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仮想ネットワークにおけるサービスチェインの効率的な配置に関する研究 

Yansen Xu 

概要 

 

ネットワーク機能仮想化(NFV)はネットワーク機能を専用のハードウェア装置から分離して仮想サー

バーに移動し、複数の機能を汎用の物理サーバーに集約できる。このアプローチにより、ソフトウェ

アによる動的なネットワークの構成変更を可能とし，通信事業者の機器や運用のコストを低減するこ

とが期待されている。NFV より、ネットワークサービスはネットワーク機能を鎖状に接続したもの

（SFC）を 1 つのサービスとして提供することが可能となる。SFC 配置は，NFV におけるネットワーク

サービス構築のコーアな技術である。しかし、SFC 配置問題は困難である。限られたネットワークリ

ソース（CPU や帯域幅）とネットワークサービスパフォーマンスの要求を満たすため、適切に設計さ

れた SFC 配置手法が必要である。また，QoS を向上させるためには，分散構築やネットワーク遅延な

どの要求が考慮されるべきである。本論文では、コスト、エンドツーエンド遅延および分散配置の要

求を満たした SFC 配置問題は課題とし、数理モデルと配置アルゴリズムを提案する。 

  コストはネットワークオペレーターにとって重要な側面であると考え、セットアップコストと運

用コストを最小化する目的で数学モデルを作成した。セットアップコストと運用コストはより現実的

な定義した。提案した数理モデルは先行研究と比較し、平均で最大 30％のコストを削減することが

示された。さらに、提案したモデルでは、リアルタイムアプリケーションなどの SFC にとって重要な

要求であるエンドツーエンド遅延デッドラインを保証することも考慮している。実験結果は提案した

モデルが SFC リクエストのエンドツーエンド遅延デッドラインの要求を満たすことができることをし

めしている。 

  エンドツーエンドの遅延が SFC にとって重要な QoS メトリックであり、SFC のエンドツーエンド

の遅延が短いとユーザーエクスペリエンスが大幅に向上することを考慮している。本論文では、エン

ドツーエンドの遅延要求に対して、短い遅延対応できる SFC 配置アルゴリズムを提案した。先行研究

と異なり、提案した配置アルゴリズムは、動的計画法を用いて、ローカル情報ではなくグローバル情

報を探索して記録し、より短いエンドツーエンド遅延パスを算出することが可能となる。提案した配

置アルゴリズムと先行研究における配置アルゴリズムを実装し評価を行った。その結果、提案した配

置アルゴリズムが様々な物理ネットワーク上により短いエンドツーエンド遅延を達成することが示さ

れた。そして、ランダムな配置手法と比較したら、物理ネットワークモデルは JPN48 の場合、提案し



 
 

た配置アルゴリズムがエンドツーエンド遅延を最大 81.95％削減し、他の物理ネットワークモデルの

場合、エンドツーエンド遅延を 50％以上削減したことを示した。その上、提案した配置アルゴリズ

ムは、SFC リクエストに対して高いアクセプト率を達成した。本論文提案した配置アルゴリズムは短

いエンドツーエンド遅延と高いアクセプト率が達成し、より優れた QoS 保証と効率的なネットワーク

リソース使用ができることを示している。 

  同一 SFC における複数の VNFs を一つの物理ネットワークノードに集約することにより、リソー

ス使用量の過負荷、トラフィックループ、長い復旧時間などが発生する可能性があると考慮し、同一

SFC における VNFs を分散配置する必要性を検討した。本論文では、分散配置要求を備えた配置アルゴ

リズムを設計した。Layer graph というアプローチを用いて、分散配置要求を満たした上、エンドツー

エンド遅延が短くすることが達成した。提案した配置アルゴリズムと先行研究における配置アルゴリ

ズムを実装し評価を行った。その結果、提案した配置アルゴリズムが様々な物理ネットワークモデル

上、分散配置要求を 100％満たすことができることを示している。さらに、提案した配置アルゴリズ

ムは先行研究における二部グラフの最大マッチングに基づいた配置手法とランダム配置手法とそれぞ

れ比較した。物理ネットワークは JPN48 ネットワークとランダムグラフネットワークとし、提案した

配置アルゴリズムは、二部グラフの最大マッチング配置手法より、それぞれのエンドツーエンド遅延

を最大 46％と 60％削減でき、ランダム配置手法より、それぞれのエンドツーエンド遅延を最大 38％

と 60％削減できる。本論文提案した配置アルゴリズムは分散配置要求を満たすこととエンドツーエ

ンドの遅延の大幅な削減することが可能とし、適切な QoS 保証ができることを示している。 
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A Study on Efficient Service Function Chain Placement in 
Network Function Virtualization Environment 

 

Yansen Xu 

Abstract 
 

Traditional network is equipped with many proprietary hardware-based network functions. 

These hardware-based network functions lead to network ossification which results in lack of 

flexibility and high cost to network operators. Network function virtualization (NFV) is a 

promising technology to solve this ossification problem in traditional network. NFV separates 

software implementation of network function from hardware. The software implementation of 

network function is called virtual network function, which can be installed and run on generic 

servers. A service function chain (SFC) in NFV is a set of ordered virtual network functions 

(VNFs) for end-to-end network service. The core technology to realize network service in NFV 

is SFC placement. SFC placement deals with placing VNFs of an SFC onto which hardware 

server, and chaining these VNFs along which edges in the hardware platform while satisfying 

particular requirements of SFC. Due to limited network resources and requirements of network 

service performance, network operators must carefully design scheme of SFC placement to 

efficiently utilize network resources and guarantee network service performances. In this thesis, 

we focus on SFC placement problem with satisfying minimized cost, optimal end-to-end delay, 

and distributed placement requirements. These requirements are critical to network operators 

constructing network service, and end users using network services. We contribute a 

mathematic model and algorithms to solve these problems.  

From the aspect of cost, considering cost is one of critical aspects to network operator, we 

formulate a mathematic model with objective of minimizing setup costs and operational costs. 

With a realistic definition of setup cost and operation cost, our model can reduce cost up to 30% 

in average. Moreover, our model also considers guaranteeing the end-to-end delay deadline, 

which is a critical requirement to SFCs, such as real-time applications. Our model can satisfy 

100% end-to-end delay deadline requirements of SFC requests.  
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From the aspect of end-to-end delay, it is one of critical QoS metrics to SFC. A shorter end-to-

end delay to an SFC can significantly improve the user experience. Being aware this, we 

propose a delay aware SFC placement algorithm with achieving shorter end-to-end delay 

requirement. Unlike previous works, our algorithm explores and records global rather than 

local information to obtain a shorter end-to-end delay path. Evaluation results show that our 

algorithm achieved a maximum 81.95% reduction of end-to-end delay comparing with 

randomly deployment of SFC on JPN48 network model, and more than 50% reduction of end-

to-end delay on the other network model. Besides, our algorithm achieves a good performance 

in terms of acceptance rate. The short end-to-end delay and high acceptance rate indicate that 

our algorithm can achieve a better QoS guarantee and efficient network resource utilization. 

From the aspect of distributed placement requirements, we perceive that consolidating VNFs 

of an SFC onto a substrate network node will potentially lead to overload resource usage, traffic 

loops, long recovery time, etc. Motivated by this, we design an algorithm with distributed SFC 

deployment requirement, which is merely touched by previous works. Evaluation results show 

our proposed algorithm can 100% satisfy distributed deployment requirement on different 

network models. Besides, our algorithm can achieve a maximum 46% and 60% reduction of 

end-to-end delay by comparing with bipartite matching algorithm on JPN48 and random graph 

network models, respectively. Our algorithm achieves a maximum 38% and 60% reduction of 

end-to-end delay by comparing with random algorithm on JPN48 and random graph network 

models, respectively. The 100% satisfaction of distributed deployment requirements and high 

reduction of end-to-end delay indicates that our algorithm can perform a good QoS guarantee. 
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Chapter 1  

1. Introduction 

1.1. Traditional networking 

In 1960s, ARPANET 1  proposed the idea of earliest computer network. With decades of 

development, computer network has been one of the most important infrastructures to modern 

society. Almost every activity in the world is depending on computer network, from ordering 

a pizza or watching movie, to control a factory.  

At the very beginning, computer network was equipped with essential forwarding devices, such 

as switches and routers, for exchanging information traffic between end users. The traffic 

between end users were forwarded with merely touched.  

Nevertheless, as numerous applications and services, such as online banking, are emerging in 

the network, for security but also many needs, many middleboxes [1][26] are introduced into 

the network. These middleboxes are also known as network functions (NFs). For instance, a 

firewall blocks unallowed packets to improve the security of the network; an intrusion detection 

system (IDS) is actively monitoring network traffic for alert of malicious activities and attacks; 

and a network address translator (NAT) hides internal devices as if it were the only device 

connecting to the network. 

 

Figure 1-1 Network composed of forwarding devices and middleboxes.[2] 

 
1 ARPANET: The Advanced Research Projects Agency NETwork 
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Figure 1-1 illustrates a realistic network composed of both forwarding devices and 

middleboxes. End user devices connect to a Customer Premise Equipment (CPE) provided by 

Internet Service Provider (ISP) in the homes. The traffic travels through these middleboxes, 

such as firewall and NAT, and arrives at ISP network. The ISP network may also consist many 

middle boxes, such as firewall, WAN (Wide Area Network) Optimizer, which increases data 

transfer efficiency.  

Another scenario of middleboxes deployment is in datacenter as shown in Figure 1-1. A 

datacenter is composed of a collection of servers, most of which provide network services. The 

firewall in datacenter can limit the number of connections from Internet to prevent Denial of 

Service (DoS). Deep Packet Inspector (DPI) analyzes the packet content to check if it is an 

attacking packet or banned content that should be rejected. The Load Balancers (LB) distributes 

the traffic to multiple servers to spread the load. 

Above is only a limited non-exhaustive list of examples and scenarios for middleboxes. 

Middleboxes have been playing an important role to network. Previous studies show that the 

number of middleboxes in datacenter and enterprise networks have been similar to the number 

of forwarding devices [3][4][5].  For instance, a large network may contain 2850 L3 routers 

and 1946 total middle boxes [5]. 

Normally, middleboxes are implemented in a way of integration of a dedicated hardware and 

a dedicated software. The hardware of a middle box receives packets, forwards and processes 

packets according to the commands of software. As the hardware is a dedicated device for a 

specific purpose, the software is thus programmed only for this dedicated hardware and cannot 

be installed on other types of hardware devices. In addition, multiple vendors would provide 

same network function with different hardware and software, but the software and hardware 

are not interchangeable among vendors due to the integration of dedicated software and 

hardware.  

However, this integration of dedicated software and hardware for a middlebox introduces 

multiple issues.  

• High Capital Expenditure (CAPEX): The network infrastructure is expensive. The 

deployment of network devices is costly and requires network operator high investment 

on hardware. According to a survey on 57 enterprise networks in [5], the number of 

middleboxes is almost equal to the number of forwarding devices in a network. A 

medium network which consists 1000 to 10,000 servers may invest 50,000 to 500,000 
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dollars on hardware. A large network which is composed of more than 100k servers 

may require millions of dollars to invest hardware infrastructure.  

• High Operational Expenditure (OPEX) and high manage complexity: The 

hardware-based network function devices are provided by multiple vendors and require 

large number of high-skilled labors to manage the complex heterogeneous devices. 

Even a small network contains 10 number of middleboxes may require 6-25 number of 

personnel according to the survey in [5].  Besides, as network functions are hardware-

based and are deployed on the underlying infrastructure, to modify the topology of 

current network service, such as adding/removing network functions, it requires to 

reconfigure the underlying physical topology, which results in a high complex and 

error-prone reconfiguration [38]. Moreover, as stated in [39], management of 

middleboxes is high complex due to carefully design network topologies, manually 

setup rules for routing traffic across a specific order of network devices and implement 

safeguards to assure the correctness of operation of overload or failures. 

