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Abstract

A database that contains personal information and is collected by crowdsensing
can be used for various purposes. Therefore, database holders may want to share
their databases with other organizations. However, since a database contains
information about individuals, database recipients must take privacy concerns
into consideration. One of the mainstream privacy protection indicators, I-
diversity, guarantees that the probability of identifying a sensitive attribute
value of an individual in a database is less than 1/I. However, when there are
several semantically similar values in the sensitive attribute, there is a possibility
that actual diversity is not satisfied, even if anonymization is performed to
satisfy [-diversity. For example, an attacker may know that candidates of Alice’s
disease are a set of HIV-1(M), HIV-1(N), and HIV-2 if the anonymized database
satisfies 3-diversity. In this case, the attacker can conclude that Alice has HIV,
although the detailed type remains unknown. In this research, to solve how
actual diversity cannot be taken into consideration with existing [-diversity, we
proposed a novel privacy indicator, (I, d)-semantic diversity, and an algorithm
that anonymizes a database to satisty (I, d)-semantic diversity. We also proposed

an analysis algorithm that is suitable for the proposed anonymizing algorithm
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because the output of the anonymizing algorithm is difficult to understand.
Our proposed algorithms were experimentally evaluated using synthetic and
real datasets.

Keywords: Computer Security, Privacy Preserving Data Publishing,
Anonymity, [-diversity

1. INTRODUCTION

In recent years, numerous organizations have possessed databases contain-
ing personal information that was obtained by crowdsensing and other sources
for various purposes. A database containing personal information includes an
identifier, quasi-identifiers (QIDs), sensitive attributes, and other attributes.
Identifiers are attributes that can uniquely identify individuals (e.g., names and
telephone numbers). QIDs are attributes that can identify individuals by com-
bining individuals’ information (e.g., gender, age, and ZIP code). Sensitive
attributes are types of information that individuals do not want to be disclosed
(e.g., annual income and health status); anonymization is used to protect sen-
sitive attributes.

Many organizations want to analyze personal information while realizing the
importance of personal privacy protection by anonymizing personal information
according to existing indicators, such as k-anonymity [2], [6]. k-anonymity en-
sures that there are k or more records that have the same QID values. However,
k-anonymity cannot protect against attribute disclosure because the k or more
records might have the same sensitive attribute values.

The I-diversity [3] indicator extended k-anonymity, and it can protect against
attribute disclosure. For example, in a case in which 3-diversity is satisfied, an
attacker cannot recognize which one of {HIV-2, Influenza A, or cecum} is a
true, sensitive attribute value of a certain person even if the attacker knows all
of that person’s QID values. However, when there are multiple similar sensitive
attribute values in a database, there are cases where actual diversity is not

satisfied even if the database satisfies I-diversity. Assume that database D



satisfies 3-diversity, and an attacker gets {HIV-2, HIV-1 (M), and HIV-1 (N)}
as candidates for Alice’s sensitive attribute value from this database. Although
database D satisfies 3-diversity, it does not take into account the similarity
between the sensitive attribute values; as a result, the attacker can conclude
that Alice has HIV (although the type of HIV would remain unknown).

In this research, we propose (I, d)-semantic diversity, which is an indicator
that can satisfy actual diversity, and an anonymization algorithm according to
(I, d)-semantic diversity. In addition, as in many existing studies, we assume
in this research that a database analyst wants statistical information about the
database; therefore, we propose an analysis algorithm for obtaining statistical
values in addition to an anonymization algorithm.

We will explain the assumed environment in Section 2 and present existing
indicators and set tasks in Section 3. Section 4 introduces the new indicators
used to solve the problem. Section 5 discusses our anonymization algorithm.
Section 6 shows the experimental verification of analysis algorithms. The results
of our simulations are presented in Section 7. Finally, Section 8 concludes the

paper. This article is an extended version of [26].

2. ASSUMED ENVIRONMENT

We assume that a database contains personal information; therefore, the
database needs privacy protection. Databases include identifiers, QIDs, sensitive
attributes, and other attributes. Hereafter, the database described in this paper
is a database containing personal information.

An organization holding such a database is called a “data holder” and the
data publisher wants to share it with external “data users.” However, external
data users are not necessarily reliable. Data users can be attackers who are
honest-but-curious; that is, they follow the proposed protocol but try to analyze
individual information from published databases.

Therefore, data holders should anonymize databases to protect privacy from

attackers. Anonymizing is a method that can preserve privacy while maintain-



ing usefulness of databases, and it processes databases according to privacy
indicators, such as k-anonymity and [-diversity.

Data users want to analyze what kinds of sensitive attribute values a person
with a specific QID holds. In other words, it is assumed that when data users
receive a database containing personal information that they create multidi-
mensional histograms (also called contingency tables or cross-tabulations), for
example, and analyze them.

We assume that a sensitive attribute has distinct values because a data user’s
purpose in this paper is to generate multidimensional histograms. For example,
numerical values, such as income, are expressed by $20K-$30K, $30K-$40K,
and so on. In this research, it is assumed that a data holder collects data by
crowdsensing. Fig. 1 shows a flow in which a data holder anonymizes data
before collecting it and creates a database, then analyzes the data by creating
a histogram from the anonymized database.

The attacker can see the created anonymized records or databases using
our proposed algorithms. The attacker might have prior knowledge about a
certain person’s QID values, and may then try to identify the person’s sensitive
attribute value.

Anonymous communication systems (ACS) can protect communications be-
tween entities from traffic analysis by providing unidentifiability and unlinka-
bility [23]. By using ACS such as [24] and [25], we assume that sender identity

can be protected in this research.

3. RELATED WORK

3.1. k-anonymity

One of the privacy indicators widely used for database anonymization is k-
anonymity [2]. A database containing certain personal information is defined as
satisfying k-anonymity if there are at least k records with the same combination

of QID values. As a result, even if an attacker knows all the QID values held
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Figure 1: A scenario of anonymized data collection and analysis.

by a certain person, the individual cannot be identified since there are at least
k records with the same combinations of QID values.

Generalization is commonly used as an anonymization method for realizing
k-anonymity. The database represented by Table 2 is anonymized based on
generalization from the disease database represented by Table 1. In Table 2,
the QID values of A and B, the QID values of C and D, and the QID values
of E, F, and G are the same, respectively. Because at least 2 records have the
same QID values, Table 2 satisfies 2-anonymity.

However, there is a problem with k-anonymity. For example, the equivalence
class of C and D in Table 2 have only “HIV-1(M)” as the sensitive attribute
values.

k-Anonymity focuses on QIDs, and sensitive attributes are not considered.
This problem can be particularly serious if there is a correlation between the

QID and the sensitive attribute.



Table 1: Disease database.

Name Gender | Age | ZIP code Disease

Alice Female | 24 | 999-4565 | Vocal folds polyp

Becky Female | 16 | 999-5636 HIV-2
Catriona | Female | 21 | 999-4557 HIV-1(M)
Daisy | Female | 22 | 999-4531 HIV-1(M)
Eddy Male 34 | 999-1332 Tooth decay
Fred Male 34 | 999-1335 Cecum

Gabriel Male 48 | 999-1337 Gastric ulcer

3.2. 1-diversity

One of the indicators that have extended k-anonymity is I-diversity [3].
A database containing personal information is defined as satisfying I-diversity
when a certain equivalence class (a set of records that have the same QID val-
ues) holds at least [ kinds of sensitive attribute values. By satisfying I-diversity,
the diversity of sensitive attribute values held by a equivalence class is guar-
anteed, and it is possible to solve the aforementioned problem of k-anonymity.
[-diversity has been widely studied in privacy-preserving data mining, such as
[3], [15], and [16].

