
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Another Time-Complexity Analysis for
Maximal Clique Enumeration Algorithm CLIQUES

Etsuji TOMITA† and Alessio CONTE††

† The Advanced Algorithms Research Laboratory, The University of Electro-Communications
Chofugaoka1–5–1, Chofu, Tokyo 182–8585, Japan

†† Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

E-mail: †e.tomita@uec.ac.jp, ††conte@di.unipi.it

Abstract We revisit the maximal clique enumeration algorithm CLIQUES that appeared in Theoretical Com-
puter Science 2006. It is proved to work in O(3n/3)-time in the worst-case for an n vertex graph. In this note, we
extend the time-complexity analysis with respect to the number of maximal cliques, an issue that was left as an
open problem since TCS 2006.
Key words maximal clique, maximal independent set, enumeration, algorithm, time-complexity, delay

1. Introduction

A clique is defined to be a subgraph in which every
pair of vertices are adjacent. In particular, it is maximal

if it is not contained in a properly larger clique. Given
a graph, the enumeration of all its maximal cliques is
a fundamental and important problem in graph theory.
In addition, it has many applications in practice as in
clustering, data mining, bioinformatics, social networks,
and many others. An independent set of a graph G is a
clique of the complementary graph Ḡ.

Tsukiyama et al. was the first to give an algorithm for
enumerating all maximal independent sets with theoret-
ical time-complexity analysis. Given a graph G with n

vertices and m edges, their algorithm takes µO(nm)-
time for enumerating all maximal independent sets,
where µ is the number of maximal independent sets.
This implies that their algorithm enumerates all max-
imal cliques in αO(n(n2 − m))-time for G, where α is
the number of maximal cliques in G. Their approach is
based on so-called reverse search [1] approach. On the
other hand, Tomita et al. [20], [21] presented another al-
gorithm CLIQUES for enumerating all maximal cliques.
CLIQUES is independently developed based on depth-
first search algorithms for finding a maximum clique

[11], [19], [23], but the pruning techniques in CLIQUES
are found to be the same as in Bron and Kerbosch al-
gorithms [4] for the same problem. CLIQUES is proved
to enumerate all maximal cliques in O(3n/3)-time for
an n-vertex graph in the worst-case. This is optimal
as a function of n since there exist up to 3n/3 maximal
cliques as in Moon-Moser graphs [17]. CLIQUES is the
first algorithm with theoretical time-complexity analysis
in this approach.

In the reverse search approach after Tsukiyama et al.,
steady improvements have been made by Chiba and
Nishizeki [6], Johnson et al. [13], Makino and Uno [15],
Chang et al. [5], and Conte et al. [7], [9]. One of Conte
et al.’s algorithms requires αO(maxQ ·d∆)-time for enu-
merating all maximal cliques, where maxQ is the size of
a maximum clique, d is the degeneracy of G, that is de-
fined as the smallest number such that every subgraph
of G contains a vertex of degree at most d. Based on
CLIQUES, Eppstein et al. proposed an improved algo-
rithm that runs in O(dn3d/3)-time, where degeneracy d

is much smaller than n for sparse graphs. In general, it
is experimentally confirmed that if the number of cliques
is small then the running time for their enumeration is
small. However, no theoretical time-complexity anal-
ysis with respect to the number of maximal cliques is

— 1 —

一般社団法人　電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.
　　　 Copyright ©2020 by IEICE

IEICE Technical Report
COMP2020-1(2020-05)

- 1 -

made after CLIQUES [21], where the problem is noted
in [21] as an important open problem. This is in con-
trast to the time-complexity analysis in reverse search
approach. Example runs by two approaches for the same
problem can be found in [22]. For early histories and ap-
plications, see the excellent review articles [18], [2] where
CLIQUES [20] is also included for review.

In this note, we are concerned with another time-
complexity analysis of CLIQUES and others in the same
approach other than that with respect to the number of
vertices in the worst-case.

2. Definitions and notation

(1) We are concerned with a simple undirected graph
G = (V, E) with a finite set V of vertices and a finite
set E of unordered pairs (v, w) of distinct vertices, called
edges. A pair of vertices v and w are said to be adjacent
if (v, w) ∈ E.
(2) For a vertex v ∈ V , let Γ(v) be the set of all
vertices that are adjacent to v in G = (V, E), i.e.,
Γ(v) = {w ∈ V | (v, w) ∈ E} (̸∋ v).
(3) For a subset W⊂=V of vertices, G(W) = (W, E(W))
with E(W) = {(v, w) ∈ W ×W | (v, w) ∈ E} is called
a subgraph of G = (V, E) induced by W . For a set W of
vertices, |W | denotes the number of elements in W .
(4) Given a subset Q⊂=V of vertices, if (v, w) ∈ E for all
v, w ∈ Q with v |= w then the induced subgraph G(Q)
is said to be a clique. In this case, we may simply say
that Q is a clique. If a clique is not a proper subgraph
of another clique then it is called a maximal clique.