• Lack of scalability and flexibility: Since the network functions are strong coupling 

with the physical topology, it is very difficult to reconstruct the network to adapt to a 

new topology or services [27]. To change the logical network topology of the service 

requires changes on configuration [40]. For example, inserting an SSL box for security 

before a web server needs to identify the point that all web traffic travel through, and 

requires personnel to setup the box at a location which needs extra space, power, and 

configuration. Moreover, as the network functions are vendor-specific, it will take a 

long time and high cost to upgrade the network functions or add new features to adapt 

to new services or business. 

• Inefficiency resource utilization: The middleboxes in the network are deployed in an 

uncoordinated manner. They are developed for a specific need. The network resources 

are hard to be amortized across applications [4]. When constructing a network service, 

extra network resources must be provisioned in case the demand of resources inflates 

in future. The computation and bandwidth resources may be under-utilized due to 

changing of traffic pattern. As network functions are topology-dependent, it is 

impractical and leads a high operational cost to re-planning the chaining of network 

functions in a production environment [38]. 
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1.2. New approach toward modern networking 

As large amount of various middleboxes are populating in the network to satisfy needs of 

applications and services, network has been getting complex and involving many issues as 

mentioned above.  To overcome these issues, ETSI 2  proposed Network Function 

Virtualization (NFV) [6][7].  

NFV implements network services via a more programmable and flexible approach. NFV 

replaces the dedicated hardware of a middlebox with a generic hardware such as x86 server. 

The software of a middlebox thus can be installed on anyone of such generic hardware. Besides, 

by leveraging virtualization technology, multiple software can be installed onto a same server. 

In this way, a network function is no longer a dedicated hardware box integrated with software, 

but a software running on top of generic physical platform. This software-based network 

function is known as virtual network function (VNF). As VNFs are software, they can be 

easily installed, terminated, and migrated among servers instantly according to the demands of 

network services.  

 

Figure 1-2 the transition from classic network function approach to the NFV based approach. 

 
2 ETSI: The European Telecommunications Standards Institute 
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Figure 1-2 shows the transition from classic network function approach to the NFV based 

approach. Left side of the Figure 1-2 are classic hardware based middle boxes. The software 

and hardware are coupled inside a dedicate hardware device. Each hardware device performs 

a specific network function, such as firewall, or DPI. Right side of Figure 1-2 are NFV based 

network function. VNFs such as virtual Firewall and virtual DPI are software installed on 

standard high-volume servers. These VNFs can be easily installed, terminated, removed, and 

migrated in an autonomous way.  

 

Figure 1-3 Hardware based network service. 

Figure 1-3 illustrates an example of network service (network function chain) constructed 

based on classic network function approach. The network function chain is composed of three 

hardware-based network functions, IDS, Firewall, and NAT. Network traffic enters the 

function chain at ingress, travels through these three network functions, gets processed and 

finally leaves the function chain at egress. The logical links of network function chain are same 

to physical links, which are very hard to change the topology, for example, insert a new 

function to the chain. 

 

Figure 1-4 Network service in NFV. 
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Figure 1-4 demonstrates an example of network function chain based on NFV approach. This 

network function chain provides same functions as in Figure 1-4. Different from Figure 1-3, 

each network function in NFV is virtualized as an VNF and deployed physical network 

composed of four standard servers through virtualization layer. Specifically, IDS is deployed 

on server A, Firewall is deployed on server C, and NAT is deployed on server D, respectively. 

The logical links of the network function chain are different from the actual physical link. As 

shown in Figure 1-4, the actual physical link of network function chain is A->B->C->D. It is 

much easier to change the topology of network function chain, such as inserting a network 

function, in a way of installing a VNF on physical servers, and directing traffic flow through 

the server by leveraging technique such as Software Defined networking (SDN) that can 

control traffic flow in the network flexibly to any location by programming.  

1.3. Research problem in NFV 

In the previous sections, we introduced the transition from classic hardware-based network 

function approach to a flexible software-based network function approach. This new approach 

is known as Network Function Virtualization (NFV). In NFV, Network services consists a 

serials of Virtual Network Functions (VNFs) instead of hardware-based middleboxes. This 

serials of VNFs is called Service Function Chain (SFC). Figure 1-4 illustrates an example of 

an SFC on top of virtualization layer in NFV. This SFC is composed of three VNFs: an IDS, a 

Firewall, and an NAT. Traffic is supposed to travel through these VNFs to be processed before 

arriving at destination. 

In this context, initiating a network service (or SFC, same meaning in this thesis) is achieved 

by placing and chaining VNFs over a virtualization layer built on generic physical platform 

which consists generic servers, storage and networks. This introduces a new research problem 

known as SFC deployment problem. This problem deals with placing VNFs of an SFC onto 

which hardware server, and chaining these VNFs along which edges in the hardware platform 

while satisfying particular requirements of SFC.  

To solve this problem, it requires an algorithm of VNF placement and chaining. This algorithm 

must be carefully designed with best strategy rather than a random process. Following 

describes the reason of necessity to such algorithm. 

Reason 1: The resource of physical platform is limited. As multiple network services 

coexist on a same physical platform and share the resources, an arbitrary placement of 
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VNFs would result in computation resource (CPU) fragment in physical servers so that 

no VNF can use it, or overload of a physical link that cannot route any traffic between 

two VNFs in a network service. Deployment of SFCs should be carefully designed to 

efficiently use the physical resources.  

Reason 2: The physical equipment must guarantee the performances of network 

services, such as end-to-end delay of network services. This indicates that VNFs of a 

network service must be placed and chained on the physical platform along a physical 

path that have a relative shorter end-to-end delay. 

Due to these reasons, randomly deploying VNFs is not applicable. Designing an algorithm to 

deploy VNFs with best strategy is recognized as an SFC deployment problem as mentioned 

previous and is regarded as an NP-hard optimization problem[20][21].  

In this thesis, we study this SFC deployment problem. SFC deployment is a core technology 

to realize network service in NFV. This problem has been studied from many aspects, but we 

still see that there are rooms to improve the previous works such as reduce delay of SFC, and 

some aspects such as distributed deployment requirements are merely touched by previous 

works.  

Motivated by this observation, we study SFC deployment problem with satisfying particularly 

requirements of SFC. Specifically, the requirements in this thesis are cost reduction 

requirement, short end-to-end delay requirement, and distributed deployment requirement. We 

study how to deploy VNFs of SFC while simultaneously satisfying these requirements. 

Following summarized the scope of this research problem.  

‐ Cost reduction requirement in SFC deployment: Cost reduction is one of benefit of 

NFV. Cost occurs when deploying VNFs onto physical platform and utilizing resources 

of physical platform. It is difficult to reduce cost as deployment of SFC is complex and 

involves many constraints. These costs should be carefully identified and defined.  

‐ End-to-end delay requirement: End-to-end delay (forwarding delay) is one of critical 

QoS [22][23] metrics for network services. A shorter end-to-end delay will significantly 

impact on user experience in using applications such as conversational video or online 

game. Nevertheless, deploying SFC with a desired end-to-end delay in NFV 

environment is more challenge than that in traditional networking due to the distribution 

characteristics of physical resources in NFV. For example, deploying two VNFs of a 
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network services onto two generic servers which are far away from each other in the 

physical platform will results in a very long end-to-end delay to network services.  

‐ Distributed deployment requirement: Distributed deployment requirement describes 

that VNFs of an SFC should be deployed on different generic servers in the physical 

platform to reduce risk of performance degradation. Collocation of VNFs of an SFC on 

a same generic server will potentially lead to overloaded resource usage, long recovery 

time, traffic loops, etc. Thus, it is necessary to consider to distributed deployment of 

SFC, i.e., distributed deployment requirement. Besides, the end-to-end delay should 

also be considered as distributed deployment would result a relative long end-to-end 

delay for network services.  

1.4. Contributions of this study 

The main purpose of this thesis is to provide a well-designed model and algorithms of SFC 

deployment problem with satisfying particular requirements. The main contributions of this 

study are summarized: 

1) Mathematic model for SFC deployment with reducing cost 

The first contribution is a mathematic model that provides an exact solution which meets 

both end-to-end delay and order of VNFs constraints of an SFC while minimizing costs 

in SFC deployment process. The model reduces average 32% of overall costs occurring 

in the process of setup and operation of VNFs, achieves 100% end-to-end delay 

performance guarantee, in comparison of 50% guarantee performance of previous works.   

2) An end-to-end delay aware algorithm for SFC deployment  

The second contribution is an algorithm to place and chain VNFs along a minimized end-

to-end delay path for an SFC. The algorithm utilizes dynamic programming technique to 

find a relatively shorter end-to-end path for deployment of SFC. The algorithm also 

guarantees the order of VNFs of an SFC and satisfies the resource demands of SFCs. The 

algorithm achieved a maximum 81.95% reduction of end-to-end delay on JPN48 network 

model, respectively. On the other network model, the algorithm achieved more than 50% 

reduction of end-to-end delay. Meanwhile, the algorithm has a good performance with 

more or no less acceptance rate than other algorithms on different network models. 

3) A distributed algorithm for SFC deployment 
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The third contribution is an algorithm of distributed placement and chain VNFs on the 

physical platform with a short end-to-end delay for SFCs. The algorithm leverages 

layered graph approach to find a deployment solution with a 100% satisfaction of 

distribution deployment requirements for SFC on different network modes. Meanwhile, 

the algorithm achieves a maximum 46% and 60% reduction of end-to-end delay by 

comparing with bipartite matching algorithm on JPN48 and random graph network 

models, respectively. Our proposed algorithm achieves a maximum 38% and 60% 

reduction of end-to-end delay by comparing with random algorithm on JPN48 and 

random graph network models, respectively. 

1.5. Thesis outline 

The remainder of the thesis is organized as follows: 

In Chapter 2, we give an introduction on the related technologies of NFV, SFC, and state-

of-the-art of SFC placement. 

In Chapter 3, we present a mathematic model for SFC deployment problem. The model 

utilizes integer linear optimization technique to minimize the setup cost and operation cost 

which is more practical than previous works in literature. This model takes the computation 

and bandwidth resources as constraints, and it guarantees the end-to-end delay as well as 

the order of VNFs of an SFC.  

In Chapter 4, we analyze the importance of a shorter end-to-end delay to service function 

chain. We design a heuristic SFC deployment algorithm based on the dynamic programming 

technique. This algorithm deploys service function chain with satisfying substrate network 

resource constraints, while simultaneously achieving a minimum end-to-end delay for 

service function chain. Experiments are conducted to show the superior of our algorithm in 

comparisons of other algorithms. 

In Chapter 5, we perceive the necessity of distributed deployment of SFCs which can reduce 

the risk of degradation of network services. We present a distributed deployment algorithm 

by modifying layered graph approach. The proposed algorithm can avoid to deploying 

multiple VNFs of an SFC onto same substrate networks while simultaneously achieving a 

relative shorter end-to-end delay.  Results of experimental studies on different algorithms 

show that our proposed algorithm outperform these algorithms in literature.  



 
 

10 

Finally, Chapter 6 draws the conclusions and describes the future work items.   

Figure 1-5 illustrates the contribution and outline of this thesis. 

 

  

Figure 1-5 Contribution and outline of this thesis 

 

 

Chapter 2 
Network function virtualization and related technologies 

  

Chapter 4 
Algorithm for end-to-end delay 

performance guarantee. 

Chapter 5 
Algorithm for distributed SFC deployment. 

A Study on Efficient Service Function Chain Placement in Network 
Function Virtualization Environment 

Chapter 1 
Introduction. 

Chapter 6 
Conclusion and future works 

Methods for efficient and reliable allocation of resources from different aspects 

Two algorithms to allocate resources considering 
the aspect of guaranteed performance. 

Chapter 3 
Mathematic model  

with objective of minimizing costs. 

A mathematic model to allocate resources 
considering the aspect of cost. 



