt-Co was extremely small (0.1), and the Co/Pt ratio estimated from the comparison with 

CNPt-Pt was 1/115. From the analysis of the Pt content (Figure 7E1-1) and the Co content (Figure 

7E1-2) in the cathode edge area (3 μm × 3 μm), we discovered the existence of the metallic Pt-Co 

band in the electrolyte region of up to 300–400 nm from the cathode edge (E1-1, E1-2, ve and Ve in 

Figure 7). In addition, in the area between the cathode edge and the Pt-Co band, though the amount 

was low, Pt (mean valence of 1.7+) and Co (2+) were observed (ve and Ve in Figure 7). When the 

four-coordinated Pt2+-O4 species (probably square planar structure) are formed similar to the 

previous reports,58-60 the mole fraction of Pt2+ species calculated from Pt valence estimated from 

the nano-XANES (Figure 7G1) and the mole fraction of the Pt2+-O4 species calculated from CNPt-

O determined by EXAFS were 0.9 and 0.8, respectively, indicating that most Pt species existing 

the area between the cathode edge and the Pt-Co band are the Pt2+-O4 species. Pt2+ species also 

existed in the cracks and pores of the cathode layer (Figure 7D). Reduction in the Pt content 

associated with deterioration was small even after 10,000 ADT-rec cycles, but the rate of Co 

dissolution was high as above discussed, and was especially high (95%) in the area 300–600 nm 

from the boundary between the cathode and electrolytes. 

Oxidation Number of Pt and Co, and the Distribution of Co2+ in the Depth Direction of the 

Cathode Catalyst.  Figure 8 shows the oxidation state (valence) of Pt and Co and the distribution 

of Co2+ in the depth direction of the cathode electrocatalyst layer, i.e. the cathode layer from the 

boundary with the electrolyte to the boundary with GDL, during the MEA Pt3Co/C degradation 

process. In the aging sample (before ADT-rec cycles), Pt valence was zero across the cathode 
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electrocatalyst layer, while the Co valence was +0.2 (Figure 8A). As discussed above, considering 

Co2+ exists across the cathode layer after being oxidized and dissolved from the Pt3Co 

nanoparticles in the aging process. 90% of Co atoms exist at zero-valence in the core of the core-

shell type nanoparticles (Pt shell) (Figure 2 and Figure S5). After 5,000 ADT-rec cycles, the 

thickness of the cathode layer was reduced by 16% from 13.27 μm to 11.14 μm. Across the cathode 

catalyst layer, Pt was zerovalent. In contrast, valence of Co was the highest in the area near the 

boundary with the polymer electrolyte (mean valence: +1.7). Oxidation of Co was observed in the 

cathode range 4 μm from the boundary with the polymer electrolyte, and in the area of 4–8 μm, 

the amount of Co2+ did not increase, but there was a slight increase in the amount of Co2+ at 8 μm 

from the cathode edge on the GDL side (Figure 8B). Following 10,000 ADT-rec cycles, compared 

to after aging, the thickness of the cathode catalyst layer was reduced by 21% from 11.14 μm to 

10.52 μm (Figure 8C). In addition, unlike after 5,000 ADT-rec cycles, there was an area of Pt 

Figure 8. Distribution of Pt valence (light blue), Co valence (red), and Co2+ content (mass%) 

in the depth profiles in the MEA Pt3Co/C cathode electrocatalyst layers after aging (before 

ADT-rec) (A), after 5,000 ADT-rec cycles (B), and after 10000 ADT-rec cycles (C). 
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oxidation of up to 3 μm from the cathode edge; particularly, the mean valence of Pt was highest in 

the area 400 nm from the cathode edge (+1.7). After 10,000 ADT-rec cycles, ~90% of Co was 

dissolved and removed from the cathode layer, and a large number of Co2+ ions were observed in 

the area 400 nm from the boundary with the polymer electrolyte (Figure 8C). Co atoms that 

remained in the other areas of the cathode layer (other than cracks and pores) were limited to 

zerovalent Co atoms in the core of nanoparticles. As such, the chemical states of Pt and Co changed 

notably as a result of the 0.6–1.0 V rectangle wave ADT process in the area 4 μm from the 

boundary with the electrolytes, especially within 400 nm. 

 

CONCLUSIONS 

(1) We have developed the same-view XAFS‒STEM/EDS combination technique that is able to 

measure an MEA sample under atmospheric pressure with saturated water vapor pressure, 

while maintaining a PEFC operation environment as much as possible. Using this technique, 

we visualized and analyzed a chemical state map of the degradation process and the locations 

and factors of deterioration of the cathode catalyst of the MEA Pt3Co/C with 2.5 to 3 times 

more durability than the MEA Pt/C. As a result, we were able to observe the degradation 

process based on the suppression of oxidation and dissolution of Pt caused by Co in and out of 

catalyst particles not observed for the Pt/C. 

