
Software Test Automation

for Database Applications

with Graphical User Interfaces

A dissertation

by

Haruto Tanno (丹野 治門)

Submitted to the

Department of Computer and Network Engineering

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the subject of

Engineering

The University of Electro-Communications

June 2020

Committee

Professor Hideya Iwasaki

Professor Yasushi Kuno
Professor Masayuki Numao
Professor Yasuhiro Minami
Associate Professor Minoru Terada

For refereeing this doctoral dissertation, entitled, Software Test Automation for
Database Applications with Graphical User Interfaces.

Copyright

© Haruto Tanno (丹野 治門) 2020

Software Test Automation for Database Applications
with Graphical User Interfaces

Haruto Tanno

Abstract

Software test automation plays a key role in improving the quality, cost, and delivery
of software. The main tasks of software testing are test design, test execution, test results
verification, fault localization, and program repair. Several tools automate these tasks in
unit testing. Compared to integration testing, it is not difficult to remove bugs detected
in unit testing.

Little headway has been made in automating integration testing, in which the tester
checks the behavior of the software in combination with those of various modules such as
user interfaces, application logic modules, and databases (DBs). Although the usage of
automatic test execution tools such as Selenium has become widespread, test design and
test results verification are often performed manually. Moreover, the functions tested in
integration testing are affected by the operations of multiple modules, and their behaviors
greatly depend on the input events and the program’s internal states. This means that
much time is required to identify the cause(s) of each bug detected in integration testing.

This study targeted DB applications with graphical user interfaces (GUIs) such as web
and game applications. Test automation is indispensable for developing such applications
because they evolve quickly and thus need early and frequent releases. We propose
using four methods for solving the major problems we identified in test design, test
results verification, and fault localization in functional testing at the integration level for
DB applications with GUIs. Two methods based on model-based testing automatically
generate initial DB states to be entered into the relational DB to support each test
case. A third method, based on visual regression testing, enables the tester to efficiently
confirm test results even when there are changes that affect the entire application screen.
The fourth method, named suspend-less debugging, enables the programmer to efficiently
debug interactive and/or realtime programs in the DB application with the GUI.

The goals of this study were to automate the process from test design to test results
verification and to make it easier to identify the cause(s) of each bug detected and fix
them.

Acknowledgments

Many people helped me complete my doctoral research. I would like to thank them here.
First of all, I would like to thank my supervisor, Professor Hideya Iwasaki for the

continuous support of my study. His great guidance to me was essential for my research
activities.

I am deeply grateful to the co-authors of the publications in my doctoral research,
Katsuyuki Natsukawa, Yu Adachi, Yu Yoshimura of Nippon Telegraph and Telephone
Corporation (NTT), Takashi Hoshino of NTT TechnoCross Corporation, and Xiaojing
Zhang of NTT Communications. They spent a lot of their time discussing this research
and gave me deep insights.

Advice and comments given by Professor Yasushi Kuno, Professor Masayuki Numao,
Professor Yasuhiro Minami, and Associate Professor Minoru Terada have been a great
help to improve this doctoral dissertation. I would like to show my greatest appreciation
to them.

I owe a very important debt to members of NTT and NTT Group companies for
supporting this research. In addition, I would like to offer my special thanks to members
of Iwasaki laboratory.

Finally, thanks to my family for always warmly supporting my life and research.

Contents

Acknowledgments i

1 Introduction 1
1.1 Background . 1
1.2 Goals and Contributions . 3

2 Testing of DB Applications with GUIs 7
2.1 Database Applications with GUIs . 7
2.2 Current Status and Testing Challenges 8

2.2.1 Test Design . 9
2.2.2 Test Execution . 11
2.2.3 Test Results Verification . 11
2.2.4 Fault Localization . 12
2.2.5 Program Repair . 13

3 Design-Model-based Initial DB State Generation 15
3.1 Introduction . 15
3.2 Related Work . 17
3.3 Proposed Method . 18

3.3.1 Design Model . 19
3.3.2 Test Case . 22
3.3.3 Algorithm of Generating Initial Database State and Input Values 23

3.4 Evaluation . 27
3.4.1 Measure . 27
3.4.2 Procedures . 28
3.4.3 Result . 29
3.4.4 Discussion . 30

3.5 Chapter Summary . 32

iii

4 Reducing Number and Size of Initial DB State 33
4.1 Introduction . 33
4.2 Related Work . 36
4.3 Proposed Method . 38

4.3.1 Challenges . 38
4.3.2 Overview of Proposed Method . 39
4.3.3 Step 2: Test Case Grouping . 41
4.3.4 Step 4: Record Alignment Decision 42
4.3.5 Step 5: Initial Database State Constraint Generation 44

4.4 Evaluation . 46
4.4.1 Measure . 46
4.4.2 Procedure . 47
4.4.3 Result . 48
4.4.4 Discussion . 48
4.4.5 Future Work . 52

4.5 Chapter Summary . 52

5 Region-based Essential Differences Detection 53
5.1 Introduction . 53
5.2 Related work . 55

5.2.1 Implementation-dependent VRT Systems 56
5.2.2 Implementation-independent VRT Systems 57

5.3 Proposed method . 58
5.3.1 Scope and Requirements . 58
5.3.2 Features of ReBDiff . 58
5.3.3 Difference Types . 59
5.3.4 Difference Checking by Tester . 61

5.4 Differences Detector . 63
5.4.1 Step 1: Divide Images into Regions 64
5.4.2 Step 2: Generating List of Region Pairs 66
5.4.3 Step 3: Assigning Difference Types to Region Pairs 67

5.5 Experiments . 68
5.5.1 Research Questions . 68
5.5.2 Method . 68
5.5.3 Target Screens . 69
5.5.4 Results . 71
5.5.5 Discussion . 73

5.6 Conclusion . 75

6 Suspend-less Debugging 77
6.1 Introduction . 77
6.2 Related work . 80
6.3 Proposed debugging method . 83

6.3.1 Targets . 83
6.3.2 Requirements . 83
6.3.3 Debugging method . 84

6.4 Debugger for C# . 85
6.5 Implementation . 88

6.5.1 Mechanism of code transformation 89
6.5.2 Mechanism of debugging execution 90

6.6 Case study . 91
6.6.1 Debugging First Bug . 92
6.6.2 Debugging Second Bug . 94

6.7 Overhead measurement . 95
6.8 Discussion . 96
6.9 Chapter Summary . 97

7 Toward More Efficient Testing 99
7.1 Reducing Cost for Design Model Creation 99
7.2 Expanding Scope of Initial Database State Generation 99
7.3 Reduction of Labor for Test Results Verification 100
7.4 Further Debugging Support . 100

8 Conclusion 103

Bibliography 105

Publication List 112

List of Figures

1.1 Tasks in Testing Process . 1

2.1 Typical Execution Flow of Database Applications with Graphical User
Interface . 8

2.2 Integration Testing of Database Applications with Graphical User Interfaces 9

3.1 Example of Database Application . 16
3.2 Overview of Proposed Method . 19
3.3 Design Model: Process Flow of Employee Search System 20
3.4 Design Model: Input Definition of Employee Search System 20
3.5 Design Model: DB Schema of Employee Search System 21
3.6 Test Case of Employee Search System . 23
3.7 Overview of Algorithm that Generates Initial Database State and Input

Values . 24
3.8 Generate Constraints from Containment Relationship of Strings 27
3.9 Decide Values of Character Variables . 28

4.1 Example Test Cases . 35
4.2 Initial Database States Generation by Existing Methods 36
4.3 Initial Database States Generation by Proposed Method 37
4.4 Problems When Naively Combining Records 39
4.5 Overview of Proposed Method . 40
4.6 Test Cases Grouping . 42
4.7 Example of Design Model . 44
4.8 Examples of Record Alignment Tables 45
4.9 Example of Using Minimum Records Pattern to Obtain Solution 50
4.10 Example of Using Maximum Records Pattern Instead of Minimum Pattern

to Obtain Solution . 51
4.11 Example of Inability to Obtain Solution with Either Minimum or Maxi-

mum Records Pattern . 51

vii

5.1 Using Existing Image-based VRT to Compare Two Screens in Pixel Units. 54
5.2 Problems in Comparing Two Screens in Pixel Units with Existing Image-

based VRT. 55
5.3 Overview of ReBDiff. 59
5.4 Detecting Differences in Region Pairs. 61
5.5 Shift-Checking View (Group Identifier is 1). 62
5.6 Addition/Deletion/Alteration-Checking View. 63
5.7 Checking for Alteration Differences. 64
5.8 Difference Detection Rates and Confirmation Times for RQ2. 72

6.1 Code Fragment for Action Game Program. 78
6.2 Views of SLDSharp. 84
6.3 Highlighting the Executed Statements. 87
6.4 Overview of SLDSharp Implementation. 88
6.5 Transformed Code. 89
6.6 Pseudo Code for LogFunc. 91
6.7 Mechanism of Debugging Execution. 92
6.8 Debugging First Bug. 93
6.9 Debugging Second Bug. 95

List of Tables

3.1 Definition of Design Model . 21
3.2 Definition of Constraints on Where Clauses and Guard Conditions 22
3.3 Test Cases and Variables . 23
3.4 Category of Test Case . 29
3.5 Evaluation Results . 29
3.6 Use Frequencies of Characteristics Constraints We Propose 29

4.1 Definition of Test Case Group . 40
4.2 Calculate the Number of Records From the Result condition 42
4.3 Evaluation Result: Number of Initial DB States and Total Number of DB

Records . 48
4.4 Evaluation Result: Number of Backtrackings 49
4.5 Evaluation Result: Shuffled Test Cases 49

5.1 Target Screens. 69
5.2 Results for RQ1: Number of Detected Differences. 70
5.3 Results for RQ1: Ratio of Area. 71

6.1 Classification of Bugs and Scope of This Work 80
6.2 Requirements for Debuggers Applied to Interactive and/or Realtime Pro-

gram. 82
6.3 Commands for Specifying Sections, Conditions, and Expressions to Monitor. 87
6.4 Overheads for SLDSharp. 96

ix

Chapter 1

Introduction

1.1 Background

The objectives of software testing (hereafter “testing”) are to verify that the target soft-
ware has been implemented in accordance with its design and specifications and to reduce
the number of software defects. The testing workload accounts for a large percentage of
the overall development process. Moreover, since bugs that are not detected in the test
process may affect the end users, the test process is vital to ensuring the quality of the
software. User needs and software/hardware development of the operating environment
have been evolving at an ever more rapid pace in recent years, meaning that early and fre-
quent releases of new or revised versions of the software are needed. Maintaining software
quality through repeated release cycles requires the performance of regression testing.

The testing process mainly consists of eight tasks: test planning, test design, test
execution, test results verification, fault localization, program repair, test reporting, and
test management, as shown in Figure 1.1.

Test planning In test planning, issues such as the time frame and allocation of
resources for testing are decided on the basis of the overall development plan.

Test

planning Test

design

Test

execution

Test

result

verification

Test management

Test

reportingFault

localization

Program

repair

Figure 1.1: Tasks in Testing Process

1

2 CHAPTER 1. INTRODUCTION

Test design Test design involves clarifying the various tests that must be done,
designing comprehensive test cases, refining specific test feasibility procedures for each
test case, and creating scripts for automatic execution.

Test execution In test execution, test data are input for each test case one-by-one,
the software is run, and the test results revealing how the software behaved for each test
case are recorded.

Test results verification Test execution results are then compared with expected
results to ensure that the software behaved in accordance with its design.

Fault localization If a behavior of the software is not as expected, that is, if a bug
is detected, the program is corrected by identifying the cause(s) of the bug.

Program repair In program repair, the cause(s) of the bug is/are carefully removed
while ensuring that the repair does not adversely affect the program.

Test management In test management, the progress of the tests is managed, and
the test plan is revised if necessary.

Test reporting When all tests have been executed and all detected bugs have been
fixed, the test results are summarized in test reporting, and the test process is complete.

Five of these test processes, namely test design, test execution, test results verifica-
tion, fault localization, and program repair, are especially important. Once test cases
are produced in test design, they can be repeatedly used not only for new testing but
also for regression testing when software is fixed or improved. Test execution and test
results verification must be carried out repeatedly for all legacy functions when dealing
with software enhancements and new operating environments, and the burden increases
exponentially as the scale of the software increases. Of course, the cost of debugging also
increases with the scale and complexity of the software.

For unit testing, in which individual units of the source code are tested, tools such
as Microsoft Visual Studio IntelliTest [76], which automatically performs test design,
and JUnit, which automates test execution and test results confirmation, are used at
development sites. It is relatively easy to identify the cause of a bug and fix it in unit
testing since the functions at the unit level are relatively simple. In contrast, little
headway has been made in automating integration testing, in which the tester checks the
behavior of the software in combination with those of various modules, including user
interfaces, application logic modules, and databases (DBs). Although automatic test
execution tools such as Selenium1 have become widely used, test design and test results
verification are often performed manually. Moreover, a function tested in integration

1https://selenium.dev/

1.2. GOALS AND CONTRIBUTIONS 3

testing works in combination with the functions of multiple modules, and its behaviors
greatly depend on the input events and the program’s internal states. Therefore, it takes
longer to identify the cause(s) of each bug detected in integration testing, and fixing
the bug costs more due to the need to ensure that the modification does not adversely
affect the program than to modify the program. The automatic performance of regression
testing would enable a buggy program to be repaired relatively easily and safely. However,
creating automated regression tests is costly.

1.2 Goals and Contributions
This study targeted DB applications with graphical user interfaces (GUIs) (hereinafter
referred to as db-gui-apps) such as web and game applications because these types of
applications have two characteristics in particular.

• There is a great need for test efficiency because many companies have developed
db-gui-apps [1].

• They evolve quickly and need early and frequent releases, making test automation
indispensable.

We propose using four methods to solve the major problems we identified in test de-
sign, test results verification, and fault localization in functional testing at the integration
level for db-gui-apps. More specifically, the scope of our testing is limited to one screen
transition for each test case, i.e., first tests in integration testing.

The goals of this study were to automate the process from test design to test results
verification and to enable the cause(s) of each bug detected to be easily identified and
removed.

The contributions of this dissertation are as follows.

• We discuss the current status and challenges of testing db-gui-apps and specify four
major challenges faced in achieving the goals of this study.

• We propose using two methods based on model-based testing (MBT) that auto-
matically generate initial DB states to be entered into the relational DB to support
each test case. (Chapters 3 and 4))

• We propose using a method based on visual regression testing (VRT) that enables
the tester to confirm test results efficiently even when there are changes that affect
the entire application screen. (Chapter 5)

4 CHAPTER 1. INTRODUCTION

• We propose using a method named suspend-less debugging that enables the pro-
grammer to efficiently debug interactive and/or realtime programs in the db-gui-app.
(Chapter 6)

• We discuss the remaining challenges to making db-gui-app testing more efficient.
(Chapter 8)

As mentioned above, db-gui-apps evolve quickly and need early and frequent releases.
In addition, there are various technologies for implementing db-gui-apps. Considering
these points, we adopted two policies in the development of our four proposed methods.
The first policy is that they be applicable even when the software functions have evolved.
The second policy is that they be independent of the target software’s implementation
technologies.

For test design, we propose using a method called DDBGen for creating initial DB
states and input values for each test case from the design model for industry-level enter-
prise systems. Our study identified the constraints most frequently used in industrial-level
enterprise systems; they include “multiple DB reads,” “PK, FK constraints,” and “partial
string matching.” Since our design model can satisfy these constraints, high initial DB
generation rates were achieved in evaluations on three industrial-level enterprise systems.
In addition, we propose using a method called DDBGenMT for generating initial DB
states in which each state is shared by multiple test cases to reduce the number of times
the initial DB state must be switched and to reduce the total size of the test data.

For test results verification, we propose using an image-based VRT system called ReB-
Diff. It divides each of the images of the two application screens to be compared into
multiple regions, makes appropriate matchings between corresponding regions in the two
images, and detects differences on the basis of the matchings. By using ReBDiff, the tester
can efficiently identify essential differences between the two screens even when there are
changes that affect the entire screen, e.g., parallel movements of screen elements. Exper-
iments using screens for PC web and mobile web services and an Electron application
demonstrated the effectiveness of the proposed method.

For fault localization, we propose using a suspend-less debugging method for debug-
ging logical errors in interactive and/or realtime programs. It displays information on
execution paths and the values of expressions in a debuggee program in real time without
suspending program execution. We implemented this method in SLDSharp, a debugger
for C# programs. We demonstrated its effectiveness through a case study using a game
program developed using the Unity game engine. The proposed debugging method was
shown to enable a programmer to efficiently debug interactive and/or realtime programs.
It is particularly suitable for debugging an application logic module that always produces

1.2. GOALS AND CONTRIBUTIONS 5

the same result for the same input. Therefore, SLDSharp is also effective for debugging
web applications that always transition to the same screen for the same input. The
method is generally applicable to many languages and target application domains.

Chapter 2

Testing of DB Applications with
GUIs

In this chapter, first we describe db-gui-apps. Next, we discuss the current status and
existing methods for testing db-gui-apps. Finally, we describe the four major challenges
we tackled to achieve the goals of this study.

2.1 Database Applications with GUIs

A typical execution flow of a db-gui-appis illustrated in Figure 2.1. Examples of db-gui-
apps are described below.

• An enterprise application with a web front end: it receives user inputs from a web
browser and references or updates data (e.g., customer information) in DB tables
on the basis of its business logic. It finally displays the results on the web browser
screen.

• A game application: it receives user inputs from a game screen and references and
updates data (e.g., player and enemy information) in its memory and DB tables on
the basis of its game logic. It finally displays the updated game screen.

The processes of receiving user inputs from the GUI, accessing the DB on the basis
of application logic, and displaying the calculated results are repeatedly executed in a
db-gui-app. Thus, these processes occupy most of the program execution time. Moreover,
the behaviors of these processes greatly depend on the combination of various input
patterns from the user, internal states of the program, and the DB state. Accordingly,
many test patterns are required, and much time is taken for the tests. We thus focused

7

8 CHAPTER 2. TESTING OF DB APPLICATIONS WITH GUIS

Input

Output

Initialization

Application logic

(Repeated execution)

Finalization

GUIDB

Query

Result

Figure 2.1: Typical Execution Flow of Database Applications with Graphical User Inter-
face

on integration testing of such processes in which three modules (GUI, application logic,
and DB) are integrated.

More specifically, integration testing was divided into two levels. The first level is
for tests in which only one screen transition occurs per test case. This level mainly
includes test cases from the viewpoints of the variations in input combinations and the
variations in application logic behaviors. The second level is for tests in which multiple
screen transitions occur. This level mainly includes test cases from the viewpoint of the
variations in scenarios in accordance with the use cases of the software. Our study focused
on the first level.

2.2 Current Status and Testing Challenges
There are two requirements for developing a practical and widely usable method for
automating tests.

Requirement 1 It remains applicable when the software functions have evolved.

Requirement 2 It can be used independently of the software implementation technol-
ogy.

Taking these requirements into consideration, we next outline existing studies and de-
scribe the four challenges to be tackled for each task in testing.

For unit testing, many studies have dealt with test design automation, mainly for
improving code coverage using static and/or dynamic analysis of source code [63]. In
particular, dynamic symbolic execution (DSE) [55] evolved remarkably over the ten years
after it was invented in 2005 and is now in practical use as Microsoft Visual Studio
IntelliTest [76]. Unit testing frameworks (e.g., JUnit in Java and NUnit in C#) are widely

2.2. CURRENT STATUS AND TESTING CHALLENGES 9

テストケース
テストケース
Test case

Software

under test
Test results

Test results

verification

Pass or fail

Test execution

Software

specifications
Test

design

Procedure

Expected result

Input

Screen inputs

Initial DB state

Calculation results

UI layout results

Fault localization

Program repair

CompletionPass

Fail

Retest
(Test execution

and test results

verification are

done again)

Scripts

Figure 2.2: Integration Testing of Database Applications with Graphical User Interfaces

used at development sites for automating test execution and test results verification.
In addition, since modules tested at the unit level are generally small, it is relatively
easy to identify the cause(s) of detected bugs and remove them. On the other hand,
integration testing is much more difficult to automate than unit testing; thus, various
challenges remain in integration testing. Figure 2.2 shows how five of the tasks in Fig.
1.1 are performed in integration testing of a db-gui-app. We discuss each task focusing
on integration testing.

2.2.1 Test Design

In integration testing, tests are conducted from the viewpoint of whether the software is
implemented in accordance with its specifications. Therefore, test cases are created on
the basis of the specifications. For each test case, it is necessary to prepare a procedure,
input, expected results, and a script [63]. For a db-gui-app, they are as follows.

A procedure is a sequence of operations on the screen.

Input consists of screen inputs, and an initial DB state that is the appropriate precon-
dition for the test case.

Expected results are the correct calculation results output by the application logic
and the correct display results of the GUI layout created in accordance with the
specifications.

A script is created for each test case if they are to be executed automatically.

10 CHAPTER 2. TESTING OF DB APPLICATIONS WITH GUIS

Test cases should be created comprehensively from various viewpoints such as variations
in the input combinations and variations in the behaviors of the application logic.

MBT [47] is a promising approach to automating test design. It can automatically
generate comprehensive test cases on the basis of a model such as formal specifications,
which are artifacts of the software design process. MBT satisfies both requirements above
because it has the following functionalities.

• MBT can handle the evolution of software functions well. For example, when a
model representing a specification is being modified, tests based on a new specifi-
cation can be generated automatically from a new model.

• MBT can be used to develop a method to automate test design that is independent
of the software implementation technology. This is done by using the concept of the
platform-independent model (PIM) in model-driven engineering [27] and generating
test cases from PIM.

Several existing methods [81] [80] [66] generate test cases on the basis of MBT; each
test case has a procedure and screen inputs from a design model expressing the appli-
cation logic and input definitions of the software. These methods generate screen input
variations on the basis of boundary value analysis and equivalence partitioning. The
screen input value types, including integer and string, are relatively simple. Since an ini-
tial DB state is a set of values of such types and must satisfy its DB schema constraints, it
is more difficult to generate an appropriate state for each test case automatically. Several
researchers [28] [24] have been able to generate the initial DB states, but there remain
two challenges in testing industrial-level systems.

Challenge 1 Existing methods cannot generate initial DB states suitable for compli-
cated business logic such as reading the DB more than once, searching the DB by
partial string matching, or setting primary and foreign key constraints on the DB
schema. We deal with this challenge in Chapter 3.

Challenge 2 Existing methods generate initial DB states for each test case one-by-one.
However, there are two problems with this approach. The first is that switching
initial DB states for each test case is too time-consuming when the generated initial
DB states are used for testing. The second problem is that the total number of DB
records tends to be large because many initial DB states are generated. As a result,
the total size of the test data becomes large, which increases the cost of managing
the data and the time needed to switch initial DB states for each test case. We
deal with this challenge in Chapter 4.

2.2. CURRENT STATUS AND TESTING CHALLENGES 11

The automatic generation of the expected result is called the “test oracle problem” [9] and
is one of the most difficult problems in the field of test automation. Although it is possible
to partially generate the expected result using information extracted from a model by
using MBT, it is inherently difficult to generate it completely automatically. The reason is
that, ultimately speaking, fully automatic generation of the expected result is equivalent
to fully automatic implementation of the software. Therefore, an approach considered
promising is to use the test result of the initial testing as the expected result for regression
testing [9]; that is, the test results for the old and new versions of the same software are
compared. Since this approach is simple and useful, it is used at many development sites.
A challenge when verifying the test results in regression testing with this approach is
described in Section 2.2.3. Test scripts for each test case can be generated from a design
model, which can be converted from design documents used at development sites [68]
[67] [71]. Moreover, methods for maintaining test scripts appropriately in response to
software evolution have been proposed [37] [34].

2.2.2 Test Execution

The test cases created in test design are executed one-by-one for the software under test,
and screen shot images are recorded as evidence. Test execution is the most automated
area in integration testing. Open source software (OSS) tools for automatic test execution
include Selenium1, Appium2, and Sikuli3 [15], and there are many other commercial tools
as well. Using these tools, the tester can automate test execution on various platforms
such as Android, iOS, and Windows. Once scripts are prepared as input for such a tool,
each test case can be executed automatically.