Table 3 is a database in which the database of Table 1 is anonymized to
satisfy 2-diversity because every equivalence class has at least two kinds of
sensitive attribute values. This makes it possible to disguise an individual’s
sensitive attribute value.

An attacker who knows Becky’s QID values cannot decide whether Becky’s
disease is HIV-2 or HIV-1(M), according to Table 3. However, the attacker can
conclude that Becky has HIV, although the specific type (HIV-2 or HIV-1(M))

is unknown, as described in Section 3.3.



Table 2: Disease database satisfying 2-anonymity.

Pseudonyms | Gender Age ZIP code Disease
A Female | 10---29 | 999-**** | Vocal folds polyp
Female | 10---29 | 999-**** HIV-2
C Female 2% 999-45%* HIV-1(M)
D Female 2% 999-45%* HIV-1(M)
E Male | 30---49 | 999-133* Tooth decay
F Male | 30---49 | 999-133* Cecum
G Male | 30---49 | 999-133* Gastric ulcer

Table 3: Disease database satisfying 2-diversity.

Pseudonyms | Gender Age ZIP code Disease
A Female 2% 999-45** | Vocal folds polyp
B Female | 10---29 | 999-**** HIV-2
C Female | 10---29 | 999-#¥** HIV-1(M)
D Female 2% 999-45%* HIV-1(M)
E Male | 30---49 | 999-133* Tooth decay
F Male | 30---49 | 999-133* Cecum
G Male | 30---49 | 999-133* Gastric ulcer

3.3. The problem of 1-diversity

Although [-diversity solves the problem of k-diversity, I-diversity is still prob-
lematic in some cases. When there are several semantically similar values in a
sensitive attribute, there is a possibility that actual diversity is not satisfied
even if anonymization is performed to satisfy [-diversity.

Table 3 is a database that satisfies 2-diversity. However, the sensitive at-
tribute values of the equivalence class of B and C are “HIV-2” and “HIV-1(M).”
It certainly has two types of sensitive attribute values, so it can be said that

privacy is protected by I[-diversity. However, a data user can conclude that the



people in the equivalence class have HIV with 100% probability, although the
detailed type of HIV would remain unknown.

If we use [-diversity, the candidates of a person’s sensitive attribute value
have at least [ values. However, there might be several [ values that are seman-
tically similar. In the worst case, all these values could be semantically similar.
In this case, the data user can semantically identify the person’s sensitive at-
tribute value with very high probability. We define this case as a “situation
where actual diversity is not satisfied,” and the purpose of this research is to
solve this problem. In other words, if the set of [ values satisfies actual diversity,
the values are not just different but semantically different.

If similar sensitive attribute values are present in the database, as shown
in Table 3, it is impossible to satisfy actual diversity without considering the
similarity of each sensitive attribute value in the database; unfortunately, I-

diversity cannot accomplish this at all.

3.4. (Le)-diversity

Haiyuan et al. [17] proposed that (I, e)-diversity is an indicator that extends
[-diversity and is focused on actual diversity, as in our research. The parameter
e of (I,e)-diversity controls the degree of the actual diversity. (I,e)-diversity
assumes that the sensitive attribute values can be expressed as a tree structure,
and the parameter e defines the depth that the values are considered to be

semantically similar.

Example 1 (Tree structure of numerical attributes for (I, e)-diversity). Fig. 2
shows an example of a tree structure of sensitive attribute values. When we set e
as three, the nodes where the depth is three are “Less than $20K,” “$20K-$30K,”
“$30K-$50K,” “$50K-370K,” “$70K-380K,” “$80K-$90K,” “$90K-$100K,” and
“More than $100K.” Therefore, we consider $20K and $25K to be semanti-
cally similar, but $20K and $40K are semantically different because $20K and
$25K are grouped into the same category “$20K-$30K,” but $20K and $40K
are grouped into the different categories (“320K-330K” and “$30K-$40K,” re-



spectively.) (1, e)-diversity ensures that every equivalence class has at least
semantically different values.

For example, when we set e as one, there are two categories: “Less than
$T70K” and “More than $70K.” In this example, $20K and $40K are considered
to be semantically similar values. Therefore, the smaller the parameter e, the

better the privacy is protected.

To satisfy (I, e)-diversity, the authors used Anatomy [12] as an anonymizing
algorithm. Anatomy is a privacy-preserving method proposed by Xiao et al.
that groups records so that the sensitive attribute values are [ or more types,
and it divides the QID table and the sensitive attribute table into different
tables. The QID table and the sensitive attribute table have a common group
ID so that it is possible to link both tables while satisfying I-diversity.

Tables 4 and 5 show examples in which Table 1 was processed by Anatomy
to satisfy 2-diversity. Even if an attacker refers to two tables to estimate the
sensitive attribute values of record A, since the sensitive attribute values corre-
sponding to the group ID of A are vocal cord polyps and HIV-1(M), an attacker

cannot create a unique estimate.

Table 4: Disease database satisfying 2-diversity (QID table).

Pseudonyms | Gender Age ZIP code | Group ID
A Female 2% 999-45%* 1
B Female | 10---29 | 999-**** 2
C Female | 10---29 | 999-##¥* 2
D Female 2% 999-45%* 1
E Male 30---50 | 999-133* 3
F Male 30---50 | 999-133* 3
G Male | 30---50 | 999-133* 3

Haiyuan et al. consider actual diversity by using the unique parameter e

when executing Anatomy.



Table 5: Disease database satisfying 2-diversity (sensitive attribute table).

Disease Group ID
Vocal folds polyp 1
HIV-2 2
HIV-1(M) 2
HIV-1(M) 1

Tooth decay

Cecum

W | W | W

Gastric ulcer

However, (I, e)-diversity only supports sensitive attributes that can be cate-
gorized into tree structures. Also, the anonymizing algorithm of (I, e)-diversity
only supports tree structures.

Therefore, if the distance of the sensitive attribute values is not suitable to
be represented by a tree structure, (I, e)-diversity should not be used. We can
use ([, e)-diversity for this tree structure, as shown in Example 1. However, this
poses a privacy issue.

When we set e as one (i.e., the privacy protection level is at its maximum),
(1, e)-diversity considers “$60K-$70K” and “$70K-$80K” to be semantically very
different, although the difference between “$60K-$70K” and “$70K-$80K” is
actually very small. We cannot avoid this problem as long as we use a tree
structure for numerical attributes. Again, note that the anonymizing algorithm
of (I,e)-diversity supports only tree structures. This means that we cannot

ensure actual diversity by using (I, e)-diversity for numerical attributes.

3.5. t-closeness

In addition, t-closeness [4] exists as an extension of [-diversity. A database
satisfying t-closeness means that the distance between the distribution of the at-
tribute values of the entire database and the distribution of the attribute values

within the equivalence class is less than ¢. By using this indicator, better pri-
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Figure 2: An example of classifying annual income into a tree structure.

More than $70K

More than $90K

vacy protection can be realized. However, t-closeness cannot solve the problem
of [-diversity shown above. For example, if the database holds information for
a fairly large number of HIV patients, then the above problem tends to occur.
Conversely, in the case of a database in which few HIV patients are present,
the equivalence class that contains even one HIV patient needs to be a large
one because the distance between the distribution of attribute values of the
entire database increases. Almost all of the information on an attribute value
with a small frequency of appearance is lost, and the information on the record

belonging to the same equivalence class is also greatly reduced.

3.6. Differential privacy

Differential privacy [8],[9],[10] exists as a privacy indicator that is different
from k-anonymity, [-diversity, and t-closeness as they are described above. Dif-
ferential privacy is defined by the assumption that data analyzers issue queries
to a data holder and that the data holder anonymizes the answers.