(2) The difference in the geometrical particle surface area and ECSA and the difference in catalyst 

particle sizes calculated from XRD and the catalyst diameter estimated from STEM, indicate 

that the surface of the Pt layer of the core-shell type Pt3Co/C was in disarray during the 

deterioration process. 

(3) The same-view nano-XAFS‒STEM/EDS of the 150 nm × 150 nm area revealed that in the 

cathode electrocatalyst layer of the aging MEA Pt3Co/C, prior to the ADT-rec process, there 

were core-shell type nanoparticles forming from the core of intermetallic phase with Co/Pt=1/2 

and two-layer Pt shells, and that after 5,000 ADT-rec cycles, the Co content in the cathode 

layer decreased approximately 70%, and the Pt shell layer increased to seven layers in the core-

shell nanoparticles near the cathode edge and to four layers in the nanoparticles near the center 

of the cathode. In the MEA Pt3Co/C after 5,000 ADT-rec cycles, unlike the MEA Pt/C, no 

oxidation of Pt occurred anywhere in the cathode electrocatalyst layer, whereas Co with the 
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relatively lower oxidation potential was oxidized over a wide area of the cathode. Specifically, 

it was observed that there was a large quantity of Co2+ in the area from the boundary with the 

polymer electrolyte to about ~4 μm inside the cathode. 

(4) In the MEA Pt/C, the larger the size and the smaller the Pt/ionomer ratio of the cracks and 

pores, the faster was the rate of dissolution of Pt. In contrast, in the MEA Pt3Co/C, dissolution 

of Co was independent of the size of the cracks and pores or the Co/ionomer ratio. Co that was 

dissolved into the electrolytes had octahedral Co2+-O6 structures such as [Co(Nfsul)x(H2O)y]2+ 

or [Co(H2O)6]2+ as Co2+ ions based on the same-view nano-EXAFS‒STEM/EDS analysis of 

the 150 nm × 150 nm area.  

(5) It is possible that the MEA Pt3Co/C after 5,000 ADT-rec cycles had a four-to-seven-layer Pt 

shell structure and the same properties as the bulk Pt, leading to oxidation and dissolution 

observed with the MEA Pt/C. However, oxidation and dissolution of Pt was suppressed. The 

reason for this is that [Co(Nfsul)x(H2O)y]2+ or [Co(H2O)6]2+ adsorbed on the Pt shell surface, 

thereby suppressing the oxidation of Pt to Pt2+. Alternatively, effective concentrations of Nfsul 

and Nfsulf
‒ of Nafion ionomers near the cathode edge and in the cracks and pores were reduced 

by coordination to Co2+ ions, resulting in suppression of Pt2+ dissolution. 

(6) After 10,000 ADT-rec cycles, many cracks and pores formed in the cathode catalyst layer, and 

about 90% of Co was dissolved and removed from the cathode layer. The rate of Co dissolution 

at the cathode was especially high (95%) for the boundary area with the polymer electrolyte 

(300–600 nm).  

(7) In the MEA Pt3Co/C after 10,000 ADT-rec cycles, there was a metallic Pt-Co alloy band in the 

electrolyte region approximately 300–400 nm from the cathode edge. The same-view nano-

XAFS‒STEM/EDS combination technique in the 150 nm × 150 nm area identified 4-

coordinated Pt2+-O4 species and 6-coordinated Co2+-O6 species in the area between the cathode 

edge and the Pt-Co band. Oxidation of Pt was also observed in the cracks and pores of the 

cathode layer. 

 

EXPERIMENTAL SECTION 

MEA Samples. We used Pt3Co/C (TEC36E52; 46.5 wt% Pt, 4.5 wt% Co) and Pt/C(TEC10E50E; 

50 wt% Pt) from Tanaka Kikinzoku Kogyo as the cathode catalyst of MEA and as a reference 
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sample, respectively. We mixed ionomer (EW1100) with these materials so that the Pt/ionomer 

ratio was 1/1. The coating area of the catalyst was 3 cm × 3 cm, and the metal loading was 0.3 

mgPt/cm2. We used Nafion-212 as the proton-exchange membrane (8 cm × 8 cm). In the present 

study, we examined the MEA following the aging (conditioning) processes, and samples after 

5,000 and 10,000 rectangle accelerated durability test (ADT-rec) cycles at 0.6 V (3 s)‒1.0 V (3 s). 