2.2.3 Test Results Verification

For each test case, the test result is compared with the expected result, and pass or fail
is determined. In regression testing of a db-gui-app, it is necessary to ensure that the
application screens are displayed correctly. This involves two confirmations: confirming
whether the application logic works correctly and the calculation result is correct and
confirming whether the screen elements are laid out correctly on every application screen.
The former can be automated by using the test automation tool explained in Section
2.2.2 with suitable assertions in the scripts executed by the tool. In contrast, the latter

1https://docs.seleniumhq.org
2http://appium.io/
3https://launchpad.net/sikuli

12 CHAPTER 2. TESTING OF DB APPLICATIONS WITH GUIS

requires that the tester carefully examine displayed layouts, so it is a difficult and time-
consuming task. VRT4 is a method for semi-automating the latter confirmation process.
VRT detects differences between two screens of an application, typically corresponding
ones before and after changes, on the basis of image information, structural information,
and so forth for the screens. We call this approach to VRT in which two screenshot images
are compared and only this information is used for confirmation image-based VRT. Since
image-based VRT is applicable as long as screenshot images of application screens are
available, it can be used independently of the operating environment (such as the OS
or web browser) in which the application is executed. In addition, it can be easily used
because many test automation tools provide a way to take screenshots of applications
under test. Thus, there are many image-based VRT tools such as jsdiff5 and BlinkDiff6.
These tools compare two images in pixel units and highlight the pixels with differences
to help the tester easily and clearly identify places with differences. However, there is a
challenge regarding requirement 1.

Challenge 3 Existing image-based VRT systems simply compare two images in pixel
units and highlight pixels with differences, so if there are changes that affect the en-
tire screen (e.g., parallel movements of screen elements), a large number of unessen-
tial differences are detected, and the essential differences are buried within them.
Therefore, it is difficult to handle software evolution. We deal with this challenge
in Chapter 5.

2.2.4 Fault Localization

The programmer debugs a program by first identifying the causes of each bug detected
in testing.

Classical breakpoint-based debugging, in which execution of the target program is
suspended and the programmer observes the internal state of the program, is a practical
and useful method and is provided as a standard debug interface for various programming
languages. Therefore, it is used by many programmers [13]. This method is effective for
processes in programs that are performed without user interaction, such as initialization
and finalization (see Fig. 2.1. In contrast, the behavior of the application logic greatly
depends on the combination of the various inputs from the user, the internal state of
the program, and the DB state. Since the program executing the application logic has

4https://github.com/mojoaxel/awesome-regression-testing
5https://github.com/kpdecker/jsdiff
6https://github.com/yahoo/blink-diff

2.2. CURRENT STATUS AND TESTING CHALLENGES 13

bidirectional interactive tasks and/or realtimeness, we refer to it as a interactive and/or
realtime program.

Challenge 4 Breakpoint-based debugging is not suitable for debugging interactive and/
or realtime programs for two reasons. First, since the timings and order of input
events such as user operations are quite important, such programs do not behave as
expected if execution is suspended at a breakpoint. Second, suspending a program
to observe its internal states significantly degrades the efficiency of debugging. We
deal with this challenge in Chapter 6.

2.2.5 Program Repair

The programmer needs to repair the program carefully and appropriately without intro-
ducing any software regressions, i.e., bugs, into the program by mistake.

Once the cause of a bug has been identified, it is usually relatively easy to remove
the cause so that the bug is not reproduced. The most difficult part of fixing a bug is
that it must be fixed with care to avoid introducing any new regressions. If the pro-
grammer modifies the program to fix a bug detected in integration testing, even a minor
modification can negatively affect the whole program. This problem can be prevented
by performing the regression tests properly [82]. If Challenges 1, 2, and 3 in test design
and test results verification are met, regression testing after program modification can be
performed efficiently. This enables the programmer to repair the program safely.

Chapter 3

Design-Model-based Initial DB State
Generation

In this chapter, we describe a method to generate initial DB states from design model.

3.1 Introduction
When testing a db-gui-app, in addition to creating program inputs, it is necessary to
create an initial DB state that is appropriate for each test case.

In practice, there are three approaches to realizing initial DB states.

1). Manual construction of the states from scratch

2). Usage of random number generation tools (e.g., using tools such as DBMonster1,
Visual Studio Database Edition2, and PPDGen3)

3). To use a subset of an actual DB used in the old system.

Unfortunately, manual construction is too time-consuming. Even if the states are au-
tomatically generated by approaches approach(2) and approach(3), we must remake or
adjust the initial DB if it is fails to meet the preconditions of each test case.

For example, consider a system that identifies which employees should gain in-house
training using the operations shown in Fig.3.1. The employee search system is designed
to search employees who have worked for less than three years, and to support compound
search keys such as an age or a section; it outputs 100 search results to each page. When

1http://dbmonster.kernelpanic.pl/
2http://www.microsoft.com/japan/msdn/vstudio/
3http://www.start-ppd.jp/

15

16 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

Searching employees that

should gain in-house training

Age ～

Search results

ID Name Section

10 Ohta Third Division

… … …

119 Ohmori Third Division

Error

“Permission error”

Initial screen

DB

Lower Upper

Section Search!

Second screen

Error

“Input age value is invalid”

(b)

(c)

(d)

next page

return

return

Search condition
(a) business

logic

Figure 3.1: Example of Database Application

we test to check the transition from screen (a) to screen (b) in Figure 3.1, we must make an
appropriate initial DB that has more than 101 records of employees that satisfy all of the
following search keys; (i) the number of years working at the company is less than three
years. (Fixed condition.) (ii) Boolean indicates whether the employee is still working in
the company is true. (Fixed condition.) (iii) age is between LowerAge and UpperAge.
(Variable conditions. LowerAge and UpperAge are given by the user.) (iv) section name
to which the employee belongs is SectionName. (Variable condition. SectionName is
given by the user.) If the Employee table of the initial DB generated by the approach(2)
or the approach(3) does not contain more than 101 records, each of which satisfies the
search keys (i),(ii),(iii) and (iv), the test case is invalid. The solution is to remake the
state or add record(s) which meets the above search keys.

We categorize test cases as follows. Our study focuses on (1).

(1) Test cases in which the initial DB is read only,

(2) Test cases in which the initial DB is read and written to, and

(3) Test cases not requiring any initial DB.

Some studies have attempted to automatically generate appropriate initial DB states
for (1) because referring access is frequently used in several systems [17], but none are
truly practical as detailed in the next section. For (2), because the state of the DB
changes every moment due to the update, it is necessary to consider the life cycle of the
DB state when generating the initial DB state. This study does not cover (2) and we

3.2. RELATED WORK 17

discuss this in Section 7 as a future work. Emmi’s method [25] dealt with (2), however,
since this method aims to improve the coverage of the source code and adjusts the DB
state and input values while executing a DB application, this is different from the purpose
of our study aims to generate appropriate initial DB state based on the information of
the specification. (3) does not require a variation of the initial DB state. In other words,
it is a case where the test can be performed by preparing an arbitrary initial DB state
(it may be empty). This study does not cover (3).

As mentioned above, our research scope is (1). Therefore, the definition of the ap-
propriate initial DB state as the precondition of a test case in this research is “one that
satisfies the DB schema and contains a certain number of records that meet the search
conditions executed by the test case.”

The contributions of the proposed method in this chapter can be summarized as
follows.

• In test design, we propose a method called DDBGen (design-model-based initial
DB state generator) that can create design models of industry-level enterprise sys-
tems from which appropriate initial DB states and input values can be created to
generate a wide variety of test cases. Our study identified the constraints most
frequently used in industrial-level enterprise systems; they include “multiple DB
read,” “PK,FK constraint,” and “partial string matching.”

• We propose an algorithm to generate an appropriate initial DB states by solving
the constraints that should be satisfied in three steps. Step 1 solves the constraints
on DB table size. Step 2 solves the constraints on string variable length and the
constraints on integer variables. Finally, the constraints on character variables are
solved.

• Since our design model can handle these constraints found, high initial DB genera-
tion rates were achieved in evaluations on three industrial-level enterprise systems.
In addition, we propose another method to generate initial DB state shared by mul-
tiple test cases to reduce the number of times the initial DB state must be switched
and reduce the total size of test data.

3.2 Related Work
There are two main types of existing methods to generate initial DB states suitable for
each test case based on the information of the specification. We explain each method and
its problems.

18 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

AGENDA [16] allows the tester to describe the preconditions that the initial DB
state must satisfy for each test case and checks whether the initial DB state satisfies
these preconditions before executing each test case. However, in this method, as the
number of test cases increases, the preconditions are often not satisfied. In that case, the
test need to adjust the initial DB state manually. If a precondition is not met, it is also
conceivable to regenerate the initial DB state using random number generation tools and
repeat the check until the precondition is satisfied. However, it is unlikely that a proper
initial DB state can be generated in a realistic time by such a naive method.

In Willmor’s approach [24], the user specifies the pre- and post-conditions that the ini-
tial DB state should satisfy for each test case; it then automatically adjusts an initial DB
to yield the appropriate initial DB by adding or deleting records. Fujiwara’s approach [28]
automatically generates an initial DB that satisfies a precondition and a post-condition.
These approaches have the following limitations when testing industrial-level enterprise
systems.

• They cannot generate the initial DBs needed to confirm complicated business logic
states such as reading the DB more than once. For example, if the DB must be
accessed to check for read permission, then accessed again to search for employees,
see Fig.3.1.

• They cannot handle the constraints often used in testing enterprise systems. For
example, a column constraint that has both primary key attribute and foreign key
attribute, and partial string matching used in search condition.

As a result, existing approaches are not strong enough to handle the wide range of
conditions needed to generate appropriate initial DB states for each test case. In this
case, we cannot get appropriate initial DB states.

3.3 Proposed Method
Our proposal is a new approach called DDBGen that generates test cases from a design
model of the software specification, and the appropriate initial DB state for each test
case. Figure 3.2 shows an overview of our approach. It is based on MBT [47], and so has
the following features.

• On the basis of an existing design model [80] composed of Process flow and Input
definition, the new design model adds the DB schema to process flow and input
definition. Process flow can represent complex business logic states, such as reading

3.3. PROPOSED METHOD 19

Design model

Test case

Path

Input

values

Initial DB

state

Test

case

Path

DB

schema

Input

definition

Process

flow

P
ath

 E
x

tractio
n

経

路

P
ath

In
itial D

B
 G

en
eratio

n

A
lg

o
rith

m

OutputInput

Figure 3.2: Overview of Proposed Method

the DB more than once. In addition, users can describe various conditions such as
partial string matching and four arithmetic operations in each DB search condition
to satisfy the majority of business logic states required by existing applications.
Input definition can represent the inputs of screens and the domains of each input.
The inputs can be used as DB search constraints to satisfy the business logic. The
DB schema allows users to set primary key constraints and foreign key constraints.

• A test case generated by our approach corresponds to a path extracted from a pro-
cess flow, and is composed of an initial DB state and input values. In our approach,
we extract the conditions that have to be satisfied to generate the appropriate ini-
tial DB state and input values; the conditions are cast as a constraint satisfaction
problem. We reduce the problem into several smaller problems that are tackled
step-by-step by a constraint solver.

To exhaustively test the behaviors of the application implementing the business logic,
we first extract all paths based on Decision/Condition Coverage [32] by using the existing
method of [69] and generate test cases for each path. Next we generate initial DB states
and input values for each test case. The following subsections detail the design model,
the test cases and the algorithm for generating initial DB states.

3.3.1 Design Model

Figures 3.3, 3.4, and 3.5 elucidate the design model of the employee search system shown
in Figure 3.1. In the business logic of the employee search system, first the consistency
between LowerAge and UpperAge is checked (Figure 3.3(1)). Next, the permission of the

20 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

(2)Check range of input age

(4)Check

permission

[LowerAge <=

UpperAge]

(1)Start

(3)Error:Invalid

range error

[LowerAge > UpperAge]

DB search condition
FromTableId = Administrator

WhereConditions =

(Administrator.ID == Administrator.ID) AND

(Administrator.Permission==1)

(5)Error:

Permission error

(6)Search

employee

DB search condition
FromTableId =

EmployeeBasicInfo, Section

WhereConditions =

(EmployeeBasicInfo.Year <= 3) AND

(EmployeeBasicInfo.Enrolled == 1) AND

(EmployeeBasicInfo.Age >= LowerAge) AND

(EmployeeBasicInfo.Age <= UpperAge) AND

(Section.Name subString SectionName)

(7)Display results(hit 101

records)

[ResultCount == 0]

[ResultCount == 1]

[ResultCount >= 101]

Figure 3.3: Design Model: Process Flow of Employee Search System

user who enters a search is confirmed (Figure 3.3(4)). Finally, the system identifies the
employees that satisfy the search requirement (Figure 3.3(6)) if the user has permission
to initiate the search. As seen above, users can describe multiple DB search conditions
and can use various conditions such as partial string matching. The DB schema defines
the DB tables such as EmployeeBasicInfo table, which contains employee information,
and EmployeeAdditionalInfo table, which contains additional employee information.
Users can use primary key constraints and foreign key constraints when defining these
DB tables.

VariableId Type Domain

LowerAge Integer MinValue = 18, MaxValue = 120

UpperAge Integer MinValue = 18, MaxValue = 120

SectionName String MinLength = 0, MaxLength = 16

AdminID Integer MinValue = 50, MaxValue = 60

Figure 3.4: Design Model: Input Definition of Employee Search System

3.3. PROPOSED METHOD 21

TableId = EmployeeBasicInfo

ColumnId Type Domain Column Type

ID Integer Min = 0,

Max = 2000

PKFK

Employee

AdditionalInfo.ID

Name String MinLength = 0,

MaxLength = 16

Normal

Year Integer Min = 1,

Max = 60

Normal

Enrolled Integer Min=0,

Max=1

Normal

SectionID Integer Min = 0,

Max = 1000

FK

Section.ID

TableId = EmployeeAddtionalInfo

Column

Id

Type Domain Column

Type

ID Integer Min = 0,

Max = 2000

PK

Age Integer Min = 18,

Max = 120

Normal

TableId = Administrator

ColumnId Type Domain Column

Type

ID Integer Min = 0,

Max = 60

PK

Permission Integer Min = 0,

Max = 1

Normal
TableId = Section

ColumnId Type Domain Column Type

ID Integer Min = 0,

Max = 1000

PK

Name String MinLength = 0,

MaxLength = 16

Normal

Figure 3.5: Design Model: DB Schema of Employee Search System

Table 3.1: Definition of Design Model

Id Definition
Design Model

0 ⟨ Design Model ⟩ ::= ⟨Process Flow⟩+ ⟨Input Definition⟩+ ⟨DB Schema⟩
DB Schema

1 ⟨ DB Schema ⟩ ::= ⟨ Table ⟩ *
2 ⟨Table ⟩ ::= TableId:String ⟨Column⟩+
3 ⟨Column⟩ ::= ColumnId:String ⟨TypeAndDomain ⟩ ⟨KindOfVolumn⟩
4 ⟨TypeAndDomain⟩ ::= IntegerType ⟨IntegerDomain⟩
5 ⟨IntegerDomain⟩ ::= MinValue:Integer MaxValue:Integer
6 ⟨StringDomain⟩ ::= MinLength:Integer MaxLength:Integer
7 ⟨KindOfColumn⟩ ::= Normal | PK | (FK ⟨ColumnReference⟩) | (PKFK ⟨ColumnReference⟩))
8 ⟨ColumnReference⟩ ::= TableId:String ColumnId:String

Process Flow
9 ⟨Process Flow⟩ ::= ⟨Node⟩+ ⟨Edge⟩*

10 ⟨Node⟩ ::= NodeId:String Text:String NextEdgeId:String*
11 ⟨Edge⟩ ::= EdgeId:String NextNodeId:String (⟨GuardCondition⟩? | ⟨DBSearchCondition⟩?)
12 ⟨DBSerachCondition⟩ ::= FromTableId:String+ ⟨WhereClause⟩ ⟨ResultCondition⟩
13 ⟨WhereClause⟩ ::= ⟨Conditions⟩
14 ⟨ResultCondition⟩ ::= ResultRecordCount:Integer
15 ⟨GuardCondition⟩ ::= ⟨Conditoons⟩
16 ⟨Conditions⟩ ::= ⟨Constraint⟩+

Input Definition
17 ⟨Input Definition⟩ ::= ⟨Input⟩+
18 ⟨Input⟩ ::= ⟨InputId:String⟩ ⟨TypeAndDomain⟩

22 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

Table 3.2: Definition of Constraints on Where Clauses and Guard Conditions

Id Definition
1 ⟨Constraint⟩ ::= ⟨IntegerConstraint⟩ | ⟨StringConstraint⟩
2 ⟨IntegerConstraint⟩ ::= ⟨Expression⟩ ⟨ComparedOperator⟩ ⟨Expression⟩
3 ⟨Expression⟩ ::= ⟨Term⟩ | ⟨Expression⟩ “+” ⟨Term⟩ | ⟨Expression⟩ “-” ⟨Term⟩
4 ⟨Term⟩ ::= ⟨Factor⟩ | ⟨Term⟩ * ⟨Factor⟩ | ⟨Term⟩ / ⟨Factor⟩
5 ⟨ComparedOperator⟩ ::= “⟩” | “>=” | “⟨” | “<=” | “==” | “! =”
6 ⟨Factor⟩ ::= ConstantValue:Integer | ⟨InputReference⟩ | ⟨StringLength⟩ |

⟨ColumnReference⟩ | “(” ⟨Expression⟩ “)”
7 ⟨StringLength⟩ ::= Length (⟨StringFactor⟩)
8 ⟨StringConstraint⟩ ::= ⟨StringFactor⟩ ⟨StringCompareOperator⟩ ⟨StringFactor⟩
9 ⟨StringCompareOperator⟩ ::= SubString | EqualsString | NotSubString | NotEqualsString

10 ⟨StringFactor⟩ ::= ConstantValue:String | ⟨OnputReference⟩ | ⟨ColumuReference⟩
11 ⟨InputReference⟩ ::= VariableId:String
12 ⟨ColumnReference⟩ ::= TableId:String ColumnId:String

Table 3.1 shows the definition of the design model, and Table 3.2 shows the definitions
of the Where clause conditions included in the DB search conditions and the constraints
that can be described in the guard conditions.

3.3.2 Test Case

Each test case generated by our approach consists of path, initial DB state, and user-
generated input values.

The initial DB state satisfies the constraints of the DB schema and contains enough
records that satisfy the search conditions in each read access, where the input values
can be used as parameters of search conditions. The input values satisfy both the guard
conditions in the path and the domains specified in the input definition. As a result, it
is guaranteed that the initial DBs and the input values generated by our approach are
appropriate for each test case.

Figure 3.6 shows an example of a test case for the employee search system. The test
case corresponds to the path composed of nodes (1), (2), (4), (6) and (7) in Figure 3.3.
The test case is used to check the transition from screen(a) to screen(b) in Figure 3.1.

In Figure 3.6, the initial DB state contains records in not only EmployeeBasicInfo
table Administrator table and Section Table, but also EmployeeAdditinalInfo table.
The first three tables are directly referenced by the DB search conditions in the path
of the test case. The EmployeeAdditinalInfo table is not explicitly described in the
FROM clauses of the DB search conditions but is needed since its records are essential
for ensuring referential integrity. Referential integrity means that the foreign key in any
referencing table must always refer to a valid row in the referenced table.

3.3. PROPOSED METHOD 23

LowerAge = 18

UpperAge = 18

SectionName = “b”

AdminID = 50

Input values

ID Name Year Enrolled SectionID

10 “a” 1 1 0

11 “a” 1 1 0

… … … … …

118 “b” 1 1 0

120 “c” 1 1 0

ID Name

0 “b”

EmployeeBasicInfo

Section

Initial DB state

ID Permission

50 1

Administrator

ID Age

10 18

11 18

… …

119 18

120 18

Employee

AdditionalInfo

101 records 101 records

PathId = “(1) (2)

(4) (6) (7)”

Path

TestCase01

Figure 3.6: Test Case of Employee Search System

Table 3.3: Test Cases and Variables

Id Definition
1 ⟨TestCase⟩ ::= PathId:String ⟨InitialDatabaseStateVariable⟩ ⟨InputVariable⟩+
2 ⟨InitialDatabaseStateVariable⟩ ::= ⟨TableVariable⟩+
3 ⟨TableVariable⟩ ::= TableId:String ⟨ RecordCoountVariable ⟩ ⟨RecordVariable⟩*
4 ⟨RecordCoountVariable⟩ ::= ⟨IntegerVariable⟩
5 ⟨RecordVariable⟩ ::= Index:Integer ⟨FieldVariable⟩+
6 ⟨FieldVariable⟩ ::= ColumnId::String (⟨IntegerVariable⟩ | ⟨StringVariable⟩)
7 ⟨InputValue⟩ ::= InputId:String (⟨IntegerVariable⟩ | ⟨StringVariable⟩)
8 ⟨StringVariable⟩ ::= ⟨StringLengthVatiable⟩ ⟨CharVariable⟩*
9 ⟨StringLengthVatiable⟩ ::= ⟨IntegerVariable⟩

10 ⟨IntegerVariable⟩ ::= Value:Integer
11 ⟨StringVariable⟩ ::= Index:Integer Value:Char

3.3.3 Algorithm of Generating Initial Database State and Input
Values

This section describes the algorithm that generates initial DB states and input values.
Some studies [54] [80] developed approaches to extract test cases and generate input
values for each test case. First, they extract paths from a process flow, and then create
test cases on the basis of each path. Finally, they consider the input values as variables
and solve for the variables. In our approach, the variables to be solved are both the initial
DB state (each table, each record and each field) and the input values. We will call the
constraints extracted from the design model the constraint set and call the variables the
variable set. Table 3.3 shows the definition of the variable set. We consider the constraint
set and the variable set as one simultaneous constraint, which is solved by applying the
following policies.

• We use the Arithmetic Theory of Satisfiability Modulo Theories (called SMT here-

24 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

Variable set

Constraint set

Step 1

Decide numbers of records

Path

Input Definition

DB Schema

Step 0

Extract a variable set and a constraint set

Step 2

Decide integer variables and lengths of

string variables

Step 3

Decide values of each

character variables

(1)Create an initial DB

state variable

(2)Create input

variables

(3)Extract domains of each

DB column

(4)Extract domains

of input values

(5)Extract guard

conditions and DB

search conditions

(8)Solve for

numbers of

records by SMT

(7)Select constraints to

the number of records

(10)Expand DB

column constraints to

DB field constraint

(13)Solve for values of

integer variables and

lengths of each string

variables by SMT

(15)Solve for

character

variables

(9)Add

constraints to

satisfy referential

integrity

(11)Generate constraints

related to containment

relationship of string

variables

(12)Select constraint to

integer variables

(14)Select constraints to string

variables

(6)Add constraints to satisfy

referential integrity

Example(1)

EmployeeBasicInfo = ?

LowerAge = ?

SectionName = ?

…

Example(2)

EmployeeBasicInfo ={

RecordCount = 101,

Record[0] = { ID=?, Name=?, …},

…

Record[100] = { ID=?, Name=?, …}

}

LowerAge = ?

SectionName = ?

…

Example(3)

EmployeeBasicInfo = {

RecordCount = 101,

Record[0] = { ID=10 , Name={ Length=1, Char[0]=? }, …},

…

Record[100] = {ID=120, Name={ Length=1, Char[0]=? }, …},

}

LowerAge = 18

SectionName = {Length=1, Char[0]=?}

…

Constraint set Constraint set

Variable set Variable set Variable set

Figure 3.7: Overview of Algorithm that Generates Initial Database State and Input
Values

after) to resolve the constraints into integer variables; the constraints are treated
as a simultaneous inequality.

• SMT can handle integer-type simultaneous inequalities and Boolean expressions,
but cannot directly handle data structures and constraints [23]. Considering a DB
table as an array of records, our solution is to solve the constraints of DB tables
sizes to decide these sizes, then solve the constraints of each record. We can handle
string variables in the same way as DB tables by considering a string as an array
of characters.

The above policies yield the initial DB and input values by solving the constraints in
the constraint set in a step-by-step manner. Figure 3.7 overviews this process. Step 1
solves the constraints on DB table size. Step 2 solves the constraints on string variable
length and the constraints on integer variables. Finally, the constraints on character
variables are solved.

We detail steps 0, 1, 2, and 3 in Figure 3.7 in the following subsections.

Step 0: Extracting Variable Set and Constraint Set from Design Model

Step 0 is composed of the following procedures (Figure 3.7 (1) to (6)).

3.3. PROPOSED METHOD 25

(1) Creates an initial DB state variable based on the DB schema and add it to the
variable set.

(2) Creates input value variables based on the input definition and add them to the
variable set.