This indicator is able to use crowdsensing as a data-collecting method, and

the data holder does not share the anonymized database, but receives data
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queries one by one while keeping the database. This assumption has merit, as
the data analyzers can obtain only the desired information; however, a disad-
vantage exists in that there is a high cost to the holder, and the data analyzers
cannot freely use the database. Considering the above disadvantages, it is as-
sumed in this research that the data analyzers are requesting the anonymized

data.

4. PROPOSED INDICATORS

In this section, we propose (I, d)-semantic diversity as an indicator that con-
siders actual diversity that cannot be dealt with by existing indicators, such as

I-diversity, t-closeness, and (I, e)-diversity.

4.1. Symbol definition

Let T be a database containing personal information, and let the i-th record
of T'be r;; herei=1,...,N.

Let S be a domain of a sensitive attribute in 7, and let F' be the number
of elements in S. Each value of S is expressed by vy, ...,vr. Furthermore, the
sensitive attribute value of record r is expressed as E(r).

For example, in Table 1 r; represents the first record, i.e., the record of
[Alice, Female, 24, 999-4565, Vocal folds polyp], and ro represents the second
record, i.e., the record of [Becky, Female, 16, 999-5636, HIV-2], and so on. The
attribute Disease is a sensitive attribute in Table 1; therefore, S is the set of
values of Disease without duplication, i.e., S ={Volcal folds polyp, HIV-2, HIV-
1(M), Tooth decay, Cecum, Gastric ulcer}. Because the number of elements
of §is 6, F = 6. The symbols vy,...,vs represent Vocal folds polyp, HIV-2,
HIV-1(M), Tooth decay, Cecum, Gastric ulcer, respectively. E(r;) is Vocal folds
polyp, E(re) is HIV-2, E(rs) is HIV-1(M), and so on.

Table 6 shows the symbols.

12



Table 6: Symbols.

Symbol | Description

T Database containing personal information
N Number of records in T’

T 1th record of T'

S Domain of a sensitive attribute in T’

F Number of elements of S (i.e., F = |5])

V; 1th value in S

E(r) | Sensitive attribute value of record r in T

4.2. (l,d)-semantic diversity
Here, we show the definition of (I, d)-semantic diversity, which is a proposal

indicator for problem-solving.

Definition 1 ((I, d)-semantic diversity):

Let T represent the database containing personal information.

For natural numbers [ and d, if database T satisfies the following, then
database T satisfies (I, d)-semantic diversity. Every equivalence class has at
least [ sensitive attribute values, and the minimum distance between the values
is larger than or equal to d.

By utilizing (I, d)-semantic diversity as an anonymization indicator, it be-
comes possible to consider the distance between the sensitive attribute values,
which could not have been considered in I-diversity.

The parameter d controls the degree of actual diversity. Thus, (I, d)-semantic
diversity requires that every combination of distance between sensitive attribute
values is defined. The distance does not need to be expressed by a tree struc-
ture, whereas (I, e)-diversity requires this be done. For example, if a sensitive
attribute is represented by a numerical value, then the distance can be defined

based on the absolute difference between values.

Example 2 (Absolute value-based distance of the numerical attributes for

13



(I, d)-semantic diversity). Assume that the sensitive attribute is annual income,
and the walues are vi,...,v19 = “Less than $20K,” “$20K-$30K,” “$30K-
$40K,” “340K-850K,” “$50K-360K,” “$60K-$70K,” “$70K-$80K,” “380K-$90K,”
“$90K-$100K,” and “More than $100K,” respectively.

If we consider the representative values of vy,...,v1g to be 10K, 20K, ...,
90K, and 100K, then the semantic distance between v; and v; can be defined as
|vi —v;|. In this case, the semantic distance between v; and v,y is 10K.

Note that the data user can define any distance as the semantic distance
between v; and vj. Therefore, the data user can also define the semantic distance
v; and vj as |v; —v;|/10K, for example. This distance definition is the same as
|i — 7| in this case.

For another example, assume that the sensitive attribute is annual income,
and the values are vy, ...,v19 = “Less than $10K,” “$20K,” “$25K,” “$30K,”
“$40K,” “$45K,” “$60K,” “$80K,” “$395K,” and “More than $100K,” respec-
tively. In this case, the distance between v; and vj can be defined as |i — j|, for

example.

Note that in many existing studies, data users can freely define the distance
functions, and this freeness is one of their advantages.

For example, t-closeness [4] is a famous privacy indicator that requires the
sensitive attributes within each of the equivalence classs to have a similar dis-
tribution to their distribution in the entire database. The specific distance used
between distributions is central to evaluating ¢-closeness, but the original defini-
tion does not advocate any specific distance [5]. Data users can use any distance
definition.

Please note that this relationship cannot be expressed using a tree structure,
although we can express this relationship using a semilattice structure where
each node can have more than one parent (see Fig. 3).

Based on Fig. 3, we can consider that the distance between nodes under the
same parent node (i.e., the distance between sibling nodes) is one. If nodes are

not sibling nodes, but they are under the same grandparent node, the distance
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between the nodes is two, and so on.

Please note that the distance definition is just an example in this paper. The
data holder can use different distance definitions. (I, d)-semantic diversity can
be used for arbitrary distance definitions, and this is one of the advantages of
our proposed algorithm.

Again, (I, e)-diversity and its anonymizing algorithm can only be used for a

tree structure.
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Figure 3: Semilattice structure for a numerical attribute.

In addition, if the categorization is a tree structure (e.g., disease), then it can

also be defined by the depth of the tree of structure, such as with (I, e)-diversity.

Example 3 (Tree structure-based distance of the categorical attributes for
(I, d)-semantic diversity). Fig. 2 shows an example of a tree structure of sen-
sitive attribute values. The distance between “$30K-340K” and “$4/0K-$50K”
is one because they are sibling nodes, the distance between “$30K-$4/0K” and
“$50K-$60K” is two, the distance between “$30K-$40K” and “$70K-380K” is

three, and so on.

5. PROPOSED ALGORITHM

In this paper, we propose an analysis algorithm as well as two anonymiza-
tion algorithms (a simple anonymization algorithm and a duplicate-processing
anonymization algorithm). The duplicate-processing anonymization algorithm,
which extends the simple anonymization algorithm, is specifically for numerical

attributes.

15



Our proposed anonymization algorithm adds [ — 1 dummy records to each
true record. Therefore, the anonymization algorithm outputs N x [ records
when there are N true records. We call the N x [ records an anonymized
database. Because the anonymization algorithm adds many random dummy
records, data users cannot understand the anoymized database in a straightfor-
ward way. Therefore, we propose an analysis algorithm and the anonymization
algorithm. The analysis algorithm’s objective is to analyze the anonymized
database generated by our proposed anonymization algorithm. The output of
the analysis algorithm is an estimated histogram of the true IV records. Note
that the data users know the contents of the anonymized database but do not

know the true N records.

5.1. Simple anonymization algorithm

Here, an anonymization algorithm that satisfies the (I, d)-semantic diversity
defined above is shown. In this research, we do not use generalization, which is
the basic method of anonymization, but instead use a method inspired by Sei
et al. [1] to add several dummy records.

Table 7 is a database that has satisfied (2,4)-semantic diversity by adding
a dummy record to each record in Table 1. Table 7 shows only one part of
the anonymization result. Gender, age, and zip code are QIDs, and disease is
a sensitive attribute value. To define the distance between sensitive attribute
values, we use the tree structure used by the International Classification of
Diseases (ICD!) and maintained by the World Health Organization.

We omit the full distance definitions of the disease values, as the distance of
vocal fold polyps and HIV-2, the distance of HIV-2 and tooth decay, and the
distance of HIV-1(M) and cecum are more than or equal to four according to
ICD.