 
 

11 

Chapter 2  

2. Network Function Virtualization and Related Technologies 

2.1. Network function virtualization 

Network function virtualization [6][7] aims to address the challenges in the traditional 

networks such as high cost and lack of scalability and flexibility due to dependence on 

proprietary hardware network functions. By leveraging virtualization technologies, NFV 

consolidates the software implementations of network functions onto standardized high-

volume servers. NFV provides network operator a flexible and efficient management and 

operation to network and the capability to faster release new types of network services in lower 

cost. NFV changes the way that networks are designed, deployed and maintained by utilizing 

virtualized network functions (VNFs). As the software implementation of network function is 

no longer integrated into a dedicated hardware, both software and hardware can be evaluated 

independently which promotes the innovation of both hardware and software implement of 

network function. Furthermore, the separation of software and hardware allows network 

operators to deploy network functions flexibly by reassigning and sharing the same hardware 

platform, which can efficiently utilize the hardware resources and make new network service 

faster. Moreover, the network operator can dynamically scale the actual VNF performance 

according to the actual traffic or resource utilization [8].  Consequently, NFV potentially 

reduces CAPEX and OPEX and increases reliability and resilience and resource utilization 

[6][8][9][10].  

NFV was first introduced by world’s leading TSPs such as AT&T, BT, China Mobile, KDDI, 

NTT, and Verizon. The first version white paper [33] of NFV was released by European 

Telecommunications Standard Institute (ETSI) in 2012 to call for actions to work on the 

deployment of NFV.  Since then, ETSI has released a series of white paper on the opportunities 

and challenges [33], use cases [34], architectural framework [8], industry progresses [35], 

terminology for main concepts [36] and NFV priorities for 5G [37]. As the significant benefit 

of NFV, both academy and industry are focusing on the research and development of NFV. 

Many standardize organizations such as NFV ISG[11], 3GPP[12], IETF SFC WG[13], 

ATIS[14] and BB Forum[15] are working on NFV. These standardize organizations have 

released many specifications on the development and standard of NFV. Besides, 93% of 
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operators in a survey intend to integrate NFV [18]. Many ongoing projects such as OPNFV[16] 

and ZOOM[17] are working toward the deployment of platforms to promote NFV. 

2.1.1. NFV reference architecture 

Figure 2-1 shows ETSI NFV architectural framework[8]. The architectural framework consists 

of three main components: Network Function Virtualization Infrastructure (NFVI) component, 

Virtual Network Functions (VNFs) component, and NFV Management and Orchestration 

(MANO) component.  

 

Figure 2-1 ETSI NFV architectural framework. [8] 

2.1.2. Function blocks in NFV architecture 

NFV Infrastructure (NFVI): NFVI is composed of hardware and software resources in NFV. 

Some example of such resources are server, network, storage, virtual machines, and 

hypervisors. NFVI virtualizes these resources to construct a virtualization layer where VNFs 

can be deployed and executed.  
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Virtual network functions (VNF): a VNF is a softwarized network function. By leveraging 

virtualization technology, a VNF can be packaged into a virtual machine and deployed on a 

specific server in NFVI. VNF can be started and terminated within few minutes and migrated 

across the NFVI to adapt to demand of network service.  VNFs are managed by VNFM.  

Element Management (EM): EM manages VNFs in collaboration with VNFM.  

Management and Orchestration (MANO): MANO is composed of NFV Orchestrator 

(NFVO), a VNF Manager (VNFM), and a Virtual Infrastructure Management (VIM) 

component. MANO is delegated NFVO, VNFM, and VIM to manage the overall of NFV 

system.  

NFV Orchestrator (NFVO): NFVO covers the orchestration and management of 

hardware and software resources in NFVI. NFVO realize the network services on NFVI, 

and is responsible for the network service lifecycle management, e.g., instantiate, scale, 

update and terminate the network service. NFVO controls the entire NFV infrastructure 

resources with the support of VIM and VNFM.   

VNF Manager (VNFM): VNFM manages VNFs’ lifecycle according to a deployment 

template. A deployment template describes requirements to realize a VNF. VNFM can 

perform functions such as instantiating, scaling, updating, and terminating VNFs. When 

instantiates a VNF, VNFM requests resources from NFVI based on the requirement in the 

deployment template, and NFVI assigns proper resources to the VNF. During the lifecycle 

of a VNF, VNFM monitors the VNF and scale resources for the VNFs accordingly.  

Virtual Infrastructure Management (VIM): VIM is responsible for controlling and 

managing compute, storage, and network resources in the NFVI. For example, VIM can 

allocate or de-allocate compute and storage resources to a VNF. VIM collects infrastructure 

information for capacity planning, monitoring and optimization. VIM also monitors and 

reports infrastructure fault information. A VIM can manage multiple types of resources or 

be dedicated to handle a certain type of resource, such as compute-only VIM. 

OSS/BSS: OSS/BSS are integrated with network operators’ other systems. An OSS is an 

operational support system composed of a set of software applications that perform functions 

including service activation, service provisioning, network configure, network maintenance, 

and fault management. A BSS is a business support system composed of a set of software 
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application that support customer-facing activities, such as processing billing, taking orders, 

collecting payments, and customer relationship management.  

NFVI PoP: An NFVI PoP [36] is a single geographic location where a number of physical 

devices are sited. These physical devices provide computation, storage and networking 

resources and are responsible to provide NFVI functions to execute VNFs [30][31].  

2.1.3. Reference points in NFV architecture 

Reference points [32] are connections for functional blocks within and outside NFV-MANO 

to interact, communicate and work with each other for exchanging information.  

Virtualization Layer - Hardware Resources (VI-Ha): Used in the middle of virtualization 

layer and hardware resource. The interface collects hardware state information and manage 

VNFs.  

VNF - NFV Infrastructure (Vn-Nf): exchange information between VNF and NFVI. It 

ensures that the lifecycle, performance and portability requirement of the VNFs are 

independent from the hardware.  

NFV Orchestrator - VNF Manager (Or-Vnfm): exchange information between NFVO and 

VNFM. This reference point supports resource related requests. It allocates and releases 

resources for VNFs. NFV Orchestrator can send configuration information to the VNF Manger 

to configure VNF according to the VNF Forwarding Graph. It supports the lifecycle 

management of VNF such as instantiation, query, update, scaling out/in, up/down, termination 

of VNF instance.  

Virtualized Infrastructure Manager - VNF Manager (Vi-Vnfm): exchange information 

between VIM and VNFM. This reference point allocates/releases resources requested by 

VNFM.  It exchanges the information of virtualized hardware resource configuration and state 

information.  

NFV Orchestrator - Virtualized Infrastructure Manager (Or-Vi): exchange information 

between NFVO and VIM for reserving, releasing, updating, and allocating resources requested 

by NFVO.   

NFVI - Virtualized Infrastructure Manage (Nf-Vi): exchange information between NFVI 

and VIM. It assigns computation resources and storage resources in response to resource 
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allocation requests. It supports update resource allocation, migration, termination of VM. It 

also supports to create, configure and remove connections between VMs.  

VNF/EM - VNF Manager (Ve-Vnfm): exchange information in middle of VNF/EM and 

VNFM. It manages lifecycle of VNF. It exchanges the information of configuration and events 

between VNF/EM and VNF Manager.   

OSS/BSS - NFV Management and Orchestration (Os-Ma): exchange information in middle 

of OSS/BSS and NFVO. It manages NSD, VNF package, and lifecycle of NS, including 

instantiation, update, query, scaling, and termination of NS instance.  

2.1.4. Information elements in NFV architecture 

Information in NFV have three categories, information that resides in descriptors, information 

that resides in recorders, and information exchanged between functional blocks. Descriptors 

are deployment templates of static information for processing on-boarding virtual network 

functions and network services. Records are dynamic runtime data which represents virtual 

network functions and instances of network service [32]. 

An information element in NFV contains a specific information and can be built into a tree 

structure. An information element is classified into three types: leaf, which contains a specified 

value, reference elements, which carries a reference to another information element, and sub 

elements, which specifies another level in the tree.  

To describe a Network Service, four information elements are defined: 1) VNF information 

element, 2) PNF information element, 3) VL (virtual link) information element, and 4) VNF 

Forwarding graph (VNFFG) information element.  

Network Service Descriptor (NSD): An NSD is a network service deployment template, 

which refers to other descriptors that are part of the network service. 

VNF Descriptor (VNFD): A VNFD is a VNF deployment template that describes 

requirements of deployment and operational behavior to a VNF. VNFM uses this template to 

instantiate VNF and manages VNF lifecycle. NFVO uses this template to manage NS and 

virtual resources on VNFI. NFV-MANO use the information of connectivity, interface and 

KPIs requirements for setting up Virtual Links within NFVI. 

VNF Forwarding Graph Descriptor (VNFFGD): A VNFFGD describes network service’s 

topology.  
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Virtual Link Descriptor (VLD): A VLD describes link resource requirements between VNFs 

in a Network Service.  

Physical Network Function Descriptor (PNFD): A PNFD is a deployment template that 

describes Virtual Links requirements such as connectivity to an PNF. 

By leveraging these descriptors with instantiation input parameters, the NFV Orchestrator or 

VNFM performs instantiation operation, and create record information such as NSR and VNFR 

as a result of the instantiation operation. 

2.2. Service function chain (SFC) 

Service function chain (SFC) is an end-to-end network service composed an ordered set of 

VNF for processing traffic flows [28]. The end-to-end network service is a combination of 

network functions [8], e.g., firewalls, HTTP header manipulation, and load balancers. The 

network service is represented as a Network Function Forwarding Graph [29] of a serials of 

connected network functions and end points. These network functions are deployed on a single 

or multiple interconnected operator network.   

 

Figure 2-2 An End-to-end network service on the traditional hardware-based network. 

Figure 2-2 shows end-to-end network service on the traditional hardware-based network. The 

end-to-end network service is composed of a network function forwarding graph, and two end 

points A, B. Network functions are deployed on the physical infrastructure networks. The dash 
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line connected End Points and NFs are logical links of end-to-end network services. These 

logical links are connected by physical infrastructure network links. The end points are not 

included in the domain of network operator.  

 

Figure 2-3 An example of an end-to-end network service realized by virtualization. 

Figure 2-3 shows end-to-end network service realized by virtualization approach 

corresponding to Figure 2-2. The network functions are virtualized as VNFs and separated from 

hardware. VNFs are deployed on virtual machines provided by hardware resources of NFVI-

PoP. From the view of end-to-end services, it does not know where the VNFs are deployed on 

the physical infrastructure. 

2.3. SFC deployment scenarios 

This section describes several scenarios of SFC deployment as below. 

2.3.1. SFC in Broadband network 

Service nodes can be deployed in broadband networks to add value-added services by network 

operator. Figure 2-4 shows a possible deployment of SFCs. The SFCs are deployed between 

BNG (Broadband Network Gateway) and CR (Core Router).  
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Figure 2-4 Service function chain deployment in broadband network scenario. 

2.3.2. SFC in Mobile Networks Gi/SGi Interface 

Figure 2-5 shows an example of SFC scenario in the Gi/SGi Interface. There are three SFCs in 

the figure. SFC1 is composed of an WAP GW. The DPI in SFC classifies the traffic and 

forwards WAP traffic to WAP GW. SFC2 is composed of an optimizer, a cache, a firewall and 

an NAT. DPI classifies HTTP traffic and directs the traffic through these functions in order. 

SFC3 is composed of a firewall and an NAT. Other traffic is directed by DPI to travel through 

these functions in order.  

 

 

Figure 2-5 Service function chain deployment in mobile networks scenario. 

2.3.3. SFC in Datacenter 

Added-value services can be realized by deployment of SFC in Datacenter. Figure 2-6 depicts 

an example of SFC in Datacenter. The SFC is composed of an IDS/IPS, a firewall, an NAT. 

This SFC is deployed between the Servers and Datacenter route (DC) and processes all 

incoming traffic orderly. 
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Figure 2-6 Service function chain deployment in datacenter scenario. 