(3) Extracts domains of each DB column from the DB schema and add them to the
constraint set.

(4) Extracts domains of each input value from the input definition and add them to
constraint set.

(5) Extracts guard conditions and DB search conditions from the path and add them
to constraint set.

(6) To satisfy referential integrity, adds constraints related to the numbers of records
to the constraint set.

To satisfy referential integrity, a DB table referred to by a foreign key of another DB table
must contain at least one record. Hence, first we collect the DB table variables (ttarget)
that are directly or indirectly referred to by the foreign keys of other DB table variables
used in the DB search conditions in the path; next we add constraint “Count(ttarget) >=
1” to the constraint set. If a DB column of DB table variable (treferring) has both a
primary key constraint and a foreign key constraint, the DB table variable (treferred)
referred to by the column of treferring must contain more records than the number of
records of treferring. Hence, we add constraints “Count(treferring) <= Count(treferred)”
to the constraint set.

Step 1: Decide Number of Records

Step 1 is composed of the following procedures (Figure 3.7 (7) to (10)).

(7) Select constraints (Crecords number) related to the number of records from the con-
straint set.

(8) Solve (Crecord number) by SMT to decide the number of records of each DB table
variable, and remove Crecord number from the constraint set.

(9) To satisfy referential integrity, add constraints related to DB fields to the constraint
set.

26 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

(10) Expand constraints (Ccolumn) related to DB columns to other ones related to DB
fields, and remove Ccolumn from the constraint set.

In procedure (8), considering constraints on the numbers of DB records as a simulta-
neous inequality, we use SMT to solve for the number of DB records.

In procedure (9), to ensure that each primary key variable (pk1, ..., pkn) in a DB table
variable is unique, we add constraints on integer type, “pk1 < pk2,” ... , “pkn−1 < pkn,”
to the constraint set if the primary keys are integer type and, we add constraints on
string type, “pk1 subString c1,” ...,“pkn subString cn,” where c1, ..., cn are differ from
each other, to the constraint set if the primary keys are string type.

To ensure that DB field variable (fk) matches the DB field variable that is referred
to by fk, we arbitrarily select one DB field variable (pk) referred to by fk, and generate
new constraints “fk == pk” (in the case of integer type) or “fk equalsString pk” (in
the case of string type). Note that if fk has a primary key constraint in addition to a
foreign key constraint, we select different DB field variables pk for each fk.

In procedure (10), we convert the constraint “c Operator x” (c is a DB column, and x

is a constant value or input value),which is extracted from the DB search conditions and
the domains of the DB schema, to other constraints “f1 Operator x,”...,“fn Operator x”
(f1, ...fn are DB fields that correspond to c). These covered constraints are added to the
constraint set.

DB table size is fixed at the conclusion of Step 1. Therefore, the state of the con-
straint set transitions from the state of Figure 3.7 Example(1) to the state of Figure 3.7
Example(2).

Step 2: Decide Integer Variables and Lengths of String Variables

Step 2 is composed of the following procedures (Figure 3.7 (11) to (13)).

(11) Converts constraints Cstring length into lengths of string variables by considering the
containment relationship of string variables, and add Cstring length to the constraint
set.

(12) Selects constraints Cinteger related to integer variables from the constraint set. Note
that Cinteger includes Cstring length.

(13) Solves Cinteger by SMT to decide the value of each integer variable, and remove
Cinteger from the constraint set.

To ensure that a summation of substring variable lengths (s1, ..., sn) does not exceed
the length of the string variable (s), where s contains each si, we generate the constraint

3.4. EVALUATION 27

Length(s1) s subString s1

…

s subString sn

s

s1 … sn

Length(sn)

Length(s)
Length(s) >= Length(s1)+…Length(sn)

Figure 3.8: Generate Constraints from Containment Relationship of Strings

“Length(s) ≥ Length(s1) + ... + Length(sn)” based on the containment relationship of
the string variables (see Figure 3.8) and add the constraint to the constraint set. If
string variable x must equal string variable y, we generate the constraint “Length(x) =
Length(y)” and add it to the constraint set.

The values of the lengths of each string variable and the integer variables are decided
after step 2. Therefore, the state of the constraint set transitions from the state of Figure
3.7 Example(2) to the state of Figure 3.7 Example(3).

Step 3: Decide Character Variables

Step 3 is composed of the following procedures (Figure 3.7 (14) to (15)).

(14) Selects constraints (Cstring) related to string variables.

(15) Decides values of each character variable based on Cstring, and remove Cstring from
the constraint set.

In procedure (15), if there is a correspondence relation among string variable s0 and
other string variables s1, ..., sn, as shown in Figure 3.9, we consider the correspondence
in determining the values of each character variable.

After step 3, the constraint set is empty and all values of the variable set are decided.
The state of the constraint set transitions from the state of Figure 3.7 Example(3) to
that of Example(4) as shown in Figure 3.6 , and we get the appropriate initial DB state
and input values such as Figure 3.6.

3.4 Evaluation

3.4.1 Measure

The goal of our research is to generate appropriate initial DB states for a wider variety
of test cases for db-gui-apps. Therefore, the performance measure is the variety of test
cases for which we can generate appropriate initial DB states (and input values).

28 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

y0 … … … yn

x0 … xms1 …

s0
x0 … … … yn

x0 … xms1 …

s0

…

Figure 3.9: Decide Values of Character Variables

3.4.2 Procedures

We implemented a prototype tool based on our proposed approach. We used SMT Solver
Z34 when resolving constraints into integer variables in Step 1 and 2 of our algorithm.

Since our approach is focused on the test cases that require only DB reads, we selected
some of the functions of three industrial-level enterprise systems (A, B and C, see Table
3.4). The three systems have different levels of complexity in terms of DB search condi-
tions and DB schema as follows. System A is the web front-end of a network equipment
management system for operators. It uses relatively simple DB search conditions, such
as search by IP address. System B is a scheduler system that manages schedules for each
user and provides a date range search function. System C is a data mining system where
users can set various data search conditions. Systems B and C offer more complex DB
search conditions and employ more complex DB schemas than system A.

The prototype tool accepts XML design model files as input. Hence first we extracted
paths from an existing design document of each system by using an existing method [69].
Second, we manually made XML design models based on the paths, and then added DB
search conditions and DB schema, which are extracted from the design documents, to
the design models. Finally, we input the XML design models to the prototype tool to
generate initial DBs and input values. All tasks described to above were performed by
a developer experienced in enterprise system creation. The prototype tool was run on
a Windows Vista Ultimate SP2 machine with Intel Core i7 (3.0GHz) and 6GB of main
memory.

The prototype tool handles only integer, character string, and table data types, and
cannot handle other data types. Therefore, the enumeration type was treated as the
string type, and the other basic data types were treated as the integer types.

3.4. EVALUATION 29

Table 3.4: Category of Test Case

Category Number of Test Cases
A B C

4 tables 12 tables 40 tables
11 screens 12 screens 29 screens

(1) Requiring initial DBs (read access) 74 83 44
(2) Requiring initial DBs (read and write access) 7 4 9
(3) Not requiring specific initial DB 147 292 108

Total 228 379 161

Table 3.5: Evaluation Results

A B C
Number of test cases 74 83 44

our approach focus on
Generation rate 100%(74/74) 72%(60/83) 89%(39/44)

of initial DB state
Generation time 0.1s/a test case 0.1s/a test case 0.1s/a test case

3.4.3 Result

As shown in Table 3.4, we categorize the test cases extracted from each design model,
into three groups as noted in Section 3.1. Our approach focuses on the test cases of Table
3.4(1) and not those of Table 3.4(2). The test case of Table 3.4(3) do not require specific
initial DB states and includes test cases to check for errors such as DB connection errors,
file access failure errors, session errors, and invalid input value error.

The results of the evaluation are shown in Table 3.5. In each of A, B and C, our

Table 3.6: Use Frequencies of Characteristics Constraints We Propose

A B C
Total 74 60 39

Multiple read DB 39/74(47%) 39/60(65%) 10/39(26%)
PK FK constraint 28/74(38%) 0/60(0%) 0/39(0%)

Partial string matching 12/74(16%) 10/60(17%) 0/39(0%)

4http://research.microsoft.com/en-us/um/redmond/projects/z3/

30 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

method was applicable to 100% ,72% and 89% of the test cases targeted by our study
respectively. Our method could generate appropriate initial DB state for them.

Each generation time of an initial DB state is about 0.1 second per a test case. Even
if it is considered to apply to 58,000 test cases of a 1000KL-scale software (the number
of test cases in integration testing is about 58 per 1KL [1]), it takes less than 2 hours to
generate initial DB states. Therefore, this is within the time that can be conducted as a
night batch processing in practice.

The usage frequencies of common constraints; these constraints, shown in Table 3.6,
are significant with regard to determining initial DB states. Part of the originality of our
research lies in the recognition of the importance of these constraints.

3.4.4 Discussion

Constraints Could Not Be Satisfied

The test cases for systems A, B, and C, which we used for the evaluation, were created
to check transitions from one screen to another. They had similar DB access patterns.
First, permission to access the DB was checked. Then, a main DB search was executed
in which each of the DB accesses referred to a different DB table. Therefore, many test
cases can be generated with our approach because it can handle multiple DB reads. In
addition, as shown in Table 3.6, it is effective for generating more appropriate initial DB
states to handle DB columns that have both primary key and foreign key constraints and
partial string matching.

However, design information of systems B and C has a more complex DB schema
than system A. Each schema includes composite key constraints to express one-to-many
correspondences such as schedules for each user. As a result, our design model could not
fully handle these schema, and the generation rates were not 100%. Satisfying composite
key constraints is a challenge remaining for future work.

Backtracking

Our algorithm does not perform backtracking, so if backtracking is required in step 1, in
which the number of DB records is determined, or in step 2, in which the string lengths
are determined, an initial DB state cannot be generated for a test case. Therefore, the
initial DB states in our evaluation were generated without backtracking.

In step 1, a certain value is determined for each number of DB records, and these
values are used in step 2. Therefore, for example, if a table contains an integer-type
primary key column in which the domain is between 1 and 10 and the number of records

3.4. EVALUATION 31

in the table is determined to be 100 given the constraint that “the number of records
must be 5 or more” in step 1, 100 unique values cannot be generated for the fields of
each record corresponding to that column in step 2. In this case, the number of records
must be redetermined by backtracking to find a solution other than 100. However, this
did not occur in our evaluation because Z3 was designed to select the smallest absolute
value from among the candidate solutions.

In the determination of the string lengths in Step 2, for example, string variables
x, y, z, there is no solution for the constraint “Length(x) + Length(y) ≤ Length(z)”
created on the basis of two constraints, “z subString x, z subString y” and “Length(x) =
1, Length(y) = 1, Length(z) = 1,” extracted from the design model. In this case, the two
constraints on the string lengths of x, y, z must be backtracked and solved using another
constraint, “Max(Length(x), Length(y)) ≤ Length(z).” Fortunately, this situation is
unlikely because the restriction on the string length of each input field on the screen is
rarely so strict.

If backtracking is needed, a limit can be set on the time taken to generate the initial
DB state of each test case, and as many initial DB states as possible can be generated
within the limited time.

Generation Time

Unlike the random number generation methods, which generate a large number of DB
records, our method generates the minimum number of DB records required for each test
case. Therefore, the generation times were not excessively long. For all three systems,
most test cases did not require an excessive number of records. For example, only 1 record
was required to test the login processing or the checking access authority processing in
several test cases, and only about 10 to 15 records were required to test the function
searching for DB records that meets some conditions in other test cases.

Quality of Generated initial DB state

The initial DB states automatically generated by our method have two advantages com-
pared with ones created manually.

• Generation of only the minimum required number of records for each test case
facilitates identification of the cause of a bug related to the data in the DB. In
contrast, with manual creation, the tester often creates an initial DB state that can
be used as a precondition for multiple test cases. Then, the number of records in
the DB tends to increase. Therefore, it may take an excessive amount of time to
identify the records related to the bug.

32 CHAPTER 3. DESIGN-MODEL-BASED INITIAL DB STATE GENERATION

• The creation of test data does not depend on the tester’s skills. Z3 can uniquely
determine the solution for the same constraint, so DDBGen can uniquely obtain the
same initial DB states regardless of which tester uses it as long as the design model
is the same.

They also have two shortcomings.

• Since the initial DB state generated by DDBGen contains only those records that
match the search condition, it cannot be used to check whether records that do not
match the search condition are erroneously included in the search results. When a
tester creates test data manually, there is often at least one record that does not
match the search condition. It would be helpful in generating an initial DB state to
check for that condition by generating extra records that do not match the search
condition. This could be done on the basis of logical negation of the constraint that
satisfies the search condition.

• There are few variations in the values in each field in the initial generated DB
state. Z3 chooses the smallest absolute value as the solution when there are multiple
candidate solutions. As a result, many fields often have the same value, as shown
in Figure 3.6. It is useful to have variations in the test data values such as the
boundary values. A promising approach is to utilize boundary value constraints
created from the design model by the existing methods [80] [66].

3.5 Chapter Summary
In this chapter, we proposed DDBGen that can create design models of industry-level
enterprise systems from which appropriate initial DBs and input values can be created to
generate a wide variety of test cases. Our study identified the constraints most frequently
used in industrial-level enterprise systems; they include “multiple DB read,” “PK,FK
constraint” and “partial string matching.” Since our design model can handle these
constraints found, high initial DB generation rates were achieved in evaluations on three
industrial-level enterprise systems.

Future work is to evaluate our approach with other enterprise systems and to improve
our approach to handle more complex constraints, such as composite key constraints, to
generate appropriate initial DB states and input values for an even wider variety of test
cases.

Chapter 4

Reducing Number and Size of Initial
DB State

In this chapter, we describe a method for reducing the number and the size of initial DB
states based on the method introduced in the previous chapter.

4.1 Introduction
The methods introduced in the previous chapter and Fujiwara’s method [28] generate
initial DB states and input values for each test case one-by-one. Hereinafter, we call
these methods one-by-one methods. The cost of constructing the test data manually for
many test cases can be reduced by using the one-by-one methods. However, when the
test cases and test data are generated by one-by-one methods, the following problems
arise in the test execution phase.

1. The problem of switching initial DB states: The initial DB states are generated
for each test case one-by-one, so the tester must switch the initial DB states for
each test case in the test execution phase. In practice, there are thousands of test
cases, making it impractical to switch the initial DB states for each test case. Test
execution can be partially automated; JUnit makes it especially easy to automate
unit testing. However, it is not easy to automate the entire process of test execution
considering integration testing of enterprise systems, and many manual processes
remain. Clearly it is important to reduce the number of times the initial DB
states are switched to reduce the cost of test execution. In addition, even if test
execution can be fully automated, there is another problem that test execution time
is lengthened by switching them over and over. This problem becomes more serious
as the size of individual initial DB states increases.

33

34 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

2. The problem of the size of initial DB states: The number of DB records tends to
be large because initial DB states must be generated for each test case, and there
are many test cases in practice. As a result, the total size of the test data becomes
large. In recent software development, it is often necessary to manage versions of
test materials upon frequent releases, and to frequently send and receive data to
and from offshore companies commissioned to execute tests. Therefore, as the data
size of the initial DB states increases, the data management cost also increases.

For example, consider creating the test cases suitable for the enterprise system shown
in Figure 4.1; the goal is validate the employees management system. Figure 4.1 shows
two test cases. Test case (1) (Figure 4.1(1)) validates the function to locate employees
who should receive in-house training. This function is designed to search for employees
who have worked for less than two years and who belong to the section whose id is given
by user as input. It outputs five search results per page. Test case (2) (Figure 4.1(2))
validates the function to locate the employees who should receive a complete medical
checkup. This function finds employees who are over 25 and belong to the section whose
id is given by user as input. It outputs four search results per page. Both test cases need
appropriate initial DB states and inputs if the testing is to be effective. For instance, test
case (1) needs section id as an input and an initial DB state that has at least six employee
records that satisfy the following search keys (i) worked for less than two years. (Fixed
condition.) (ii)belongs to the section whose id is SectionName. (Variable condition.
SectionId is given by the user.) Figure 4.2 shows an example of automatically generating
the test case and test data of the employee management system shown in Figure 4.1 by
using the approaches proposed in our previous work. The approach generates initial DB
states for each test case one-by-one as shown in Figure 4.2, where each initial DB states
satisfies the preconditions of the corresponding test case. For example, Figure 4.2 shows
that existing approaches generate two initial DB states and a total of eleven records to
cover the two test cases. The tester has to switch the initial DB states to run each test
case. If the test cases can share the same initial DB states, the tester would not need
to switch (the first problem). In addition, these eleven records are somewhat redundant
because only six records are needed if these test cases share the same initial DB state
(the second problem).

The purpose of our research is to solve the above two problems, and to generate initial
DB states that are used and shared by multiple test cases as shown in Figure 4.3, not
generate one for each test case one-by-one as shown in Figure 4.2. Our proposal can
reduce the number of initial DB states and the total number of DB records compared
to the existing approach, hence it can reduce the number of times the initial DB state

4.1. INTRODUCTION 35

Searching employees

should gain In house

training

Search

Search results

6 employees

ID 1001

ID 1002

ID 1003

ID 1004

ID 1005

Search results

5 employees

ID 1001

ID 1002

ID 1003

ID 1004

Test Case (1):

Search the employees who worked for less than 2 years, and

belongs to the section whose id is given by user as an input.

As a result, Six or more people hit and the results are displayed on

a page-by-five basis.

Test Case (2):

Search the employees who are over 25 , and belongs the

section whose id is given by user as an input.

As a result, 5 or more people hit and the results should be

displayed on a page-by-four basis.

Searching employees

should gain complete

medical checkup

Search

SectionId

SectionId

Next page

Next page

Figure 4.1: Example Test Cases

must be switched and reduce the total size of test data. As a result, our approach can
reduce the cost of test execution. To measure the effect of our approach, we adopt two
evaluation indexes. The first is the number of initial DB states and the second is the total
number of DB records.

Our study focus on the test cases that perform DB referencing access rather than DB
updating access for the same reasons as mentioned in the previous chapter.

The two main contributions of the proposed method in this chapter are as follows.

1. We propose a framework for generating initial DB states that are shared by multiple
test cases, and list the three challenges (test case grouping, DB record arrangement,
and initial DB state constraint generation) in the framework and also give simple
and reasonable solutions to each challenge as the proposed method called DDB-
GenMT (design-model-based initial DB state generator for multiple test cases).

2. Using industrial-level enterprise systems as case studies, we confirm that our ap-

36 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

Test case (1):

Test case (2):

Pre condition:

SELECT * FROM Employees WHERE Year=< 2 && SectionId == Input.SectionId ,

Result count >= 6

Pre condition:

SELECT * FROM Employees WHERE Age >= 25 && SectionId == Input.SectionId ,

Result count >= 5

Initial

database

state

Input

value

Input

value

Employees

Test

data

Employees

Initial

database

state
Test

data

6 records

5 records

Sec�onId

201

Sec�onId

201

ID Age Year Sec�onId

1001 25 10 201

… … … …

1005 25 10 201

Input

Output

Input

Output

ID Age Year Sec�onId

1001 24 2 201

… … … …

1006 24 2 201

Figure 4.2: Initial Database States Generation by Existing Methods

proach reduces the number of initial DB states by 23%, and the total number of
DB records by 64% compared to an existing one-by-one method.

4.2 Related Work

From the viewpoint of how to reduce the number of initial DB states and the number
of DB records, we divided the existing methods for generating initial DB states into the
two types.

The first type is one-by-one methods which includes the method introduced in previous
chapter and Fujiwara’s method [28]. Since these methods generate initial DB states for
each test case, the number of initial DB states and the number of DB records tend to
increase.

The first type covers other variants. These approaches adjust the initial DB state

4.2. RELATED WORK 37

Test case (1):

Test case (2):

Pre condition:

SELECT * FROM Employees WHERE Year=< 2 && SectionId == Input.SectionId ,

Result count >= 6

Pre condition:

SELECT * FROM Employees WHERE Age >= 25 && SectionId == Input.SectionId ,

Result count >= 5

Input values

Input values

Test

data

Input

Output

Input

Output

Test

data

Initial

database

state

Employees

ID Age Year Secstion

Id

1001 25 2 201

1002 25 2 201

1003 25 2 201

1004 25 2 201

1005 25 2 201

1006 24 2 201

6 records

Sec�onId

201

Sec�onId

201

Figure 4.3: Initial Database States Generation by Proposed Method

during each test case execution. In Willmor’s method [24], the user specifies the pre-
and post-conditions that the initial DB state should satisfy for each test case; it then
automatically adjusts the initial DB by adding or deleting records. Emmi’s method [25]
focuses on the methods that refer to DBs in the program and aims to achieve high path
coverage. They repeatedly adjust the values of initial DB states and inputs to make these
values cover a path that has yet to be executed, in the program by using the DSE. These
methods also essentially provide initial DB states for each test case one-by-one.

The second type use an existing initial DB state such as one generated by random
number generation tools, and adjust only inputs to provide an appropriate initial DB
state and inputs for each test case. Pan’s methods [48] [49] also aims to achieve high
path coverage just like Emmi’s approach. It repeatedly adjusts only the values of inputs
to make these values activate a path that has yet to be executed by using the DSE. This
methods have the potential to create an initial DB state that is shared by many test
cases. However, this approach can adjust only inputs and cannot adjust the initial DB

38 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

state, hence it cannot always provide an appropriate initial DB state and inputs for each
test case.

4.3 Proposed Method
To solve the problems of the existing methods, we propose new method for generating an
initial DB state that can be shared by multiple test cases by extending the one-by-one
method introduced in the previous chapter. As a result, it reduces the number of initial
DB states and the total number of DB records compared to the existing approach, which
cuts the cost of test execution.

In this section, we first list up the three challenges that must be overcome in rectifying
the weaknesses of the existing approach. Second, we present a framework that solves the
challenges and generates initial DB states shared by multiple test cases. Finally, we solve
each challenge within the framework.

4.3.1 Challenges

There are three challenges to achieve generating single initial DB states that are shared
by multiple test cases.

1. How to divide the test cases into groups; each group member uses the same initial
DB state.

2. How to decide the number of records and the alignment of the records in each DB
table.

3. How to create concrete values of each initial DB state that satisfies the DB schema
and returns appropriate numbers of records for each DB search conditions set in
the test cases that belong to the same group.

Challenge (1): Ideally, one initial DB state should be shared by all test cases, but this
is seldom possible. If n is the total number of test cases, the total combination number
of grouping, C, is given by C = ∑h

i=1 S(n, i). S is Stirling partition number. S(n, k)
denotes the number of ways to partition a set of n objects into k non-empty subsets.
Hence, C increases exponentially with test case number. Therefore, a creative approach
is needed when dividing them into groups.

Challenge (2): After grouping the test cases, the second challenge is how to decide
the number of records and the alignment of the records in each DB table. For example,
considering the initial DB state in Figure 4.3, the initial DB state is shared by both test

4.3. PROPOSED METHOD 39

Initial DB state

Id(PK) Age Year Sec�on

Id

1001 24 2 001

… … … …

1006 24 2 001

1001 25 2 001

… … … …

1005 25 2 001

Generated for

test case (1)

(6 records)

Generated for

test case (2)

(5 records)

(a) Not satisfying

DB schema

(b) Not hitting

appropriate number

of records

Figure 4.4: Problems When Naively Combining Records

cases (1) and (2), and has six records. However, other initial DB states are appropriate for
the two test cases; they may have different numbers of records and different alignments
from the initial DB state shown in Figure 4.3. For instance, an initial DB state that has
eleven records where the first six records satisfy the DB search condition of test case (1)
and the remaining five records satisfy the DB search condition of test case (2). Reducing
the number of records, reduces test data size. However, depending on the number(and
the alignment) of records, it may become impossible to solve all constraints.

Challenge (3): After deciding the number and alignment of records, the third chal-
lenge is how to create the concrete values of the initial DB state that satisfy the DB
schema and return appropriate numbers of records for each DB search condition set in
the test cases that belong to the same group. It is impossible to naively combine the DB
records generated for each test case by the existing approach, because the resulting set
of records will likely contain duplicate primary keys, see the example in Figure 4.4(a).
There is another problem with naive combination; the number of records returned from
the combined initial DB state may differ from the number expected for each test case.
Figure 4.4(b) shows that test case(1) now returns eleven records. Therefore, to make an
initial DB state shared by multiple test cases satisfy the DB schema and return the appro-
priate number of records for DB search conditions in each test case, a creative approach
is needed when generating constraints for the initial DB states.