Electrochemical Measurements. PEFC cell temperature, humidifier temperature, and gas line 

temperature were maintained at 80 °C, 78 °C (provides 92% cell relative humidity), and 95 °C, 

respectively. Before performing the electrochemical measurements, the MEAs were conditioned 

(aging process) by applying 150 polarization cycles consisting of the galvanostatic steps (6 s step 

duration) between 0.002 A cm-2 (near open circuit voltage) and 0.5 A cm-2 under a H2 flow of 165 

sccm at anode and an air flow of 900 sccm at cathode. After the MEA aging, 4 cycles of cyclic 

voltammograms (CV) were measured between 0.05 V and 0.9 V (vs RHE) by applying 50 and 20 

mV s-1 potential scan speeds, respectively, and the final cycle of the CV measured at 20 mV s-1 

was used to determine the electrochemical surface area (ECSA) under a H2 flow of 165 sccm at 

anode and a N2 flow of 200 sccm at cathode. I-V load measurements were performed under a H2 

flow of 165 sccm at the anode, and an air flow of 1,320 sccm at the cathode. The rectangle ADT 

process was performed with 0.6 V (3 s)‒1.0 V (3 s) cyclic treatments under a H2 flow of 165 sccm 

at the anode and a N2 flow of 200 sccm at the cathode. ECSA was obtained from the hydrogen 

desorption current in CV at 0.05–0.35 V. 

Same-View Measurement of Nano-XAFS/STEM-EDS. After completing all electrochemical 

measurements, we returned the atmosphere to N2 flow, confirmed that OCV had been sufficiently 

reduced, then removed the MEA from the cell, using a glove bag at N2 atmospheric pressure with 

saturation water vapor pressure. After removing the MEA, a small piece was cutted out of the 

MEA and embedded in epoxy resin, and a thin section with a thickness of 200 nm was prepared 

with ultramicrotome. We placed this sample on a SiN membrane so that the cross-section of the 

MEA (depth direction) faced upwards. After surrounding this sample with a 300-nm gasket tube 

spacer, another SiN membrane was assigned, then the sample was sealed with epoxy resin (Figure 

S6). All operations were performed under humid N2 atmosphere to prevent vaporization of water 

from the sample and oxidation of the MEA electrode catalyst. During these operations, the MEA 

Pt3Co/C scarcely changed, and the degradation process was slow; thus, the result of the ex situ 
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same-view measurement can be assumed to be equivalent to the projected measurement result of 

an in situ sample.24,65  

We measured the STEM-EDS of a 80 μm × 30 μm area of an MEA thin section sample fixed 

in a SiN membrane stacking cell (Figure S6). Measurement temperature was controlled at 25 °C, 

at which there was no evaporation of water or reduction in fluorine due to an electron beam in the 

SiN membrane stacking cell. The mean particle diameter of the cathode catalyst was obtained from 

more than 300 particles from the central area of the cathode layer, the boundary area between the 

cathode layer and the polymer electrolyte membrane, and the boundary area between the cathode 

layer and the gas diffusion layer (GDL). We obtained the ionomer distribution of the MEA from 

the EDS count of F element. An analysis of the core-shell structure of the catalyst nanoparticles 

was performed by averaging the number of atomic layers in the shell layers, comprised of 10 to 20 

particles, and the core structure. 

Nano-XAFS Measurement. We performed nano-XAFS measurements of a thin section of MEA 

fixed in the SiN membrane stacking cell with the same view as the location of the STEM/EDS 

measurement, using the same method as in the previous report,58-60 by means of a focused beam 

of 150 nm × 150 nm (Figure S6). For the nano-XANES map, we measured a wide area of 

approximately 80 μm × 30 μm and a narrow area of 8 μm × 8 μm, including the cathode 

electrocatalyst layer. The Pt L3-edge and Co K-edge nano-XAFS spectra were measured at 

BL36XU in SPring-8 by using a Si(111) double-crystal monochromator. X-ray beam was focused 

to 150 nm x 150 nm size via a pair of elliptically bent Kirkpatrick-Baez (KB) mirrors. The nano-

XAFS spectra were measured in a fluorescence mode with Vortex-ME IV detector, where the 

sample was inclined to the X-ray nanobeam by 30o. Nano-XANES maps were obtained by 

scanning nano-XAFS methods,57-60 where XAFS spectra were measured at 206 and 136 energy 

points for the energy range of 11.390 to 12.200 keV and 7.520 to 7.810 keV for Pt L3-edge and 

Co K-edge XANES, respectively. In order to avoid a sample damage from the X-ray beam 

irradiation, the beam stay time in a pixel point was shortened as much as possible. Nano-XAFS 

mapping was performed for 1−2 views of about 65 μm × 30 μm and 1 view of 3 μm × 14 μm using 

nano-X-ray beam with 150 nm × 150 nm size every 400 and 100 nm steps, respectively. Beam 

stay time at the same nanoposition for nano-XAFS maps in about both 65 μm × 30 μm and 3 μm 

× 4 μm regions was only 5 and 30 ms for Pt L3-edge and Co K-edge, respectively.  
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Nano-EXAFS measurements were also performed in 150 nm × 150 nm regions with 60 s × 

loops and 300 s × 10 loops measurements for Pt L3-edge and Co K-edge, respectively. The 

measurement ranges are 11.450 to 12.900 keV and 7.650 to 8.200 keV for Pt L3-edge and Co K-

edge, respectively. 