3. Maximal clique enumeration algorithm
CLIQUES

We revisit a depth-first search algorithm, CLIQUES
[20], [21] for enumerating all maximal cliques of an undi-
rected graph G = (V, E) with |V | = n. All maximal
cliques found are output in a tree-like form. The basic
framework of CLIQUES is almost the same as that for
finding a maximum clique without the bounding condi-
tion [11], [19], [23]. We maintain a global variable Q =
{p1, p2, ..., ph} that consists of the vertices of a current
clique, and let SUBG = V ∩Γ(p1)∩Γ(p2)∩ · · · ∩Γ(ph).
We begin the algorithm by letting Q← ∅ and SUBG←
V (the set of all vertices). We select a certain ver-
tex p from SUBG and add p to Q. Then, we com-
pute SUBGp = SUBG ∩ Γ(p) as the new set of vertices

in question. In particular, the initially selected vertex
u ∈ SUBG is called a pivot. This CLIQUES() procedure
is applied recursively while SUBGp |= ∅ .

We describe two methods to prune unnecessary parts
of the searching, which happen to be the same as in the
Bron-Kerbosch algorithms [4]. We regard the set SUBG

(= V at the beginning) as an ordered set of vertices, and
we continue to enumerate maximal cliques from vertices
in SUBG step-by-step in this order

The first pruning method : Let FINI be a subset
of vertices of SUBG that have already been processed
by the algorithm (FINI is short for FINISHED). Then
we denote by CAND the set of remaining CANDIDATE
for expansion: CAND = SUBG \ FINI. Initially,
FINI ← ∅ and CAND← SUBG = V . In the subgraph
G(SUBGp) with SUBGp = SUBG ∩ Γ(p), compute

CANDp = CAND ∩ Γ(p),
F INIp = FINI ∩ Γ(p).

Then only the vertices in CANDp excluding FINIp can
be candidates for expanding the clique Q ∪ {p} to find
new larger cliques.

The second pruning method : For the initially
selected pivot u in SUBG, any maximal clique Q′ in
G(SUBG ∩ Γ(u)) is not maximal in G(SUBG), since
Q′ ∪ {u} is a larger clique in G(SUBG). Therefore,
searching for maximal cliques from SUBG∩Γ(u) should
be excluded.

Algorithm 1: Algorithm CLIQUES in [21]
Input : A graph G = (V, E).
Output: All maximal cliques in G.

1 CLIQUES (∅, V, ∅)
2 Function CLIQUES(Q, CAND, FINI)
3 if CAND ∪ FINI = ∅ then

// Q is a maximal clique

4 print (“clique,”)

5 else
6 u← a vertex in CAND ∪ FINI
7 maximizing |CAND ∩ Γ(u)|
8 foreach p ∈ CAND \ Γ(u) do
9 print (p,“,”)

10 CLIQUES (Q ∪ {p}, CAND ∩ Γ(p), FINI ∩ Γ(p))
11 CAND← CAND \ {p}
12 FINI← FINI ∪ {p}
13 print (“back,”)

— 2 —- 2 -

Taking the previously described pruning method into
consideration, the only search subtrees to be expanded
are from vertices in (SUBG \ (SUBG∩Γ(u))) \FINI =
CAND \ Γ(u). Here, to minimize |CAND \ Γ(u)|, we
choose the pivot u ∈ SUBG that maximizes |CAND ∩
Γ(u)|, which is crucial to establish the optimality of
the worst-case time-complexity of the algorithm.

The algorithm CLIQUES [20], [21] is shown as Algo-
rithm 1 in the previous page.

It enumerates all maximal cliques in O(3n/3)-time in
the worst-case based upon the above methods, where
all maximal cliques enumerated are presented in a tree-
like form [20], [21]. We can easily obtain a tree repre-
sentation of all the maximal cliques from the output
sequence, where a dummy root is added to form a tree
(Fig.4 of [21]). The tree-like output format is also im-
portant practically, since it saves space in the output
file.