2.4. SFC placement and chaining problem 

2.4.1. Overview of SFC placement and chaining problem 

An SFC is composed of a set of ordered VNFs for processing traffic flow and delivery end-to-

end network service. For example, securing flow can travel through an SFC composed of VNFs: 

firewall, DPI, and VPN. Though NFV addresses many issues in the traditional network, it arises 

additional challenges [10], and one of these challenges is VNF placement and chaining problem.  

VNF placement and chaining is an important technology in the network function virtualization 

environment. It is a complex task since many constraints and requirements must be satisfied. 

It reflects the requirement of an SFC and how the network provider handles to satisfy these 

requirements, thus VNF placement and chaining can be regarded as resource allocation in 

NFVI. An algorithm of VNF placement and chaining is required to optimally deploy each VNF 

in an SFC request on a best location in the NFVI and interconnect these VNF instances orderly 

with satisfying resources and QoS constraints. Specifically, the algorithm must find location 

where have sufficient computation resources for processing VNF instances of an SFC and find 

a link who have sufficient bandwidth resources for routing traffic orderly to each VNF of SFC. 

QoS like delay and availability must be considered for SFC service delivery at same time.  

Figure 2-7 depicts an example of SFC mapping over on NFVI. A NFVI contains six 

interconnected physical servers. Two service function chains have been mapped on the NFVI 

through the virtualization layer. SFC1 contains three VNFs: FW, IDS, and Proxy, between the 

𝑠𝑟𝑐 and 𝑑𝑠𝑡 nodes. This SFC can be deployed in the datacenter for enterprise. SFC2 contains 

a P-CSCF and a S-CSCF between 𝑠𝑟𝑐 and 𝑑𝑠𝑡 node in IMS system [74]. The P-CSCF function 
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is for call registration in IMS system which is located close to callers as the first contact point. 

S-CSCF is for session control in IMS [24]. From Figure 2-7, VNFs in SFC are deployed on 

physical server in NFVI, and traffic is routed through the servers that host the VNFs orderly. 

Note that VNFs from different SFCs can share the same physical server, e.g. IDS and S-CSCF. 

However, from the view of an SFC, each SFC has a fully controlled isolated resource. It no 

knowledge of physical server’ location and the existence of other SFCs, as the physical 

resources are provided through the virtualization layer. 

An SFC request is on-boarding to MANO. The NFVO receives the SFC requests in a form of 

NSD, that contains the information of the network service, such as number of VNFs, 

dependency of VNFs, computation and bandwidth resource requirement, and other information 

as describe in the information element section above.  The NFVO perform instantiation 

operation in coordination with VNFM and VIM to install the VNFs on the NFVI and allocate 

proper computation and bandwidth resources for the SFC requests.   

 

 

Figure 2-7 An example of SFC mapping over on NFVI. 
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2.4.2. Resource allocation taxonomy 

When initializing an SFC on the physical infrastructure, the physical infrastructure provider 

must provide resources such as computation, bandwidth, and guarantee the performance for 

SFC to fulfill the end-to-end service deliver. We introduce the terminologies in the resource 

allocation for network slice.  

VNF: A softwarized network function that can be installed onto a standardized generic server 

(e.g. x86 server) to realize the network function. For example, a softwarized firewall (vFirewall) 

is installed in an x86 server to act the firewall network function, rather than the dedicated 

firewall devices. 

Substrate network: A substrate network is a physical infrastructure composed of a set of 

nodes interconnected through links. These nodes and links provide resources such as CPU and 

bandwidth. CPU and bandwidth capacity in this thesis are static. An example of substrate 

network is a collection of connected standardized generic physical device (e.g. x86 servers) in 

datacenter.  A substrate network is regarded as NFV Infrastructure (NFVI) in NFV architecture.  

Substrate network node / substrate node: A substrate node is a physical computation device. 

Substrate nodes are connected via substrate links (physical links). VNFs can be installed in the 

substrate node in a form of virtual machine, thus multiple VNFs can be installed on one 

substrate node. A substrate node provide computation resource (CPU) for VNFs installed in it 

to realize the functions of VNFs. A substrate node can receive and forward traffic flow acting 

like a switch (via technologies such as vSwitch). 

Substrate network path / substrate path: Substrate network path is a physical link 

connecting multiple substrate nodes in a substrate network. Traffic travels on the path and 

through particular substrate nodes which host VNFs to realize end-to-end services. For a certain 

SFC, the substrate network path is also called end-to-end path. 

Service function chain (SFC): an SFC consists a set of VNFs aiming to provide specific end-

to-end service. An example of an SFC can be a chain of Firewall, IDS, and Proxy.  

SFC request: an SFC with resources demands and performance requirements. An SFC request 

is created by a tenant or custom to request network resources from substrate network for deliver 

its particular end-to-end service. Resource demands describes the amount of resources the 

substrate network must provide. For instances, CPU demands for processing each VNFs of the 

SFC, and bandwidth demands for connecting two VNFs. In this study, we consider the resource 
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demands are static. Performance requirements describe the performance objectives that the 

substrate network must guarantee. Some SFC requests require the VNFs processed in a specific 

order by substrate network, in order to realize the whole service correctly. The substrate 

network must allocate proper resources to satisfy resource demands and guarantee the 

performance of SFCs. 

2.4.3. Resource allocation for SFC 

To support multiple network slice coexisting on the top of a shared underlying substrate 

network, the substrate network must allocate resources to each network slice properly. From 

the view of substrate network, allocating resources for SFC can be regarded as a processing of 

deployment of SFC request. We consider two types of resource allocation, CPU resource 

allocation, and bandwidth resource allocation. 

CPU resource allocation: CPU resource allocation deals with finding a location (substrate 

network node) whose CPU resource is sufficient to host the VNF of an SFC request. That is, 

to host a VNF, the amount of available CPU resources of a substrate network node should be 

larger than the CPU demand of the VNF. 

Bandwidth resource allocation: bandwidth resource allocation deals with finding a substrate 

network path whose bandwidth resource is sufficient to direct traffic through the VNFs of an 

SFC.  

2.5. State-of-the-art 

This section presents state-of-the-art in the field of SFC deployment.  

2.5.1. Hybrid of deployment of VNFs. 

Hybrid of deployment of VNFs with physical network function is the first step for shifting 

traditional network to NFV based network. Hybrid of deployment can be classified into several 

aspects such as hybrid of different types of SFCs, hybrid of virtual network functions with 

physical network functions, and hybrid of deployment of VNFs in cloud and fog systems.  

Zheng et al. in [41] investigated the problem of deployment of a hybrid SFC. The authors 

identified three types of SFCs, u-SFC, in which traffic is forwarded through ordered VNFs in 

one direction, b-SFC, in which symmetric traffic flows travel forward and backward through 

VNFs, and h-SFC, which is a hybrid of u-SFC and b-SFC, where some VNFs in the SFC need 
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to process bidirectional traffic, and other VNFs process unidirectional traffic. Authors modeled 

the hybrid SFC deployment problem and proposed an approximate algorithm. The approximate 

algorithm first constructs a unidirectional service function path (SFP) and finds the shortest 

path to connect forwarding SFP and backward SFP.  

Moens et al. in [42] presented a formal model for VNF placement which focus on a hybrid of 

physical network function and virtualized network function scenario. The scenario assumes 

that traditional hardware-based network function process normal traffic load, and VNFs 

process the variation of traffic load by dynamically installing VNFs. Huang in [43] observe 

that the collaboration of VNFs and physical network functions would be lasting a long term. 

The authors apply Markov Approximation (MA) based algorithm to efficiently deploy SFCs 

with satisfying traffic demands and individual policy chains simultaneously and maximize the 

total admitted traffic in the hybrid of VNFs and physical network functions environment.  

Mouradian et al. in [44] and Afrasiabi et al. in [45]  investigated the VNFs placement and 

migration in a hybrid of cloud and fog environment. Authors minimize the aggregated weighted 

function of makespan and cost with assumption of non-deterministic application graph. The 

authors formulate and evaluate an ILP model in a small-scale scenario by CPLEX optimization 

tool.  

2.5.2. VNF interference and distributed deployment of VNFs. 

Different types of VNFs will compete resources such as CPU or network I/O, if they are placed 

on the same hardware device. This competition will degrade VNFs’ performance. Some 

researchers studied how the performance of VNF would be interfered among VNF instances 

deployed on the same server. 

Zhou et al. in [19] studied vertical scalability for VNF placement.  Authors consider a traffic 

flow data rate can alternated between normal rate and peak rate. The authors formulate a model 

for the problem and analyzed the reason that two VNFs in an SFC should not be placed on the 

same substrate node due to high packet loss ratio. The authors distributedly deploy VNFs by 

utilizing a bipartite matching algorithm. Zhang et al. in [46] investigated the interference 

problem and found that service performance will be degraded in 5G network slicing scenario, 

if VNFs are deployed on same place. The authors quantify the extent of VNF interference based 

a demand-supply model. The authors proposed an interference-aware algorithm for placement 

of VNFs in 5G slicing automatically. Veddy et al. in [47] observed that consolidation of VNFs 
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would increases Snort’s [48][49] response time. For example, the response time of Snort is 

around 0.18ms if it runs alone in the server, whereas the response time increases to 0.3ms if 

Snort runs with PktStat [50], and 0.4ms if multiple Snorts run in the same server. The authors 

proposed an algorithm to efficiently selects the VNFs and route the traffic flow with 

consideration of interference effect by utilizing dynamic programming technique. Zeng et al. 

in [51] measured performance interference by utilizing six types of VNFs. The authors 

investigated how the resource competition and packet characteristics would affect the 

performance interference. Based on the results of measurement, the authors provide 

suggestions on how to efficiently place VNFs from the perspectives of resource allocation, 

location selection and dynamic scaling. Kannan et al. in [52] identified the challenge of 

performance interference caused by visualization in datacenter environments. To address this 

challenge for production datacenters, authors designed Proctor, which can monitor the 

performance of physical infrastructure in a lightweight and scalable way.  

2.5.3. Availability 

Availability is one of key metrics of QoS of network services. Availability is more challenge 

in NFV environment as the network services could suffer completed service outage from both 

hardware failure and software failure.  

To tackle availability problem, Moualla et al. [53] designed a placement algorithm based on an 

iterative linear program (LP). The algorithm leverages properties of fat-tree topology to realize 

online SFC placement. The algorithm has no any prior knowledge about the demand 

distribution. The algorithm places VNFs of SFCs considering availability which is requested 

by users. Herker et al. [54] analyzed different data-center topologies and provided different 

backup strategies for service function chains. By comparing costs in different network 

architectures and service availability performance, the authors observed a service chain can 

obtain a higher availability in a two-tier tree topology than a three-tier tree topology as a two-

tier tree topology have more paths for backup. Kong et al. [55] proposed a mapping mechanism 

to guarantee SFC availability by deciding the number of VNF replicas that are necessary to 

each VNF. In such way, the mechanism can maximize the availability metric and guarantee the 

dependencies of VNFs. Yala et al. [56] designed an SFC placement algorithm which maximizes 

availability of SFC while simultaneously minimizing access latency for SFCs in MEC. The 

authors formulated a model considering availability, cost and latency, and proposed a genetic 

algorithm (GA). The authors evaluated the quality of solution and computation complexity by 
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using IBM ILOG CPLEX Optimizer. Fan et al in [57] analyzed the challenges of availability 

issues in datacenter that different devices such as server, virtual machine, core switch could 

suffer failure and lead outage of SFCs. Authors proposed a VNF deployment scheme to 

minimize amount of resources by estimating SFC requests availability.  

2.5.4. Energy  

Existing studies show that in comparisons of traditional network, energy consumption can be 

saved up to 50% in NFV environment.[58]. To benefit advantages of NFV from efficient 

energy consumption, some researches focus on the energy-efficient deployment of SFC in NFV. 