After the nano-XAFS measurements, we measured STEM-EDS of the same area as the one 

measured for nano-XAFS. Furthermore, we performed particle analysis of the characteristic area 

observed on the nano-XANES map, via STEM-EDS. 

Positional correction. Positional correction in the same-view measurement was performed using 

the same method as in the report.58 The amount of Pt and Co was obtained from 11.600 keV or 

7.760 keV of the arctangent function, calculated from the linear combination fitting of the 

Lorentzian function and the arctangent function in the XANES spectrum (Pt: 11.550–11.600 keV, 

Co: 7.700–7.800 keV). Valence of Pt was obtained from an approximation equation obtained 

through linear fitting of the white line peak area for Pt0 foil, PtO, and PtO2 reference samples by 

using the area of the Lorentzian function from the above analysis as the white line peak area.31,32,34 

Since Co K-edge XANES and EXAFS for Co species, which were dissolved into the polymer 

electrolyte membrane, were consistent with those of [Co(H2O)6]2+ (Figure S3), valence of Co was 

obtained from the compositional ratio of the XANES spectrum of the sample via linear 

combination analysis of Pt3Co alloy (Pt3Co alloy plate, TKK) and [Co(H2O)6]2+.  

XAFS Data Analysis. EXAFS Fourier-transform fittings were performed similar to the previous 

reports,65 using the data analysis program IFEFFIT (version 1.2.11c).66 Theoretical phase shift 

and backscattering amplitude functions were calculated by FEFF 8.20.67 Normalized white-line 

peak areas for the estimation of Pt valences were calculated by using Lorentzian and Arctangent 

functions by IFEFFIT. We used s0
2 values of 0.88, 0.90, 0.90, 0.90, and 0.88 in the determination 

of CN(Pt−Pt), CN(Pt−O), CN(Co−Pt), CN(Co-Co), and CN(Co−O), respectively. The Fourier 

transform range taken in the k2χ plots and the curve-fitting range in R space were 3−11 Å−1 and 

1.4−3.2 Å, respectively. To avoid divergence in the XANES fitting analysis of the XANES 

mapping regions, we ignored regions with low Pt and Co contents below 1/100 of μ11.600 keV and 

μ7.800 keV, respectively. 

 



 25 

ASSOCIATED CONTENT 

Supporting Information. The Supporting Information is available free of charge on the ACS 

Publications website. Same-view membrane cell; CV; ECSA; I-V curves; XRD; nano-XANES 

spectra; nano-EXAFS data analysis; STEM/EDS (PDF) 

AUTHOR INFORMATION 

Corresponding Author  

*E-mail: iwasawa@pc.uec.ac.jp. Phone: +81-42-443-5921. Fax: +81-42-443-5483.  

ORCID  

Yasuhiro Iwasawa: 0000-0002-5222-5418 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

Funding Sources 

The New Energy and Industrial Technology Development Organization (NEDO) PEFC Program. 

Notes  

The authors declare no competing financial interest.  

 

ACKNOWLEDGMENTS 

This work was supported by the New Energy and Industrial Technology Development 

Organization (NEDO). XAFS measurements were performed with the approval of SPring-8 

subject numbers 2016A7804, 2016B7804, and 2017A7804, 2017A7807, 2017B7804, 2018A7804, 

2018B7804, and 2019A7804. 

 

 



 26 

REFERENCES 

1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. 

Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design, Science 

2017, 355, 6321, eaad4998, 1-33. 

2. Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Toward Sustainable Fuel cells, Science, 

2016, 354, 1378-1379.  

3. Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells, Nature, 

2012, 486, 43-51. 

4. Li, J.; Yin, H.-M.; Li, X.-B.; Okunishi, E.; Shen, Y.-L.; He, J.; Tang, Z.-K.; Wang, W.-X.; 

Yücelen, E.; Li, C.; Gong, Y.; Gu, L.; Miao, S.; Liu, L.-M.; Luo, J.; Ding, Y. Surface Evolution 

of a Pt-Pd-Au Electrocatalyst for Stable Oxygen Reduction, Nat. Energy 2017, 2, 17111-1-9. 

5. Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D.; 

Huang, X. Biaxially Strained PtPb/Pt Core/shell Nanoplate Boosts Oxygen Reduction Catalysis, 

Science 2016, 354, 1410-1414. 

6. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; 

Ross, P. N.; Markovic, N. M. Trends in Electrocatalysis on Extended and Nanoscale Pt-

Bimetallic Alloy surfaces, Nat. Mater. 2007, 6, 241-247. 

7. Beermann, V.; Gocyla, M.; Kühl, S.; Padgett, E.; Schmies, H.; Goerlin, M.; Erini, N.; Shviro, 

M.; Heggen, M.; Dunin-Borkowski, R. E.; Muller, D. A.; Strasser, P. Tuning the Electrocatalytic 

Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni Nanoparticles by 

Thermal Annealing-Elucidating the Surface Atomic Structural and Compositional Changes, J. 

Am. Chem. Soc. 2017, 139, 16536-16547. 

8. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; 

Merinov, B. V.; Li, Z. Y.; Zhu, E. B.; Yu, T.; Jia, Q. Y.; Guo, J. H.; Zhang, L.; Goddard, W. A.; 

Huang, Y.; Duan, X. F. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity 

for the Oxygen Reduction Reaction, Science 2016, 354, 1414-1419. 

9. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-

Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. 

Tuning the Activity of Pt Alloy Electrocatalysts by Means of the Lanthanide Contraction, 

Science 2016, 352, 73-76. 



 27 

10. Li, J.; Alsudairi, A.; Ma, Z.-F.; Mukerjee, S.; Jia, Q. Asymmetric Volcano Trend in Oxygen 

Reduction Activity of Pt and Non-Pt Catalysts: In Situ Identification of the Site-Blocking Effect, 

J. Am. Chem. Soc. 2017, 139, 1384-1387. 

11. Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. 

M.; Duan, X.; Mueller, T.; Huang, Y. High-Performance Transition Metal-Doped Pt3Ni 

Octahedra for Oxygen Reduction Reaction, Science 2015, 348, 1230-1234. 

12. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J. 

A.; Xie, Z.; Mavrikakis, M.; Xia, Y. Platinum-Based Nanocages with Subnanometer-Thick 

Walls and Well-Defined, Controllable Facets, Science 2015, 349, 412-416. 

13. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for 

Oxygen Reduction Reaction, Chem. Rev. 2016, 116, 3594-3657. 

14. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, 

J.; Greeley, J.; Nørskov, J. K. Changing the Activity of Electrocatalysts for Oxygen Reduction 

by Tuning the Surface Electronic Structure, Angew. Chem. Int. Ed. 2006, 45, 2897-2901. 

15. Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional Segregation in shaped Pt 

Alloy Nanoparticles and Their Structural Behaviour during Electrocatalysis, Nat. Mater. 2013, 

12, 765-771. 

16. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, 

H. D. Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with 

Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts, Nat. Mater. 2013, 12, 81-

87. 

17. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of Platinum Oxygen-Reduction 

Electrocatalysts Using Gold Clusters, Science 2007, 315, 220-222. 

18. Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. 

A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; 

Stamenkovic, V. R. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional 

Electrocatalytic Surfaces, Science 2014, 343, 1339-1343. 

19. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; 

Markovic, N. M. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site 

Availability, Science 2007, 315, 493-497. 



 28 

20. Chen, S.; Ferreira, P. J.; Sheng, W. C.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. Enhanced 

Activity for Oxygen Reduction Reaction on “Pt3Co” Nanoparticles: Direct Evidence of 

Percolated and Sandwich-Segregation Structure, J. Am. Chem. Soc. 2008, 130, 13818-13819. 

21. Zhao, X.; Takao, S.; Higashi, K.; Kaneko, T.; Samjeskè, G.; Sekizawa, O.; Sakata, T.; 

Yoshida, Y.; Uruga, T.; Iwasawa, Y. Simultaneous Improvements in Performance and Durability 

of an Octahedral PtNix/C Electrocatalyst for Next-Generation Fuel Cells by Continuous, 

Compressive, and Concave Pt Skin Layers, ACS Catal. 2017, 7, 4642-4654. 

22. Nagasawa, K.; Takao, S.; Nagamatsu, S.; Samjeské, G.; Sekizawa, O.; Kaneko, T.; Higashi, 

K.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Surface-Regulated Nano-SnO2/Pt3Co/C Cathode 

Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn 

Deposition Method, J. Am. Chem. Soc. 2015, 137, 12856-12864. 