1

1 3 92 9 2 1 36 3 5 7 8

7 5 8

8

8 9

SUBG

CAND Γ (u)

CAND ∩ Γ (u)

FINI

CAND

2

3
4

5

67

8

9

Q4 ={4}

Q ={4,6}

Q7
={4,6,7}

p
0 dummy root(a) An example graph

(b) A search tree

4 1 2 9 3 5 6 7 8

9

clique* = maximal clique

clique*

clique*

Q8
={4,6,7,8}

Q5

={4,6,5}

clique*
Q8
={4,3,8}

clique*
Q9
={1,2,9}

clique*
Q9
={2,3,9}

bad bad bad
node node node

: u pivot

Figure 1 An example run of CLIQUES

Search tree
The process of enumerating all maximal cliques of G =
(V, E) by CLIQUES (∅, V, ∅) is represented by a search
tree:

• The root of the search tree is a newly introduced
dummy root p0 (/∈ V) to form a tree.

• Every vertex in V is a child of the dummy root
p0. The vertex of V is called a node in the search tree.

• Assume we have a path from the dummy root p0

to a certain node ph in the search tree as a sequence of
nodes p0, p1, p2, ..., ph, and let

SUBGh = V ∩ Γ(p1) ∩ Γ(p2) ∩ · · · ∩ Γ(ph).
Then, every vertex in SUBGh is a child of ph in the

search tree.
Suppose u with the maximum degree is chosen as a

pivot in SUBGh then every node in Γ(u) is a leaf since
it should not be expanded by CLIQUES according to the
second pruning method. Such a leaf in Γ(u) is called a
black node.

— 3 —- 3 -

Suppose
SUBGh = FINIh ∪ CANDh, qi, qj ∈ SUBGh \ Γ(u),

where i < j and qi, qj are adjacent with qi ∈ FINIh.
Then qj ∈ SUBGh has a child qi since qj and qi are

adjacent in SUBGh , but the child qi should not be
expanded by CLIQUES according to the first pruning
method, and hence it is a leaf of the search tree. Such
a leaf qi is called a bad node or bad leaf . Note that if
a bad node were expanded it could not lead to a new

maximal clique.
• When the above SUBGh is a singleton {q1} then

the q1 is a leaf in the search tree.
The search tee consists of the nodes from V ∪{p0} and

the parent-child relationship holds if and only if one of
the above conditions holds.

Let qi be a child of qh, then the set {p1, p2, ..., ph, pi}
constitutes a clique. This clique is called an accompany-
ing clique and is denoted by Qp0,p1,...,qi , or simply Qqi ,
or Q when it is clear.

See Figure 1 of a search tree for an example run, and
Figure 2 of a general search tree.

4. Bron-Kerbosch algorithms

Let us recall the antecedent algorithms by Bron and
Kerbosch for enumerating maximal cliques [4].

The main difference between theirs (Bron-Kerbosch)
and ours (CLIQUES) is how the pivot node is chosen on
Line 7.

We call BK the original Bron-Kerbosch algorithm
without pivoting, which corresponds to entirely remov-
ing Line 7, and replacing Line 8 with “foreach v ∈
CAND do”.

Next, we call BKP the original Bron-Kerbosch algo-
rithm with pivoting, where no specific pivot choice is
required, i.e., Line 7 can be replaced with “u ← an ar-
bitrary vertex in CAND ∪ FINI.”

In addition, CLIQUES outputs all maximal cliques in
a tree-like format in order to avoid the time for out-
putting a maximal clique every time it is found that is
proportional to the size of a maximal clique found.

The pivot selection of the maximum-degree and the
tree-like outputting are crucial in CLIQUES so that it
accomplishes the worst-case optimal O(3n/3)-time com-
plexity.

The original Bron-Kerbosch algorithm BKP (with ar-

bitrary pivot choice) should take O(n3n/3)-time in the
worst-case, while BK (without pivoting at all) runs in
Θ(n2n) on a complete graph, as it essentially generates
all subsets of every clique.

5. The time-complexity of CLIQUES

We analyze the time-complexity of CLIQUES with re-
spect to the output.

5. 1 The overall time-complexity of CLIQUES
with respect to the output

5. 1. 1 Size of the search tree

In this section we aim at bounding the number of
nodes in the search tree with respect to the number of
solutions.

Suppose we have a path from the dummy root p0 to a
certain node ph in the search tree as a sequence of nodes
p0, p1, p2, ..., ph. Then the set {p1, p2, ..., ph} constitutes
an accompanying clique.