4.3.2 Overview of Proposed Method

To solve the three challenges discussed in the previous section and generate an initial DB
state shared by multiple test cases, we propose a method called DDBGenMT shown in
Figure 4.5.

40 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

Test

cases
Test case

groupsDesign model Step 1

Test cases

extractionn

Step 2

Test cases

grouping

(Challenge (1))

Step 3

Input and DB

schema constraints

generation

Test case groups，

Input constraints，

DB schema constraints

Step 4

Record

alignment

decision

(Challenge (2))
Step 5

Initial DB state

constraints

generation

(Challenge(3))

Test case groups，

Input constraints，

DB schema constraints,

records alignment table

Step 6

Constraints

solving

Test case group

Initial DB

state

Test

case

Path

Input values

Step 7

Test case and

test data

output
Test case groups，

, initial DB states

constraints

Test case groups,

inputs,

initial DB states

Input

Output

(x) Backtoraking

(y) Backtoraking

Figure 4.5: Overview of Proposed Method

Table 4.1: Definition of Test Case Group

Index Definition
1 <TestCaseGroup> ::= TestCaseId:String+ <InitialDatabaseStateValue>

2 <TestCase> ::= PathId:String <InputValue>+

DDBGenMT is an extension of the one-by-one method introduced in the previous
chapter. Note that the DDBGenMT do not deal with the constraints of the foreign key
and the partial string matching. This is a restriction of the proposed method. Therefore,
the DDBGenMT takes a design model with these constraints excluded from another design
model shown in the table 3.1 and 3.2 as the input. The output of the method is test case
groups. Definitions of test case groups and test cases in the DDBGenMT are shown in
Table 4.1. A test case group has one initial DB state (Table 4.1(1)) and a test case has
only path and inputs (Table 4.1(2)) because an initial DB state is shared by multiple
test cases that belong the same test case group. We explain each function in our method
below (Figure 4.5).

1. Test case extraction: extracts test cases from the design model (process flows, input
definition, and DB schema).

2. Test case grouping: divides the test cases into some test case groups where each
group uses the same initial DB state.

3. Input constraint generation: generates the constraints that the inputs need to sat-
isfy, from the input definition and the guard conditions set on the path.

4. Record alignment decision: decides the number and alignment of records.

4.3. PROPOSED METHOD 41

5. Initial DB state constraint generation: generates the constraints that the initial
DB state must satisfy, from the DB search conditions in each test case and the DB
schema.

6. Constraint determination: solves for the constraints generated in Step 3 and Step
5 by using a constraint solver.

7. Test case and test data output: outputs the test case groups where each test case
group has an initial DB state and has some test cases and inputs corresponding to
each test case.

We can use the techniques of the one-by-one method for steps 1, 3, 6, and 7. The
other steps 2, 4 and 5, address challenges (1), (2) and (3) described in the previous section
respectively.

4.3.3 Step 2: Test Case Grouping

As discussed in Section 4.3.1, the combinatorial number of grouping is very large, and
it is difficult to try all combinations of groupings. Therefore, instead of searching for an
optimal solution, we adopt an approach to obtain a practically effective local solution.
We set a policy to ensure that the number of trials is not so large even in the worst case,
and that an appropriate initial DB state is obtained as a precondition for all test cases.

Based on the policy, our proposed algorithm first tries to generate an initial DB state
that can be shared by all test cases (by one test case group). If no solutions can be
obtained by solving constraints which the initial DB states must satisfy in step 6, it
performs a backtracking as shown in Fig. 4.5(x) and divides the test case group into half
groups. It repeats this procedure recursively, as shown in Figure 4.6. If the constraints
which the initial database states of the test cases in the same group must satisfy contradict
each other, no solution can be obtained. To split the test case group in half aim to
resolve the contradiction. As the number of divisions increases, it becomes easier to
obtain a solution. Also, the number of times this algorithm tries to solve the constraints
on the initial DB state is O(N log N) at worst cases for N test cases. Therefore, the
amount of calculation does not increase explosively as the number of test cases increases.
Moreover, even if an initial DB state shared by multiple test cases cannot be generated,
one appropriate initial DB state for each test case is eventually generated like one-by-one
methods. Therefore, our algorithm ensure to obtain all the initial DB states required for
each test case.

This algorithm divides the test cases into two groups, one for the first half and the
other for the second half in accordance with the order of the given test cases. Therefore,

42 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

TC2

TC3

TC4

TC1

Initial

DB

state

TC6

TC7

TC8

TC5

Finish

OK

Finish

OK

TC2

TC3

TC4

TC1

Finish

OK

TC6

TC7

TC8

TC5

Finish

OK

TC2

TC1

NG

NG

NG

NG

・・・

・・・

・・・

・・・

・・・

Figure 4.6: Test Cases Grouping

Table 4.2: Calculate the Number of Records From the Result condition

Id Result condition Number of records
1 ResultCount >= C C
2 ResultCount > C C+1
3 ResultCount <= C C
4 ResultCount < C C-1
5 ResultCount == C C
6 ResultCount! = C(C = 0) 1
7 ResultCount! = C(C ≥ 1) C-1

whether a solution can be obtained with only a few backtracking depends on the order
of the test cases. This point is discussed in Section 4.4.

4.3.4 Step 4: Record Alignment Decision

This function decides the number of records and the alignments of records in the initial
DB state and creates the record alignment table.

Before creating the record alignment table, the numbers of each records (Ri(1 ≤ i ≤
N)) required for the N test cases (TestCasei(1 ≤ i ≤ N)) that access the same initial
DB state are determined based on the result condition of the DB search condition of each
test case and the concept of the boundary value analysis as shown in Table 4.2.

For example, the test case (1) in Fig. 4.1 is corresponding to the path (1), (2), (4), and
(5) of a design model exemplified in Figure 4.7(a). The result condition, which is described
in the edge connecting the nodes (4) and (5), of the this test case is ResultCount >= 6,

4.3. PROPOSED METHOD 43

so the number of the records is 6 by calculating based on Table 4.2.

As with the test case grouping, the policy for determining the record arrangement
table is to obtain a practically effective localized solution. Based on this policy, our
algorithm adopt minimum records pattern and maximum records pattern, then it tries
the two patterns in turn.

• Minimum records pattern: In this pattern, the number of records is minimum, hence
it has the advantage of minimizing the size of test data. However, constraint solving
is likely to fail because a constraint generated from one DB search condition is highly
likely to overlap the constraint generated from another DB search condition. When
DB search conditions, where each DB search condition is used in TestCasei(1 ≤
i ≤ N), need to return each Ri(1 ≤ i ≤ N) records, the number of records is
Max(R1, R2, .., RN−1, RN) in the minimum records pattern. For example, when
creating a record alignment table for the initial DB state shared by the 2 test cases
shown in Figure 4.1, the record alignment table shown in Figure 4.8(a) is created in
the minimum records pattern. In this case, the value of the initial DB state finally
becomes that shown in Fig. 4.3.

• Maximum records pattern: In this pattern, the number of records is maximum,
hence it has the disadvantage of maximizing the size of the test data. However, it
has the potential to generate solvable constraints because a constraint generated
from a DB search condition does not overlap another constraint. The number of
records is R1 + R2 + ... + Rn−1 + Rn in this pattern. For example, when creating
a record alignment table for the initial DB state shown in Figure 4.1, the record
alignment table shown in Figure 4.8(b) is created in the maximum records pattern.

The aim of the maximum records pattern is to make it easier to resolve inconsistencies
among the constraints of DB search conditions of the test cases when the minimum records
pattern cannot solve them. However, we note that it may not be possible to solve with the
maximum records pattern but solve with the minimum records pattern depending on the
combination of the DB search conditions and the numbers of DB records. For example,
if two search conditions have an inclusive relationship in which one is “five records need
satisfy condition A” and the other is “two records need satisfy conditions A and B,” we
can obtain a solution satisfies the both conditions only when we use the minimum records
pattern instead of the maximum records pattern.

44 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

`

VariableId Type Domain

sectionId Integer MinValue= 0,

MaxValue= 9999

(2)Check

value of

section id

[sectionId> 200]

(1)Start

(3)Error：

Invalid

range

error

[sectionId<= 200]

(4)Search

employee

DB search condition
FromTableId=

Employees

WhereConditions=

Year =< 2 AND

Employees .SectionId

== SectionId

ResultCount>= 6

(5)Display

results

(5 people per

a page)

(a) Process Flow

(b) Input Definition

TableId= Employees

Column

Id

型 定義域 カラム
の種類

ID Integer Min = 0,

Max = 2000

PK

Age Integer Min = 0,

Max = 100

Normal

Year Integer Min = 1,

Max = 60

Normal

Sec�on

ID

Integer Min = 0,

Max = 9999

Normal

(c) DB Schema

Figure 4.7: Example of Design Model

4.3.5 Step 5: Initial Database State Constraint Generation

If we naively combine the records generated for each test case by one-by-one methods, the
problems described in Figure 4.4 occur. Therefore, we need generate the constraints that
ensure that the initial DB state satisfies the DB schema and returns appropriate number
of records for each DB search condition. We then simultaneously solve the constraints
and obtain an appropriate initial DB state shared by multiple test cases as shown in
Figure 4.5(6). Our algorithm generates an initial DB state constraint which is a set of
constraints that an appropriate initial DB state must satisfy as preconditions for multiple
test cases for each table in the DB. The input and output of our algorithm for a table
TableA are as follows.

• Input: N test cases (T1, ..., TN) refer to TableA, a set of the input constraints
CInput and a set of the DB schema constraints CDBSchema generated in the input
and DB schema constraints generation (in Fig. 4.5(3)), and a record alignment
table RATableA generated in the record alignment decision (in Fig. 4.5(4)).

• Output: C which is a set of the constraints that an appropriate initial DB state
should satisfy as the precondition for all test cases that accesses TableA.

The pseudo code of the proposed algorithm is shown below.
CDBT able ← ϕ

4.3. PROPOSED METHOD 45

Index Referring test case

0 TestCase01,

TestCase02

… …

4 TestCase01,

TestCase02

5 TestCase01

(a)Minimum records pattern (b)Maximum records pattern

Index Referring test case

0 TestCase01

… …

5 TestCase01

6 TestCase02

… …

10 TestCase02

Employees Employees

Figure 4.8: Examples of Record Alignment Tables

for i← 1 to N do
wi ← WhereClauses of DBSearchCondition of Ti

for j ← 1 to # of Conditons of wi do
wij ← j − th Conditions in wi

c← Column of TableA referred by wij

L← # of records of TableA by referring to RATableA

f1, ..., fL ← L field variables corresponding to c

for k ← 1 to L do
Rec← k − th record in TableA

w ← duplicateofwij

Replace column c in w with fk

if Wij refers to Rec in RATableA then
Add w to CDBT able //(a)

else if Wij does NOT refer Rec in RATableA then
Add logical negation of w to CDBT able //(b)

end if
end for

end for
end for
C← CInput ∪ CDBSchema ∪ CDBT able

In order to return the appropriate numbers of records for each DB search conditions
that access the same table without any excess or shortage, our algorithm creates the
constraints to return the required number of records ((a) in the pseudo code) and the
other constraints for avoiding to return unnecessary records ((b) in the pseudo code) as
the constraints that the initial DB state must satisfy.

For example, when generating the constraints for the initial DB state shared by the
two test cases shown in Fig. 4.1 using the minimum records pattern, the constraint set

46 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

C is as follows.

Constraints extracted from DB search conditions
E[0].Year <= 2, E[0].Age >= 25,
...
E[4].Year <= 2, E[5].Age >= 25,
E[5].Year <= 2, not(E[5].Age >= 25),
E[0].SectionId = SectionId,
...

If the initial DB state returns more than six employee records by the DB search
condition of test case (2), it is not appropriate for test case (2). Therefore, our algorithm
generate the constraint not(E[2].Age >= 25) to make the initial DB states not return
more than six employee records.

In step 5, constraint set C and the other constraint set to satisfy the DB schema (as per
the existing approach) are generated. In step 6, simultaneously solving the constraints
related to the initial DB state and the other constraints related to inputs which are
generated in step 3, we can obtain an appropriate initial DB state shared by multiple
test cases that belong to the same test case group and the input values for each test case.

4.4 Evaluation
We evaluate our approach in this section.

4.4.1 Measure

To reduce the cost of test execution, our research aims to reduce the number of initial DB
states and the total number of DB records compared to the existing approach. There-
fore, as discussed in Section 4.1, we adopt the following two evaluation indexes in the
evaluation.

• The number of initial DB states

• The total number of DB records

It is guessed that it depends on the initial order of test cases whether test case grouping
works well and can reduce the number of the initial DB states. Therefore, to confirm
that, the maximum values (the worst reduction effect) and average values (the average
reduction effect) of the number of the initial DB states and the total number of the DB
records were also measured when changing the order of the test cases. In addition, we

4.4. EVALUATION 47

measured the minimum values of those to confirm whether there is room to increase the
reduction effect depending on the order of the test cases.

4.4.2 Procedure

We implemented a prototype tool based on our proposed approach. We used Choco
Solver1 as a constraint solver for solving constraints in step 6.

We selected some of the functions of the industrial-level enterprise systems.

• System X (12 screens): A system that manages schedules and searches data by
specified date and time range.

• System Y (11 screens): A web front-end for a network equipment management
system that searches data using the IP address as a key.

• System Z (29 screens): A data mining system which searches data under various
conditions.

A total of 8 tables were selected from the systems X, Y, and Z, and a total of 87 test cases
that had reference access to those tables were selected. We used them for this evaluation.

The prototype tool accepts XML design model files as input. Hence, we first extracted
paths from an existing design documents of each system by using an existing method [81].
Second, we manually made XML design models based on the paths, and then added DB
search conditions and DB schema, which were extracted from the design document, to
the design models. Finally, we input the XML design models to the prototype tool to
generate initial DBs and input values. All tasks described to above were performed by a
developer experienced in enterprise system creation.

The prototype tool was run on a Windows Vista Ultimate SP2 machine with Intel
Core i7(3.0GHz) and 6GB of main memory. The prototype tool can handle the string
type, in which the constraints of the equal and the not equal can be handled, and the
integer type which are often used in web applications. Therefore, we used integer type
as a substitute for enumeration type and time stamp type.

The order of test cases given to the DDBGenMT was the same as one automatically
extracted from each process flow of the design models. If there are the tables in which
an initial DB state shared by all test cases in a test case group cannot be generated for
each table by DDBGenMT, the DDBGenMT was applied 100 times for each table while
randomly changing the order of each test cases. Then, we measured how the number of
initial DB states and the number of DB records changed. On the other hand, since the

1http://www.emn.fr/z-info/choco-solver/

48 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

Table 4.3: Evaluation Result: Number of Initial DB States and Total Number of DB
Records

One-by-one method DDBGenMT
System DB Table # of initial # of Execution (s) # of initial # of Execution

DB states DB records time (s) DB states DB records time (s)
X X1 3 3 0.249 1 1 0.203

X2 12 12 0.501 4 10 0.530
X3 13 49 0.547 5 45 4.236
X4 15 53 0.624 6 25 0.764

Y Y1 14 14 0.516 1 1 0.234
Z Z1 19 10 0.438 1 10 0.218

Z2 9 4 3.122 1 1 2.684
Z3 2 1 0.249 1 1 0.187

Total 87 146 6.246 20 94 9.056

results do not depend on the order of each test cases about the other tables in which
an initial DB state shared by all test cases can be generated, this measurement was not
performed on those tables.

4.4.3 Result

The results of the evaluation are shown in Table 4.3. We confirm that DDBGenMT
reduced the number of initial DB states by 23.0% and the total number of DB records
by 64.4%, compared to the existing one-by-one method. Table 4.4 shows the numbers
related to the backtracking. Specifically, it shows the number of times the test case group
was divided in step 2, the number of times the constraint was tried to be solved in step 5
by adopting the minimum records pattern in step 4, and the number of that by adopting
the maximum records pattern (it means that the minimum records pattern is failed) in
step 4 for each table.

For the three DB tables X2, X3, and X4 in the table 4.3, an initial DB state that
could be shared by all test cases could not be generated for each table. Therefore, for
these three tables, we applied the DDBGenMT 100 times for each of them by arranging
each test cases in random order. The result is shown in table 4.5.

4.4.4 Discussion

Completeness

Even though our method cannot generate an initial DB state shared by multiple test
cases, it can eventually generate an appropriate initial DB state for each test case like

4.4. EVALUATION 49

Table 4.4: Evaluation Result: Number of Backtrackings

Table # of division # of minimum # of maximum
records pattern records pattern

X1 0 1 0
X2 3 1 3
X3 4 4 1
X4 5 6 0
Y1 0 1 0
Z1 0 0 1
Z2 0 1 0
Z3 0 1 0

Total 12 15 5

Table 4.5: Evaluation Result: Shuffled Test Cases

DB Table # of initial # of records # of divisions # of minimum # of maximum
DB states records pattern records pattern

Average 3.59 8.42 2.59 1.81 1.78
X2 Maximum 5 12 4 5 3

Minimum 2 4 1 1 0
Average 5.33 43.17 4.33 5.12 0.21

X3 Maximum 8 48 7 8 1
Minimum 2 22 1 2 0

Average 7.24 44.29 6.24 7.12 0.12
X4 Maximum 10 50 9 10 1

Minimum 5 24 4 5 0

one-by-one methods. Therefore, our method was able to generate all the initial DB states
for each test case.

Effectiveness of Minimum and Maximum Records Pattern

As shown in Tables 4.4 and 4.5, most of the initial DB states were generated using the
minimum records pattern. Since a DB search condition often uses inputs given by the
user as parameters, the solution space of the inputs and the initial DB states for a test
case group is often large enough. This means that a method using our approach can
obtain solutions by adjusting the inputs, as shown by the example in Figure 4.9, in which
the degree of freedom of inputs is high, and each input has a different value.

A method using our approach cannot always obtain a solution with the minimum
records pattern. As shown in Figure 4.10, if there are constraints “There are two records
satisfying TableA.UPDATE_TIME=UPDATE in TableA” and “There is one record satisfying
TableA.UPDATE_TIME!=UPDATE in TableA,” they can be satisfied by using the maximum

50 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

ID

(PK)

UPDATE_TIME

1 20150916

2 20150916

Inputs Initial DB state

Test case (1)
Pre condition:

SELECT *FROM TableA

WHERE UPDATE_TIME

=TableA.UPDATE_TIME

Result Count == 2

Input Output

Test case (2)

Pre condition:

SELECT *FROM TableA

WHEREUPDATE_TIME !=

TableA.UPDATE_TIME

Result Count == 2

UPDATE_TIME

20150916

Inputs

UPDATE_TIME

20150917

Minimum records pattern

Figure 4.9: Example of Using Minimum Records Pattern to Obtain Solution

records pattern rather than the minimum records pattern.
In addition, when the input values of each test case are constants, the constraints

must be solved using the maximum record pattern. For example, if the UPDATE_TIME
inputs in the two test cases in Fig. 4.9 have the same constant value such as 20150101
(which is not an input), no solution is possible with the minimum records pattern.

As mentioned above, there are cases in which the constraints cannot be solved using
the minimum record pattern, so the two-stage method of first trying the minimum record
pattern and then the maximum record pattern was effective.

Our method failed to generate an initial DB state that satisfied the preconditions of
all test cases for DB tables X2, X3, and X4 in Table 4.3 using either the minimum or max-
imum records patterns. The reason for this was that there were conflicting constraints,
such as “There is one record satisfying condition A” and “There is no record satisfying
condition A.” An example of this is shown in Figure 4.11. Therefore, to ensure that Step
2 works well, test cases with mutually contradictory constraints, like those in Fig. 4.11,
should not be placed in the same group.

Execution time

Since our method does not use a brute-force search in steps 2 and 4, the execution time
for test data generation was about 1.5 times that of the existing method. In addition, in
cases where the number of initial DB states could be greatly reduced such as the tables
in system Z, so DDBGenMT generated test data faster than the existing method. This
is because backtracking was rarely necessary in these cases because our method was able
to generate an initial DB state shared by all test cases for each table.

4.4. EVALUATION 51

ID

(PK)

UPDATE_TIME

1 20150916

2 20150916

3 20150917

Inputs Initial DB State

Test case (1)
Pre condition:

SELECT *FROM TableA

WHERE UPDATE_TIME

=TableA.UPDATE_TIME

Result Count == 2

Input Output

Test case (2)

Pre condition:

SELECT *FROM TableA

WHEREUPDATE_TIME !

= TableA.UPDATE_TIME

Result Count == 1

UPDATE_TIME

20150916

Inputs

UPDATE_TIME

20150916

Maximum records pattern

Figure 4.10: Example of Using Maximum Records Pattern Instead of Minimum Pattern
to Obtain Solution

Inputs Initial DB State

Test case (1)
Pre condition:

SELECT *FROM TableA

WHERE 20151231 =

TableA.UPDATE_TIME

Result Count == 0

Input Output

Test case (2)

Pre condition:

SELECT *FROM TableA

WHERE 20151231 =

TableA.UPDATE_TIME

Result Count == 1

UPDATE_TIME

20151231

Inputs

UPDATE_TIME

20151231

There is no solution using

either the minimum or the

maximum records pattern

Figure 4.11: Example of Inability to Obtain Solution with Either Minimum or Maximum
Records Pattern

Order of Test Cases

As shown in Table 4.5, in the worst case, the number of initial DB states was always
reduced by using DDBGenMT, but the number of DB records was not. For the X2, X3,
and X4 DB tables, in the average case, DDBGenMT reduced the number of initial DB
states by 29.9%, 41.0%, and 48.3%, respectively, and the total number of DB records
by 60.1%, 88.0%, and 83.4% respectively. This means that although DDBGenMT was
affected by the order of test cases, it nevertheless often reduced the number of initial DB
states and on average reduced the total number of DB records.

In practical application of DDBGenMT, better solutions could be obtained by ran-
domly changing the order of the test cases, as long as there is sufficient time to generate
test data.

52 CHAPTER 4. REDUCING NUMBER AND SIZE OF INITIAL DB STATE

4.4.5 Future Work

We demonstrated the effectiveness of our method in this evaluation. However, as can
be seen from the minimum values in Table 4.5, the results in Table 4.3 are not optimal
solutions. Therefore, there is room for improvement. For example, the number of initial
DB states in the X2 table is four, as shown in Table 4.3, but it can be reduced to at
least two, as shown in Table 4.5. Searching for solutions in steps 2 and 4 by brute force
or rearranging the test cases randomly many times is time consuming, so more efficient
methods are needed to search for solutions. For example, if test cases referring to different
columns of the same table were placed in the same test case group in step 2, the conflicts
between constraints in step 5 would be reduced. Similarly, an initial DB state with a
smaller number of records could be generated by trying out record patterns that are as
close as possible to the minimum record pattern while taking care not to overlap the
constraints in step 4.

4.5 Chapter Summary
In this chapter, we have proposed a method named DDBGenMT for generating initial
DB states that are shared by multiple test cases, and listed the three challenges (test
case grouping, DB record arrangement, and initial DB state constraint generation). We
have also given simple and reasonable solutions to each challenge. Moreover, using three
industrial-level enterprise systems as case studies, we have confirmed that our approach
reduces the number of initial DB states by 23%, and the total number of DB records by
64% compared to a one-by-one method.

Chapter 5

Region-based Essential Differences
Detection

In this chapter, we describe a method enables the tester to confirm test result efficiently
even when there are changes that affect the entire screen based on image-based VRT.

5.1 Introduction

In this section, we explain the problem of the existing image-based VRT systems with a
motivating example. As an example of applying VRT, let us consider the login screen of an
authentication system for some imaginary application. Figure 5.1 presents an example
of differences detection by an image-based VRT system. Figures 5.1 (a) and (b) are
screenshot images before and after changes to the application, respectively, while (c) is a
screenshot image in which differences are displayed. The VRT system compares the pixels
in (a) and (b) at the same absolute coordinate, where the origin of the coordinates is the
upper-left corner. If they are the same, the system displays the pixel in grayscale in the
differences image; otherwise the system displays it in red. By looking at the differences
image, the tester can see at a glance that the “Sign in” button has somehow vanished in
the new version of the application. In this way, image-based VRT enables the tester to
recognize differences visually and, as a result, efficiently.

Unfortunately, image-based VRT systems can be problematic; if there are changes
that affect the entire screen, it is difficult for the tester to identify the essential differ-
ences easily. Consider the case in which the screen design was changed by adding the
header “ABCDE Portal Site” in the authentication system described above. This design
change resulted in the entire (unchanged) content of the application screen being moved
downward, as illustrated in Fig. 5.2. As a result, quite a large number of unessential

53

54 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

The tester can notice at a glance that the sign in

button has somehow vanished.