23. Tada, M.; Uruga, T.; Iwasawa, Y. Key Factors Affecting the Performance and Durability of 

Cathode Electrocatalysts in Polymer Electrolyte Fuel Cells Characterized by In Situ Real Time 

and Spatially Resolved XAFS Techniques, Catal. Lett. 2015, 145, 58-70.  

24. Tada, M.; Iwasawa, Y. “Fuel Cells by Advanced XAFS Techniques” in “XAFS Techniques 

for Catalysts, Nanomaterials, and Surfaces” (Iwasawa, Y., Asakura, K., Tada, M., Eds.), 

Springer, 2017, 335-349. 

25. Casalongue, H. S.; Kaya, S.; Viswanathan, V.; Miller, D. J.; Friebel, D.; Hansen, H. A.; 

Nøskov, J. K.; Nilsson, A.; Ogasawara, H. Direct Observation of the Oxygenated Species during 

Oxygen Reduction on a Platinum Fuel Cell Cathode, Nat. Comm. 2013, 4, 2817-1-6.  

26. Uruga, T.; Tada, M.; Sekizawa, O.; Takagi, Y.; Yokoyama, T.; Iwasawa, Y. SPring-8 

BL36XU: Synchrotron Radiation X-ray-Based Multi-Analytical Beamline for Polymer 

Electrolyte Fuel Cells under Operating Conditions, Chem. Rec. 2019, 19, 1444-1456.  

27. Tada, M.; Murata, S.; Asakoka, T.; Hiroshima, K.; Okumura, K.; Tanida, H.; Uruga, T.; 

Nakanishi, H.; Matsumoto, S.; Inada, Y.; Nomura, M.; Iwasawa, Y. In Situ Time-Resolved 

Dynamic Surface Events on the Pt/C Cathode in a Fuel Cell under Operando Conditions, Angew. 

Chem. Int. Ed. 2007, 46, 4310-4315. 

28. Ishiguro, N.; Saida, T.; Uruga, T.; Nagamatsu, S.; Sekizawa, O.; Nitta, K.; Yamamoto, T.; 

Ohkoshi, S.; Iwasawa, Y.; Yokoyama, T.; Tada, M. Operando Time-Resolved X-ray Absorption 

Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte 

Fuel Cell during Voltage-Operating Processes, ACS Catal. 2012, 2, 1319-1330. 



 29 

29. Ishiguro, N.; Saida, T.; Uruga, T.; Sekizawa, O.; Nagasawa, K.; Nitta, K.; Yamamoto, T.; 

Ohkoshi, S.; Yokoyama, T.; Tada, M. Structural Kinetics of a Pt/C Cathode Catalyst with 

Practical Catalyst Loading in an MEA for PEFC Operating Conditions Studied by in situ Time-

Resolved XAFS, Phys. Chem. Chem. Phys. 2013, 15, 18827-18834. 

30. Ishiguro, N.; Uruga, T.; Sekizawa, O.; Tsuji, T.; Suzuki, M.; Kawamura, N.; Mizumaki, M.; 

Nitta, K.; Yokoyama, T.; Tada, M. Visualization of the Heterogeneity of Cerium Oxidation 

States in Single Pt/Ce2Zr2Ox Catalyst Particles by Nano-XAFS, ChemPhysChem, 2014, 15, 

1563-1568. 

31. Nagamatsu, S.; Arai, T.; Yamamoto, M.; Ohkura, T.; Oyanagi, H.; Ishizaka, T.; Kawanami, 

H.; Uruga, T.; Tada, M.; Iwasawa, Y. Potential-Dependent Restructuring and Hysteresis in the 

Structural and Electronic Transformations of Pt/C, Au(Core)-Pt(Shell)/C, and Pd(Core)-

Pt(Shell)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by in Situ X-ray 

Absorption Fine Structure, J. Phys. Chem. C 2013, 117, 13094-13107. 

32. Nagamatsu, S.; Takao, S.; Samjeské, G.; Nagasawa, K.; Sekizawa, O.; Kaneko, T.; Higashi, 

K.; Uruga, T.; Gayen, S.; Velaga, S.; Saniyal, M. K.; Iwasawa, Y. Structural and Electronic 

Transformations of Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C Cathode Catalysts in Polymer 

Electrolyte Fuel Cells during Potential-Step Operating Processes Characterized by In-situ Time-

Resolved XAFS, Surf. Sci., 2016, 648, 100-113.  

33. Ishiguro, N.; Kityakarn, S.; Sekizawa, O.; Uruga, T.; Matsui, H.; Taguchi, M.; Nagasawa, K.; 

Yokoyama, T.; Tada, M. Kinetics and Mechanism of Redox Processes of Pt/C and Pt3Co/C 

Cathode Electrocatalysts in a Polymer Electrolyte Fuel Cell during an Accelerated Durability 

Test, J. Phys. Chem. C, 2016, 120, 19642-19651.  