We are interested in the accompanying clique Q across
different search tree nodes, and in particular let us ob-
serve the following:

Lemma 1. The accompanying clique Q is distinct
in any internal (non-leaf) node of a search tree of
CLIQUES.

Proof. Let x and y be any pair of non-root internal
nodes in the search tree of CLIQUES, where x is gener-
ated before y in the search tree. Let the nearest common
ancestor of x and y be ph, and let the path from the
dummy root p0 to node ph be p0, p1, p2, ..., ph with the
accompanying clique Qph

= {p1, p2, ..., ph}. In addition,

p0

p1

ph

q1 q2 qi qj qm

x y

qi

.

Qph
= { p1 , …, ph }

Qx = Qph
U {qi , …, x } Qy = Qph

U { qj , …, y }

bad node

dummy root

SUBGh = Γ (p1) ∩ … ∩ Γ (ph)

= {q1, …, qm }

Figure 2 A Search tree

— 4 —- 4 -

let the path from ph to x be ph, qi, ..., x and that from
ph to y be ph, qj , ..., y, respectively, and let SUBGh =
Γ(p1) ∩ Γ(p2) ∩ ... ∩ Γ(ph) = {q1, q2, ..., qi, ..., qj , ..., qm}
(i < j). See Figures 1 and 2. So, Qx = Qph

∪ {qi, ..., x}
and Qy = Qph

∪ {qj , ..., y}. When we visit node qj we
see that node qi is in FINIh = SUBGh \CANDh where
CANDh = {qj , ..., qm} at that moment. If qi /∈ Γ(qj)
then it clearly follows that qi /∈ Qy. When qi ∈ Γ(qj),
qi in the descendants of qj is a bad node (leaf) since the
previous node qi is in FINIh. Moreover, the bad node
qi is not in the path qj , ..., y since all nodes qj , ..., y are
internal nodes by the assumption. Thus, qi /∈ Qy. In
any case, it follows that qi ∈ Qx \Qy and the lemma is
proved.

We observe that the accompanying clique Q is always
a subset of a maximal clique. Let maxQ be the size of
a maximum clique and µ the number of maximal cliques
in G.

Lemma 2. The number of nodes of a search tree of
CLIQUES is at most (1 + ∆)µ(2maxQ − 1).

Proof. The above observation immediately implies that
the number of internal nodes is bounded by the number
of distinct non-maximal cliques of G. Each maximal
clique has at most 2maxQ−1 distinct subsets whose size
is less than or equal to maxQ− 1. (The subset of size
0 corresponds to the dummy root p0, and the subset
of size maxQ is excluded.) So, the number of internal
nodes is at most µ(2maxQ − 1) by Lemma 1. Accord-
ingly, the number of leaves of the search tree is at most
∆µ(2maxQ− 1). Summarizing the above, the number of
nodes of a search tree is at most (1+∆)µ(2maxQ−1).

5. 1. 2 The overall time-complexity of CLIQUES

Theorem 1. Since each node can be executed in O(n2)-
time [21], the running time of CLIQUES is O((1 +
∆)µ(2maxQ − 1)poly(n)) for some polynomial poly(n).

2

Consider an algorithm A that enumerates all solu-
tions in the given problem where the number of solu-
tions in the problem is M . If algorithm A requires
O(M ·poly(n))-time for some polynomial poly(n) to enu-
merate all solutions then the complexity of algorithm A
is called amortized polynomial time.

Corollary 1. If the size of a maximum clique maxQ =

O(lg n) then the running time of CLIQUES is amortized
polynomial.

Proof. We have maxQ <= c lg n for some constant c from
the assumption.
Therefore, (1+∆)µ(2maxQ−1) <= (1+∆)µ(2c lg n−1) =
(1 + ∆)(nc − 1) · µ.
Hence the result.

Note that the properties in this Section 5.1 also hold
for BK and BKP.

5. 2 Delay of CLIQUES
Next we consider the delay of the algorithm, that is,

the maximum time which can elapse between two con-
secutive outputs of a solution.

Delay of BK and BKP is easy to analyze and is
Ω(3n/3)-time, that is described separately later in Sec-
tion 6.1.

As for CLIQUES, the situation is challenging. The
maximum-degree pivot choice is in practice very effective
in pruning search subtrees that lead to no solutions, and
we were unable to build ad-hoc counterexamples where
this choice leads to an exponentially long time between
two outputs.

We, however, manage to show a weaker, but essen-
tially similar, result: we prove that if CLIQUES has
polynomial delay, then P = NP .