Adding dummy records makes it impossible to estimate individual records

uniquely. Therefore, privacy can be claimed to be preserved because an attacker

Lhttps://www.who.int/classifications/icd /en/
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Table 7: Disease database satisfying (2,4)-semantic diversity

Pseudonyms | Gender | Age | ZIP code Disease
A Female | 24 | 999-4565 | Vocal folds polyp
A’ Female | 24 | 999-4565 HIV-2
B Female | 16 | 999-5636 HIV-2
B’ Female | 16 | 999-5636 Tooth decay
C Female | 21 | 999-4557 HIV-1(M)
C Female | 21 | 999-4557 Cecum

wants to obtain one of the sensitive attribute values of the individual. Even if
the attacker knows all of the QID values of A, he cannot know whether vocal
fold polyps or HIV-2 is A’s sensitive attribute value.

The proposed anonymization algorithm selects and adds (I — 1) sensitive
attribute values that can satisfy (I, d)-semantic diversity. This anonymization

algorithm is shown in Algorithm 1.
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Algorithm 1 Anonymizing algorithm for database T’

1: Input: Database T, domain of a sensitive attribute S, privacy parameters
[ and d

2: Output: Anonymized database T’

3: Create set T”

4: fori=1,---,N do

5. @ < QID values of r;

6: /* Adds original sensitive attribute value */

7. Create Set R < {E(r)}

8: /* Adds dummy sensitive attribute values */
90 forj=1,---,(l—-1)do
10 R <= RUrand(extract(S, R, d))

11:  end for

12: T' < T' U generate_records(Q, R)
13: end for

14: shuf fle(T")

15: return 1"

In Algorithm 1, the function generate_records(Q, R) generates |R| records,
where the QID values are ), and the sensitive attribute value is one of R. For
example, when @ is {Female, 24, 999-4565} and R is {Tooth decay, HIV-1(M),
Cecum}, the function generates three records: [Female, 24, 999-4565, Tooth
decay], [Female, 24, 999-4565, HIV-1(M)], and [Female, 24, 999-4565, Cecum].

The function shu f fle randomly shuffles the set. Dummy records thus consist
of existing records’ QID values and sensitive attribute values that are selected
as dummies.

The function extract(S, R, d) generates the set {e|le € SAv; € RAdist(e,v;) >
d for all j = 1,...,|R|}, where dist(e,v) represents the distance between sen-
sitive attribute values e and v. The function rand(B) randomly extracts an
element from set B.

For example, suppose r; represents the QID and sensitive attribute values of
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the first record in Table 1, i.e., r; is [Female, 24, 999-4565, Vocal folds polyp], and
suppose [ = 2. @ is [Female, 24, 999-4565] in line 5 in Algorithm 1. R is {vocal
folds polyp} in line 7. In lines 9-11, we choose [ — 1 random sensitive values so
that the semantic distances between the chosen elements and the sensitive at-
tribute value (“Vocal folds polyp” in this example) are greater than or equal to d.
For example, Algorithm 1 chooses “HIV-2.” In this case, R becomes {Vocal folds
polyp, HIV-2}. Then, we have the set of records {[Female, 24, 999-4565, Vocal
folds polyp|, [Female, 24, 999-4565, HIV-2]} from the generate_records(Q, R)
function. The set is added to T'. We repeat this process for all records. Finally,
we shuffle all records of T".

In this research, we assume that an attacker is honest but curious; that is, the
attacker follows the proposed protocol but tries to analyze the individual infor-
mation from published databases. This assumption is very common in research
about privacy-preserving data mining. The attacker can see the anonymized
records or the anonymized databases created by our proposed algorithms and
might have prior knowledge about a certain person’s QID values. The attacker
thus tries to identify the person’s sensitive attribute value. In existing studies
for [-diversity, the attacker can conclude that the person has HIV (although the
type of HIV would remain unknown); however, our proposed algorithms can

even prevent this from happening.

5.2. Analysis algorithm

Let z; and w; be the numbers of records that have v; as their sensitive
attribute values in the anonymized database and in the original database, re-
spectively. The value of z; is unknown for the data analyzers, and the purpose
is to estimate the value of x; with high accuracy.

By obtaining the z; of Equation 1,

Wi = T4 +ZQ(k,i) * T, (1)
ki
the total number of certain sensitive attribute values in the anonymized database

is made up of the true values and the dummy values. The number of dummy
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values is obtained as the expected value using Equation 1.
Here, q(; ;) is the probability of selecting v; as a dummy when a certain

record holds the sensitive attribute value v; and is represented by Equation 2:

—lewtractl(TS':,L{vi},dﬂ (v; € extract(S, {vi},d))
Uig) = (2)
0 (otherwise).

The analysis algorithm is shown in Algorithm 2.

Algorithm 2 Analysis protocol

Input: Reported sets, domain size of sensitive attribute values F', database
size N, parameters [ and d
Output: Estimated distribution of sensitive attribute values
fori=1,---,F do
F; < size of extract(S, {v;},d)
if v; € dist(d,v;) then
q(ij) < (I-1)/F;
else
q(,) < 0
end if
end for
i + gauss(w; = x; + Zk# (ki) * T) for all
/* Calculate Simultaneous Equation */

return Z;(i=1,---,F)

Here, the function gauss(f(z)) is a function for solving simultaneous equa-
tions.

For a simple discussion, we use a very simple example.

Let gender (“male” and “female”) and age (“over 50” and “under 50”) are
the QIDs; obesity level is a sensitive attribute; and the values of the level are
1 (very low obesity), 2 (low obesity), 3 (normal), 4 (high obesity), or 5 (very
high obesity). Therefore, v1,...,v5 = 1 (very low obesity), ..., 5 (very high
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obesity). In this example, the difference of their subscriptions (|i — j|) and the
difference of the values (Jv; — v;|) are the same, and we use these differences as
the semantic distance. For example, the semantic distance between vy (obesity
level 1) and v (obesity level 3) is 2. Suppose that there are 1,000 participants.
Table 8 shows the cross-tabulation of the true data. The elements of the cross-
tabulation are the combination of { “male”, “female”}, { “over 50”, “under 50"},
and {1, 2, 3, 4, 5}. For example, 120 people are male, are aged over 50, and
have obesity level 1.

When [ = 2, each person reports two sensitive values from the basic anonymiza-
tion algorithm and the duplicate-processing anonymization algorithm. One of
the two sensitive values is the true value, and the other is a dummy. For exam-
ple, if a person’s true sensitive value is 1 (very low obesity), the person reports
two values; one is 1 and the other is 2, 3, 4, or 5.

Table 9 shows the anonymized results of Table 8, where [ = 2 and d = 2.
For example, the reports from 143 people who are male and over 50 years old
contain 1 (very low obesity). Note that the QID values are collected without
change. Therefore, the total numbers of each row of Table 9 (460, 400, 760, and
380) are [ times larger than the total numbers of each row of Table 8 (230, 200,
380, and 190).

We executed Algorithm 2 for each combination of QID values. In this exam-

” “over 5077]’ [“male,”

ple, we independently executed Algorithm 2 for [“male,
“under 507], [“female,” “over 50”], and [“female,” “under 507].
Here, let us calculate the estimated value of each element for “male” and

W

“over 50” of the histogram, that is, the estimated value of [“male,” “over 50,”

“1” (very low obesity)], [“male,” “over 50,” “2” (low obesity)], [“male,” “over
50,7 “3” (normal)], [“male,” “over 50,” “4” (high obesity)], and [“male,” “over
50,” “5” (very high obesity)].