Xu et al. in [59] formulated an ILP model for energy-saving model and designed an algorithm 

by jointing optimization of VNF placement and traffic routing by utilizing Markov 

approximation technique to solve the problem in a polynomial time complexity. The results 

show the algorithm can save 14.84% energy consumption in telecom networks. Zheng [60] 

considered that a substrate network node can only provide a unique network function, which is 

practical in mobile edge computing system that the computation resources are limited. Authors 

formulated the problem into an ILP problem and proposed an efficient heuristic algorithm 

which can achieve a near-optimal performance in a small-scale network.  

Mebarkia and Zsóka in [61] considered both the topology of network functions, network, and 

current load information of the underlying IP layer to avoid link overload in the underlying IP 

network layer. Authors classified SFC solutions into three architecture models based on the 

level of information exchanging between service function and underlying networking.  

Garg in [62] considered the utilization of CPU can affect the VNF delay in the substrate 

network and proposed a selection algorithm with guaranteed end-to-end delay of SFC requests 

by setting the threshold of CPU utilization.   

2.5.5. SFC deployment in 5G 

NFV is a main enabler of 5G [63]. Many prior studies consider SFC deployment in 5G scenario.  

Bi et al. in [64] designed a MILP SFC placement model for ultra-low latency services. The 

model minimizes the total latency with consideration of the sources of latency from processing, 

queueing, transmission, propagation, and optical-electronic-optical conversion. Authors 

proposed a heuristic algorithm based on data rate for service latency minimization. The 

evaluation shows the algorithm can achieve at least 1.7 times acceptance ratio as the baseline 
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approach. Harutyunyan et al. in [65] formulated an ILP model of SFC placement which 

associates user equipment (UE) in 5G mobile networks. Authors designed a heuristic algorithm 

to solve the problems in scale. Alameddine et al. in [66] consider the placement and scheduling 

of VNFs of SFC in 5G ultra-low latency network. Authors solve the SFC schedule orchestration 

problem by jointly addressing the mapping and scheduling of services to VNFs. Authors 

formulate the problem into MILP and design a game-theoretic algorithm called ENCHAIN to 

exploit a scalable solution.  

2.5.6. AI-based approach deployment 

AI-based VNFs deployment is a promising way for network control and management as NFV 

paradigm improved the performability of network which could utilize AI technologies. Some 

related works have formulated VNF scaling and traffic predicting as an online learning (convex) 

optimization and solved by online-learning techniques [67][68][69]. Other related works 

leverage machine learning or deep learning for VNFs placement for efficient resource 

utilization.  

Jia et al. in [70] addressed geo-distributed deployment of service function chain and scaling of 

VNF instances. Authors first formulate an online cost minimization problem for dynamic 

deployment and removal of VNFs across different datacenters, and dynamic traffic flow in 

each service function chain. By leveraging online learning algorithm of regularization 

technique, the algorithm relaxes the offline optimization problem. Finally, the author designed 

an online dependent rounding algorithm to obtain the final randomized mixed integer solution. 

Zhang et al. in [71] estimated traffic rate and adjusted VNF deployment in advance with a 

proactive approach. The authors solve the problem of VNF scaling by combination of online 

learning algorithm. The algorithm minimizes the regret of error prediction and the cost of sub-

optimal online decisions. Kim et al in [72] proposed a machine learning-based algorithm to 

predict VNF resource demands. The method is a type of recurrent neural network that uses 

attention and embedding techniques in conjunction with a Long Short-Term Memory model. 

This model can simultaneously predict resource demands for all VNFs in SFC with a higher 

accuracy. Quang et al in [73] transform the VNF placement problem as a Markov Decision 

Process, and utilize deep reinforcement learning algorithm to solve the problem.  
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2.5.7. Virtual network embedding 

Virtual network embedding (VNE) problem is considered to perform embedding of virtualized 

network functions into a shared substrate network with satisfying the constraints of substrate 

node computation and substrate link bandwidth capacity. Though the VNE problem is similar 

to the SFC placement problem, the SFC placement problem is aiming to map different virtual 

network functions on substrate by compromising the given constraints such as computation 

and bandwidth resources. In our research, the SFC placement also considers keeping the order 

of VNFs in the SFC for service delivery while satisfying a guaranteed end-to-end delay or 

availability requirements.  

Yu et al. [75] proposed a greedy algorithm to deploy virtual network nodes on substrate 

network by ranking nodes of network. The algorithm calculates the amount of available 

resources of a node both in substrate network and each virtual network request by multiplying 

the available CPU resources with available bandwidth of all adjacent links of this node. Then 

algorithm sorts virtual network request according to the revenues and mapping virtual network 

request with maximum revenues by mapping the node with maximum available amount in 

virtual network request on to the node with maximum available amount in substrate network 

such that satisfying the CPU constraint. Then the algorithm maps virtual network links by 

finding k-shortest path. The authors in [75] also considered multi-path approach to map virtual 

network link efficiently. Cheng et al. [76] map virtual network nodes by ranking nodes as well, 

but in another way of rank nodes. They proposed a NodeRank algorithm similar to PageRank 

with transition matrix of the Markov chain to rank node and discover the network topology. 

Once the nodes in substrate network and virtual network are ranked, the algorithm maps node 

in a way same as [75] that mapped nodes large resources of virtual network on to nodes with 

large resources of substrate network. Once all nodes have been mapped, algorithm maps virtual 

network links by finding k-shortest path. Authors in [76] also introduce a one-stage mapping 

of nodes and links to eliminate unnecessary consumption of bandwidth resources of the 

substrate network such as two very closed nodes in virtual network may be mapped on two 

nodes with a long distance in substrate network. The algorithm introduces breadth-first search 

tree to solve this problem. Chowdhury [77] proposed a coordinate node and link mapping 

algorithm by extend the substrate network to an argument graph with meta node and meta edge. 

The algorithm formulates the embedding problem as a mix integer programming (MIP). The 

algorithm then relaxes the integer constraints to obtain a linear program and devise the 
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algorithms using deterministic and rounding techniques. This algorithm also considered the 

location of nodes in virtual network. Gong et al. [78] proposed a global resource capacity 

algorithm to rank nodes in network. The global resource capacity algorithm overcomes locality 

problem and “big island” problem. The locality problem is that a node only considers the 

resources of the node itself and its adjacent links, but not the global resources capacity when 

evaluating the node rank. The “big island” problem is that the load distribution in a network is 

imbalanced so that some nodes cannot be utilized properly though they may still have large 

amount of available resources.  

2.6. Conclusion 

In this chapter, we introduced a brief overview of the reference NFV architecture. We described 

the definition of different function blocks, references point between function blocks, and the 

information elements flowing in the NFV architecture. We introduced the end-to-end network 

service in NFV as well as network slicing concept. Following SFC deployment scenarios, we 

stated the SFC placement and chaining problem and challenges in the problem. Finally, we 

presented the state-of-the-art of SFC placement.  

Although many researches have focused on the SFC placement problem from different aspects, 

such as energy, we still see the rooms that can be improved such as reducing end-to-end delay. 

Some aspects of this problem such as distributed deployment requirement have not been 

researched well yet. In following chapters, we fill these gaps by studying SFC deployment with 

requirements of cost, end-to-end delay and distributed deployment. 
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Chapter 3  

3. Mathematic Model for SFC Deployment Problem 

3.1. Introduction 

Network function virtualization (NFV) shifts the way of design, management, and deployment 

of network services into a more flexible, automated and vendor-independent manner. NFV has 

been considered as a promising technique for next generation networking. Many network 

operators, vendors and standard organizations are cooperating together to work on the 

development of NFV [79][80][81][82].   

Service function chain (SFC) is an important technique to realize network service in NFV 

environment. As described in the previous chapter, an SFC is a set of VNFs deployed on the 

substrate network.  A traffic flow travels through VNFs of SFC, such as virtual load balancer, 

virtual proxy, virtual DPI, and virtual firewalls, before it arrives the destination.  

One of important benefits from the NFV is flexible and operationally efficient network 

management and deployment, which reduce both CAPEX and OPEX for service operators and 

end-users [83][84]. For example, by dynamically adjusting the number of running VMs for 

hosting VNFs, the network operator can reduce cost in terms of energy consumption. However, 

to gain full benefits from NFV, the scheme of deployment of SFCs must be carefully designed. 

One of the important considerations from the network operator’s perspective is to reduce the 

cost criteria. Optimizing deployment cost means finding proper substrate nodes for hosting 

VNFs at a minimum cost while simultaneously satisfying the demands and constraints of 

network service.  The cost in this context can be various. One of such cost we consider is setup 

cost, which is the cost to initiate a VNF instance on a substrate node, and another is operational 

cost, which is the cost to process a unit of VNF computation requirement in substrate network. 

We discuss the details of both costs in section 3.3. 

However, the SFC placement problem is complex, involving many constraints and 

requirements. Nevertheless, due to the flexible of deployment of VNFs across the distributed 

substrate network nodes, it is a challenge for network operators to reduce the total CAPEX and 

OPEX with an optimal VNF deployment scheme while simultaneously guaranteeing the QoS 

of SFC such as end-to-end forwarding delay.  
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In this chapter, we present a mathematic modeling for the SFC deployment problem. A 

mathematic modeling is a special class of decision problem where concerns with the efficient 

use of limited resources to meet desired objectives [85]. It provides an effective approach of 

solving many different types of optimization problems.  

Specifically, we formulate an ILP optimization problem with an objective of minimizing setup 

cost and operational cost. We show that the setup cost and operational cost in this model is 

practical and realistic. A practical definition is critical for network operator to estimate the 

costs when planning and operating networks. We conduct experimental study on our model. 

The results show that our model can reduce costs and guarantee an end-to-end delay deadline 

requirement. 

In section 3.2, we introduce and compare related works which solve the SFC deployment by 

leveraging mathematic modeling method.  

In section 3.3, we define the setup cost and operational cost and show differences and superior 

of our definitions comparing with previous works in literature. 

In section 3.4, we formally formulate a mathematic model with optimization objective of 

minimizing costs, while simultaneously satisfying network resource capacity, order of VNFs, 

and end-to-end delay of an SFC. 

In section 3.5 and 3.6, we conduct experimental study on our model. 

In section 3.8 we make a conclusion on this chapter. 
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3.2. Related works 

NFV is a promising technology for reduction of CAPEX and OPEX for network operators by 

leveraging generic hardware as a platform for deploying softwarized network functions. Many 

previous studies have utilized the mathematical programming to model the SFC deployment 

problem with various optimization objective and different constraints.  

Normally, previous studies on deployment of SFC with cost reduction objective consider three 

main aspects:  

a) General cost[86][87], which refers to reducing the cost to deploy and operate physical 

resource on node and edge. 

b) Consolidation of nodes[42][90][91][93], which refers to deploy VNFs on less number 

of substrate network nodes to reduce the potential cost consumption such as energy. 

c) Network load[88][92][94], which refers to reducing the network bandwidth utilization.  

Regarding the constraints of the optimization model, as the network resources are limited, most 

previous studies consider CPU resource and bandwidth resource as the main constraints of the 

optimization models. These constraints guarantee that the total allocated resources not exceed 

the capacity of substrate network resources.  

However, some of the previous works such as Lin [86] and Zeng [87] only consider the 

resource constraints. Although these studies provided effective model for minimizing the cost 

of deployment of SFC, they neglected the QoS constraints imposed on the SFC. As a result, 

this lack of QoS constraints will significantly impair the experiences of network services. One 

of such QoS metric is the delay (also known as forwarding delay or end-to-end delay) of an 

SFC. The delay is calculated as the summation of edges delays that a traffic of an SFC travel 

through. As described in the next chapter, a shorter end-to-end delay can significantly improve 

the experiences of users using the system.  Some of previous works such as Moens [42] and 

Addis [88] noticed this neglection and added delay of an SFC as an additional constraint. These 

works formulated the optimization model with objective of cost reduction while 

simultaneously guaranteeing a desired end-to-end delay and satisfying the resource constraints 

in terms of CPU and bandwidth resources.  