It is worth observing that a recursive call of Algo-
rithm 1 (ignoring the cost of its children calls) takes
polynomial time, namely O(n2), so exponential delay
means the algorithm must encounter an exponentially
long sequence of consecutive recursive calls that per-
form no output. Furthermore, as the depth of the tree
is O(maxQ), a leaf is always reached in polynomial
time, so exponential delay means the algorithm must
encounter an exponentially long sequence of consecutive
leaves that perform no output (which we call bad leaves).

5. 2. 1 Hardness of the extension problem

Firstly, let us define what is called the extension
problem for maximal cliques, and prove that it is NP-
complete.

Problem 1 (Extension Problem, EXT-P(G(V, E), X)).
Given a graph G(V, E) and X ⊂ V , does G have a max-
imal clique Q that does not intersect X?

— 5 —- 5 -

This problem is a common building block of enu-
meration algorithms based on binary partition, al-
though typically challenging when dealing with maxi-
mal solutions [3], [8], [14]. Looking at a recursive call of
CLIQUES, setting X ≡ FINI and V \ X ≡ CAND, we
can observe how it essentially corresponds to asking “will
a maximal clique be output in its recursion subtree?”
Answering this question would allow excellent pruning,
as we could identify all useless recursive calls, resulting
in no bad leaves and thus polynomial delay.

Unfortunately this problem is NP-complete, as we
show by a reduction from CNFSAT.

Theorem 2. The extension problem for maximal
cliques (EXT-P(G(V, E), X)) is NP-complete.

Proof. Let F be a CNF boolean formula on h variables
v1, . . . , vh and l clauses c1, . . . , cl, and let the positive
and negative literals of the variable vi be represented by
vi and ¬vi.

We build a graph G, with a suitable vertex set X, such
that F can be satisfied if and only if G has a maximal
clique not intersecting X.

Let V be as follows:
• A vertex pi for each positive literal vi in F
• A vertex ni for each negative literal ¬vi in F
• A vertex ci for each clause of F
Let E(G) be as follows:
• For all distinct i and j, E(G) contains (pi, pj),

(pi, nj), (ni, pj), and (ni, nj), i.e., all literals are con-
nected to all others (positive and negative) except their
own negation.

• E(G) contains (ci, pi) if literal vi does not appear
in ci. Similarly, (ci, ni) ∈ E(G) if ¬vi does not appear
in ci, i.e., each clause is connected to all literals except
those that satisfy it.

An example is shown in Figure 3.

Now, let X be the set of all vertices ci corresponding
to clauses. Note that V \X is the set of all vertices corre-
sponding to literals. Furthermore, observe how a clique
cannot contain both pi and ni, and any set S⊂=V \X is a
clique if and only if it does not contain both a literal and
its negation: it follows that cliques in V \X correspond
exactly to valid truth assignments to the literals.

Furthermore, observe that if S does not contain any
literal satisfying a clause ci, then ci is adjacent to all
literals in S (due to how edges are placed in E), thus S

p1 , p2 , . . . , ph

n1 , n2 , . . . , nh

c1

Figure 3 Example construction of G from the
F formula for a clause c1 = (v1,¬v2,¬vh)

is not maximal because ci can be added to it. So if the
literals in S do not satisfy some clause ci, then S is not
maximal.

Conversely, if S is maximal and spans all variables
(i.e., either pi or ni is in S for any i), it means that
each ci is not adjacent to some vertex in S: this means
ci is satisfied by the corresponding literal, since clauses
are adjacent to all literals that do not satisfy them. It
follows that S⊂=V \X is a maximal clique if and only if
its corresponding literals are a satisfying assignment of
F that assigns a truth value to all variables.

Finally, any CNF formula that has a satisfying as-
signment, trivially also has a satisfying assignment that
assigns truth values to all variables (one can just choose
an arbitrary value to each missing variable). It follows
that EXT-P(G(V, E), X) has positive answer if and only
if F can be satisfied.

It only remains to show that EXT-P(G(V, E), X) is
NP: indeed testing a solution corresponds to verifying
the maximality of a given clique, that can trivially be
done in O(n2) time. The proof is complete.

5. 2. 2 CLIQUES has polynomial delay only if
P=NP

Now, given G(V, E) and X, we build a graph
G′(V ′, E′) such that, if CLIQUES runs on G′(V ′, E′)
with polynomial delay, then we can solve the NP-
complete problem (EXT-P(G(V, E), X)) in polynomial
time.