34. Kaneko, T.; Samjeské, G.; Nagamatsu, S.; Higashi, K.; Sekizawa, O.; Takao, S.; Yamamoto, 

T.; Zhao, X.; Sakata, T.; Uruga, T.; Iwasawa, Y. Key Structural Kinetics for Carbon Effects on 

the Performance and Durability of Pt/Carbon Cathode Catalysts in Polymer Electrolyte Fuel 

Cells Characterized by In Situ Time-Resolved X-ray Absorption Fine Structure, J. Phys. Chem. 

C, 2016, 120, 24250-24264.  

35. Higashi, K.; Samjeské, G.; Takao, S.; Kaneko, T.; Sekizawa, O.; Uruga, T.; Iwasawa, Y. The 

Relationship between the Active Pt Fraction in a PEFC Pt/C Catalyst and the ECSA and Mass 

Activity during Start-Up/Shut-Down Degradation by in Situ Time-Resolved XAFS Technique, J. 

Phys. Chem. C 2017, 121, 22164-22177.  



 30 

36. Sekizawa, O.; Uruga, T.; Higashi, K.; Kaneko, T.; Yoshida, Y.; Sakata, T.; Iwasawa, Y. 

Simultaneous Operando Time-Resolved XAFS–XRD Measurements of a Pt/C Cathode Catalyst 

in Polymer Electrolyte Fuel Cell under Transient Potential Operations, ACS Sus. Chem. Eng., 

2017, 5, 3631-3636.  

37. Sekizawa, O.; Kaneko, T.; Higashi, K.; Takao, S.; Yoshida, Y.; Gunji, T.; Zhao, X.; 

Samjeské, G.; Sakata, T.; Uruga, T.; Iwasawa, Y. Key Structural Transformations and Kinetics 

of Pt Nanoparticles in PEFC Pt/C Electrocatalysts by a Simultaneous Operando Time-Resolved 

QXAFS-XRD Technique, Top. Catal. 2018, 61, 889-901.  

38. Ishiguro N.; Tada, M. Structural Kinetics of Cathode Events on Polymer Electrolyte Fuel 

Cell Catalysts Studied by Operando Time-Resolved XAFS, Catal. Lett. 2018, 148, 1597-1609.  

39. Ozawa, S.; Matsui, H.; Ishiguro, N.; Tan, Y.; Maejima, N.; Taguchi, M.; Uruga, T.; 

Sekizawa, O.; Nagasawa, K.; Higashi, K.; Tada, M. Operando Time-Resolved X-ray Absorption 

Fine Structure Study for Pt Oxidation Kinetics on Pt/C and Pt3Co/C Cathode Catalysts by 

Polymer Electrolyte Fuel Cell Voltage Operation Synchronized with Rapid O2 Exposure, J. 

Phys. Chem. 2018, C 122, 14511-14517.  

40. Saida, T.; Sekizawa, O.; Ishiguro, N.; Hoshino, M.; Uesugi, K.; Uruga, T.; Ohkoshi, S.; 

Yokoyama, T.; Tada, M. 4D Visualization of a Cathode Catalyst Layer in a Polymer Electrolyte 

Fuel Cell by 3D Laminography-XAFS, Angew. Chem. Int. Ed. 2012, 51, 10311-10314.  

41. Matsui, H.; Ishiguro, N.; Enomoto, K.; Sekizawa, O.; Uruga, T.; Tada, M. Imaging of 

Oxygen Diffusion in Individual Platinum/Ce2Zr2Ox Catalyst Particles During Oxygen Storage 

and Release, Angew. Chem. Int. Ed., 2016, 55, 12022-12025.  

42. Matsui, H.; Ishiguro, N.; Uruga, T.; Sekizawa, O.; Higashi, K.; Maejima, N.; Tada, M. 

Operando 3D Visualization of Migration and Degradation of a Platinum Cathode Catalyst in a 

Polymer Electrolyte Fuel Cell, Angew. Chem. Int. Ed. 2017, 56, 9371-9375. 

43. Sekizawa, O.; Uruga, T.; Ishiguro, N.; Matsui, H.; Higashi, K.; Sakata, T.; Iwasawa, Y.; 

Tada, M. In-situ X-ray nano-CT System for Polymer Electrolyte Fuel Cells under Operating 

Conditions, J. Phys.: Conf. Series 2017, 849, 012022-1-4.  