(b) After changes

(Target screen)

(a) Before changes

(Correct screen)

(c) Differences

Figure 5.1: Using Existing Image-based VRT to Compare Two Screens in Pixel Units.

“differences” are detected and displayed on the differences screen. The essential differ-
ences are difficult to identify because they are buried within a large number of detected
differences. There are three main reasons for this problem.

• Screen elements are added or deleted in the new version in accordance with changes
in functionality, screen design, and so forth, as exemplified by the case shown in
Fig. 5.2.

• There is a region of the screen in which variable-sized elements such as advertise-
ments and the latest news are displayed. We call such a region a dynamic region
hereafter.

• A bug in the screen element layout results in element misalignment and/or disap-
pearance.

In these cases, it is difficult for the tester to find the essential differences by using
an existing VRT system. Thus, the tester must examine the two corresponding screens
carefully but is apt to overlook essential differences.

To resolve this problem, we have developed a method for making image-based VRT
systems effective even in such cases. The proposed method enables the tester to compare
two corresponding screens and efficiently find the essential differences.

The contributions of our proposed method can be summarized as follows.

• We present an image-based VRT method and its prototype system named ReBDiff
(Region-based Differences detector) that enables testers to efficiently find essential

5.2. RELATED WORK 55

Quite a large number of unessential differences are detected

and displayed on the screen.

(b) After changes

(Target screen)

(a) Before changes

(Correct screen)

(c) Differences

Figure 5.2: Problems in Comparing Two Screens in Pixel Units with Existing Image-based
VRT.

differences between before and after screenshot images of an application that has
been changed. It divides each image into multiple regions and makes appropriate
matchings between the corresponding regions of the two images, and detects such
a difference as a shift, an alteration, and an addition.

• We explain how ReBDiff can provide suitable views on the basis of the detected
difference types and detailed information about them. By observing these views,
the tester can find essential differences between two corresponding screens efficiently
even when there are changes that affect the entire screen such as parallel movements
of screen elements.

• We describe the experiments we conducted that used websites for both PCs and
smartphones, and an Electron application. The results demonstrate the effective-
ness of the proposed method.

Since the implementation of the proposed method is ReBDiff, we use “ReBDiff” both
to indicate the method and to indicate the tool.

5.2 Related work

Many studies have been carried out on automating or supporting the judgment of test
results [9]. This section overviews related research and tools, focusing on VRT.

56 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

5.2.1 Implementation-dependent VRT Systems

First we describe VRT that depends on the specific implementation technologies of the
target application.

There are VRT systems that use both application screens and structural information
at the same time. For web applications, the method proposed by Hori et al. [30] identified
screen elements on the basis of document object model (DOM) tree information and
compares two corresponding elements to determine whether the web application had
been degraded. For cross-browser testing, WEBDIFF [53] and X-PERT [20] identify
those places where failures have occurred by comparing the images and DOM trees of
the two application screens to detect presentation failures. Ramler et al. [50] presented
a method for detecting presentation failures after the user changed the magnification of
the desktop in the Windows environment that utilizes both image information and screen
element information.

Other approaches exploit only the structural information of application screens. The
snapshot test in the JavaScript testing framework (JEST)1 provides a function that helps
the tester ensure the absence of unexpected breakages in the UI layout on the basis of the
serialized information of the displayed structures obtained in the tests. Spenkle et al. [58]
presented a method for detecting differences by comparing the HTML structures of two
corresponding application screens. Takahashi [59] presented a method for recording the
history of API calls used for drawing an application screen and comparing the histories
for two corresponding application screens. Alameer et al. [4] presented a method for
detecting presentation failures after the locale of the application had been changed. A
graph is constructed for each screen on the basis of the positional relationships of the
elements in the corresponding DOM tree. The graphs of the correct screen and the target
screen are then compared. The HTML elements with a changed appearance or a relative
position are regarded as being responsible for the observed problem. Walsh et al. [74]
presented a method for extracting a “responsive layout graph (RLG)” from a DOM tree
and then comparing two corresponding RLGs to detect any undesired distortion of the
layout in responsively designed pages.

Several methods for detecting presentation failures, which typically appear in respon-
sively designed pages, work with only the target screen to be tested. ReDeCheck [73]
detects overlapping screen elements on the basis of DOM information. VISER [6] goes
even further by investigating overlapping at the pixel level, resulting in a higher precision.

These methods are useful for detecting presentation failures in regression testing,
but they depend on the specific implementation technology. This means that multiple

1https://jestjs.io/

5.2. RELATED WORK 57

platform-dependent implementations must be prepared to enable them to be used on
various platforms such as Android, iOS, and Windows.

5.2.2 Implementation-independent VRT Systems

Several approaches are independent of the implementation technology. They attempt to
identify the problem from only the application screen images.

The jsdiff and BlinkDiff image-based VRT tools detect differences between two images
in pixel units. Similar approaches were taken in VISOR [33] and by Mahajan and Halfond
[41]. These tools and methods focus mainly on comparing old and new versions of an
application in regression testing. They are effective when the two images to be compared
are almost the same, with only minor differences, as exemplified in Fig. 5.1. They are not
effective when there are changes that affect the entire screen, as exemplified in Fig. 5.2.
Mahajan and Halfond [42] adjusted their method to absorb small differences at the pixel
level, but it is still not effective when the positional shift is more than negligible. Lin
et al. [39] presented a method that calculates the similarity between the correct screen
and the target screen by using several indices such as a histogram of similarity. If the
similarity falls below a certain threshold, the target screen under test is presumed to
have problems. Although this method can be used to roughly estimate the similarity
between two screens on Android terminals with different resolutions, it cannot localize
the differences.

Other approaches do not depend on image-based VRT. Visual GUI testing tools [5]
such as Sikuli [15] make use of image recognition techniques. Since they treat matching
objects on an application screen as images, they can only be used as long as the target
objects are present on the screen. They are aimed at ensuring that images are displayed on
the screen as expected; they cannot ensure that the screen elements are properly placed
without distortion of the screen’s appearance. Bajammal and Mesbah [7] presented a
method that analyzed a screenshot image of canvas elements in HTML5, identified every
visual object and its attributes, and constructed a layered structure of the visual objects
for use in generating suitable assertions for the image. Assertions generated for the
image of the correct screen can be applied to the image of the target screen to be tested.
Unfortunately, their method is applicable only to the canvas in HTML5.

Image-based VRT is flexible and offers two advantages in particular.

• It can be used as long as screenshot images of the application screens are available.
Thus, it does not depend on specific implementation technologies such as the OS
and web browser.

58 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

• It can be easily combined with test automation tools for practical application be-
cause such tools generally provide a functionality for obtaining screenshot images.

We have developed a method for making image-based VRT applicable to situations
in which there are changes that affect the entire screen and have therefore expanded the
scope of its potential application.

5.3 Proposed method

5.3.1 Scope and Requirements

To summarize the discussion in Section 5.2, there are two use cases for VRT. One use
case is comparing two corresponding screen images of the old and new versions of an
application in the same environment. For example, the “Sign in” screen of the old version
is compared with that of the new version in the Chrome browser. The other use case
is testing the same version of the target application in various environments, in which a
screen image for one environment is compared with the corresponding one for another
environment. This includes cross-browser testing and testing on various Android devices.

The application scope of ReBDiff is the first use case with the aim of applying image-
based VRT techniques to regression testing even when there are changes that affect the
entire screen, exemplified by the three cases described in Section 5.1. The second use
case is outside the application scope of ReBDiff. Please note that our aim is to detect
differences between two given images, not to determine whether each detected difference
is a bug. We assume that the tester is responsible for making that determination.

The application scope defined for ReBDiff means that there are three requirements for
a system that supports the tester in detecting and checking essential differences between
two application screens by using image-based VRT.

Requirement 1 Each difference can be detected at a level of granularity that makes it
easy for the tester to identify the difference.

Requirement 2 All the regions shifted due to changes that affected the entire screen
can be checked together.

Requirement 3 Detected differences are displayed with good visibility.

5.3.2 Features of ReBDiff

ReBDiff has three features in particular.

5.3. PROPOSED METHOD 59

Correct image

Target image

Differences

Detector

Tester

(1) Region-level

difference-checking views

(1-1) Shift-

checking view

(1-2) Addition/Deletion/Alteration-

checking view

(1-3) Scaling-

checking view

Check
Check Check

Check

(2) Pixel-level

difference-checking

view

Figure 5.3: Overview of ReBDiff.

First, it detects essential differences in two stages. In the first stage, it roughly
detects differences between two corresponding regions, one in the correct screen and the
other in the target screen under test, and labels each detected difference with one or two
difference types among Shift, Addition, Deletion, Alteration, and Scaling. Here, a region is
a rectangular section in an image in an application screen. In the second stage, ReBDiff
applies an existing image-based VRT method to a pair of corresponding regions. This
two-stage process enables the tester to check the differences roughly at the region level
(Requirement 1). In addition, the tester can identify parallelly moved regions easily in
the first stage (Requirement 2).

Second, ReBDiff groups together regions labeled Shift that have the same direction
and amount of movement. Thus, the tester can check these regions together, not one-by-
one (Requirement 2). This feature contributes not only to making detected differences
visible (Requirement 3) but also to reducing the burden on the tester.

Third, ReBDiff highlights each difference in accordance with its type. Thus, the tester
can recognize detected differences with good visibility (Requirement 3).

Figure 5.3 shows an overview of ReBDiff. Given two images, one of the correct screen
and one of the target screen, ReBDiff displays two views; one for differences at the region
level and the other for differences between corresponding regions in pixel units.

5.3.3 Difference Types

ReBDiff divides the correct and target screens to be tested into regions and detects dif-
ferences, as presented in Fig. 5.4. For every detected difference, ReBDiff assigns one or
two difference types. Currently there are five difference types.

Shift There are highly similar regions in the correct and target screen images, but their
positions differ.

60 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

Addition The target screen image has a region with no corresponding region in the correct
screen image.

Deletion The correct screen image has a region with no corresponding region in the
target screen image.

Alteration There are similar regions in the correct and target screen images, but their
similarity is not high.

Scaling There are similar regions in the correct and target screen images, but their sizes
differ.

Types Shift, Scaling, and Alteration are cases in which there are very similar but not
the same regions in both screens. Types Addition and Deletion are exemplified by Region
4’ and Region 2 in Fig. 5.4, respectively.

These five difference types should suffice for the following reason. Differences can be
divided into two groups: 1) those between corresponding regions in the correct and target
screen images and 2) those without corresponding regions in the two screen images. The
former can be further classified into Scaling and Alteration on the basis of the similarity
level. In addition, if the positions of corresponding regions are not the same, Shift is
added. For the latter group, the differences can be further classified into Addition in
which a new region is added to the target screen, and Deletion in which a region is
deleted from the correct screen.

Precisely speaking, a difference type is assigned to a region pair explained in Section
5.4. For the example shown in Fig. 5.4, region pairs (null, 4′) and (2, null), where null

means that there is no corresponding region, are associated with Addition and Deletion,
respectively. ReBDiff regards regions with high similarity, i.e., greater than a predefined
threshold, and with a sufficiently small size difference, i.e., within a predefined threshold,
as the “same” and does not detect them as a difference.

The similarity of two regions is calculated on the basis of whether the larger region in
height includes an area similar to the smaller region. This is described in more detail in
Section 5.4. Thus, there may be cases where similarity is high for regions with different
heights. Since such regions need to be checked by the tester, Scaling is added for the
regions (a region pair) as a difference type.

Among the five types, Shift, Scaling, and Alteration have additional information on
the difference. This information is made explicit by using the following notations.

• Shift (dx, dy): dx and dy are the amounts of movement in the horizontal and vertical
directions, respectively.

5.3. PROPOSED METHOD 61

Correct screen Target screen

Similar

Deletion

Addition

Similar

Similar

Region 1

Region 2

Region 3

Region 4

Region 1'

Region 2'

Region 3'

Region 4'

Figure 5.4: Detecting Differences in Region Pairs.

• Scaling (sx, sy): sx and sy are the scaling factors in the horizontal and vertical
directions, respectively.

• Alteration d: d represents detailed information on differences at the pixel level.

Please note that two types, namely “Alteration and Shift” or “Scaling and Shift,” might
be assigned to a detected difference. The details are described in Section 5.4.3.

5.3.4 Difference Checking by Tester

First, the tester checks the Shift differences (Fig. 5.3 (1-1)). The tester can check each
group of region pairs with the same direction and amount of movement as a whole by
using the Shift-checking view. For example, Fig. 5.5 presents an instance of this view
when the input screens are those in Fig. 5.2 (1) and (2). In this example, both the correct
and target screens are divided into five regions. Since four region pairs except the upper-
most one move together vertically a distance of 57 pixels, they are displayed within a red
frame. Seeing this view, the tester judges that this difference is not a problem because
the movement of these four region pairs is the result of the change in the upper-most part
of the screen. In this example, there is only a single group of region pairs. When there
are multiple groups, the tester checks them one-by-one by using the Shift-checking view.

After checking the Shift differences, the tester proceeds to check Addition, Deletion,
and Alteration differences in the Addition/Deletion/Alteration-checking view (Fig. 5.3 (1-
2)). For the example in Fig. 5.2, Fig. 5.6 presents the view used for this check, where

62 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

Correct screen Target screen

Region pair Difference type

1 -

2 Shift

(dx=0, dy=57)

3 Shift

(dx=0, dy=57)

4 Shift

(dx=0, dy=57)

5 Shift

(dx=0, dy=57)

Difference list

Figure 5.5: Shift-Checking View (Group Identifier is 1).

two differences in Region pairs 1 and 5 are detected. The tester is shown the type of each
difference at the right side of the view. When the tester selects a difference in the list
(the selected difference is displayed in yellow), the corresponding region is highlighted.

The tester can see the details for an Alteration difference in two ways.

• The tester can compare two regions in pixel units by investigating their overlapped
image generated by ReBDiff. When the differences are local and not so large, the
place where changes occur can be easily recognized.

• The tester can check the differences by visual examination. Although a visual
examination is burdensome, ReBDiff reduces the burden because the area of the
region to examine is (much) smaller than the entire screen.

For the example in Fig. 5.7, region pair 5, where the “Sign in” button has vanished
in the test screen, can be checked by examining the overlapped image. In contrast,
region pair 1’s change is difficult to grasp by examining the overlapped image, so a visual
examination is needed.

Finally the tester checks for Scaling differences by using the Scaling-checking view
(Fig. 5.3 (1-3)). For each Scaling difference, scaling factors (both horizontal and vertical)
in percentage are displayed in the list at the right side of the view.

5.4. DIFFERENCES DETECTOR 63

Correct screen Target screen Difference list

Region pair Difference

type

1 Alteration

2 -

3 -

4 -

5 Alteration

Figure 5.6: Addition/Deletion/Alteration-Checking View.

In this way, comparing differences at the region level makes it possible to roughly
check the differences in accordance with the type(s) of each difference.

5.4 Differences Detector
We implemented our differences detector, shown in Fig. 5.3, by utilizing computer vision
techniques [29]. Specifically, we used the Python bindings of OpenCV 3.1.0.

Let C be the image of the correct screen and T be the image of the target screen
under test. Differences between C and T are detected automatically in three steps.

Step 1 ReBDiff divides C into m regions c1, . . . , cm and T into n regions t1, . . . , tn.

Step 2 ReBDiff extracts region pairs, each of which consists of a region in C and a region
in T that are similar to each other, and creates a list PL of region pairs.

Step 3 ReBDiff assigns one or two difference types to every pair in PL.

Let r, r1, and r2 be regions. We assume that ul(r) and lr(r) represent the coordinates
of the upper-left corner of r and that of the lower-right corner of r, respectively. In

64 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

Alteration

(Region 1)

Alteration

(Region 5)

Tester can check

di erences by visual

observation.

Tester can compare two

regions in pixel units due to

overlapping of regions.

Correct screen Target screen

Figure 5.7: Checking for Alteration Differences.

addition, wd(r), ht(r), and size(r) represent the width, height, and size (number of
pixels) of r, respectively. We also assume that sim(r1, r2) is the similarity of r1 and r2.
We define the similarity between two regions as the result of template matching [29] on
one region using the other region as a template image. The range of this similarity value
is 0 to 1. Specifically, we calculate sim(r1, r2) by using the cv2.matchTemplate method,
which performs template matching, and the cv2.minMaxLoc method, which obtains the
maximum value of the similarity from the template matching results.

Hereafter, we will explain each step.

5.4.1 Step 1: Divide Images into Regions

The first step is to divide C and T into regions in accordance with sub-steps 1-1 to 1-4
below. There are two modes for dividing an image into regions. One is H-mode, which
divides an image horizontally. This mode is used for vertical screen images in which their
contents are horizontally arranged such as web pages for mobile devices and screens of
Android/iOS applications. The other is HV-mode, which divides an image horizontally
first and then further divides each divided region vertically. This mode is used for screen
images in which the contents are both vertically and horizontally arranged such as web
pages for PCs and Windows native applications. The tester can specify which mode to
use in accordance with the features of the screen under test.

The procedure for dividing an image into regions comprises four steps.

5.4. DIFFERENCES DETECTOR 65

Sub-step 1-1 ReBDiff applies Canny edge detection [14] to C to detect the edges. Specif-
ically, by using the cv2.Canny method, ReBDiff generates a binary image in which
pixels representing the edges are white and the other pixels are black. Then, ReB-
Diff performs line detection in the horizontal direction on C as follows. If there is a
row where the number of white pixels, which represent edges, exceeds wd(C)× SL

in the generated binary image, ReBDiff regards the row as a line. If multiple con-
secutive rows are regarded as lines, only the middle one is taken and the others
are deleted. SL is a predefined parameter with a value that should be empirically
determined so that an appropriate division of images into regions can be obtained.
In our experiments, described in Section 5.4, we set SL to 0.8. Line detection is
used to divide C into K1 regions: C = r1

1, . . . , r1
K1 .

Sub-step 1-2 Starting from r1
1, ReBDiff repeatedly concatenates adjacent regions until

the area of the concatenated region exceeds a predefined threshold. Let the con-
catenated region be r2

1. Then ReBDiff performs the same process starting from the
region in which the concatenation had terminated. Repetition of this process until
no region remains results in C having K2 regions: C = r2

1, . . . , r2
K2 . The threshold

is wd(C) × SR, where SR is a predefined parameter. The following is the pseudo
code for this process.

limit← wd(C) ∗ SR;
h← 0; from← 1; j ← 1;
for i← 1 to K1 do begin

h← h + ht(r1
i);

if h ≥ limit then begin
r2

j ← a region where r1
from to r1

i are combined;
h← 0; from← i + 1; j ← j + 1;

end;
end;
if from ≤ K1 then begin

rest← a region where r1
from to r1

K1 are combined;
r2

j−1 ← a region where r2
j−1 and rest are combined;

end;
K2 ← j − 1;

If the value of SR is too small, many small regions are generated. As a result,
it would take much time to calculate the region pairs in Step 2. In addition,
the correspondence accuracy for region pairs would be reduced. Therefore, it is

66 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

necessary to set an appropriate value of SR empirically to generate moderately
sized regions. In our experiments, we set SR to 0.1.

Sub-step 1-3 From r2
1, . . . , r2

K2 , ReBDiff creates C = r3
1, . . . , r3

K3 by merging a single-
colored region and an adjacent multi-colored region into a single region. This step
is necessary because if many single-colored regions are eventually generated in Step
1, it is likely that Step 2 cannot properly associate a region in the correct image
with a region in the target image under test. As a result of this merging, C does not
contain a single-colored region if the processing image is not single-colored. Pseudo
code for this process is as follows.

from← 1; j ← 1;
for i← 1 to K2 do begin

rr ← a region where r2
from to r2

i are combined;
if rr is a multi-colored region

r3
j ← rr;

from← i + 1; j ← j + 1;
end;

end;
if from ≤ K2 then begin

rest ← a region where r2
from to r2

K2 are combined;
r3

j−1 ← a region where r3
j−1 and rest are combined;

end;
K3 ← j − 1;

Sub-step 1-4 For H-mode, r3
1, . . . , r3

K3 is directly the resulting list of regions. For HV-
mode, ReBDiff performs the same process (Sub-steps 1-1 to 1-3) for every r3

i (1 ≤
i ≤ K3), where line detection in Step 1-1 is done in the vertical direction.

Following the above steps, ReBDiff obtains a list of regions for C, i.e., c1, . . . , cm.
ReBDiff performs a similar process for T and obtains t1, . . . , tn.

5.4.2 Step 2: Generating List of Region Pairs

The next step is to create a list of region pairs by repeatedly associating a region in C

with a region in T one-by-one on the basis of the similarity between the two regions. Since
the cost of calculating similarities for all possible pairs is too large, ReBDiff calculates
the similarity only for those regions with coordinates close to each other.

5.4. DIFFERENCES DETECTOR 67

Let RH and RV be ranges in the horizontal and vertical directions, respectively, used
to search the corresponding region, and let SP be the similarity threshold used to judge
whether two regions are pairable. As before, PL is a list of region pairs, which is initially
empty.

We define the similarity between two regions as the result of template matching [29]
on one region using the other region as a template image. Of the two regions, the one
with the smaller area is used as the template image. PL is created using a two-step
process.

Step 2-1 For region c in C, ReBDiff selects regions t from T , each of which satisfies three
conditions: (1) t exists in a rectangular region for which the upper-left coordinate
is ul(c)− (RH , RV) and the lower-right coordinate is lr(c) + (RH , RV); (2) wd(c) =
wd(t); and (3) sim(c, t) > Sp. Let t be the region with the highest value of similarity
with c among the regions selected from T . If such a t exists, ReBDiff adds a region
pair (c, t) to PL and removes t from T ; otherwise, ReBDiff adds a region pair
(c, null) to PL. This procedure is performed in order from c1 to cm.

Step 2-2 For every region t in T that was not selected in Step 2-1, ReBDiff adds a region
pair (null, t) to PL.

If the value of SP is too small, many inappropriate region pairs that do not contain null

may be created. On the other hand, if the threshold is too large, two regions that should
be paired and labeled Scaling or Alteration may not be paired, resulting in many (c, null)
and (null, t) region pairs (Deletion and Addition) being generated. Because the former
situation is more serious, it is necessary to empirically determine that SP is sufficiently
large, but not too large. In our experiments, we set SP to 0.5.

5.4.3 Step 3: Assigning Difference Types to Region Pairs

The final step is to assign one or two appropriate difference types to every region pair
in PL. Let SM (SM > SP) be the threshold for similarity. The following logic is used to
assign difference type(s) to every region pair p = (c, t) in PL, where attach(p, ty) assigns
ty to p.

if c = null then begin attach(p, Addition); return end
else if t = null then begin attach(p, Deletion); return end;
if ul(c) ̸= ul(t) then begin

(dx, dy)← ul(t)− ul(c);
attach(p, Shift (dx, dy)) end;

68 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

if sim(c, t) < SM then begin
d← differences between c and t in pixel units;
attach(p, Alteration d) end;

else if size(c) ̸= size(t) then begin
(sx, sy)← (wd(t)/wd(c), ht(t)/ht(c));
attach(p, Scaling (sx, sy)) end

return;
Please note that both Shift and Scaling or both Shift and Alteration might be assigned

to a pair. In fact, changes that can be regarded as a parallel movement and also regarded
as an alteration or a scaling are commonly seen. Even for such cases, the tester can check
each difference type assigned to the pair by using the checking view corresponding to the
type, as described in Section 5.3.4.

Finally, ReBDiff assigns the same group identifier to all pairs in PL with Shift that
have the same movement amounts, i.e., the same (dx, dy) value.

5.5 Experiments

5.5.1 Research Questions

To evaluate the effectiveness of ReBDiff, we conducted experiments to answer two research
questions.

RQ1 Can ReBDiff detect all differences between the correct screen and the target screen
under test? Is the number of detected differences as small as possible? Is the tester’s
effort for confirming the detected differences sufficiently small?

RQ2 What are the differences in the discovery rate and confirmation time compared
with those for manual confirmation?

5.5.2 Method

To answer RQ1, we conducted two experiments.
The first one used target screens with embedded artificial mutations representing

changes. We prepared images of correct screens by taking screenshots of real-world ap-
plications. We then created target images by embedding changes (described below) into
the correct images.