G′(V ′, E′) is built as follows. In particular, V ′ =
Q ∪X ∪ {v} ∪ P , where:

• Q = {q1, . . . , q|Q|} is a clique of size |Q| > |X| +
|V | + 1 (large enough so that one vertex is chosen as a
pivot in the first recursive call of CLIQUES)

• X = {x1, . . . , x|X|} are the vertices of X from

— 6 —- 6 -

x1 , x2 , . . . , x|X| p1 , p2 , . . . , p|P|vq 1 , . . . , q |Q|

Clique Q X P=V X

Figure 4 Graph G′(V ′, E′)

EXT-P(G(V, E), X).
• v is a vertex connected to all of X and P (but not

to Q)
• P = {p1, . . . , p|P |} are the vertices of V \X from

EXT-P(G(V, E), X).
Where the vertices from G(V, E) are connected as in

G.

If we run CLIQUES on G′, it will first choose q1 as
a pivot without loss of generality, and q2, ..., q|Q| will
become black nodes and be skipped.

The algorithm will find the maximal clique Q in
O(|Q|3)-time, then will start processing the remaining
vertices, i.e., X ∪ {v} ∪P . By processing we mean they
are considered in the foreach loop of the root recursive
call of Algorithm 1. As the algorithm does not specify
in which order the vertices are processed, we will assume
this is in the same order as they appear in Figure 4, i.e.,
first X, then v, then P .

Take the moment when v is processed:
We have that CAND ∩ Γ(v) is exactly P , while

FINI ∩ Γ(v) is X because we already processed vertices
of X.

If CLIQUES has polynomial delay, it must either find
a new maximal clique or terminate, in polynomial time:
as any maximal clique containing vertices of X has al-
ready been found, this process will output a new maxi-
mal clique if and only if there is a maximal clique in P

that cannot be extended with vertices of X, i.e., since
P corresponds to V \ X, there is a maximal clique in
G(V, E) that does not intersect X.

Finally, since CLIQUES may spend exponential time
before processing v, we want to skip this time: we can set
up CLIQUES directly with arbitrary CAND and FINI
by running

CLIQUES({v}, P, X)
This way CLIQUES starts from the desired moment,
and if it has polynomial delay, it will find the solution
to EXT-P(G(V, E), X) in polynomial time. More for-
mally, we can state that:

Theorem 3. If Algorithm CLIQUES [21] has polyno-
mial delay, then P = NP . 2

In addition, the following is a corollary to Theorem 1.

Corollary 2. If maxQ = O(lg n) then the running time
of CLIQUES is polynomial delay.

Proof. Let pl and pl′ be any pair of consecutive out-
puts of maximal cliques in the search tree. (Consider
Figure 2 where the internal node x is replaced by a leaf
pl and the internal node y by a leaf pl′ .) Then we can
show that the number of nodes between pl and pl′ in
the search tree is at most 2(1 + ∆)(2maxQ− 1) as in the
proof of Theorem 1.

If maxQ = O(lg n) then 2(1 + ∆)(2maxQ − 1) <=
2(1 + ∆)(nc − 1).
Hence the result.

6. Delay of the other algorithms

6. 1 Delay of Bron-Kerbosch Algorithms
For BK and BKP the delay can be easily assessed.

Consider a grap G built as follows: a clique A of con-
stant size, a Moon-Moser graph M on k vertices [17],
a vertex x adjacent to all of M , and another clique B

of constant size. A graphical representation is given in
Figure 5. Observe that the total number of vertices in
G is n = k + O(1). Furthermore, all maximal cliques
in G except A and B contain x. Consider now BKP on
G: in the root recursive call, assume a vertex a of A is
chosen as the first pivot (thus recursion on all other ver-
tices of A is prevented by the pivot rule), assume that
vertices are processed in the following order (again, by
processing we mean they are considered in the foreach
loop): First a, then x, then vertices of M , then finally
vertices of B. All maximal cliques involving x are found

Figure 5 The graph built in Section 6.1.

— 7 —- 7 -

in the recursion subtree when processing x. Once the
algorithm backtracks and starts visiting vertices of M ,
assume that x is never selected as pivot (an acceptable
assumption if the pivot choice is arbitrary). Then by [21]
we know BKP will take Ω(3k/3) = Ω(3n/3) time to pro-
cess the Moon-Moser graph M , but no new solution is
found in this time, because all cliques in M can be ex-
tended with x, finally the algorithm processes vertices
of B and outputs B, giving us a delay of Ω(3n/3)-time.
The same bound holds for BK, since its recursion tree
includes that of BKP. We obtain the following:

Theorem 4. The BK and BKP algorithms have delay
Ω(3n/3)-time. 2

6. 2 Delay of Eppstein et al. algorithm
It is worth observing how Eppstein et al. [10] devel-

oped a variation of CLIQUES tailored for sparse graphs,
running in O(n3d/3) time, where d is the degeneracy of
the input graph. The degeneracy d is typically small
on real-world sparse graphs. This parameter is used to
define a specific ordering of the vertices which creates
smaller subgraphs to process (provided that d is small),
using CLIQUES.