44. Higashi, K.; Sakata, T.; Sekizawa, O.; Ishiguro, N.; Samjeské, G.; Takao, S.; Kaneko, T.; 

Uruga, T.; Iwasawa, Y.; Tada, M. In-situ 3D CT-XAFS Imaging of Pt/C Cathode Catalysts in 

Polymer Electrolyte Fuel Cell during Degradation Processes by Anode Gas Exchange Cycles, 

Microsc. Microanal. 2018, 24 (S2), 442-443.  



 31 

45. Tan, Y.; Matsui, H.; Ishiguro, N.; Tada, M. Three-Dimensional XAFS Imaging of Polymer 

Electrolyte Fuel Cell Cathode Catalysts in Membrane Electrode Assembly, Acc. Mater. Surf. 

Res. 2018, 3, 165-171.  

46. Matsui, H.; Maejima, N.; Ishiguro, N.; Tan, Y.; Uruga, T.; Sekizawa, O.; Sakata, T.; Tada, 

M. Operando XAFS Imaging of Distribution of Pt Cathode Catalysts in PEFC MEA, Chem. Rec. 

2019, 19, 1380-1392. 

47. Buurmans I. L. C.; Weckhuysen, B. M. Heterogeneities of Individual Catalyst Particles in 

Space and Time as Monitored by Spectroscopy, Nat. Chem. 2012, 4, 873-886. 

48. Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; 

Meirer, F.; Weckhuysen, B. M. Unravelling Structure Sensitivity in CO2 Hydrogenation Over 

Nickel, Nat. Catal, 2018, 1, 127-134. 

49. Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; Vondele, J. V.; Ekinci, Y.; Bokhoven, J. 

A. Catalyst Support Effects on Hydrogen Spillover, Nature, 2017, 541, 68-71. 

50. Ebner, M.; Marone, F.; Stampanoni, M.; Wood, V. Visualization and Quantification of 

Electrochemical and Mechanical Degradation in Li Ion Batteries, Science, 2013, 342, 716-720. 

51. Berejnova, V.; Sahaa, M. S.; Susaca, D.; Stumpera, J.; Westb, M. M.; Hitchcock, A. P. 

Advances in Structural Characterization Using Soft X-ray Scanning Transmission Microscopy 

(STXM): Mapping and Measuring Porosity in PEM-FC Catalyst Layers, ECS Transactions, 

2017, 80, 241-252. 

52. Beyerlein, K. R. Time-Spliced X-ray Diffraction Imaging of Magnetism Dynamics in a 

NdNiO3 Thin Film, Proc. Natl. Acad. Sci. 2018, 115, 2044-2048. 

53. Cornelius, T. W.; Thomas, O. Progress of in situ Synchrotron X-ray Diffraction Studies on 

the Mechanical Behavior of Materials at Small Scales, Prog. Mater. Sci. 2018, 94, 383-434. 

54. Mara, M. W.; Hadt, R. G.; Reinhard, M. E.; Kroll, T.; Lim, H.; Hartsock, R. W.; Mori, R. A.; 

Chollet, M.; Glownia, J. M.; Nelson, S.; Sokaras, D.; Kunnus, K.; Hodgson, K. O.; Hedman, B.; 

Bergmann, U.; Gaffney, K. J.; Solomon, E. I. Metalloprotein Entatic Control of Ligand-Metal 

Bonds Quantified by Ultrafast X-ray Spectroscopy, Science, 2017, 356, 1276-1280. 

55. Hirose, M.; Ishiguro, N.; Shimomura, K.; Burdet, N.; Matsui, H.; Tada, M.; Takahashi, Y. 

Visualization of Heterogeneous Oxygen Storage Behavior in Platinum-Supported Cerium-

Zirconium Oxide Three-Way Catalyst Particles by Hard X-ray Spectro-Ptychography, Angew. 

Chem. Int. Ed. 2018, 57, 1474-1479.  



 32 

56. Schmidt, J. E.; Oord, R.; Guo, W.; Poplawsky, J. D.; Weckhuysen, B. M. Nanoscale 

Tomography Reveals the Deactivation of Automotive Copper-Exchanged Zeolite Catalysts, Nat. 

Commun. 2017, 8, 1666-1-8. 

57. Takao, S.; Sekizawa, O.; Nagamatsu, S.; Kaneko, T.; Yamamoto, T.; Samjeské, G.; Higashi, 

K.; Nagasawa, K.; Tsuji, T.; Suzuki, M.; Kawamura, N.; Mizumaki, M.; Uruga, T.; Iwasawa, Y. 

Mapping Platinum Species in Polymer Electrolyte Fuel Cells by Spatially Resolved XAFS 

Techniques, Angew. Chem. Int. Ed. 2014, 53, 14110-14114. 
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