Another critical constraint is the order of VNFs in an SFC. Order constraint should be 

considered carefully as order is one of the distinct features for SFC compared with problem 

such as virtual network embedding problem (VNE) described in section 2.5.7. The order 
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constraint guarantees a traffic flow travelling through VNFs of an SFC in a specific order. This 

is critical since some VNFs must be processed before or after another VNFs for completion of 

whole network function. For example, intrusion detection system (IDS) needs to come before 

compression or encryption functions to inspect payloads, and encryption function should be 

located in front of a decryption function to perform correctly[25][89]. Some researchers such 

as Savi [90] and Tajiki [91] have noticed the order constraint and added this constraint in their 

models. 

Table 3-1 draws a summary of the previous study on cost reduction by utilizing mathematical 

modeling. Lin et al. in [86] and Zeng et al. in [87] consider reduce the general cost, which 

refers to reducing the cost to deploy and operate physical resource on node and edge.  Lin et 

al. in [86] proposed a MIP model for solving the deployment network functions and allocations 

of physical resources. The model is aiming to minimize the cost to deploy an instance of 

network function and reduce the cost to use physical resource on both nodes and edges. The 

model guaranteed the constraints of CPU and bandwidth resource capacity. However, they did 

not consider the order of VNFs and the end-to-end delay of an SFC. Zeng et al. in [87] studied 

the orchestration of tree-type VNF forwarding graph in an inter-datecenter elastic optical 

network scenario. The authors formulated a MILP model to minimize the overall cost to 

orchestrate VNFs. As the VNF forwarding graph is a tree-like one, order of VNFs and end-to-

end delay of an SFC are not considered. 

Researchers in [42][90][91][93] consider to consolidate the VNFs onto few number of substrate 

network nodes to potentially reduce the cost. Moens et al. in [42] designed a formal model for 

placing VNFs. The model focuses on a hybrid of physical network function and virtualized 

network function scenario. The scenario assumes that traditional hardware-based network 

function process normal traffic load, and VNFs process the variation of traffic load by 

dynamically installing VNFs. Savi et al. in [90] deployed VNFs on a smaller number of 

substrate network nodes, to minimize the number of active nodes. The model consists the CPU 

resource, bandwidth resource, order, and max tolerant end-to-end delay constraints. However, 

the model did not take the cost to deployment and utilization of resources into account. Luizelli 

et al. in [93] aims to reducing the number of VNFs. The authors argued that number of VNFs 

would impact the network providers’ cost most significantly. The model the authors proposed 

are composed of CPU constraint, bandwidth constraint, order and end-to-end delay constraints. 

However, we consider that the cost to deploy and utilize the VNFs should also be counted as 

an important  
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Table 3-1 Mathematic modeling reference comparison table. 

aspect for reducing network providers’ cost, which are not considered by the authors. Tajiki et 

al. in [91] proposed a scheme to reduce energy. The authors modeled an ILP optimization 

model to minimize the number of hops along the SFC path. The model considered the 

constraints of order of VNFs, delay of SFC, link resource utilization, and server resource 

utilization. 

Other researchers in [88][92][94] consider to minimizing the network resource load. Addis et 

al. in [88] formulate a model as a MILP optimization problem with minimizing the maximum 

network link utilization and number of cores (CPU) subjected to the constraints of node 

resource capacity, bandwidth resource capacity, and latency bound. However, they did not 

explicitly formulate the order constraints in the formulation. Jang et al. in [92] formulated an 

optimization problem based on IETF SFC architecture and topology. The objective of this 

formulation is to minimize the network bandwidth resource usage by determining the ratios of 

flows. The authors considered the constraints of flow conservation, bandwidth capacity, and 

SF processing order. As the author assumed the service functions have been already deployed 

on the substrate network, the model did not contain the CPU constraint and forwarding latency 

constraint.  Gupat et al. in [94] consider a deployment of SFC in a NeC scenarios, where NeC 

is short for Network-enabled Cloud. The NeC scenarios can be classified into three types: ‘DC 

Works Category Objective Constraints 
CPU BW* Order Delay** 

Our model 
General cost 

Min cost Y Y Y Y 
Lin[86] Min cost Y Y N N 

Zeng[87] Min cost Y Y N N 
Moens[42] 

Consolidation 
of nodes 

Min #PM Y Y N Y 
Savi[90] Min #active NFV nodes Y Y Y Y 

Luizelli[93] Min #VNF instances Y Y Y Y 

Tajiki[91] Min #forwarding 
elements Y N Y Y 

Addis[88] 

Network load 

Min Max network link 
utilization/Min #cores Y Y N Y 

Jang[92] Min network resource 
usage N Y Y N 

Gupta[94] Min bandwidth 
consumption N Y Y N 

* BW: Bandwidth 
** Delay: End-to-end delay of SFC or forwarding delay of SFC. 
Y indicates the model includes the corresponding constraint. 
N indicates the model excludes the corresponding constraint.  
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only’, in which SFC can be deployed in the Datacenter (DC) alone, ‘DC NFV x’, in which SFC 

can be deployed on Datacenter or x NFV-capable nodes, and ‘ALL NFV’, in which all nodes 

are NFV-capable nodes. The authors formulated the SFC deployment problem with object of 

minimizing the network resource consumption. The model consists a set of constraints 

including link capacity, and order requirement. However, the model considers one VNF can be 

hosted at only one NFV-capable network node, and k-shortest paths have been pre-calculated. 

Our model, however, differs from these previous models. Our model considers to minimizing 

the general costs in terms of setup cost and operational cost. The setup cost refers to the cost to 

initiate a new VNF instance in a substrate node, thus, by consolidating same type of VNFs onto 

one substrate network node, the setup cost can be reduced. Previous works such as 

[42][90][91][93] considered the setup cost is identical to all types VNFs. In our model, the 

setup costs are different to different types of VNFs which is realistic. 

The operational cost refers to the cost to process a unit resource of VNF computation 

requirement in substrate network node, thus can be reduced by deploying VNFs on the most 

optimal locations. Different from the previous works such as[86][87], which considered the 

operational cost is same to all types of VNFs, in our model, we consider the operational cost is 

different according to the type of request VNFs, which is realistic.  

Moreover, our model also considers guaranteeing the CPU and bandwidth resource constraints 

as well as the requirements of order and end-to-end delay. By comparing with previous works, 

Lin [86] and Zeng [87] have the similar optimization objective that minimizes the deployment 

and operational costs. However, they did not consider the order and delay requirements as 

shown in Table 3-1. Furthermore, as described in the section 3.3, the setup cost and operational 

cost defined in our model are realistic than these previous works. A practical definition can 

guide network operators to estimate the cost more accuracy when planning and operating 

networks.  

3.3. Cost in SFC deployment 

In this section, we define two types of costs when deploying VNFs of SFC onto the substrate 

network. We show how our definition of setup cost and operational cost are practical and 

realistic. 
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3.3.1. Setup cost 

The VNF setup cost is defined as the cost to initiate a VNF on substrate node. This cost is 

consumed once during the process of placing a VNF on a substrate node, thus, sharing VNF 

that have been already setup in the substrate network will not consume setup cost. To initiate 

different types of VNFs will result in different cost, i.e., different types of VNFs have different 

setup costs. Thus, by consolidating same type of VNFs onto one substrate node, i.e., initiate a 

type of VNF on one substrate network node and share this VNF with multiple SFCs, the setup 

cost can be reduced. On example of such cost could be the license fee for initiating a VNF as 

VNF is a kind of software and subject to a license fee, and different types of VNFs have 

different license fee. 

Differing from previous works such as [42][90][91][93], which consider the setup cost is 

identical for all VNFs, we consider different type of VNFs have different setup cost, which is 

more practical. Previous works simply consolidate VNFs onto same substrate network node to 

reduce the number of active nodes in the substrate network, thus reduce the setup cost, whereas 

our model consolidates the VNFs based on the cost value rather than the number of substrate 

nodes. Simple consolidating VNFs onto same substrate network nodes in previous works 

implies that different combinations of VNFs consolidation results in a same setup cost and does 

not consider consolidating same type of VNFs to share a same substrate node. For example, 

consider two substrate network nodes node-A and node-B, each node can host two VNFs, and 

four VNFs requests, in which are two F-type VNFs (e.g. firewall), VNF-F1, VNF-F2, and two 

N-type VNFs (e.g. NAT), VNF-N1, VNF-N2.  Then, there could be two possible collocation 

results, that one collocation is A: F1F2, B: N1N2, and the second collocation is A: F1N1, B: 

F2N2, where A: F1F2 means VNF-F1 and VNF-F2 are collocated in node-A, and so as F2N2. 

In simple consolidating VNFs case, both of two collocation results in a same cost, as their 

objective is to reduce the number of substrate network nodes, and both solution results in two 

number of substrate nodes. However, in our model, we consider the collocation A: F1F2, B: 

N1N2 is more cost-efficient, as VNF-F1 and VNF-F2 are same F-type VNFs, thus, it initiates 

F-type VNF only once, and this VNF instance is shared by both VNF-F1 and VNF-F2, so as 

N1N2. Furthermore, taking the license fee as an example, as software are usually charged by 

the number of nodes or hosts, the collocation A: F1F2, B: N1N2 only consumes two licenses 

each for F-type and N-type VNF, respectively. However, the collocation A: F1N1, B: F2N2 

will consume four licenses as F-type VNFs needs two licenses for installed on node-A and 

node-B, so as N-type VNFs. Another extreme example is that consider only one substrate 
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network node, with four VNFs requests, in which are two F-type VNFs (e.g. firewall), VNF-

F1, VNF-F2, and two N-type VNFs (e.g. NAT), VNF-N1, VNF-N2.  In simple consolidating, 

any combination of these four VNFs are possible solution as the objective is minimize the 

number of substrate network node. In our model, as we consider different type of VNFs have 

different setup cost, the cost of consolidation F1F2 and N1N2 results different setup costs, and 

our model will choose the consolidation with minimum setup cost.  

In other words, as shown in the section 3.4.3, our model defines the setup cost as 𝜑! and 𝛾 is 

the type of VNFs, which indicates the setup cost is relied on the type of VNFs, whereas 

previous works defined the setup cost as 𝜑, which did not consider the types of VNFs for setup 

cost. 

3.3.2. Operational cost 

The operational cost is the cost to process a unit of computation resource on a substrate node. 

Both the type of substrate network and the type of VNFs affect the value of operational cost, 

i.e., different substrate network nodes process one unit of computation resource requested by 

different types of VNFs at different operational cost.  Therefore, the operational cost can be 

minimized by finding an optimal substrate network node that processes the type of VNFs at 

the least cost. 

Differing from previous works such as in [86][87], which assume the operational cost are 

uniform for all types of VNFs, our model steps forward to consider that the operational cost is 

different for one substrate network node processing different types of VNFs. This is reasonable 

since when processing one-unit of computation resource, the substrate network may require 

other resources such as storage, memory or I/O resources for different types of VNFs. 

In other words, as shown in the section 3.4.3, our model defines the operational cost as 𝜔!,#, 

where 𝑣  is the substrate network node and 𝛾  is the type of VNFs. This indicates that the 

operational cost is relied on both the 𝛾 type of VNFs and the substrate network 𝑣 that processes 

the 𝛾 type of VNF. However, previous works define the operational cost as 𝜔#, which indicates 

that the operational cost is only relied on the substrate network node 𝑣, without considering the 

type of VNFs. 
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3.4. Mathematic modeling for SFC deployment 

In this section, we formally formulate the deployment of SFC problem in a language of 

mathematical model. A mathematical model is helpful to explain a system and to study the 

effects of different components. The model casts the observed phenomenon into a 

mathematical description to simplify the complex of the problem so that the problem can be 

tractable. 

3.4.1. Substrate network modeling 

𝐺 = (𝑉, 𝐸): a directed graph represents substrate network. Here we use directed graph for 

guaranteeing orders of VNFs in SFC. 