In a worst-case scenario, however, d can be Ω(n),
and Conte et al. [9] proves, by building suitable ad-hoc
graphs, how the delay of Eppstein et al. algorithm is
Ω(3n/6).

Concluding remarks
In the midst of our present work, we noticed an ar-

ticle [16] claiming that “The Bron-Kerbosch algorithm
with vertex ordering is output-sensitive.” But Conte and
Versari pointed out a bug in its main lemma (Lemma 11
of [16], confirmed by the author in private communica-
tions). Therefore the question of the delay is now set-
tled, but that of the amortized cost per solution remains
open.

Acknowledgments
The authors would like to thank L. Versari and E.

Harley who joined in useful discussions. This work is
supported in part by JSPS KAKENHI Grant Number
17K00006.

References
[1] Avis, D., Fukuda, K.: Reverse search for enumeration, Dis-

cret. Appl. Math., 65, 21–46 (1996)
[2] Bomze, I. M., Budinich, M., Pardalos, P. M., Pelillo M.: The

Maximum Clique Problem, In: Du, D.-Z., Pardalos, P.M.

(Eds.), Handbook of Combinatorial Optimization, Supple-
ment vol. A, Kluwer Academic Publishers, 1–74 (1999)

[3] Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.F.:
Enumerating minimal dominating sets in triangle-free
graphs, STACS, 16:1–16:12 (2019)

[4] Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques
of an undirected graph, Commun. ACM, 16, 575–577 (1973)

[5] Chang, L., Yu, J. X., Qin, L.: Fast maximal cliques enumer-
ation in sparse graphs, Algorithmica, 66, 173–186 (2013)

[6] Chiba, N., Nishizeki, T.: Arboricity and subgraph listing
algorithms, SIAM J. Comput. 14, 210–223 (1985)

[7] Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-
space bounded-delay enumeration for massive network an-
alytics: Maximal cliques, ICALP 2016, 148:1-148:15 (2016)

[8] Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Ef-
ficient enumeration of maximal k-degenerate induced sub-
graphs of a chordal graph, Theoret. Comput. Sci. (2018)

[9] Conte, A., Grossi, R., Marino, A., Versari, L.: Sublin-
earspace and bounded-delay algorithms for maximal clique
enumeration in graphs, Algorithmica, 1–27 (2019)

[10] Eppstein, D., Löffler, M., Strash, D.: Listing all maximal
cliques in large sparse real-world graphs, ACM J. of Exper-
imental Algorithmics, 18 (2013)

[11] Fujii, T., Tomita, E.: On efficient algorithms for finding
a maximum clique, Tech. Rep. of IECE, AL81-113, 25–34
(1982)

[12] Johnson, D. S., Trick, M. A. (Eds.): Cliques, Coloring, and
Satisfiability, DIMACS Series in Discrete Mathematics and
Theoret. Comput. Sci., vol.26, American Math. Soc. (1996)

[13] Johnson, D. S., Yannakakis, M., Papadimitriou, C. H.: On
generating all maximal independent sets, Information Pro-
cessing Lett., 27, 119–123 (1988)

[14] Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno,
T.: A polynomial delay algorithm for enumerating minimal
dominating sets in chordal graphs WG 2015, LNCS 9224,
138–153 (2015)

[15] Makino, K., Uno, T.: New algorithms for enumerating all
maximal cliques, SWAT 2004, LNCS 3111, 260–272 (2004)

[16] Manoussakis, G.: The Bron-Kerbosch algorithm with ver-
tex ordering is output-sensitive, arXiv1911.01951v1 (2019)
(PDF unavailable.)