In this case, FF = 5 and N = 230. x; represents the number of records that
have v; as their sensitive attribute values, “male” as their gender, and “over 50”

as their age in N true records; and w; represents the numer of records that have

v; as their sensitive attribute values, “male” as their gender, and “over 50” as
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their age in the anonymized database.

Table 8: Cross-tabulation of the true information, which is unknown.

Obesity level
Gender & Age 1 ‘2| 3 | 4 |5 Total

Male & over 50 120 [ 50 | 10 | 20 | 30 | 230
Female & over 50 80 | 60 | 30 10 | 20 | 200
Male & under 50 50 | 30 | 110 | 100 | 90 | 380

Female & under 50 | 20 | 20 | 40 | 40 | 70 | 190

Table 9: Cross-tabulation of the reported information, which is known to the data user.

Obesity level
Gender & Age 1 2 3 4 5 | Total

Male & over 50 143 | 72 | 60 | 8 | 99 | 460
Female & over 50 | 108 | 70 | 65 | 64 | 93 400
Male & under 50 | 188 | 108 | 155 | 130 | 179 | 760

Female & under 50 | 83 | 62 | 73 | 57 | 105 | 380

Threrefore, the values of z1,...,z5 are 120, 50, 10, 20, and 30, respectively,
according to Table 8, because we are considering the combination of “male” and
“over 50.” Note that the data user does not know these values and that his or
her aim is to estimate these values with high accuracy. The values of w1, ..., ws
are 143, 72, 60, 86, and 99, respectively, according to Table 9.

The set of extract(S,v;,2) is {3, 4, 5} for i = 1 because the distance between
1, and 3, 4, or 5 is greater than or equal to two, but the distance between 1 and
2 is only one. In the same way, extract(S,v;,2) fori =2,...,51s {4, 5}, {1, 5},
{1, 2}, and {1, 2, 3}.

Therefore, the values of g4y, 4(2,5), 43,1) 43,5)> Q(a,1)s 4(4,2) are 1/2; the
values of q(1,3), 4(1,4), 4(1,5)s 4(5,1)s 4(5,2)» 4(5,3) are 1/3; and the q(; ;) values of
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other combinations of ¢, j are 0.

The data user constructs the following five equations according to Algorithm

w1 =21+ (q2,1) * T2 + q(3,1) * T3 + qa,1) * Ta + q(5,1) * T5)
wo = T2 + (q(1,2) ¥ T1 + q(3,2) * T3 + qa,2) * T4 + q(5,2) * T5)
w3 = o3+ (q(1,3) * T1 + ¢(2,3) * T2 + q(a,3) * T4 + q(5,3) * T5) 3)

Wy = x4 + (q(1,4) * T1 + q(2,4) * T2 + q(3,4) * T3 + q(5,4) * T5)

ws = o5 + (q(1,5) * T1 + q(2,5) * T2 + ¢(3,5) * T3 + q(a,5) * Ta)-
In this example, Equation 3 can be written as the following equations based

on Table 9 and each value of q(; jy:

143 = x4 +($3/2+$4/2+$5/3)
1/2+x5/3)

(x
60 = 23 + (21/3 + 25/3) (4)
(
(

72—.%'2“1‘

6_$4+ I1/3—|—$2/2)

99—.’L’5+ LE1/3+.’L’2/2+.’L’3/2)

By solving Equation 4, the data user obtains 271, ..., 25 = 117.8,52.5,11.5,20.5, 27.8
where Z; represents the estimated value of x;. In this example, we can say that
the estimated values are close to the true values (z1, ..., x5 = 120,50, 10, 20, 30).

In the same way, by executing Algorithm 2 for other combinations of QID
values (that is, [“female”, “over 50”], [“male”, “under 50”], and [“female”, “un-

der 507]), the data user finally gets the estimated cross-tabulation (Table 10).

From Table 10, we can generate an equivalent histogram, if needed.

5.8. Duplicate-processing anonymization algorithm for numerical attributes
Next, we propose a duplicate-processing anonymization algorithm, which is
an anonymizing algorithm that can obtain better results based on the simple
anonymization algorithm described in Section 5.1. In this subsection, we as-
sume that the sensitive attribute is a totally ordered set, such as the numerical

attribute described in Section 4.2.
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Table 10: Cross-tabulation estimated by the data user (each total value may not exactly agree

with the sum of values of each row due to rounding.)

Obesity level
Gender & Age 1 ‘ 2 ‘ 3 ‘ 4 ’ 5 Total

Male & over 50 117.8 | 52.5 | 11.5 | 20.5 | 27.8 | 230
Female & over 50 82.9 | 60.3 | 30.8 6.3 | 19.9 | 200
Male & under 50 55.1 | 27.8 | 105.3 | 97.8 | 94.1 | 380

Female & under 50 | 16.9 | 18.3 | 44.8 | 423 | 67.9 | 190

The main structure of the duplicate-processing anonymization algorithm is
the same as Algorithm 1 of the simple anonymization algorithm. The only
difference between it and the simple anonymization algorithm is the part of the
function that is used for dummy selection.

If the sensitive attribute is a numeric type, it is possible that the probability
of selecting a dummy represented by Equation 2 differs for each record when
adding two or more dummy records using the simple anonymization algorithm.
Thus, there are cases where good results cannot be obtained when applying the
above analysis algorithm if we use the simple anonymization algorithm.

For example, consider a case where the sensitive attribute is annual income,
F =9 5={$30K, - ,$110K}, d = 2, and | = 3, as shown in Fig. 4. In this
example, consider that the semantic distance between v; and v; is |v; —v;|/10K
(which is the same as |i — j| in this case). Assume that a true sensitive at-
tribute of a certain record is $50K. The simple anonymization algorithm selects
two dummies from $30K, $70K, $80K, $90K, $100K, and $110K while keeping
(3,2)-semantic diversity. This is because the distance between $50K and these
elements is greater than or equal to 2.

The probability that each value will be selected as a dummy is 2/6 = 1/3.
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This value is the same as the value calculated using Equation 2. 2

In other words, if the true value is $50K, then the simple anonymization
algorithm will exclude $40K, $50K, and $60K, which can be selected as dummies.
More specifically, the simple anonymization algorithm excludes the true value
and 2d elements which are not d away from the true value for selection of the
first (or later) dummies. That is, the simple anonymization algorithm excludes
2d + 1 elements for the selection of the first or later dummies based on the true
value.

Suppose that $80K is selected as the first dummy (Fig. 4(a)). Then, the
simple anonymization algorithm selects a second dummy. The distance between
the second dummy and $50K (which is the true value) and the distance between
the second dummy and $80K (which is the first dummy) should be greater
than or equal to 2 because we set d = 2. Only $30K, $100K, and $110K
satisfy this condition. In other words, if the first dummy is $80K, the simple
anonymization algorithm will exclude $70K, $80K, and $90K from being selected
for second (or later) dummies. More specifically, the simple anonymization
algorithm excludes the first dummy and 2d elements that are not d away from
the first dummy from being selected as second (or later) dummies. That is,
the simple anonymization algorithm excludes 2d + 1 elements from selection as
second or later dummies based on the first dummy. The simple anonymization
algorithm randomly selects one element from these three elements. That is, each
element of these elements is selected with a 1/3 probability. This probability is
the same as the probability calculated based on Equation 2.

On the other hand, assume that $70K is selected as the first dummy (see
Fig. 4(b)). In this case, the simple anonymization algorithm excludes $40K,

2Here, let us check the value of Equation 2. We set | = 3, d = 2, S ={$30K, ..., $110K},
and the true value is $50K in this example. The result of extract(S,{$50K}, 2) is the set
{$30K, $70K, $80K, $90K, $100K, $110K}. Therefore, the size of the set is 6. The probability
that each element of the set will be selected as a dummy when the true value is $50K is

(3-1)/6=1/3.