• Additions, deletions, shifts, and scalings of screen elements. In some cases of shift-
ing, two screen elements became overlapped.

5.5. EXPERIMENTS 69

Table 5.1: Target Screens.

Experiment Target App. type Screen size No. of type 1 change(s) and description No. of type 2
screen change(s)

1 Am Mobile 411 × 1327 1: Change in design in upper side 1
Ap PC 839 × 928 1: Change in design in upper side 1
Bm Mobile 411 × 2061 1: Deletion of logo at top 1
Bp PC 1042 × 1813 1: Deletion of logo at top 1
Cm Mobile 411 × 5672 1: Deletion of advertisement at top 1

Cm11 Mobile 411 × 5672 1: Deletion of advertisement at top 10
Dp PC 1097 × 4200 1: Deletion of advertisement in upper side 1

Dp11 PC 1097 × 4200 1: Deletion of advertisement in upper side 10
Em Mobile 411 × 4490 2: Deletion of advertisement in upper side 2

and link button in middle of screen
2 Xe Electron 765 × 593 2: Change in UI in upper and bottom side 0

• Slight alterations of screen elements.

• Changes in line feed positions and fonts.

The second experiment used screens in which there were actual changes in a real-
world application. We prepared screenshot images of corresponding old version and new
version screens.

To answer RQ2, we asked four participants to detect differences in two ways, i.e., by
visually checking the entire image manually and by using ReBDiff. We then measured
the rate of differences discovery and the time required for confirmation. For each manual
detection, we prepared an Excel sheet with the correct image and the target image side
by side so that the participants were able to perform visual confirmation as efficiently as
possible not only by looking at the display but also by referring to the Excel sheet. For
each participant, the target screen for ReBDiff confirmation differed from that for manual
confirmation to prevent learning effects.

The parameters and thresholds at each step in the differences detection were adjusted
by using data from real-world websites for PCs and smartphones (excluding websites
related to the target screens used in this experiment) so that differences were properly
detected. The parameter and threshold values were SL = 0.8, SR = 0.1, SP = 0.5, and
SM = 0.97.

5.5.3 Target Screens

Table 5.1 lists the target screens used in the experiments. Am and Ap are login screens
for the Japan Pension Service Nenkin net (mobile and PC versions, respectively). Bm

70 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

Table 5.2: Results for RQ1: Number of Detected Differences.

Target screen No. of detected differences Difference
screen Shift Addition Deletion Alteration Scaling detection
Am 2 1 1 1 0 2/2
Ap 1 0 0 2 0 2/2
Bm 1 2 2 0 0 2/2
Bp 1 0 0 1 1 2/2
Cm 1 0 1 1 0 2/2

Cm11 2 3 4 7 0 11/11
Dp 1 1 1 1 0 2/2

Dp11 1 1 1 10 0 11/11
Em 2 0 0 4 0 4/4
Xe 1 0 0 2 0 2/2

and Bp are login screens for the Internet banking service of the Japan Post Bank (mobile
and PC versions, respectively). Cm and Cm11 are the top pages of NTT East’s mobile
web service, Dp and Dp11 are the top pages of NTT DOCOMO’s “My docomo” service
for PC web, and Em is the top page of NTT West’s mobile web service. Am and Ap have
a rather simple design and a small screen. Dp, Dp11, and Em have more complicated
designs and larger screens.

For each target screen, the target image had

• changes that affected the entire screen (type 1 changes) such as insertion of a logo
at the top of the page, and

• changes that did not affect the entire screen (type 2 changes) such as deletion of
the login button.

For Cm11 and Dp11, type 2 changes were embedded as much as possible in the entire
screen. There were ten such changes.

Xe is the screen of an Electron application (2 KL), which had been developed at NTT.
Its target image had two type 1 changes and no type 2 changes. Since the Xe screen was
modified by the addition of a new function to the application, it was necessary to confirm
that unexpected changes on the new version’s screen did not occur elsewhere.

For all target screen displays, we observed that the problem shown in Fig. 5.2 occurred
when using an existing image-based VRT that performed difference detection in pixel
units.

5.5. EXPERIMENTS 71

Table 5.3: Results for RQ1: Ratio of Area.

Target screen Shift Addition Alteration Alteration Scaling
Deletion (confirmable (not confirmable

in pixel units) in pixel units)
Am 90.3% 5.8% 11.7% 0% 0%
Ap 62.7% 0% 38.6% 23.7% 0%
Bm 93.2% 6.8% 0% 0% 0%
Bp 87.6% 0% 76.4% 0% 12.4%
Cm 99.6% 0.4% 2.3% 0% 0%

Cm11 96.4% 3.6% 13.4% 0% 0%
Dp 92.9% 4.3% 2.8% 0% 0%

Dp11 93.0% 4.3% 23.1% 0% 0%
Em 92.2% 0% 13.1% 0% 0%
Xe 68.2% 0% 0% 56.6% 0%

We obtained screenshot images of PC and mobile web screens on the Chrome browser
in Windows 10 by using Full Page Screen Capture, which is a Chrome extension. For the
mobile web pages, we used Chrome’s developer tool to display the pages with the screen
size of the mobile version (we used the size of the Pixel2 XL terminal) and then captured
screenshot images. For the Electron application, we obtained screenshots by pushing the
Alt and PrintScreen keys, the traditional way to get screenshots in Windows.

In addition, for Cm11 and Dp11, we asked the participants to detect differences in
two ways: by using ReBDiff and by manual checking of the entire image.

5.5.4 Results

RQ1

Tables 5.2 and 5.2 present the results of applying ReBDiff to each target screen: the
number of detected differences for each difference type and the ratio of the area of the
regions in which differences were detected to the total area. Here, the total area is the
sum of the area of the correct image and that of the target image under test, which can
be regarded as the entire area to be checked in order to detect differences. Since manual
checking without ReBDiff requires that the total area be entirely checked, the smaller the
area of the regions for which ReBDiff will be used to detect differences, the greater the
effectiveness of ReBDiff.

72 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

Cm11-R-ReBDiff, 100

Cm11-S-ReBDiff, 100

Dp11-P-ReBDiff, 100

Dp11-Q-ReBDiff, 100

Cm11-P-Manual, 82

Cm11-Q-Manual, 91

Dp11-R-Manual, 73

Dp11-S-Manual, 100

0

50

100

0 100 200 300 400 500 600 700

D
if

fe
re

n
ce

 d
et

ec
ti

o
n

 r
at

e
(%

)

Confirmation time (s)

ReBDiff Manual

Figure 5.8: Difference Detection Rates and Confirmation Times for RQ2.

For all target screens, ReBDiff detected all (type 1 and type 2) changes. Though the
ratios of the area of detected Shift were large, i.e. over 90% for seven cases and at least
62.7%, the number of detected Shift differences in each case was 1 or 2. Therefore, these
differences should be confirmable without much effort by the tester.

Examining the Addition and Deletion differences in detail, we see that two regions that
should have been paired to form a region pair and detected as a single Alteration difference
were detected as an Addition difference and a Deletion difference. This was because they
were not similar enough to be paired. In such cases, the tester must expend much effort
in checking them because the contents of both the Addition region and the Deletion region
must be visually checked to identify the differences between them. However, the ratio of
each area for the Addition and Deletion differences was less than 6.8% of the total area,
which is not particularly large.

The Alteration differences that were confirmable by comparison in pixel units would
not impose a large burden on the tester even though the ratio of the area was as high as
76.4%. This is because ReBDiff provides an overlapping view (Fig. 5.7) that helps the
tester compare the two regions.

The Alteration differences for Ap and Xe were impossible to confirm by comparison in
pixel units. Though the tester would have to visually check these differences, the burden
would be greatly reduced by using ReBDiff because ReBDiff narrowed down the region to
be checked (to 23.7% for Ap and 56.6% for Xe). This means that the tester would not
need to visually check the entire screen.

5.5. EXPERIMENTS 73

RQ2

The difference discovery rate and time required for confirmation are plotted in Fig. 5.8
for both using ReBDiff and manual confirmation. In both cases, there were (the same)
four participants, referred to here as P, Q, R, and S. The target screens were Cm11
and Dp11, both of which had one type 1 change and ten type 2 changes. A plotted
point labeled “X-Y -ReBDiff” indicates that participant Y confirmed target screen X by
using ReBDiff and a plotted point labeled “X-Y -Manual” indicates that participant Y

confirmed target screen X manually. When ReBDiff was used, all differences were detected
by all participants, whereas when manual confirmation was used, some differences were
overlooked. In addition, the times required for confirmation using ReBDiff were much
shorter than those using manual confirmation. These results show that ReBDiff improves
the difference detection rate and reduces the confirmation time.

Six differences were overlooked in the manual confirmation.

• Differences in font type: 2 instances

• Difference in font size: 1 instance

• Difference in sentence content: 1 instance

• Change in icon position: 1 instance

• Change in logo position: 1 instance

Two participants failed to manually detect differences in font type. Though such differ-
ences are difficult to detect visually, they are easily found by ReBDiff by using overlapping
and comparing the two regions in pixel units. Some participant also overlooked differ-
ences that were relatively easy to find such as a difference in font size and changes in
an icon’s/logo’s position. For such cases, by using ReBDiff, the participants had only to
check a limited part of the entire screen and were able to compare an Alteration difference
in pixel units. As a result, they found the differences. This demonstrates the effectiveness
of using ReBDiff.

5.5.5 Discussion

In the experiments, ReBDiff was able to detect all differences as shown Table 5.2. How-
ever, in some cases ReBDiff may overlook a difference. For example, if the area of changes
in a region in the target screen is very small relative to the area of the region, this dif-
ference might not be detected. Adjusting the threshold values (SP and SM) enables the

74 CHAPTER 5. REGION-BASED ESSENTIAL DIFFERENCES DETECTION

alteration of regions to be judged more strictly, which reduces such missed detections.
Such stricter judgment of equivalences can cause many unessential differences. There is
thus a trade-off between reducing the number of oversights and reducing the number of
detected unessential differences. An appropriate policy for this might be, in tests where
even a few oversights are unacceptable, the equivalence of the two sections should be
strictly determined. In tests where time is a priority and a few oversights are acceptable,
the equivalence of the two sections should be determined less strictly.

In the experiments, we used screens for PC web and mobile web services and an Elec-
tron application with different display sizes and different implementation technologies.
The embedded change patterns were created on the basis of interviews with developers
who had been mainly developing mobile web applications. Since the effectiveness of the
proposed method was demonstrated using these screens and change patterns, the pro-
posed method should be widely applicable. To verify that it can be applied more widely
and more generally, it needs to be evaluated using a wide variety of application types,
e.g., Android and iOS native applications. Future work also includes interviewing testers
at a wider variety of development sites.

As described in Section 5.1, there may be dynamic regions such as those for adver-
tisements and news articles within a screen, and these regions are detected as differences.
If many such differences are detected in practical use of ReBDiff the time for checking
differences will be longer. A promising method for overcoming this problem is to specify a
mask area on the basis of the relative positional relationships of multiple screen elements
and use it to remove the dynamic regions from the screen [3].

If the correct screen and the target screen greatly differ, two problems may occur.

• The coordinates of the corresponding regions in the two screens would be too far
apart. As a result, a large number of Addition and Deletion differences would be
detected because ReBDiff would be unable to create region pairs properly.

• ReBDiff would create an incorrect region pair and detect it as an Alteration differ-
ence. If many such Alteration differences are detected, the tester would probably
get confused.

A practical solution when more than a certain number of differences are detected for
the target screen is to carry out a visual confirmation without using ReBDiff’s checking
views.

5.6. CONCLUSION 75

5.6 Conclusion
Our proposed image-based visual regression testing system, ReBDiff, divides each of the
images of the two application screens to be compared into multiple regions, makes appro-
priate matchings between corresponding regions in the two images, and detects differences
on the basis of the matchings. By using ReBDiff, the tester can identify essential differ-
ences between the two screens efficiently even when there are changes that affect the entire
screen, e.g., parallel movements of screen elements. Experiments using screens for PC
web and mobile web services and an Electron application demonstrated the effectiveness
of the proposed method.

A product [61] incorporating the technology used in ReBDiff is currently being used
at NTT group companies. Future work includes improving ReBDiff by reflecting the
feedback and comments of actual users.

Chapter 6

Suspend-less Debugging

In this chapter, we describe a method enables the programmer to efficiently debug the
interactive and/or realtime parts in db-gui-apps. Our proposed method visualizes the
program’s internal state which accessing data on DB and/or memory in real time. Since
the observation target of proposed method is only the program’s internal state, we discuss
using programs that accesses the data on-memory instead of on a DB for simplicity in
this chapter.

6.1 Introduction

In this section, we introduce a motivating example with a game application, and ex-
plain the problems of the existing methods when debugging interactive and/or realtime
program.

Suppose that we need to debug the logic of an action game program in which a player
character attacks nearby enemy characters. Figure 6.1 presents a fragment of source
code for this game written in C#. On the basis of a player’s input, this code reduces
the health point, which we call HP hereafter, of every enemy within some distance of the
player character. An enemy is defeated if its HP becomes zero. This code has a high
level of realtimeness because it is executed at a certain interval, say, 30 times a second.
This code is bidirectionally interactive because its behaviors change with the input events
determined by the player.

Imagine a situation in which the player pushes the key corresponding to DashButton
on the keyboard, which makes the power of the player character’s attack becomes five
times stronger than normal. Though the programmer expects an enemy to be defeated
if the key corresponding to AttackButton is then pushed two or three times, the enemy
is not defeated due to a bug. In the rest of this chapter, the keys corresponding to

77

78 CHAPTER 6. SUSPEND-LESS DEBUGGING

1 public void PlayerAttack(PlayerInput input, Player player,
2 List<Enemy> enemyList)
3 {
4 int damagePoint = player.OffensivePower;
5 if (input.AttackButton)
6 {
7 // player attack strength increases five times
8 if (input.DashButton) damagePoint *= 5;
9 foreach (var enemy in enemyList)

10 {
11 if (Vector3.Distance(player.Position, enemy.Position) <= 5.0)
12 { // enemy is nearby
13 if (!enemy.IsInvincible)
14 { // enemy is not invincible
15 enemy.HealthPoint -= damagePoint;
16 if (enemy.HealthPoint <= 0) enemy.Dead(); // enemy is defeated
17 }
18 }
19 enemy.EndPlayerCollision();
20 }
21 }
22 }

Figure 6.1: Code Fragment for Action Game Program.

DashButton and AttackButton are simply referred to as “dash button” and “attack
button,” respectively.

There are several possible causes of this bug.

• The value of input.AttackButton is false in spite of the player pushing it.

• The power of the player character’s attack remains normal because the value of
input.DashButton is not true.

• EnemyList does not include the enemy character that is attacked.

• The result of Vector3.Distance is incorrect.

• The value of enemy.isInvisible is unexpectedly true.

If we use breakpoint-based debugging, we have to set and then remove many break-
points to identify the point reached by program execution and to check the values for the
variables of interest at that point. Unfortunately, this debugging approach significantly
reduces the efficiency of debugging because it forces the program to suspend execution
every time it comes to a breakpoint. Moreover, breakpoint-based debugging makes it im-
possible for the programmer to use some of the features provided by an interactive and/or
realtime debuggee program. For the example in Fig. 6.1, it is impossible to push both

6.1. INTRODUCTION 79

the dash button and the attack button at the same time. These problems are common
to many interactive and/or realtime programs that handle input events.

We have developed a debugging method that resolves these problems. It visualizes
both the information on the execution path and the values of the expressions of interest in
realtime. We implemented the proposed method as a debugger named SLDSharp for C#
programs. SLDSharp makes it possible to efficiently debug interactive and/or realtime
programs such as the one in Fig. 6.1.

The contributions of this work can be summarized as follows.

• We clarify the requirements for a method for debugging interactive and/or realtime
programs and then present a debugging method that meets these requirements.

• We present SLDSharp as a specific implementation of the proposed debugging
method. Though SLDSharp was implemented for debugging C# programs, its de-
sign is applicable to any procedural or object-oriented programming language.

• We describe implementation if SLDSharp by means of code transformation.

• As a case study, we describe the debugging of a game program developed using the
Unity game engine that illustrates effectiveness of the proposed method. A demo
video of the case study is available online1.

Our method keeps track of both the currently executing statement in a program and
the changes in values of the expressions of interest, and visualizes them in realtime. It
enables the programmer to interactively explore possible causes of a bug without having
to suspend the program or check a log. Notable features of SLDSharp from the practical
point of view are as follows. First, the programmer can select the level (grain) of realtime
visualization for the executed parts of a program among the source code file level, method
level, and statement level. This enables the programmer to narrow down the parts to be
investigated step-by-step. Second, the programmer can specify sections and conditions
for visualization. The programmer can thus observe the values of the expressions of
interest. Third, SLDSharp can be used to debug multi-threaded programs. This is quite
important because many interactive and/or realtime programs use multiple threads.

To implement SLDSharp, we embed code fragments that obtain information needed
for debugging in every program statement. Since this embedding is automatically done
via program transformation, the programmer does not need to make any changes to the
debuggee program in order to use SLDSharp. All the programmer has to do is to invoke

1https://www.youtube.com/watch?v=iI-WG13qx8c

80 CHAPTER 6. SUSPEND-LESS DEBUGGING

Table 6.1: Classification of Bugs and Scope of This Work
Bug type Interactive and/or realtime programs Batch programs

Functionality
Logical error Scope of this work Debuggable using existing debugger

Runtime error Debuggable using existing debugger

Performance Debuggable using existing profiler

the program transform and link the necessary runtime library. Thus, this method can be
applied to programs written in languages other than C#.

Note that our approach focused on debugging a single process, so debugging a multi-
process system is out of scope in this study.

6.2 Related work

Programs that are opposite to interactive and/or realtime programs are batch programs,
which do their processing without programmer intervention. Typical examples of batch
programs are compilers and image processing programs. For both kinds of programs, i.e.,
interactive and/or realtime programs and batch programs, possible bugs can be classified
into three types: functionality bugs that might induce logical errors [56], which is the
scope of this work, functionality bugs that might induce runtime errors, and performance
bugs that might reduce the speed of program execution unexpectedly.

Table 6.1 summarizes this classification scheme. Here, we review existing debugging
methods for these kinds of bugs.

Classical debugging methods
Wong et al. [75] identified four types of classical debugging methods:

• breakpoint-based debugging such as Microsoft Visual Studio Debugger2 and GNU
Debugger (GDB)3,

• debugging using assertions [52],

• “printf debugging” in which code for printing desired information is inserted, and

• debugging using a profiler such as Microsoft Visual Studio Profiler4.

2https://msdn.microsoft.com/ja-jp/library/w-indows/desktop/sc65sadd
3https://www.gnu.org/software/gdb/
4https://docs.microsoft.com/ja-jp/visualstu-dio/profiling/

6.2. RELATED WORK 81

Though classical, these methods are still widely used because of their ease of use. For
breakpoint-based debugging, since setting and removing breakpoints are bothersome
tasks for the programmer, several researches have tried to ease these burdens. For exam-
ple, Yia et al. [78] enabled programmable breakpoint setting, Zhang et al. [79] enabled
breakpoints to be set automatically without programmer intervention, and Ressia et
al. [31] enabled the setting of breakpoints not on lines/statements in source code but on
objects by focusing on their state. With any of these methods, however, execution of the
debuggee program must be suspended, which causes the problems described in Sect. 6.1.
Debugging using assertions and their variants, contracts [26], suspends program execution
every time an assertion (or contracts) is violated.

Printf debugging provides a simple way for a programmer to observe the internal
states of a program without suspending its execution. However, debugging code must
be inserted at many places in the source code. This not only imposes a burden on
the programmer but also degrades the maintainability and readability of the program.
Although the programmer can separate the debugging code from the main program code
by using an aspect-oriented technique [38] or a variation [77], the programmer’s burden
remains by no means small.

A profiler measures the CPU time consumed by each method or line in the source code
on the fly and, when displaying the results, superposes the source code and measured
CPU times for ease of visibility. The obtained results are helpful for locating the source
of a performance bug and improving program performance, but they are less helpful for
identifying a possible source of a logical bug.

Recording execution logs
In addition to the classical methods described above, there are more advanced meth-

ods. Some automatically record execution logs of a program for use by the programmer
in debugging the program.

ETV [72] records information for the execution paths and displays it visually after
the debuggee program finishes execution. JIVE [21] generates an object diagram and
sequence diagram from the obtained logs and narrows down the location to be searched
by querying to the log information. Hermann et al’s [8] target was a reactive program for
writing interactive and/or realtime programs. It collects logs by applying patches to the
libraries used by the debuggee program and visualizes data flows and timings from the
collected logs. Lin et al. [40] reported a method that narrows the range in which bugs
may exist through dialogues with the programmer on the basis of automatically collected
log information. Maruyama and Terada [43] reported a method that monitors specific
lines in the debuggee program and records logs. In the second run of the program, the

82 CHAPTER 6. SUSPEND-LESS DEBUGGING

Table 6.2: Requirements for Debuggers Applied to Interactive and/or Realtime Program.
1 Obtain necessary 2 High 3 Low 4 Low overhead 5 General
information immediately perspective programmer applicability
without suspending view effort

Classical Breakpoint 3 3

debugging Assertion 3 3

Printf 3 3 3

Recording execution logs 3 3 3

Time travel debugging 3 3

Suspend-less Tanno2008 3 3

debugging Proposed 3 3 3 3 3

method suspends its execution immediately before the occurrences of the target events.
Most of these methods collect logs automatically without suspending the debuggee

program and exploit the obtained logs after its execution. Visualizing the collected
information effectively properly can give the programmer a higher perspective of the entire
program for better understanding. Although these methods are useful for debugging, the
programmer is unable to see such information as the execution path and variable values
in realtime and to decide the next input on the basis of such information. As a result,
trial and error style debugging is difficult. In addition, since it is impractical to collect
all information about the target program due to the overhead, the programmer may be
unable to find desired or necessary information in the logs.

Time travel debugging
Another approach is to record all inputs to a program, not only inputs from the pro-

grammer but also those from devices and those generated by programs, e.g., pseudo ran-
dom numbers. This approach is relatively lightweight because only inputs are recorded.

By collecting and using these inputs, the programmer can replay a program’s execu-
tion. This approach has been implemented in many programming languages such as C,
Java, .NET, and JavaScript (Node.js) [10–12, 35]. The programmer can reproduce any
bug encountered at any time and identify the source of the bug by retracing the pro-
gram’s execution. This approach can be regarded as a variation of the log-based one, so
these two approaches share the defects described above. In addition, there is a technical
hurdle for implementing a mechanism for perfectly replaying execution. For example,
multi-threaded programs do not always replays perfectly because of non-deterministic
scheduling by the operating system, which cannot be controlled by a user program. Thus,
the programs to which this method can be applied are restricted.

Suspend-less debugging for non-preemptive coroutines
The work by Tanno [60] was aimed at solving the problems described above for de-

bugging interactive and/or realtime programs. The targets were game programs written

6.3. PROPOSED DEBUGGING METHOD 83

in a domain specific language (DSL), with the program described as a collection of non-
preemptive coroutines. Thus, Tanno’s focus was how to debug such coroutine programs.
As a result, the work is less general because its target programs are restricted. The
programmer is able to choose a coroutine from among coroutines displayed in a list and
monitor its behavior. However, the programmer is unable to specify the information to
be monitored. In addition, since Tanno’s system does not provide a way for obtaining an
overview of a debuggee program, it is difficult for the programmer to investigate potential
causes of bugs from a higher perspective. The target language is not a widely used one
but rather a DSL designed by the author. Thus, the applicability of Tanno’s approach is
uncertain.

6.3 Proposed debugging method

6.3.1 Targets

Our method targets interactive and/or realtime programs in db-gui-apps as shown in Fig.
2.1. Specifically, the targets of the proposed debugging method are functionality bugs
that might cause logical errors in the repeated execution process in the flow. This process
receives input events from the user, from sensor devices, via the network, and so on. The
values received as input events are used to obtain computation results. For example,
a specified direction of the movement of the player character from the input device is
used to calculate the character’s next coordinates. Finally, the results are output onto
a display, into memory as internal data, or to somewhere else via a network. In an
interactive and/or realtime program, this process occupies most of the execution time.
In addition, the behaviors of this process are hard to predict since the program’s internal
states change moment by moment in accordance with successive arrivals of input events.

6.3.2 Requirements

From the discussion in the previous section, the requirements for a debugging method
for interactive and/or realtime programs that is widely applicable can be summarized as
follows.