[17] Moon, J.W., Moser, L.: On cliques in graphs, Israel J.
Math., 3, 23–28 (1965)

[18] Pardalos, P. M., Xue J.: The maximum clique problem, J.
Global Optim., 4, 301–328 (1994)

[19] Tomita, E., Kohata, Y., Takahashi, H.: A simple algorithm
for finding a maximum clique, Tech. Rep. of the University
of Electro-Commun., UEC-TR-C5(1) (1988)
http://id.nii.ac.jp/1438/00001899/

[20] Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time
complexity for finding all the cliques, Tech. Rep. of the Uni-
versity of Electro-Commun., UEC-TR-C5(2) (1988)
http://id.nii.ac.jp/1438/00001898/

[21] Tomita, E., Tanaka, A. Takahashi, H.: The worst-case time
complexity for generating all maximal cliques and computa-
tional experiments (An invited paper in the Special Issue on
COCOON 2004), Theoret. Comput. Sci., 363, 28–42 (2006)
https://www.sciencedirect.com/science/article/pii/
S0304397506003586

[22] Tomita, E.: Clique Enumeration, In Kao, M.-Y. (Ed.), En-
cyclopedia of Algorithms, 2nd Edition, Springer (2016)
https://doi.org/10.1007/978-3-642-27848-8_725-2

[23] Tomita, E.: Efficient algorithms for finding maximum and
maximal cliques and their applications - Keynote - , WAL-
COM 2017, LNCS 10167, 3-15 (2017)
http://id.nii.ac.jp/1438/00008519/

— 8 —- 8 -

 HistoryItem_V1
 TrimAndShift

 範囲: 現在のページ
 トリム: 無し
 シフト: 移動 上 by 25.51 ポイント
 ノーマライズ(オプション): オリジナル

 32
 1
 0
 No
 28
 304
 Fixed
 Up
 25.5118
 0.0000

 Both
 2
 CurrentPage
 7

 CurrentAVDoc

 None
 35.4331
 Left

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 0
 8
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 42.05, 785.51 幅 495.02 高さ 43.96 ポイント
 マスク座標: 横方向, 縦方向オフセット 509.35, 58.28 幅 61.16 高さ 30.58 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 42.0476 785.5079 495.0152 43.9589 509.3496 58.2752 61.1602 30.5801

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 0
 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 範囲: 現在のページ
 トリム: 無し
 シフト: 移動 下 by 14.17 ポイント
 ノーマライズ(オプション): オリジナル

 32
 1
 0
 No
 28
 304
 Fixed
 Down
 14.1732
 0.0000

 Both
 2
 CurrentPage
 7

 CurrentAVDoc

 None
 35.4331
 Left

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 1
 8
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 507.44, 18.14 幅 63.07 高さ 35.36 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 507.4383 18.1388 63.0714 35.3582

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 1
 8
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 507.44, 39.16 幅 60.20 高さ 28.67 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 507.4383 39.1627 60.2046 28.6688

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 2
 8
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 514.13, 40.12 幅 57.34 高さ 25.80 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 514.1277 40.1183 57.3376 25.8019

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 3
 8
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 500.75, 29.61 幅 77.41 高さ 39.18 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 500.7489 29.6064 77.4059 39.1807

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 4
 8
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 507.44, 35.34 幅 64.98 高さ 29.62 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 507.4383 35.3401 64.9827 29.6245

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 8
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 507.44, 38.21 幅 57.34 高さ 28.67 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 507.4383 38.207 57.3377 28.6688

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 6
 8
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 現在のページ
 マスク座標: 横方向, 縦方向オフセット 494.06, 34.38 幅 77.41 高さ 29.62 ポイント
 オリジナル: 左下

 1
 0
 BL

 Both
 2
 CurrentPage
 6

 CurrentAVDoc

 494.0595 34.3845 77.4059 29.6245

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 7
 8
 7
 1

 1

 HistoryItem_V1
 TrimAndShift

 範囲: 3ページから ページ 8
 トリム: 無し
 シフト: 移動 下 by 14.17 ポイント
 ノーマライズ(オプション): オリジナル

 32
 1
 0
 No
 28
 304
 Fixed
 Down
 14.1732
 0.0000

 Both
 3
 SubDoc
 8

 CurrentAVDoc

 None
 35.4331
 Left

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 2
 8
 7
 6

 1

 HistoryItem_V1
 AddNumbers

 範囲: 全てのページ
 フォント: Times-Roman 10.5 ポイント
 オリジナル: 中央下
 オフセット: 横方向 0.00 ポイント, 縦方向 39.69 ポイント
 前置文字列: -
 後置文字列: -
 レジストレーションカラーを使用: いいえ

 1
 1
 -
 BC
 -
 1
 1
 TR
 1
 0
 456
 310

 0
 1
 10.5000

 Both
 2
 AllDoc
 5

 CurrentAVDoc

 [Doc:NumPages]
 0.0000
 39.6850

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 0
 8
 7
 8

 1

 HistoryList_V1
 qi2base