𝑉: set of substrate network nodes. 

𝐸: set of substrate network edges. 

𝐶#: computation resource capacity of 𝑣 ∈ 𝑉.  

𝐵(%,#): bandwidth resource capacity of edge (𝑢, 𝑣) ∈ 𝐸. 

𝐿(%,#): latency of edge (𝑢, 𝑣) 	∈ 𝐸. 

3.4.2. SFC request modeling  

Γ: a set of VNF types. 

 𝛾: 𝛾 ∈ Γ is a type of VNF.  

〈𝑠' , 𝑑' , 𝑙' , 𝑏' , 𝑔(>>>⃗ 〉: a 5-tuple to represent an SFC request. Here 𝑖 is the 𝑖-th SFC request among 

SFC request set.  

𝑠': source node (or ingress node) of SFC 𝑖 in the substrate network, where 𝑠' ∈ 𝑉 . 

𝑑': destination node (or egress node) of SFC 𝑖 in the substrate network, where 𝑑' ∈ 𝑉 and 𝑑' ≠

𝑠' 

𝑙': maximum value of end-to-end delay that SFC 𝑖 can tolerate. The end-to-end delay of a path 

for an SFC request cannot exceed this value.  
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𝑏' : bandwidth requirement of SFC 𝑖 . Here, we assume that the bandwidth requirements 

between any two neighbor VNFs in SFC are identical, that VNFs in SFC do not change the 

volume of traffic. 

𝑔(>>>⃗ : a vector of ordered VNFs of SFC 𝑖, and 𝑔',) is the 𝑗-th VNF in 𝑔(>>>⃗ .  

𝑡(>>⃗ : a vector of ordered VNF types for SFC 𝑖. It has the same size as 𝑔(>>>⃗ . Specifically,  𝑡',) ∈ Γ 

represents the type of 𝑔',), i.e., the type of the 𝑗-th VNF in 𝑔(>>>⃗ .  

𝑐(>>⃗ : a vector of CPU resource requirement for SFC 𝑖. It has the same size as 𝑔(>>>⃗ . Specifically, 𝑐',) 

represents the CPU resource requirement of 𝑔',), i.e., the CPU resource requirement of the 𝑗-th 

VNF in 𝑔(>>>⃗ . 

3.4.3. Cost model 

	𝜑!: setup cost of 𝛾 type VNF on an arbitrary substrate node such as VNF license fee, which is 

charged according to the number of nodes that install the VNF.  

𝜔!,#: per CPU operational cost for 𝛾 type VNF on substrate node 𝑣 ∈ 𝑉.  

The operational cost for an SFC, which requests 𝑎 amount of CPU to operate VNF 𝑓 on the 

substrate network node 𝑣, is calculated as 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡 = 𝑎 ∙ 𝜔*,# 

3.4.4. Decision variables 

We use following notation to present decision variables: 

𝑥!,# :	 a	 Boolean	 variable	 that	 equals	 1	 if	 the	 type	 of	 VNF	𝛾 	is	 deployed	 on	 substrate	

network	node	𝑣,	and	0	otherwise.		

𝑦',),#:	a	Boolean	variable	that	equals	1	if	the	𝑗-th	VNF	in	the	𝑖-th	SFC	is	deployed	on	the	

substrate	network	node	𝑣,	and	0	otherwise.		

𝑧',(%,#):	a	Boolean	variable	 that	equals	1	 if	 the	edge	(𝑢, 𝑣)	is	on	the	path	of	 the	𝑖-th	SFC	

where	(𝑢, 𝑣) ∈ 𝐸.	
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𝑘',#:	an	integer	variable	that	indicates	the	rank	of	substrate	node	𝑣	along	the	path	of	the	

𝑖-th	 SFC	 in	 the	 substrate	network.	This	 variable	 ranks	 the	node	along	 the	path	 in	 the	

substrate	network	for	one	SFC	request	to	avoid	loop	and	keep	VNFs’	order	in	SFC.	

3.4.5. Constraints 

We describe constraints of SFC placement problem in this part. 

1) Substrate network node CPU capacity constraints: 

pp𝑦',),# ∙ 𝑐',)
)'

≤ 𝐶#									∀𝑣 ∈ 𝑉 (1) 

Eq. (1) ensures that total CPU resource requirements of VNFs allocated on substrate network 

node 𝑣 ∈ 𝑉 cannot exceed the CPU capacity of node	𝑣 for all SFC requests, 

2) SFC placement constraints: 

p𝑦',),#
#

= 1									∀𝑗	𝑖𝑛	𝑖,				∀ (2) 

Eq. (2) ensures that for any VNF in any SFC request, the VNF should be placed on one and 

only one substrate network node.  

p𝑦',),#
)

≤ 1									∀𝑖, ∀𝑣 ∈ 𝑉 (3) 

Eq. (3) ensures that no more than two VNFs in one SFC request are placed on the same 

substrate network node, i.e., Eq. (3) prevents the collocation of two or more VNFs in one SFC 

request.  

𝑥+!,#,# = 1	𝑖𝑓	𝑦',),# = 1		∀𝑖, ∀𝑣 ∈ 𝑉 (4) 

Eq. (4) ensures that if the 𝑗-th VNF in the 𝑖-th SFC is a 𝑡',) 	type of VNF which is placed on the 

substrate network node 𝑣, the substrate network node 𝑣 must have capability to host the	𝑡',) 

type VNF. 

𝑦',),# = 0, 𝑖𝑓	𝑣 = 𝑠' 		∀𝑖, 𝑗 (5) 
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𝑦',),# = 0, 𝑖𝑓	𝑣 = 𝑑' 		∀𝑖, 𝑗 (6) 

Eqs. (5) and (6) ensure that VNFs in SFC requests cannot be placed on source and destination 

nodes of an SFC in the substrate network.  

3) Bandwidth constraints: 

	p𝑧',(%,#) ∙ 𝑏'
'

≤ 𝐵(%,#)			∀(𝑢, 𝑣) ∈ 𝐸 (7) 

 Eq. (7) ensures that total requirements of bandwidth resource of all SFC requests cannot 

exceed the total bandwidth capacity for any substrate edge (𝑢, 𝑣) ∈ 𝐸. 

4) End-to-end delay constraints: 

p 𝑧',(%,#) ∙ 𝐿(%,#)
(%,#)∈-

≤ 𝑙' 		∀𝑖 (8) 

Eq. (8) ensures that for any SFC request, the path latency in the substrate network for this SFC 

request cannot exceed the maximum end-to-end delay requirement of the SFC.  

5) Flow conservation constraints: 

p𝑧',(%,#) −p𝑧',(#,%) = 0
%∈.

	
%∈.

		 

∀𝑣, 𝑅	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑣/𝑠	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑛𝑜𝑑𝑒𝑠, 𝑣 ≠ 𝑠' , 𝑣 ≠ 𝑑' , ∀𝑖 (9) 

p𝑧',(%,#) −p𝑧',(#,%) = ~−1		𝑣 = 𝑠'
1					𝑣 = 𝑑'

%∈.

	
%∈.

		 

𝑅	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑣/𝑠	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑛𝑜𝑑𝑒𝑠, ∀𝑖 (10) 

Eq. (9) ensures that for any substrate network node 𝑣, if 𝑣 is neither source node nor destination 

node of an SFC, the number of edges starting from node 𝑣 is always same as the number of 

edges ending at node 𝑣 (i.e., the amount of outgoing flow leaving node 𝑣, is always same as 

the amount of incoming flow entering node 𝑣).  
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Eq. (10) ensures that if substrate network node 𝑣 is source of SFC, there should be always one 

edge starting from node 𝑣 (i.e., a certain amount of outgoing flow leaving node 𝑣); if substrate 

network node 𝑣 is destination of SFC, there should be always one edge ending at node 𝑣 (i.e., 

a certain amount of incoming flow starting from node 𝑣). 

𝑧',(%,#) + 𝑧',(#,%) ≤ 1			∀(𝑢, 𝑣) ∈ 𝐸			∀𝑖 (11) 

Eq. (11) ensures that the SFC path can travel through one substrate edge at most once. 

p 𝑧',(%,#)
(%,#)∈-

= 1	𝑖𝑓	𝑦',),# = 1			∀(𝑢, 𝑣) ∈ 𝐸		∀𝑖 (12) 

p 𝑧',(#,%)	
(#,%)∈-

= 1	𝑖𝑓	𝑦',),# = 1			∀(𝑢, 𝑣) ∈ 𝐸			∀𝑖 (13) 

Eqs. (12) and (13) ensure if the 𝑗-th VNF in the 𝑖-th SFC is placed on substrate network node 

𝑣, the SFC path must travel through this node  

𝑘',# − 𝑘',% ≥ 1 − |𝑉|�1 − 𝑧',(%,#)�			∀(𝑢, 𝑣) ∈ 𝐸			∀𝑖 (14) 

𝑘',% = 0	𝑖𝑓	𝑢 = 𝑠' 				∀𝑖 (15) 

Eqs. (14) and (15) ensure that there is no isolated loop in the substrate network. An isolated 

loop is a path that starts from and ends at the same substrate node. This path can meet the 

conditions of constraints (9), but it is not on the path of an SFC, which starts from the source 

node of SFC, ends at destination node of SFC, and travel through substrate network nodes 

which host VNFs. To avoid to generating isolated loop, we assign rank numbers to substrate 

nodes along the path of SFC as eqs (14) and (15). If 𝑧',(%,#) is equal to 1, which indicates 

(𝑢, 𝑣) ∈ 𝐸 is on the path of SFC and node 𝑣 comes after 𝑢 as substrate network topology is 

modeled as a directed graph, the rank of 𝑣, 𝑘',#, is always higher than the rank of 𝑢, 𝑘',%. If 

𝑧',(%,#) is equal to 0, it has no impact on the rank of nodes 𝑢, 𝑣, since |𝑉| is the number of nodes 

in substrate network. It is obvious that the destination node will always has a higher rank than 

the source node, which indicates that the source node and destination node cannot be the same 

node. In such a way, isolated loops are eliminated. 

6) VNFs order constraints: 
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𝑘',% − 𝑘',# ≥ 0	𝑖𝑓	𝑦',)01,% = 1	𝑎𝑛𝑑	𝑦',),# = 1	∀𝑖, 𝑗, ∀𝑢, 𝑣 ∈ 𝑉 (16) 

Eq. (16) ensures that if substrate network node 𝑢, 𝑣 can host the (𝑗 + 1)-th and 𝑗-th VNF in an 

SFC request, respectively, then substrate network node 𝑢 must come after substrate node 𝑣 in 

the flow path to keep the order of VNFs. 

3.4.6. Optimization objective 

The objective of model is to minimize setup cost and operational cost. Total setup cost of all 

SFC requests 𝑆 is defined as 

𝑆 = 	pp𝑥!,# ∙ 𝜑!
#∈2!∈3

(17) 

Here, 𝑥!,# is a Boolean variable. 𝑥!,# is equal to 1 if the type of VNF 𝛾 is placed on substrate 

network node 𝑣. 𝜑! is the setup cost of 𝛾 type VNF on one substrate node. ∑ 𝑥!,##∈2  indicates 

the number of substrate nodes which host 𝛾 type of VNF, and ∑ 𝑥!,# ∙ 𝜑!#∈2  is the summation 

of setup cost for 𝛾 type VNF. To minimize setup cost, one type of VNF can be placed on as a 

smaller number of substrate network nodes as possible.  

Operational cost 𝑂 is defined as  

𝑂 =	ppp𝑦',),# ∙ 𝑐',) ∙ 𝜔+!,#,#
#)'

(18) 

Here, 𝜔+!,#,# is operational cost for substrate node 𝑣 processing a unit of VNF 𝑔',). 𝑐',) is the 

amount of CPU requirement for VNF 𝑔',). Therefore, 𝑐',) ∙ 𝜔+!,#,# is the total operational cost 

for substrate node 𝑣 processing VNF 𝑔',). This objective adds all the operational cost of VNFs 

in all SFC requests. To minimize operational cost, the VNFs can be placed on the proper 

substrate network nodes with minimum operational cost. 