Requirement 1: The information needed by the programmer for a debuggee program
can be obtained immediately without suspending its execution.
Requirement 2: The information obtained can be presented from a high perspective
view.

84 CHAPTER 6. SUSPEND-LESS DEBUGGING

(a) Source file list and method list view

(b) Source code view

(1) Highlights of executed files (2) Highlights of executed methods (5) Expressions to be monitored

(6) Sections and conditions to be monitored

Latest value of specified expression

Updating monitored expressions and sections specified by programmer

(7) Debug mode methods specified by programmer

(3) Highlights of executed statements

(4) Information for statement

at mouse cursor position on source code view

Figure 6.2: Views of SLDSharp.

Requirement 3: Obtaining the information does not impose substantial burden on the
programmer.
Requirement 4: The added overhead does not degrade the interactiveness and
realtimeness of the debuggee program.
Requirement 5: The method is generally applicable to many languages and domains
of target applications.

Table 6.2 presents the debugging methods described in Sect. 6.2 in terms of these require-
ments. We can see that none of the existing methods satisfies all the requirements.

6.3.3 Debugging method

The proposed debugging method satisfies all the requirements, as shown in the bottom
row of Table 6.2. The method has the following features.

6.4. DEBUGGER FOR C# 85

Feature 1: The currently executing place, i.e., execution path, in the source code and
the values of expressions at a certain interval are presented in realtime. The
programmer can thus recognize the internal states of the running program immediately.
(Requirement 1)
Feature 2: Information on the execution paths is presented on three levels: file level,
function/method level, and statement level. By appropriately switching among these
levels, the programmer can grasp the behavior of a debuggee program more clearly.
(Requirements 2, 3, and 5)
Feature 3: Detailed monitoring options are provided, such as which sections to
monitor, from where to where to monitor, which conditions to monitor, and which
expressions, typically variables, to monitor. The programmer thus focus on the
information of interest without any noisy information. (Requirements 1 and 5)
Feature 4: Two execution modes are provided: debug mode and normal mode. The
programmer can switch dynamically between them. (Requirement 4)

These features do not restrict the domain of debuggee programs and are applicable to
general procedural and object-oriented languages. Features 2 and 3 are not so difficult
to implement for many languages and environments by using, for example, the JaCoCo5

Java code coverage library, code insertion into Java byte codes [18,19], and code insertion
by program transformation [51].

6.4 Debugger for C#

Figure 6.2 presents a snapshot of SLDSharp based on the proposed method. SLDSharp
has two views, namely source file list and list view (Fig. 6.2 (a)) and source code view
(Fig.6.2 (b)). The main view consists of three parts.

• The left part presents a list of source code file names for the debuggee program.

• The middle part presents a list of C# method names defined in the selected source
code file.

• The right part is used by the programmer to specify which sections, conditions, and
expressions to monitor. It also displays the values of the monitored variables.

The source code view displays the code fragment of interest.
5https://www.eclemma.org/jacoco/

86 CHAPTER 6. SUSPEND-LESS DEBUGGING

SLDSharp continues to display information on program execution, e.g., execution paths
and variables values, in these views by means of highlighting every 50 ms. These views
give the programmer a higher perspective of program execution and help the programmer
efficiently debug the target interactive and/or realtime programs.

In the rest of this section, we explain the characteristic features of SLDSharp by using
the example code in Fig. 6.2.

(1) Highlighting source code files
The left part of the main view highlights in realtime the name of the file that has the

definition of the method just executed. Highlighting in light green means that the execu-
tion has visited this file once within a certain amount of time, and highlighting in dark
green means more than once. By observing the highlighted file names, the programmer
is able to grasp which part of the program has been executed. In the example in Fig. 6.2,
the code in AttackLogic.cs, Enemy.cs, and GameForm.cs has been executed for decid-
ing whether the player’s character should attack an enemy character. If the programmer
selects one of the listed files, the middle part of the main view presents a list of methods
defined in the source code file. If the programmer further selects one of the methods, the
source code view presents its code.

(2) Highlighting methods
The middle part of the main view highlights every method just executed in real-

time. For the example in Fig. 6.2, the programmer can verify whether the PlayerAttack
method in ActionLogic.cs has been executed.

(3) Displaying execution paths
In the source code view, the executed statements in the debuggee program are high-

lighted at regular intervals. By following the highlighted statements as time proceeds,
the programmer can grasp the execution paths of the program. In the example in Fig.
6.2, the player attacked an enemy character within a short distance, by pushing only the
attack button (without pushing the dash button), resulting in “enemy.HealthPoint -=
damagePoint” being executed for the enemy character. The programmer can see that
the body of the foreach statement is highlighted in dark green, meaning that it was
executed more than once. If the programmer pushes the dash button, the programmer
can immediately verify that “damagePoint *= 5” was executed, as shown in Fig. 6.3.

(4) Displaying statement information
SLDSharp assigns a unique identifier to every statement in the debuggee program

statically and displays the identifier assigned to the selected statement in a text box.
By using these identifiers together with the source code file names, the programmer can
specify the sections, conditions, and expressions to be monitored, as explained below.

6.4. DEBUGGER FOR C# 87

DashButton is NOT pushed

DashButton is pushed

Figure 6.3: Highlighting the Executed Statements.

Table 6.3: Commands for Specifying Sections, Conditions, and Expressions to Monitor.
Command type Notation

1 Target source code file:{File path of target source code}
2 Monitored expression watch:{Statement id}:{After or before of statement}:{Monitored expression}
3 Start of monitoring condstart:{Statement id}:{After or before of statement}:{Conditional expression}

section
4 End of monitoring condend:{Statement id}:{After or before of statement}

section

(5) Specifying variables to be monitored
The programmer can specify which expressions, typically variables, to monitor by

using the commands in Table 6.3. These commands can be used in the right part of
the main view. For example, suppose that the programmer wants to monitor changes
in the values of enemy.HealthPoint just before the statement “enemy.HealthPoint -=
damagePoint” (Line 13 in Fig. 6.1). To do so, the programmer gives the file name in which
this statement is described by using the file command “file:GameForm.cs.” Then the
programmer gives the command “watch:8:before:enemy.HealthPoint,” where “8” is
the identifier of the above statement, “before” means that the value of the variable
should be retrieved just before the statement is executed, and “enemy.HealthPoint” is
the expression that is to be evaluated when the statement is executed. The latest value
of this expression is displayed following each repetition of the foreach loop.
(6) Specifying sections to be monitored

The programmer can specify which sections within the source code to monitor and
the conditions used by SLDSharp to decide whether to monitor. For example, consider
the foreach loop from Line 7 to Line 18 in Fig. 6.1. If the body of this foreach
loop is executed at least once, the body will be highlighted. However, from this simple
highlighting, the programmer cannot know for which enemy character the body was
executed because there might be many enemy characters at the same time on the screen.

SLDSharp enables the programmer to monitor the execution of a sequence of state-

88 CHAPTER 6. SUSPEND-LESS DEBUGGING

Original code
Code embedded

with debug code

Step1:

Transform

Debugging library

Step 2:

Build

Binary code

Step 3:

Execute

and debug

Figure 6.4: Overview of SLDSharp Implementation.

ments for some specific condition. For the above example foreach statement, if the pro-
grammer want to monitor executions of its body for only enemy characters of the type
“Slime,” the programmer gives the commands “condstart:5:before:enemy. TypeName
=="Slime"” and “condend:10:after” to the first statement (Line 15 in Fig. 6.2) and the
last statement (Line 23 in Fig. 6.2) to be monitored, respectively. “enemy.TypeName==
"Slime"” in the condstart command specifies the condition under which monitoring
should begin. By giving these commands, the programmer can monitor the body of the
foreach statement only for type Slime enemies and observe the values of expressions if
monitoring expressions have already been specified.

For multi-threaded programs, thread identifiers can be used in the condition part of
a condstart command. Thus, the execution path for a specific thread can be visualized.

The specifications of monitored sections, conditions, and expressions are reflected by
pushing the update button in the right part of the main view.
(7) Specifying execution mode

For each method, the programmer can specify whether to execute in debug mode or
not. All methods are in debug mode by default.

As explained, a programmer using SLDSharp can debug a program efficiently without
suspending its execution and monitoring its behaviors regarding execution paths and
variable values.

6.5 Implementation
SLDSharp is implemented in three steps, as shown in Fig. 6.4.

1. The code of the debuggee program is transformed into another program embedded
with debugging codes.

2. The transformed code is compiled and linked with our debugging library.

6.5. IMPLEMENTATION 89

1 public void PlayerAttack(PlayerInput input, Player player,
2 List<Enemy> enemyList)
3 {
4 if (_Logger.IsLogging(0))
5 _debug_PlayerAttack(input, player, enemyList);
6 else
7 _original_PlayerAttack(input, player, enemyList);
8 }
9

10 private void _debug_PlayerAttack(PlayerInput input, Player player,
11 List<Enemy> enemyList)
12 {
13 var _l = _Logger.GetLogger(0, 0);
14 int damagePoint = _l.LogFunc(() => player.OffensivePower, 0);
15 if (_l.LogFunc(() => input.AttackButton, 1))
16 {
17 if (_l.LogFunc(() => input.DashButton, 2))
18 //player attack strength increases five times
19 _l.LogFunc(() => damagePoint *= 5, 3);
20 foreach (var enemy in _l.LogFunc(() => enemyList, 4))
21 {
22 ...(omission)...
23 _l.LogAction(() => enemy.EndPlayerCollision(), 10);
24 }
25 }
26 }

Figure 6.5: Transformed Code.

3. The binary code is executed, enabling the embedded debugging code to obtain
information needed for debugging and the code to be visualized without suspending
the program.

Since this embedding is automatically done by program transformation, the programmer
does not need to make any changes to the debuggee program to use SLDSharp. Below
we describe in detail the first and third steps because they are the major parts of our
implementation.

6.5.1 Mechanism of code transformation

SLDSharp embeds debugging code that obtains necessary information for every statement
into the code of the debuggee program, thereby generating an instrumented program.
We explain code transformation by using the example in Fig. 6.1. Figure 6.5 shows the
transformed code, where _Logger is a class provided by our debugging library.

To avoid creating extra overhead for obtaining debugging information, SLDSharp has
a mechanism for dynamically switching the obtaining of debugging information on and
off for each method. In PlayerAttack (Line 1 in Fig. 6.5), by checking the return

90 CHAPTER 6. SUSPEND-LESS DEBUGGING

value of _Logger.IsLogging(0) (where 0 is the method identifier for PlayerAttack
), SLDSharp dynamically switches between the original code and the transformed code
without suspending the target program.

The definition of _original_PlayerAttack in Fig. 6.5 is the same as that of Player
Attack in Fig. 6.1; _debug_PlayerAttack (Line 10 in Fig. 6.5) is the code transformed
from the original code for PlayerAttack, which is embedded debugging code. The re-
turn value of _Logger.GetLogger (Line 13 in Fig. 6.5) is an instance of _Logger asso-
ciated with the thread being executed. An instance of _Logger is generated for every
thread. Each top level statement in the original code is transformed into a method call
_l.LogAction(...) or _l.LogFunc(...) for logging debugging information. LogAction
and LogFunc are logging methods that take a statement, which is a closure of the original
top level statement, and the identifier of the statement as their arguments. For exam-
ple, player.OffensivePower in the original code is transformed into _l.LogFunc(() =>
player.OffensivePower, 0) (Line 14 in Fig. 6.5). LogFunc is used for the transforma-
tion of statements that have return values, and LogAction is used for those that do
not.

Figure 6.6 shows pseudo code for LogFunc. The first argument, func, is the closure
of the top level statement. LogFunc obtains information on execution paths (Line 4) and
local variable values to be monitored (Lines 11–13) and determines whether to monitor
the specified section on the basis of the conditions given by the programmer (Lines 5–9)
before or after an execution of the statement (Line 16). LogAction is almost the same
as LogFunc<T> except that LogAction returns no value.

6.5.2 Mechanism of debugging execution

Figure 6.7 illustrates the execution of transformed code for debugging. In this implemen-
tation, the debugger controller thread, or controller thread for short, runs as an extra
thread in a process of the debuggee program. Each thread except the controller thread
records, if necessary, logs generated by the embedded code for debugging every time it
executes a statement. The controller thread visualizes these logs on the execution paths
and the expression values for the programmer.

The controller thread receives designations about the monitored expressions, sections,
and conditions from the programmer and stores them in shared memory so that they are
accessible from the other threads. As multiple accesses could happen simultaneously,
accessing the shared memory needs mutual exclusion.

For execution path information that is frequently accessed by all threads including
the controller thread, we used Interlocked class, which provides lightweight atomic

6.6. CASE STUDY 91

1 public T LogFunc<T>(Func<T> func, int statementId)
2 {
3 //Debug code before executing statement
4 if(Is logging enable for current thread?) Record that statement executed
5 if(Is condstart(before) exist?){
6 if(Is the condition of condstart true?)
7 Enable logging for current thread
8 else Disable logging for current thread
9 }

10 if(Is condend(before)exist?) Enable logging for current thread
11 if(Is logging enable for current thread?){
12 if(Is watch(before) exist?) Record the values of variables
13 }
14
15 //Execute the original statement
16 T result = func();
17
18 //Debug code after executing statement
19 (...omission...)
20
21 return result;
22 }

Figure 6.6: Pseudo Code for LogFunc.

operations, to reduce overhead created by mutual exclusion.
Mutual exclusion is also necessary for accesses to the table that stores instances of

Logger class, each of which corresponds to an executing thread and is retrieved by
Logger.getLogger in Fig. 6.5. Write accesses to the table happen when a new thread

is created. We assume that these write accesses do not happen frequently and thus used
ReaderWriterLock class, which allows concurrent read accesses but allows write access
for only a single thread.

6.6 Case study

The effectiveness of suspend-less debugging using SLDSharp is demonstrated here with a
case study using the Tanks tutorial6 (1.5 KLOC), or Tanks for short. It was developed
using the Unity game engine7, which is widely used for developing game programs. Tanks
is a game in which each of the two players, player-0 and player-1, controls a tank and
shoot shells at the opponent tank to destroy it. Player-0’s tank is red, and player-1’s
tank is blue. The players use the same keyboard to control their tanks.

We intentionally embedded two faults into the program that resulted in two bugs.
6https://unity3d.com/jp/learn/tutorials/s/tanks-tutorial
7https://unity3d.com/

92 CHAPTER 6. SUSPEND-LESS DEBUGGING

Execution paths,

latest values of

expressions

Monitored expressions，

sections, and conditions

Programmer

Debuggee program

Thread

N

Thread

1 …

Threads of debuggee program

Debugger

controller

thread

- Execution paths，latest values of expressions

- Monitored expressions, sections, and conditions

Figure 6.7: Mechanism of Debugging Execution.

• Bug 1: The first bug is that nothing happens when a tank operated by a player
shoots a shell and the shell hits the opponent’s tank. The expected action is that
“when a shell hits a tank, the tank is slightly flipped and damaged, and if several
shells hit a tank, the HP of the tank drops to zero and the tank is destroyed”

• Bug 2: The second bug is that “the blue tank does not turn when player-1 pushes
the turn button on the keyboard.”

Using SLDSharp, we can efficiently identify the causes of these bugs without suspend-
ing the program. A demo video of this case study is available online8.

6.6.1 Debugging First Bug

The detailed process for debugging the first bug is as follows.
As shown in Fig. 6.8 (1), soon after the players start the game, source code file names

such as CameraControl.cs and TankMovement.cs are highlighted. This is because meth-
ods related to controlling the orientation and position of the camera, methods related to
moving the tanks, and so on are executed at regular intervals, usually 30 to 60 times per
second.

8https://www.youtube.com/watch?v=iI-WG13qx8c

6.6. CASE STUDY 93

(1) At start of game (2) A tank shoots a shell. (3) The shell flies

toward the opponent.

(4) The shell lands on the

opponent.

(5) The shell lands on the opponent (method list view)

(6) The shell lands on the opponent. (source code view)

Figure 6.8: Debugging First Bug.

As shown in Fig. 6.8 (2), when a tank shoots a shell, unhighlighted ShellExplosion
.cs becomes highlighted. Then, as shown in Fig. 6.8 (3), after the shell is fired, the
highlight on ShellExplosion.cs fades and disappears. In addition, TankShooting.cs
was weakly highlighted in Fig. 6.8 (1), which means that it was executed only once within
a certain amount of time. After the shell is shot, its highlighting becomes strong as shown
in Fig. 6.8 (2), which means that it was executed multiple times within a certain amount
of time. Thus, we can conclude that ShellExplosion.cs and TankShooting.cs contain
code related to the process for shooting shells.

As shown in Fig. 6.8 (4), ShellExplosion.cs becomes highlighted again when the
shell lands on the opponent tank. Thus, we can conclude that ShellExplosion.cs con-

94 CHAPTER 6. SUSPEND-LESS DEBUGGING

tains code related to the process for the landing of shells. Since we want to determine why
nothing happens when a shell hits the opponent tank, we focus on ShellExplosion.cs,
which contains the most suspicious code. Next, we investigate which method is executed
when a shell lands on the opponent tank.

We fire another shell and check which method is executed when the shell lands on the
opponent tank. As shown in Fig. 6.8 (5), when the shell lands on the opponent tank, we
observe that the OnTriggerEnter method is executed. We thus investigate the behavior
of OnTriggerEnter in detail.

We use the source code view (Fig. 6.8 (6)) to check which statements in OnTrigger
Enter are executed. When another shell is fired and lands on the opponent tank,
there is one element of colliders, and the body of the for statement is executed.
Since “target Rigidbody.AddExplosion ...” is not executed, we can conclude that
“!targetRigidbody” is true, and the continue statement is executed.

The object assigned to the variable targetRigidBody is an instance of RigidBody
class. Operator ! is defined on RigidBody by operator overloading to be true if the
object for collision detection is not set to an instance of RigidBody. We expect that the
object for collision detection has been appropriately set for each instance of RigidBody
that corresponds to a tank. Thus, we have identified the cause of the bug — the object
for collision detection is not set on the instance of the opponent tank.

6.6.2 Debugging Second Bug

The detailed process for debugging the second bug is as follows.
As shown in Figs. 6.9 (1) and (2), we find that Turn, which is an instance method

of TankMovement class that controls tank turning, is always highlighted regardless of
whether the turn button for the blue tank is pushed.

We want to focus on the blue tank only, not on the red tank. In this program, each
tank is associated with the controlling player’s number: 0 for the red tank and 1 for the
blue tank. Thus, as shown in Lines 1–3 in Fig. 6.9 (3), we set the monitored section to be
the body of Turn (from tstatement 40 to statement 42) and the monitored condition to
be this.m_PlayerNumber == 1. In this way, we can select which information to monitor
by focusing only on the processing of the blue tank.

Though we focus only on the blue tank, Turn remains highlighted. This means that
Turn is still executed for the blue tank but has no effect. To determine the reason, we
monitor the values of the variables when Turn is next executed.

We can monitor the values of variables such as turn and m_TurnSpeed by using the
monitored expressions. As shown on Line 4 in Fig. 6.9 (3), we use the watch command

6.7. OVERHEAD MEASUREMENT 95

(1) Method list view (2) Source code view

(3) Monitored expressions and sections (4) Monitoring result

Figure 6.9: Debugging Second Bug.

to monitor the value of this.m_TurnSpeed. We then find that the reason for the bug is
that m_TurnSpeed of the blue tank is always 0 (Fig. 6.9(4)).

As described above, by fully using the features of SLDSharp suspend-less debugging,
we can efficiently determine the internal states of the program by giving various inputs
without suspending its execution.

6.7 Overhead measurement

To measure the runtime overhead of SLDSharp, We used one GUI program, two game
programs, and one numerical calculation program.

1. CalculatorCSharp9 (2.5 KLOC) is a GUI-based scientific electronic calculator pro-
gram. We measured the execution time when pushing of the 0 button was repeated
100,000 times.

2. PongCSharp10 (0.38 KLOC) is a pong game program that accepts player input,
computes the movement of the computer player, calculates the movement of the
ball, draws the calculation result on the game screen, etc. at regular intervals. We
measured the execution time when the calculation and the drawing were executed
1,000 times.

9https://github.com/Cleod9/CalculatorCSharp
10https://github.com/Cleod9/PongCSharp

96 CHAPTER 6. SUSPEND-LESS DEBUGGING

Table 6.4: Overheads for SLDSharp.
Benchmark Original (ms) WITH debugger (ms)

1. CalculatorCSharp 7,360 (100%) 10,344 (141%)
2. PongCSharp 1,632 (100%) 1,848 (113%)
3. Tanks 5,747 (100%) 6,097 (106%)
4. Fib(20) 3,002 (100%) 112,533 (3,749%)

3. Tanks is the game program introduced in Sec. 6.6. It accepts player input, calculates
the movement of the tanks and shells they shoot, draws the calculation result on
the game screen, etc. at regular intervals. We measured the execution time when
the calculation and the drawing were executed 1,000 times.

4. Fib(20) is a numerical calculation program for calculating a Fibonacci number. We
measured the execution time when the twentieth Fibonacci number was calculated
5,000 times.

Though numerical calculation programs like Fib are outside the scope of our debugging
method, we measured Fib as a reference. In this experiment, SLDSharp only logged and
visualized the information on the execution paths and did not monitor the values of
expressions. We ran the programs on a Windows PC (Core i7 CPU 2.8 GHz, 14 GB
memory, GeForce GTX 1050 Ti, and Windows 10).

As shown in Table 6.4, the overhead for Fib was much larger than for the other three
benchmarks. This is because the logging overhead for each top level statement became
very high because the calculation of each top level statement was small in the original Fib
program. The overheads for PongCSharp and Tanks were smaller than the overhead for
CalculatorCSharp because of the large amount of drawing computation performed by the
.NET library and Unity engine, which were not monitored by SLDSharp. The overheads
of programs targeted by suspend-less debugging (CalculatorCSharp, PongCSharp, and
Tanks) were less than 50%, small enough for debugging purposes. Even if the overhead
for a debuggee program is not so small, SLDSharp can still be useful by dynamically
turning off the debugging mode for the methods not of interest.

6.8 Discussion
The proposed debugging method presents the currently executing place in the source code
in realtime. It enables the programmer to interactively explore possible causes of a bug
without suspending the program. However, displaying execution paths by highlighting

6.9. CHAPTER SUMMARY 97

top level statements might be too coarse for monitoring a statement that has an expression
with shortcut evaluation operators.

For example, suppose that the programmer is monitoring the statement “bool b = X
|| Y;” and this statement is highlighted. The programmer can know that this statement
has been executed, but cannot know whether Y has been evaluated or not only from the
highlight of the entire statement. This problem can be solved by monitoring the Boolean
expression Y using the watch command presented in Table 6.3. However, using watch
command is rather bothersome for the programmer.

Though the proposed method is implemented as a debugger for C# programs by
means of a program transformation technique, the technique is not limited to C#. It can
be implemented in general procedural and object-oriented languages that provide function
closures. However, SLDSharp’s implementation on the basis of program transformation
imposes the following limitations on the program that uses the reflection mechanism.

• It is impossible to monitor the code that is generated dynamically by the reflection
mechanism.

• A program that refers to itself might not behave as expected because its code is
transformed.

SLDSharp provides two execution modes: debug mode and normal mode. The pro-
grammer can switch the mode dynamically between them to avoid creating extra over-
head for obtaining debugging information. However, an execution mode can be set for a
method: it cannot be set with finer granularity, e.g., for a statement or for a region of suc-
cessive statements. Thus, if the programmer want to monitor a method with large logging
overhead, there is no way to reduce this overhead. In addition, even if the programmer
changes the execution mode of some method on the fly, the new mode is applied from the
next invocation of the method, as shown in Fig. 6.5 (line 1-5). Thus, the programmer
cannot reflect the mode change of the currently running method without leaving it.

6.9 Chapter Summary

Our proposed suspend-less debugging method for debugging logical errors in interactive
and/or realtime programs displays information on execution paths and the values of ex-
pressions in a debuggee program in realtime without suspending program execution. We
implemented this method in SLDSharp, a debugger for C# programs. We demonstrated
its effectiveness through a case study using a game program developed using the Unity

98 CHAPTER 6. SUSPEND-LESS DEBUGGING

game engine. The proposed debugging method was shown to enable a programmer to
efficiently debug interactive and/or realtime programs.