25



$50K, and $60K from selection as the first or later dummies according to the
true value of $50K, and excludes $60K, $70K, and $80K from selection as the
second or later dummies according to the first dummy, $70K. Here, note that
the element $60K appears in both the first exclusion list ($40K, $50K, and
$60K) and the second exclusion list (360K, $70K, and $80K). Therefore, the
second dummy will not be selected from three elements but from four elements,
which are $30K, $90K, $100K, and $110K, each with a 1/4 probability of being
selected.

For another example, assume that $110K is selected as the first dummy (see
Fig. 4(d)). In this case, the second dummy will be selected from $30K, $70K,
$80K, and $90K, each with a 1/4 probability of being selected. In each case, the
selection probability (1/4) is less than the value (1/3) calculated using Equation
2. As a result, the estimated values using the simple anonymization algorithm
might be different and far from the true values.

Therefore, we propose a duplicate-processing anonymization algorithm, which
modifies the simple anonymization algorithm. The simple anonymization algo-
rithm excludes exactly 2d + 1 elements that can be selected using the following
steps. For example, assume that $50K is the true value and that $70K is selected
as the first dummy. In this situation, the duplicate-processing anonymization
anonymization algorithm excludes not only $40K, ..., $80K, but $30K for selec-
tion of second or later dummies. As a result, the second dummy will be selected
from $90K, $100K, and $110K, each with a 1/3 probability of being selected
(see Fig. 4(c)). This value is the same as the value calculated using Equation
2.

As another example, assume that $110K is selected as the first dummy. The
duplicate-processing anonymization algorithm excludes not only $40K, $50K,
$60K, $100K, and $110K, but $30K for selection of second or later dummies
(see Fig. 4(e)).

In Algorithm 1 of the simple anonymization algorithm, “extract” was used
as a function to select a dummy, but in the duplicate-processing anonymization

algorithm, a more complicated function is used. The details of the more complex
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function are shown as Algorithm 3. The duplicate-processing anonymization

algorithm replaces the “extract” of Algorithm 1 with Algorithm 3.

Algorithm 3 Duplicate-processing algorithm for anonymization algorithm

Input: Domain of a sensitive attribute S, Privacy level d, Set of the true
value and the temporary selected dummies F
Output: A set of sensitive attribute values that can be selected
Create set R
Create value D
D<«<d
for e; € E do
forj=1,---,|5| do
/* Confirm whether the distance between v; and e; is within d */
ifi—-d<j<i+DORi—d+|5<jORj<i+D-—|S|then
/*Confirm that a; is already in R*/
if a; € R then
/* Update the value of D */
D < (D+1)
else
/* Adds values of sensitive attribute to be excluded */
R+ RUaq;
end if
end if
end for
end for

return S\ R

5.4. Mathematical Analysis and Implementation Technique

We analyze the mathematical property for a numerical-sensitive attribute,
and we assume the attribute is a totally ordered set. The property for categorical-

sensitive attributes depends heavily on the tree structures of the attribute values;
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therefore, it is difficult to discuss the mathematical property in general.

First, we show that our proposed algorithms (both the basic anonymiza-
tion algorithm and the duplicate-processing anonymization algorithm) always
achieve (I, d)-semantic diversity (if and only if [ -d > F'). Algorithm 1 is a logi-
cal algorithm, and we modify the algorithm in this subsection to always achieve
(I, d)-semantic diversity for real implementation.

Let v; be the ith element of S. We define

Do, ) = dist(vs, v;) (1<3) )
dist_max(S) — dist(vs,v;) +1 (otherwise,)
where dist-max(S) represents the semantic distance between the maximum
value and the minimum value of S.

For example, consider that we use annual income as the sensitive attribute
described in Example 2, and consider that the semantic distance between v; and
vj is |¢ — j|. In this case, Equation 5 is represented by

o=’ ©)
10—i+y5 (otherwise.)
In this case, D(“$80K-$90K”, “$90K-$100K”) is one, and D(“$90K-$100K”,
“Less than $20K”) is two.
The maximum number of dummies that can be selected from S within values

of v; and v; is represented by

D iy Uj
Amax(viyvj) = \\% — IJ . (7)
For example, consider that vy is “$20K-$30K,” vg is “$80K-$90K,” and
d = 2. In this case,

Apaz(v2,v8) = {g - 1J =2. (8)

Therefore, we know that we can select two elements between “$20K-$30K” and
“$80K—$90K” so that the semantic distance between each element is greater

than or equal to 2. Actually, we can select “$40K-$50K” and “$60K-$70K”.

28



Let R be a set of the true sensitive attribute values and the previously
selected dummies. Let e; represent the ith smallest value of R where ¢ starts
from zero.

The maximum number of dummies that can be selected from S is represented

by
IR|

Amaac (R) = ZAmaac (eiv €i+1 (mod \R\))v (9)

i=1
where |R| represents the size of R.

For example, assume that R is {v1, vs, vg}. In this case, eg, e1, €2 = v1,v3, vg.
Amaz(R) is Amagz (€0, €1) + Amaz (€1, €2) + Amaz (€2, €0) = Amax(v1,v3) + Amaz (s, vo)
+ Anmaz(vg,v1) = 2.

To select a dummy, after line 10 in Algorithm 1, we check the value of

Amaz(R). After selecting the jth dummies, if the following inequation,
Amaz(R) >1—7—1, (10)

is not satisfied, then we will execute line 10 again.

For example, assume that Algorithm 1 has already selected two dummies
(i.e., 7 = 2 in line 10) and that R = {v1,vs,v9}, { =5 and d = 2. If Algorithm
1 then selects vg in j = 3 in line 10, R will become R = {v1,v3,v6,v9}. In this
case, Apmaz(R) is 0. Therefore, Algorithm 1 will roll back the selection of vg, and
reselect a dummy. If it selects vs, then R will become R = {v1,vs,v5,v9}. In
this case, Amaz(R) is 1, and the inequality Auq.(R) > 5-3-1 holds. Therefore,

selecting vs is confirmed, and Algorithm 1 goes to the next loop (5 = 4).

Theorem 5.1. Algorithm 1 always achieves (l,d)-semantic diversity, if and

only if l-d > F.

Proof. To achieve (I, d)-semantic diversity, each distance between arbitrary val-
ues in an anonymized set should be at least d. Because the size of the anonymized
set is [, the total distance should be at least [-d. Therefore, if and only if i-d > F,

the algorithm could achieve (I, d)-semantic diversity. O
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We consider each distance between the sensitive attribute values. On the
contrary, existing methods for [-diversity do not consider this distance. We
show that the state-of-the-art method [1] for I-diversity does not achieve (I, d)-

semantic diversity in most cases.

Theorem 5.2. The lower boundary of the probability p of violation of (I,d)-
semantic diversity per record from the algorithm proposed by [1] is

—di—2C1—
1 — Feibd-di-2Ci-1 (11)

r= mflc’lfl
and the lower boundary of the probability S of violation of (I,d)-semantic di-

versity of a database that has N records from the algorithm proposed by [1] is

S>1—(1-p)V. (12)

Proof. The probability of violation of (I,d)-semantic diversity that uses the
algorithm proposed by [1] depends on the true sensitive attribute value. If
the true sensitive attribute value is v; or vg, the probability is minimal because
we can select [ — 1 dummies from F — d values only in this case. Here, we
will show that the probability of a violation of (I, d)-semantic diversity uses the
algorithm proposed by [1] in this situation. We assume that the true sensitive
attribute value is v; without loss of generality.

Let ug represent the true value, and let uq, ug, ..., u;_1 represent the selected
dummies s.t., dist(u;,u;) < dist(u;,u;) if ¢ < j. Let E represent the set of
Ug, - . ., uj—1 (see Fig. 5). Fig. 5 shows a situation where the number of elements
F is 10 and [ is 4. For example, dist(ug,u1) = 2 and dist(ug,us) = 7.

To achieve (I, d)-semantic diversity, each distance between arbitrary values
in E should be at least d. Because the number of dummies is [ — 1, the total
distance should be at least [d. Therefore, if and only if [d > F, the algorithm
could achieve (I, d)-semantic diversity.

The algorithm proposed by [1] randomly chooses [ — 1 elements from F' — 1
elements. Let cqy and cachieving represent the number of all combinations of
choosing | — 1 elements and the number of combinations that achieve (I,d)-

semantic diversity, respectively.
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The number of (I—1)-combinations from a set of F'—1 elements is represented
by
ca = F-1C1-1. (13)

We define a;(: =0,...,1—1) as

dist(u;, u; —d (i1#1-1
L it —a A "
dist(u;,vp) (otherwise.)

To make E achieve (I,d)-semantic diversity, the following equation should
be satisfied;

a; > 0 for all 4

(15)
Sigai=F—(-1)d—1.
The number of combinations of a; (1 = 0,...,l — 1) that satisfies Equation
15 is represented by
Cachieving = F—(l—l)d—l—}—l—lclfl‘ (16)

Therefore, the lower boundary probability of violation of (I, d)-semantic di-

versity for each record is

| _ Cachieving _ | Fti+d—di-2Ci-1
Call r-1C1—1

(17)
Because a database has N records, the probability is raised to the Nth

power. O

Fig. 6 shows the results of the mathematical analysis when considering
the probability of violation of (I, d)-semantic diversity with varying F, [, and
d. We know from the figure that the probability of violation of (I, d)-semantic
diversity of the proposed algorithm is always zero, whereas that of the baseline
algorithm increases especially when d or [ is large. This is because the number
of combinations that satisfy Equation 16 decreases when d or [ is large, with

regard to the baseline algorithm.
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6. EVALUATION EXPERIMENT

We evaluated the usefulness of the proposed anonymization algorithms (the
simple algorithm (Algorithm 1) and the duplicate-processing algorithm (Algo-
rithm 1 with Algorithm 3)) and the proposed analysis algorithm (Algorithm
2).

Usefulness was evaluated by the difference between the histogram generated

by the analysis algorithm and the histogram from the original database.

0.1. Evaluation method

We used the mean squared error (MSE) of Equation 18 as an indicator to
evaluate the usefulness of the analysis algorithm. The MSE shows the error
between the correct data and the obtained data; the smaller the value, the more
similar it is to the correct data:

MSEzMeani(Nl—Ny, (18)

where the function Mean; calculates the arithmetic mean.

In Equation 18, z; is the total number of sensitive attribute values v; in
the original database, and Z; is the total number of sensitive attribute values v;
guessed by the analysis algorithm. Equation 18 evaluates the difference between
the true value z; and the estimated value ;.

For example, assume that Table 8 represents the true information and Table
10 represents the estimated information. In this case, each x; represents each
value of Table 8 except for the total values, i.e., z;(i = 1,...,25) is 120, 50, 10,
20, 30, 80, ..., 20, 20, 40, 40, 70. Each #; represents each value of Table 10
except for the total values, i.e., #;(i = 1,...,25) is 117.8, 52.5, 11.5, 20.5, 27.8,
82.9, ..., 16.9, 18.3, 44.8, 42.3, 67.9. Therefore, the MSE is calculated by

1,,120 1178 50 52.5 70 67.9
MSE = — - 2 - 2 (— — — )2
s 25 ((1000 1000) + (1000 1000) et (1000 1000 )
~ 8.06 x 1076.
(19)

32



To show the usefulness of the proposed analysis algorithm, it is possible to
compare the estimated histograms using simple analysis and analysis algorithms
in the existing research, specifically [1] and [17]. Estimation of the histogram

using simple analysis is calculated by Equation 20:

B =~ (20)

Analysis algorithms in the existing research are shown in Equations 21 and

22:

. 4N 4w
y = T 21
¢ (21)
-1
= — 22
4= 71 (22)

Equation 22 is the probability of selecting a dummy, and the proposed anal-
ysis algorithm improved this equation to suit itself.

The estimated value obtained from Equations 20 and 21 and the estimated
value obtained from the analysis algorithm were compared to the value of the

MSE and subsequently evaluated.

6.2. Data used for the evaluation experiment

The data used for the experiment were a created dataset and two published
datasets, so that there were three kinds of datasets in total. The created dataset
was an income dataset where annual income was a sensitive attribute. This
dataset had 100,000 records and included age and sex as QIDs.

In the income dataset, the sensitive attribute values were less than 1 million
yen, less than 2 million yen, . .., and more than 25 million yen. The total number
of sensitive attributes values was F' = 14.

In addition, the sensitive attribute values in the generated dataset were not
random; the medical condition refers to a patient survey published from the
Ministry of Health, Labor and Welfare, and the annual income referred to a

salary survey published by the National Tax Agency. Therefore, there is a
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correlation between gender and age and each sensitive attribute; these are more
realistic datasets.

As an open dataset, we used the adult dataset published by the UCI Machine
Learning Repository. The adult dataset stored 14 kinds of QIDs, and there were
about 30,000 records, which have also been utilized in a significant number of
existing studies [11], [13]. In the evaluation experiment of this research, we
used two kinds of adult datasets: Education (with educational background as
the sensitive attribute) and fnlwgt (with fnlwgt as the sensitive attribute). The
QIDs used 13 types, which were attributes other than a sensitive attribute.

In this paper, because we assumed anonymization at the stage of data col-
lection by crowdsensing, (I, e)-diversity cannot be used in the assumed environ-
ment in the first place, since (I, e)-diversity uses Anatomy as an anonymizing
algorithm. In addition, since (I, e)-diversity assumes only datasets that can be
categorized, it cannot be used for the income dataset and adult dataset (fnlwgt).
However, it is clear that verification is indispensable from the similarity with
this research.

Therefore, we did not assume that the adult dataset (Education) was col-
lected by crowdsensing after anonymizing the data. The verification experiments
with the adult dataset (Education) assumed a state where data were collected

using a method that was not crowdsensing; the dataset was created and then

anonymized.
Table 11: Datasets used for the experiments.
dataset ‘ #Record ‘ QID ‘ Sensitive attribute Reference data
Income dataset 100000 2 annual income National Tax Agency
Adult dataset (fnlwgt) 30162 13 fnlwgt adult dataset
Adult dataset (Education) 30162 13 | educational background adult dataset

Table 11 shows the information of the three datasets used in the experiments.
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6.3. Distance definition

The categorization of educational background as the sensitive attribute and
the distance definition between the sensitive attribute values in the anonymiza-
tion algorithm were in accordance with the config.xml file that was published
by the UCI Machine Learning Repository. This educational background infor-
mation was a statistical classification of a tree structure of depth 4, and only
the end nodes of depth 4 were used as the sensitive attribute values. Category
classification followed the educational background data; the distance definitions
between the sensitive attribute values were defined as distances to a common
ancestor node. Fig. 7 shows this educational background data in a tree struc-
ture.

From Fig. 7, suppose that a certain record stores the sensitive attribute
value “Doctorate.” If the distance is 1, it refers to the descendant node of
“Post grad,” that is, “Masters.” If the distance is 2, it refers to the descendant
node of “University,” that is, “Prof-school,” and “Bachelors.” Therefore, if
anonymization were to satisfy (3,2)-semantic diversity, then two dummies from

“Assoc,” “Some-college,” “Secondary,” or another category were selected and

added.