Chapter 7

Toward More Efficient Testing

In this study, we dealt with four challenges in test design, test results verification, and
fault localization with the aim of automating integration testing for db-gui-apps. The
methods introduced in Chapters 3, 4, and 5 have been incorporated into tools used by
NTT group companies [71] [64]. This chapter describes the challenges to be faced in
achieving more efficient testing at development sites.

7.1 Reducing Cost for Design Model Creation

When introducing the proposed method for initial DB state generation into existing de-
velopment processes, the cost for design model creation cannot be ignored, especially
for development processes in which no design documents are created such as OSS de-
velopment. A promising approach to solving this problem is to partially create a design
model by using specification mining methods such as those proposed by Kurabayashi et
al. [36] and Dallmeier et al. [22]. The software specifications are inferred using dynamic
analysis, and then a design model is created by applying the missing information to
the inferred specifications. For example, input definitions can be partially created using
Kurabayashi’s method [36].

7.2 Expanding Scope of Initial Database State Gen-
eration

The scope of the proposed method for initial DB state generation is limited to checking
the behavior of each application logic module when only one screen transition occurs.
Moreover, only reference access to a DB and limited queries can be handled, as shown in

99

100 CHAPTER 7. TOWARD MORE EFFICIENT TESTING

Tables 3.1 and 3.2. Therefore, the remaining challenges include how to generate initial
DB states in the following test cases.

1. Test cases in which a DB is read from and written to.

2. Test cases for scenario testing in which multiple screen transitions occur.

3. Test cases with complex queries such as subqueries and set operations.

For the first challenge, we generated initial DB states for such test cases [70] [65] by
extending the design model introduced in Chapter 3. Source code was generated from
a design model for simulating the execution of the software under test, and DSE was
applied to the source code to obtain initial DB states in which the DB is read from and
written to. For the second challenge, we created initial DB states for scenario testing
using the same concept as above [62]. For the third challenge, again on the basis of the
same concept, each query in the design model was handled by converting it into source
code that simulated its behavior and then applying DSE to the code to get a solution.
However, since these methods search for a solution that is an appropriate initial DB state
as a precondition of the test case by searching every path in the converted source code,
much time may be needed to generate a solution. Therefore, speeding up the search
algorithm is an issue to be addressed.

7.3 Reduction of Labor for Test Results Verification
Although ReBDiff reduces the labor needed for test results verification by detecting dif-
ferences between two screen images automatically, the decision of pass or fail is left to
the tester. Although reducing this effort is a remaining task, generating expected results
completely automatically is a difficult problem, as mentioned in Section 2.2.3. Therefore,
for example, it could be useful to avoid having the tester repeatedly pass judgment. In
Adachi et al.’s method [2], for example, the labor needed for test results verification for
VRT is reduced by automatically analyzing all the screen comparison results to iden-
tify the same differences so that the tester only has to judge one representative screen
comparison result. As exemplified by this method, reducing the labor needed to pass
judgment is a promising approach.

7.4 Further Debugging Support
Our proposed suspend-less debugging method supports fault localization, enabling the
programmer to interactively explore possible causes of a bug without suspending the

7.4. FURTHER DEBUGGING SUPPORT 101

program, as shown in the case studies in Chapter 6. As another use of SLDSharp, it
can be used in combination with DDBGen (or DDBGenMT) and existing methods [80]
[68] [67] [71] to automatically generate a test case. This would enable the programmer
to concentrate on identifying the cause of a bug with SLDSharp while the test case is
automatically executed, reproducing the bug repeatedly.

To further improve the efficiency of debugging, many methods for automatic fault
localization [75] and automatic program repair [44] have been proposed. However, many
problems need to be solved before these methods can be practically applied to enterprise
systems [46]. Since test cases that can be executed automatically are used to conduct
automatic fault localization and automatic program repair, a major problem is how to
prepare appropriate comprehensive test cases to improve their accuracy [46] [45]. One
possible way to improve their accuracy for db-gui-apps is to use the test cases automati-
cally generated by our study. Another possible way to support debugging is to combine
the concept of spectrum-based fault localization (SBFL) [57] and our suspend-less de-
bugging method. This would enable the programmer to narrow down the number of
statements that are likely related to the bug in the program. Specifically, a “suspicious
score” for each statement could be calculated by comparing some execution paths when
the software does not behave as expected with other execution paths when it does behave
correctly in accordance with the SBFL. Our debugger could then visualize the suspicious
scores overlaid on the source code in real time.

Chapter 8

Conclusion

With the aim of automating the process from test design to test results verification and
enabling the cause(s) of each bug detected in testing to be easily identified, we have pro-
posed four methods for solving the major problems in functional testing at the integration
level for db-gui-apps. Combining the proposed methods with existing methods/tools could
make testing more efficient and contribute to improving the quality, cost, and delivery of
software.

The contributions of this dissertation are as follows.

• We discussed the current status and existing methods for testing db-gui-apps and
described four major challenges that should be tackled to achieve the goals of this
study.

• We proposed using DDBGen for automatically generating on the basis of MBT ini-
tial DB states to be entered into a relational DB to support each test case. DDBGen
can handle the constraints most frequently used in industrial-level enterprise sys-
tems; they include “multiple DB reads,” “PK, FK constraints,” and “partial string
matching.” Therefore, high initial DB generation rates were achieved in the evalua-
tions on three industrial-level enterprise systems. In addition, to improve DDBGen,
we proposed using DDBGenMT to generate initial DB states, with each one shared
by multiple test cases to reduce the number of times the initial DB state must be
switched and to reduce the total size of the test data.

• We proposed using an image-based VRT method called ReBDiff. It divides each
of the images of the two application screens to be compared into multiple regions,
makes appropriate matchings between corresponding regions in the two images, and
detects differences on the basis of the matchings. By using ReBDiff, the tester can
efficiently identify essential differences between the two screens even when there are

103

104 CHAPTER 8. CONCLUSION

changes that affect the entire screen, e.g., parallel movements of screen elements.
Experiments using screens for PC web and mobile web services and an Electron
application demonstrated the effectiveness of the proposed method.

• We proposed using a suspend-less debugging method for debugging logical errors
in interactive and/or realtime programs in db-gui-apps. It displays information
on execution paths and the values of expressions in a debuggee program in real
time without suspending program execution. We implemented this method in SLD-
Sharp, a debugger for C# programs. We demonstrated its effectiveness through
a case study using a game program developed using the Unity game engine. The
proposed debugging method was shown to enable a programmer to efficiently debug
interactive and/or realtime programs.

• We discussed the remaining major challenges and presented ideas for solving them
for testing db-gui-apps toward more efficient testing. Specifically, we addressed four
challenges: how to reduce the cost of design model creation, how to expand the
scope of the initial DB state generation, how to reduce the labor needed for test
results verification, and how to expand debugging support.

Future work will address the remaining challenges and ways to improve the proposed
methods in accordance with feedback from development sites. Through such efforts, we
will promote more efficient testing and software development.

Bibliography

[1] IPA/SEC White Paper 2018-2019 on Software Development Projects in Japan (in
Japanese). IT Knowledge Center on emerging tech trends, Information-Technology
Promotion Agency, 2018.

[2] Y. Adachi, H. Tanno, and Y. Yoshimura. Reducing Redundant Checking for Visual
Regression Testing. In 25th Asia-Pacific Software Engineering Conference, APSEC
2018, pages 721–722, 2018.

[3] Y. Adachi, H. Tanno, and Y. Yoshimura. Masking Dynamic Content Areas Based
on Positional Relationship of Screen Elements for Visual Regression Testing. (in
Japanese). JSSST Computer Software, 36(4):53–59, 2019.

[4] A. Alameer, S. Mahajan, and W. G. J. Halfond. Detecting and Localizing Interna-
tionalization Presentation Failures in Web Applications. In 2016 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2016, pages 202–
212, 2016.

[5] E. Alegroth, R. Feldt, and L. Ryrholm. Visual GUI Testing in Practice : Challenges,
Problems and Limitations. Journal of Empirical Software Engineering, 20(3):694–
744, 2015.

[6] I. Althomali, G. M. Kapfhammer, and P. McMinn. Automatic visual verification
of layout failures in responsively designed web pages. In 12th IEEE Conference on
Software Testing, Validation and Verification, ICST 2019, pages 183–193, 2019.

[7] M. Bajammal and A. Mesbah. Web Canvas Testing Through Visual Inference. In
11th IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2018, pages 193–203, 2018.

[8] H. Banken, E. Meijer, and G. Gousios. Debugging Data Flows in Reactive Programs.
In 40th IEEE/ACM International Conference on Software Engineering, ICSE 2018,
pages 752–763, 2018.

105

106 BIBLIOGRAPHY

[9] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle Problem in
Software Testing: A Survey. IEEE Transactions on Software Engineering, 41(5):507–
525, 2015.

[10] E. T. Barr and M. Marron. Tardis: Affordable Time-travel Debugging in Managed
Runtimes. In 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014, pages 67–82, 2014.

[11] E. T. Barr, M. Marron, E. Maurer, D. Moseley, and G. Seth. Time-travel Debug-
ging for JavaScript/Node.Js. In 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, FSE 2016, pages 1003–1007, 2016.

[12] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight Recording to Reproduce
Field Failures. In 35th International Conference on Software Engineering, ICSE
2013, pages 362–371, 2013.

[13] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman. On the Dichotomy of Debugging
Behavior Among Programmers. In 40th IEEE/ACM International Conference on
Software Engineering, ICSE 2018, pages 572–583, 2018.

[14] J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986.

[15] T. Chang, T. Yeh, and R. C. Miller. GUI Testing Using Computer Vision. In 28th
International Conference on Human Factors in Computing Systems, SIGCHI 2010,
pages 1535–1544, 2010.

[16] D. Chays, S. Dan, P. Frankl, F. Vokolos, and E. Weber. A Framework for Testing
Database Applications. volume 25, pages 147–157, 09 2000.

[17] S. Chen, A. Ailamaki, M. Athanassoulis, P. Gibbons, R. Johnson, I. Pandis, and
R. Stoica. TPC-E vs. TPC-C: Characterizing the New TPC-E Benchmark via an
I/O Comparison Study. SIGMOD Record, 39(4), 2010.

[18] S. Chiba. Javassist - A Reflection-based Programming Wizard for Java. In Interna-
tional Business Machines Corp, page urlhttp://www.javassist, 1998.

[19] S. Chiba and M. Nishizawa. An Easy-to-use Toolkit for Efficient Java Bytecode
Translators. In 2nd International Conference on Generative Programming and Com-
ponent Engineering, GPCE 2003, pages 364–376, 2003.

BIBLIOGRAPHY 107

[20] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate Identification
of Cross-Browser Issues in Web Applications. In 35th International Conference on
Software Engineering, ICSE 2013, pages 702–711, 2013.

[21] J. K. Czyz and B. Jayaraman. Declarative and Visual Debugging in Eclipse. In 2007
OOPSLA Workshop on Eclipse Technology eXchange, eclipse 2007, pages 31–35,
2007.

[22] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller. WebMate: Web Applica-
tion Test Generation in the Real World. In Seventh IEEE International Conference
on Software Testing, Verification and Validation Workshops, ICSTW 2014, pages
413–418, 2014.

[23] J. Edvardsson. A Survey on Automatic Test Data Generation. 2nd International
Conference on Computer Science and Engineering, CSEN 1999, pages 21–28, 2002.

[24] D. Willmor S. M. Embury. An Intensional Approach to the Specification of Test
Cases for Database Applications. In 28th International Conference on Software
Engineering, ICSE 2006, pages 102–111, 2006.

[25] M. Emmi, R. Majumdar, and K. Sen. Dynamic Test Input Generation for Database
Applications. In 2007 the ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2007, pages 151–162, 2007.

[26] R. B. Findler and M. Felleisen. Contracts for Higher-Order Functions. In Seventh
ACM SIGPLAN International Conference on Functional Programming, ICFP 2002,
pages 48–59, 2002.

[27] R. France and B. Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. In Future of Software Engineering, FOSE 2017), pages 37–54,
2007.

[28] S. Fujiwara, K. Munakata, Y. Maeda, A. Katayama, and T. Uehara. Test Data
Generation for Web Application Using a UML Class Diagram with OCL Constraints.
Innovations in Systems and Software Engineering, 7:275–282, 12 2011.

[29] A. Kaehler G. Bradski. Learning OpenCV: Computer Vision with the OpenCV Li-
brary. O’Reilly Media, August 2009.

[30] A. Hori, S. Takada, H. Tanno, and M. Oinuma. An Oracle based on Image Compar-
ison for Regression Testing of Web Applications. In 27th International Conference

108 BIBLIOGRAPHY

on Software Engineering and Knowledge Engineering, SEKE 2015, pages 639–645,
2015.

[31] A. Bergel J Ressia and O. Nierstrasz. Object-centric Debugging. In 34th Interna-
tional Conference on Software Engineering, ICSE 2012, pages 485–495, 2012.

[32] C. Kaner, J Bach, and B. Pettichord. Lessons Learned In Software Testing. Wiley
India Pvt. Limited, 2008.

[33] F. Kıraç, B. Aktemur, and H. Sözer. VISOR : A Fast Image Processing Pipeline
with Scaling and Translation Invariance for Test Oracle Automation of Visual Output
Systems. Journal of Systems and Software, 136, 2017.

[34] H. Kirinuki, H. Tanno, and K. Natsukawa. COLOR: Correct Locator Recommender
for Broken Test Scripts using Various Clues in Web Application. In 26th IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering, SANER
2019, pages 310–320, 2019.

[35] T. Koju, S. Takada, and N. Doi. An Efficient and Generic Reversible Debugger
Using the Virtual Machine Based Approach. In 1st ACM/USENIX International
Conference on Virtual Execution Environments, VEE 2005, pages 79–88, 2005.

[36] T. Kurabayashi, M. Iyama, H. Kirinuki, and H. Tanno. Automatically Generating
Test Scripts for GUI Testing. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2018, pages 146–150, 2018.

[37] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Robula+: an Algorithm for Gener-
ating Robust XPath Locators for Web Testing. Journal of Software: Evolution and
Process, 28(3):177–204, 2016.

[38] X. Li and M. Flatt. Medic: Metaprogramming and Trace-oriented Debugging. In
Workshop on Future Programming, FPW 2015, pages 7–14, 2015.

[39] Y. Lin, J. F. Rojas, E. T. . Chu, and Y. Lai. On the Accuracy, Efficiency, and
Reusability of Automated Test Oracles for Android Devices. IEEE Transactions on
Software Engineering, 40(10):957–970, 2014.

[40] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong. Feedback-Based Debugging. In 39th
IEEE/ACM International Conference on Software Engineering, ICSE 2017, pages
393–403, 2017.

BIBLIOGRAPHY 109

[41] S. Mahajan and W. G. J. Halfond. Finding HTML Presentation Failures Using
Image Comparison Techniques. In 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE 2014, pages 91–96, 2014.

[42] S. Mahajan and W. G. J. Halfond. Detection and Localization of HTML Presenta-
tion Failures Using Computer Vision-Based Techniques. In 8th IEEE International
Conference on Software Testing, Verification and Validation, ICST 2015, pages 1–10,
2015.

[43] K. Maruyama and M. Terada. Debugging with Reverse Watchpoint. In Third Inter-
national Conference on Quality Software, QSIC 2003, pages 116–123, 2003.

[44] M. Monperrus. Automatic Software Repair: A Bibliography. ACM Computing
Surveys, 51(1):17:1–17:24, 2018.

[45] Martin Monperrus, Benjamin Danglot, Oscar Luis Vera-Perez, Zhongxing Yu, and
Benoit Baudry. The Emerging Field of Test Amplification: A Survey. working paper
or preprint, November 2017.

[46] K. Naitou, A. Tanikado, S. Matsumoto, Y. Higo, S. Kusumoto, H. Kirinuki,
T. Kurabayashi, and H. Tanno. Toward Introducing Automated Program Repair
Techniques to Industrial Software Development. In 26th Conference on Program
Comprehension, ICPC 2018, pages 332–335, 2018.

[47] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. Travassos. A survey on model-
based testing approaches: a systematic review. In 1st ACM International Work-
shop on Empirical Assessment of Software Engineering Languages and Technologies,
WEASELech 2017, pages 31–36, 2007.

[48] K. Pan, X. Wu, and T. Xie. Generating Program Inputs for Database Applica-
tion Testing. In 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2011, pages 73–82, 2011.

[49] K. Pan, X. Wu, and T. Xie. Program-input generation for testing database applica-
tions using existing database states. Automated Software Engineering, 22(4):439–473,
December 2015.

[50] R. Ramler, T. Wetzlmaier, and R. Hoschek. GUI Scalability Issues of Windows
Desktop Applications and How to Find Them. In Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops, pages 63–67, 2018.

110 BIBLIOGRAPHY

[51] M. Rizun, J. C. Bach, and S. Ducasse. Code Transformation by Direct Transfor-
mation of ASTs. In 7th International Workshop on Smalltalk Technologies, IWST
2015, number 7, pages 7:1–7:7, 2015.

[52] D. S. Rosenblum. A Practical Approach to Programming With Assertions. IEEE
Transaction on Software Engineering, 21(1):19–31, 1995.

[53] S. Roy Choudhary, H. Versee, and A. Orso. Webdiff: Automated identification of
cross-browser issues in web applications. In 2010 IEEE International Conference on
Software Maintenance, ICSM 2010, pages 1–10, 2010.

[54] P. Samuel and R. Mall. Slicing-based Test Case Generation from UML Activity
Diagrams. ACM SIGSOFT Software Engineering Notes, 34(6):1–14, 2009.

[55] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit Testing Engine for
C. In 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2005, pages 263–272, 2005.

[56] IEEE Computer Society, P. Bourque, and R. Fairley. Guide to the Software Engi-
neering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society
Press, 2014.

[57] H. A. Souza, M. L. Chaim, and F. Kon. Spectrum-based Software Fault Localization:
A Survey of Techniques, Advances, and Challenges. CoRR, abs/1607.04347, 2016.

[58] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott. Automated Oracle
Comparators for TestingWeb Application. In 18th IEEE International Symposium
on Software Reliability, ISSRE 2017, pages 117–126, 2007.

[59] J. Takahashi. An Automated Oracle for Verifying GUI Objects. ACM SIGSOFT
Software Engineering Notes, 26(4):83–88, 2001.

[60] H. Tanno. Design and Implementation of Real-time Debugger for Game Program-
ming (in Japanese). Information Processing Society of Japan Transaction: Program-
ming, 1(2):42–56, 2008.

[61] H. Tanno and Y. Adachi. Support for Finding Presentation Failures by Using Com-
puter Vision Techniques. In 2018 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops, ICSTW 2018, pages 356–363, 2018.

[62] H. Tanno, T. Hoshino, S. Koushik, and K. Takahashi. Test Data Generation for
Integration Testing by Using Concolic Testing (in Japanese). (6):1–8, 2013.

BIBLIOGRAPHY 111

[63] H. Tanno, T. Kurabayashi, X. Zhang, M. Iyama, Y. Adachi, S. Iwata, and H. Kir-
inuki. A Survey of Test Input Generation (in Japanese). JSSST Computer Software,
34(3):3 121–3 147, 2017.

[64] H. Tanno, M. Oinuma, and K. Natsukawa. Test Automation Technology to Promote
Early and Frequent Releases of Software at Low Cost. 15, 2017.

[65] H. Tanno and X. Zhang M. Oinuma. Initial Database Generation for Integration
Testing by Source Code Generation (in Japanese). (16):1–8, 2015.

[66] H. Tanno and X. Zhang. Automatic Test Data Generation Based on Domain Testing
(in Japanese). IPSJ SIG Technical Reports, 2014(6):1–8, 2014.

[67] H. Tanno and X. Zhang. Test Script Generation Based on Design Documents for
Web Application Testing. In 39th IEEE Annual Computer Software and Applications
Conference, CPMPSAC 2015, volume 3, pages 672–673, 2015.

[68] H. Tanno and X. Zhang. Test Script Generation Based on Software Design Docu-
ments (in Japanese). Technical Report 16, 2015.

[69] H. Tanno, X. Zhang, and T. Hoshino. Automatic Test Case Generation for Integra-
tion Testing (in Japanese). IEICE Technical Report, 110(227):37–42, 2010.

[70] H. Tanno, X. Zhang, T. Hoshino, and K. Sen. TesMa and CATG: Automated
Test Generation Tools for Models of Enterprise Applications. In 37th International
Conference on Software Engineering, ICSE 2015, volume 2, pages 717–720, 2015.

[71] H. Tanno, X. Zhang, K. Tabata, M. Oinuma, and K. Suguri. Test Automation
Technology to Reduce Development Costs and Maintain Software Quality. 12, 2014.

[72] M. Terada. ETV: A Program Trace Player for Students. In 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education, ITiCSE
2005, pages 118–122, 2005.

[73] T. A. Walsh, G. M. Kapfhammer, and P. McMinn. ReDeCheck: An Automatic
Layout Failure Checking Tool for Responsively Designed Web Pages. In 26th Inter-
national Symposium on Software Testing and Analysis, ISSTA 2017, pages 360–363,
2017.

[74] T. A. Walsh, P. McMinn, and G. M. Kapfhammer. Automatic Detection of Potential
Layout Faults Following Changes to Responsive Web Pages. In 30th IEEE/ACM

112 BIBLIOGRAPHY

International Conference on Automated Software Engineering, ASE 2015, pages 709–
714, 2015.

[75] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A Survey on Software Fault
Localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016.

[76] T. Xie. Transferring Software Testing Tools to Practice. In 12th IEEE/ACM In-
ternational Workshop on Automation of Software Testing, AST 2017, pages 8–8,
2017.

[77] Y. Yanagisawa, K. Kourai, and S. Chiba. A Dynamic Aspect-oriented System for
OS Kernels. In 5th International Conference on Generative Programming and Com-
ponent Engineering, GPCE 2006, pages 69–78, 2006.

[78] H. Yin, C. Bockisch, and M. Aksit. A Pointcut Language for Setting Advanced
Breakpoints. In 12th Annual International Conference on Aspect-oriented Software
Development, AOSD 2013, pages 145–156, 2013.

[79] C. Zhang, D. Yan, J. Zhao, Y. Chen, and S. Yang. BPGen: an Automated Breakpoint
Generator for Debugging. In 32nd ACM/IEEE International Conference on Software
Engineering, ICSE 2010, volume 2, pages 271–274, 2010.

[80] X. Zhang and T. Hoshino. Test Case Extraction and Test Data Generation from
Design Models. In 5th ASQ World Congress for Software Quality, WCSQ 2011,
2011.

[81] X. Zhang, H. Tanno, and T. Hoshino. Introducing Test Case Derivation Techniques
into Traditional Software Development: Obstacles and Potentialities. In Fourth
IEEE International Conference on Software Testing, Verification and Validation
Workshops, ICSTW 2011, pages 559–560, 2011.

[82] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The Impact of Contin-
uous Integration on Other Software Development Practices: A Large-Scale Empirical
Study. In 32nd IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2017, pages 60–71, 2017.

Publication List

1. Haruto Tanno, Xiaojing Zhang and Takashi Hoshino.
Design Model Based Generation of Initial Database for Testing.
Journal of Information Processing.
53(2):566–577, 2012.
In Japanese.
Corresponding to Chapter 3.

2. Haruto Tanno, Xiaojing Zhang, and Takashi Hoshino.
Design-Model-Based Test Data Generation for Database Applications.
In 23rd IEEE International Symposium on Software Reliability Engineering Work-
shops, ISSREW 2012.
pages 201–206, 2012.
Corresponding to Chapter 3.

3. Haruto Tanno.
Reduce The Number and The Size of Initial Database States for Testing Applica-
tion.
Journal of Information Processing.
58(4):818–832, 2017.
In Japanese.
Corresponding to Chapter 4.

4. Haruto Tanno and Takashi Hoshino.
Reducing the Number of Initial Database States for Integration Testing.
In 37th IEEE Annual Computer Software and Applications Conference Workshops,
COMPSACW 2013.
pages 59–64, 2013.
Corresponding to Chapter 4.

5. Haruto Tanno, Yu Adachi, Yu Yoshimura, Katsuyuki Natsukawa, and Hideya

113

Iwasaki.
Region-based Detection of Essential Differences in Image-based Visual Regression
Testing.
Journal of Information Processing.
28:268–278, 2020.
Corresponding to Chapter 5.

6. Haruto Tanno and Hideya Iwasak.
Suspend-less Debugging for Interactive and/or Realtime Programs.
In 12th IEEE Conference on Software Testing, Validation and Verification, ICST
2019.
pages 194–205, 2019.
Corresponding to Chapter 6.