7. EXPERIMENTAL RESULTS

Table 12 shows combinations of the anonymizing algorithm and the analysis
algorithm used in the experiment. Since LE uses Anatomy as an anonymizing
algorithm in (I, e)-diversity, the simple analysis was used as an analysis algo-

rithm suitable for Anatomy.

7.1. The generated histograms

First, the generated histogram is shown. Histograms obtained from the
income dataset, adult dataset (Education), and adult dataset (fnlwgt) are shown

in Figs. 8, 9 and 10.
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Table 12: Combinations of anonymizing algorithms and analysis algorithms.

Algorithm Name

Anonymizing Algorithm

Analysis Algorithm

N-Proposal

Duplicate-processing algorithm

Proposed analysis algorithm

N-Existing

Duplicate-processing algorithm

Existing analysis algorithm

N-Simple

Duplicate-processing algorithm

Simple analysis algorithm

N-Anonymity

Duplicate-processing algorithm

Ex-Proposal

Simple algorithm

Proposed analysis algorithm

Ex-Existing

Simple algorithm

Existing analysis algorithm

Ex-Simple

Simple algorithm

Simple analysis algorithm

LE

Anatomy [12]

Simple analysis algorithm

Figs. 8, 9 and 10 show not only the histograms obtained from the combina-
tion of Table 12 but also the histograms obtained from the original data, and it
is possible to compare how similar they are to the original.

The x and y axes in the histograms show the age, gender, and classification
of the sensitive attribute, and the z axis shows the frequency. The sensitive
attribute in Fig. 8 was categorized into 14 types; in Fig. 9, it was categorized
into 16 types; and in Fig. 10, it was categorized into 148 types. The QID age
was classified every 10 years.

We anonymized these histograms to satisfy (3,7)-semantic diversity for the
income dataset, (2,3)-semantic diversity for the adult dataset (Education), and

(3,10)-semantic diversity for the adult dataset (fnlwgt).

7.2. The MSE graph

Next, each of the MSE results of the estimates from the proposed analysis
algorithm, the simple analysis, and the existing analysis algorithm are shown in
Figs. 11, 12 and 13.

In Fig. 11, 12 and 13, the y axis represents the MSE value, and the x axis
represents [ or d. As shown in the figures, (a) is a graph of the MSE obtained
with [ = 2, where d is a variable, and graphs (b), (c), and (d) are of the MSE
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obtained with d =2, [ =3, and d = 3.

7.8. Safety Analysis

We confirmed that our proposed algorithms always achieved (I, d)-semantic
diversity in the experiments. On the contrary, the method [1] failed many times.
The probability of violating (I, d)-semantic diversity is shown in Figs. 14 and
15. These figures also show the mathematical results based on Equation 11.

The violation rate represents the rate at which the anonymization results
do not satisfy (I, d)-semantic diversity. The anonymization results of the pro-
posed simple anonymization algorithm and duplicate-processing anonymization
algorithm always satisfy (I, d)-semantic diversity; that is, the violation rate of
the proposed anonymized algorithms is always zero. Existing algorithms do
not guarantee that the anonymization results will satisfy ([, d)-semantic diver-
sity. Let ng represent the number of times that the anonymization results
satisfy (I, d)-semantic diversity, and let ny represent the number of times that
the anonymization results do not satisfy (I, d)-semantic diversity. The violation

rate is defined as follows:

Violation rate = ny/(ng + ny). (23)

Based on the figure, we know that in any parameter settings, the mathemat-
ical results and simulation results are almost the same, and the mathematical

results keep the lower boundary of the simulation results.

7.4. Discussion
Figs. 8, 9 and 10 show that the histograms estimated by the proposed
analysis algorithm are the most similar to the original histograms. For example,
the histograms estimated by the simple analysis algorithm are averaged overall,
and the features are diminished. However, the histograms estimated by the
proposed analysis algorithm clearly retain their characteristic unevenness.
Next, consider the graph of the MSE. With respect to each graph in Fig. 11,

it is clear that the MSE of N-Proposal has a small value in all cases and that

37



Ex-Proposal is not less than N-Proposal as long as [ and d are small, but the
larger [ or d is, the larger the MSE becomes. From this, the usefulness of the
proposed analysis algorithm is shown.

The results of N-Proposal and Ex-Proposal show the usefulness of duplicate-
processing algorithms. As described in Section 5.3, the probability of selecting
a dummy changes as the values of [ or d become larger, so the result worsens
with the simple algorithm.

In addition, in Fig. 11(a), a histogram was created without using analysis
algorithms from anonymizing data, and the MSE result was expressed as N-
Anonymity. If the analysis algorithm is not used, since the number of records is
[ times the original database, the histogram is quite different from the histogram
created from the original data. Since the anonymizing algorithm was assumed
to be used with the analysis algorithm, this result is reasonable.

Each graph in Fig. 12 shows that the higher the values of I and d, the
worse the MSE of Ex-Proposal becomes. The adult dataset (Education) has
educational background as a sensitive attribute, and the duplicate-processing
algorithm cannot be used; therefore, the result is poor, as mentioned above.

In addition, in Fig. 12(b), the MSE of Ex-Proposal is larger than the existing
method (I, e)-diversity. Since (I, e)-diversity can be applied only when a sensi-
tive attribute can be classified by a tree structure, it cannot be used for data
collection via crowdsensing, and the proposed method cannot use the duplicate-
processing algorithm. Therefore, it should be noted that (I, e)-diversity is not
always better.

In this research, we assume that a record only has one sensitive attribute, as
most existing studies assume the same. Treating multiple sensitive attributes
will be a focus in our future work. Our previous work [1], which does not
consider semantic diversity, can handle multiple sensitive attributes for realizing
[-diversity. We believe that our proposed algorithms in the revised manuscript
can treat multiple sensitive attributes when combined with our previous work
[1].

Our proposed anonymization algorithm, which adds randomized records to
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the original database, is relatively difficult for data users to understand. More-
over, it is difficult to obtain meaningful information from each record in the
anonymized database. However, for statistical analysis, our proposed analysis
algorithm can greatly reduce information loss, as compared with algorithms pro-
posed in existing studies, as shown in Section 7. For example, as shown in Figure
8, the histogram generated by our proposed method (i.e., anonymized with our
proposed anonymization algorithm and then reconstructed with our analysis al-
gorithm) is very similar to the true histogram. Because histogram analysis (also
called a cross-tabulation or contingency table analysis) is an important analysis
method and our proposed method can generate a histogram very similar to the
real one, we can say that the usability of the data is maintained for statistical
analysis.

Note that generating anonymized histograms is a very important task in
privacy-preserving data mining. Many existing studies have targeted the gener-
ation of anonymized histograms [9, 27, 28, 30, 29], although they cannot ensure

semantic (I, d)-diversity.

8. CONCLUSION

In this research, a new indicator, (I,d)-semantic diversity, was proposed
to solve the research problem, which is the possibility that actual diversity
is not satisfied if a database holds similar sensitive attribute values, even if
anonymization is performed to satisfy [-diversity.

By defining the distances between the sensitive attribute values from catego-
rization and considering these distances with indicators, we solved the problem
of existing indicators.

In addition, we proposed an anonymization algorithm using a dummy record
addition method according to the proposed indicator and an analysis algorithm
suitable for the proposed anonymization algorithm.

To confirm that the above proposals are correct, a verification experiment

was conducted. Based on the results of the verification experiment, we confirmed
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that the proposed analysis is satisfactory.
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Figure 14: Violation ratio of (I, d)-semantic diversity (d = 3).
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Figure 15: Violation ratio of (I, d)-semantic diversity (I = 3).
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