The overall cost ℂ, which is the summation of setup and operational costs, is given as below:  

ℂ = 𝑆 + 𝑂 (19) 

3.4.7. Network resource utilization ratio 

The network resource utilization ratio is defined as: 
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𝑟 =
𝜉%
𝜉+

(20) 

𝜉% is the total network resource requirements of all SFC requests that have been placed on 

substrate network. 𝜉+ is total resource capacity of substrate network that could be bandwidth or 

CPU. In case of bandwidth resource, 𝜉% and  𝜉+ are defined as: 

𝜉% =p p 𝑧',(%,#) ∙ 𝑏'
(%,#)∈-'

										𝜉+ = p 𝐵(%,#)
(%,#)∈-

(21) 

and in case of CPU resource, 𝜉% and  𝜉+ are defined as: 

𝜉% =ppp𝑦',),# ∙ 𝑐',)
#∈2)'

								𝜉+ =p𝐶#
#∈2

(22) 

 

3.5. Experimental study and analysis  

In this section, we conduct experimental study on our model. We evaluate our model from two 

aspects: cost reduction and end-to-end delay guarantee.  

3.5.1. Substrate network model 

The substrate network model used in experiments is NSFNET as shown in Figure 3-1 described 

as following:  

NSFNET network model: National Science Foundation Network (NSFNET) was a 

program sponsored by National Science Foundation (NSF) to promote advanced 

research and education networking in United States [129]. Many prior works have 

utilized this network topology to test and evaluate their proposal [47][59][62][130][131] 

Figure 3-1 shows the NSFNET topology. The NSFNET contains 14 nodes and 21 edges. 

The number along the edges are delay of that edge in milliseconds similar to the setting 

in prior work[62]. 
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Figure 3-1 NSFNET network model. 

Figure 3-2 shows the experiment system model. A batch of SFC requests arrives in NFV. The 

MANO receives the SFC requests and deploys them by utilizing the exact solution derived 

from the model. The model is solved by IBM ILOG CPLEX Optimization Studio v12.9 [95]. 

The parameters are introduced in the next section.  

 

 

Figure 3-2 Experiment system model. 
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3.5.2. Parameter setting 

CPU capacity of a substrate node and bandwidth capacity of a substrate edge are set to 100 

units, respectively. Delay of substrate network edges are set as shown in Figure 3-1. The 

substrate network supports 4 types of VNF. The number of VNFs in one SFC is randomly 

chosen between 2 and 4. CPU requirement of one VNF is randomly chosen between 4 and 6 

units. Bandwidth requirement of an SFC is randomly chosen between 4 and 6 units. The end-

to-end delay requirement of an SFC is randomly chosen between 30 and 50. The source node 

and destination node of an SFC are randomly chosen from the substrate network nodes. The 

source and destination nodes cannot be a same substrate node. 

Table 3-2, Table 3-3, and Table 3-4 summarize the parameter settings of substrate network, 

service function chain requests, and setup and operational cost, respectively.  

Table 3-2 Substrate network parameter settings. 

parameters values 

CPU capacity 100 

bandwidth capacity 100 

latency of edge as Figure 3-1 

number of VNFs a node support 4 

 

Table 3-3 Service function chain request parameter settings. 

parameters values 

number of VNFs in SFC 2 - 4 

CPU requirement 4 - 6 

bandwidth requirement 4 – 6 

end-to-end delay requirement 30 - 50 

number of SFC request 6 - 10 
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Table 3-4 Setup cost and operational cost settings. 

parameters values 

setup cost  5 - 10 

operational cost 5 - 10 

 

3.5.3. Evaluation of cost reduction 

The objective of our model is to reduce the setup cost and operational cost with an exact 

solution. In this section, we evaluate the performance of reduction in comparison against 

previous works.  

We conduct experiments on three models and derived the results shown in Figure 3-3. 

Specifically, the proposed model is our model that difference types of VNFs have different 

values of setup cost and different values of operational cost. The previous-1 and previous-2 

models are the previous model that all types of VNFs have a same value of setup cost and a 

same value of operational cost.  

Proposed model uses a setting of costs randomly chosen from (5, 10) as mentioned in the 

previous section, say setting-1. However, it must be careful when select different cost values 

to different types of VNFs in such random way for our proposed model, as it could select 

identical values which is not applicable to our model. We dropped the cost settings if they are 

happened to all same values. With setting-1, the model would derive a solution, which is a 

scheme describing how to deploy VNFs and chain the VNFs on the substrate network.  

The solution of previous-1 and previous-2 models use another setting of costs which is also 

randomly chosen from (5, 10), say setting-2. With setting-2, Both previous-1 and previous-2 

would derive a scheme describing how to deploy VNFs and chain the VNFs on the substrate 

network. These two schemes are exactly same as they are optimal solution.  

The difference between previous-1 model and previous-2 model is how they calculate the total 

costs. Preious-1 model calculates the costs by using the deployment scheme with setting 

setting-2, whereas previous-2 model calculates the costs by using the deployment scheme with 
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setting setting-1. In this way, we can thus understand how extent our realistic definition of costs 

could reduce the total setup cost and operational cost.  

Appendix A and Appendix B show the details of the setup cost and operational cost setting 

data for both proposed model and previous model. As our model selects values of costs in a 

random way, we show the mean and deviation of cost values in our model in Appendices. 

Specifically, Appendix A describes the setup cost value settings, and Appendix B describes the 

operational cost value settings.  

Figure 3-3 shows the total costs of deployment SFC with respects to the number of SFC 

requests. Each bar is composed of two parts, setup cost and operation cost of corresponding 

model at certain number of SFC requests.  

The results show that our proposed model could achieve a lower total cost in comparison 

against previous works. Specifically, our model reduced the total cost up to 11% in average in 

comparison with previous-1 model, and up to 32% in average in comparison with previous-2 

model, respectively. The results in comparison with previous-2 model indicates the gap of 

realistic cost and ideal cost, that without using our model, the costs will be over calculated. The 

over calculated cost could result in a problem that the estimated cost is higher than the actual 

cost that leads network operator making a wrong decision based on the estimation of cost.  

 

Figure 3-3 Total costs of different models. 
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The reason that our model could achieve a lower total cost is that our model consider costs are 

different to all types of VNFs rather than identical costs to all types of VNFs. Identical costs to 

all types of VNFs provide no information to the model that the VNFs should be deployed on 

which substrate nodes, and the model will consider all types of VNFs same weight. On the 

contrary, our model provides more detailed information to the model to deploy VNFs to 

locations at less costs. Consequently, our model could achieve a relatively lower costs than 

previous works. 

3.5.4. Evaluation of end-to-end delay performance guarantee 

In this section, we evaluate our model in terms of end-to-end delay performance guarantee. 

The end-to-end delay performance is one of requirements of some network services which are 

sensitive to end-to-end delay, such as autonomous vehicles. The end-to-end delay deadline 

should be considered carefully in this context.  

We compare our model against modes in previous works that did not take end-to-end guarantee 

performance into account as shown in Table 3-1. Figure 3-4 shows the end-to-end delay 

deadline meet rate of our model and previous model. A higher value rate indicates that more 

SFC requests are satisfied within a certain end-to-end delay deadline. The results show that our 

model can guarantee all the end-to-end delay deadline requirement in comparison against 

previous works, which could guarantee end-to-end delay requirement for only around 50% 

SFC requests. This indicates that our model can accept all SFC requests but previous model 

can only accept around 50% SFC requests and reject other requests due to dissatisfaction of 

end-to-end delay requirement. 
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Figure 3-4 End-to-end delay deadline meet rate. 

3.6. Extensive experimental study and analysis  

In this section, we apply the mathematic model to analyze how the cost and network 

performance such as bandwidth and CPU utilization ratio are affected by different objectives. 

We also studied the cost and performance of network with and without keeping the order of 

VNFs in SFC requests.   

3.6.1. Parameter setting 

We evaluate the mathematic model in a small size network model due to the computation 

complexity of ILP problem. The substrate network topology is composed of six nodes and nine 

edges as shown in Figure 3-5. Similar to [78], CPU capacity of a substrate node and bandwidth 
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multiplying the number of VNFs with a number randomly selected between 4 and 6. The source 

node and destination node of an SFC are randomly selected from substrate network nodes. The 

source and destination nodes cannot be a same substrate node. 

 

Figure 3-5 Substrate network with six substrate network nodes. 

The value of setup cost and operational cost is selected in a uniformly distribution within (5, 

10). This cost setting could be suitable for early stage of operating network, when setup cost 

and operational cost are comparable. The numbers of SFC requests for once experiment varied 

from 5 to 40. All SFC requests arrive at substrate network at once, thus the model knows 

information of all SFCs. We generated 50 independent SFC requests with different settings and 

averaged the results to increase the statistical accuracy.  

3.6.2. Impact of different optimization objective 

In this section, we evaluate how different optimization objectives impact the setup cost and 

operational cost. By varying the optimization objectives, this model is helpful for the substrate 

network operator to compare the different cost.   

In the evaluations, all SFCs arrive at once, that the SFCs do not dynamically arrive and depart 

at/from the substrate network. The model keeps the order of VNFs in SFCs, satisfies end-to-

end delay performance objective, and all SFCs are successfully deployed on the substrate 

network.  
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We compare the results of different costs with the following three different optimization 

objectives:  

1) Both costs objective, where both setup cost and operational cost are taken jointly 

as the objective of the model. 

2) Operational cost objective, where only operational cost is taken as the objective 

of the model. 

3) Setup cost objective, where only setup cost is taken as the objective of the model.  

 

Figure 3-6 Setup cost at different optimization objectives. The setup cost is higher when 

network operator only wants to minimize the operational cost. 

Figure 3-6 shows the results of setup cost at different optimization objectives. The x-axis is the 

number of SFC requests arrived at a time, varying from 5 to 40. For example, at number of 

SFC request 5, the value of long dash dot line with square marker is 70.02 units, which is the 
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summation of total setup cost of these 5 request SFCs. The y-axis is the total setup cost in unit 

solved by the optimizer at corresponding number of SFC requests.  

We compared the setup cost with different optimization objectives. The dash line with triangle 

markers shows the setup cost when the optimization objective is the summation of setup cost 

and operational cost jointly. The dot line with rhombus markers shows the setup cost when the 

optimization objective is only operational cost, and the long dash dot line with square markers 

shows the setup cost when the optimization objective is only setup cost.  

When the number of SFC requests is a few, e.g., 5 or 10, the value of setup cost is small. With 

the number of SFC requests increasing, the setup cost increases. This is intuitive, since a greater 

number of SFC requests need more resource utilization and results in a higher cost. However, 

it is not a linear growth, but have an upper-limit value. This is reasonable. Recall that the setup 

cost gets charged according to the types of VNFs and the number of substrate nodes that hosts 

the VNFs. Every time more SFC requests arrive, it does not simply utilize more extra substrate 

nodes to host the new arrival VNFs but try to find and share existing substrate network nodes 

to host the new arrived VNFs.  The setup finally cost reaches the upper-limit, indicates that for 

any one type of VNF, it has been placed on almost all substrate network nodes it could.  

An interesting result is that the setup cost increases much faster when the optimization 

objective is only operational cost, which take the operational cost as the optimization objective. 

This is because when the optimization objective is only minimizing operational cost, the model 

finds solutions that have least operational cost without taking the collocation of the same type 

of VNF into account. Thus, as more SFC requests arrive, the model utilizes more substrate 

network nodes but not shares the existing substrate network nodes to achieve the minimum 

operational cost. This is the reason that the dot line with rhombus markers reaches the up 

limited faster than other lines. On the other hand, the long dash dot line with square markers 

gets the minimum values comparing the other two lines. This is because the model only 

considers minimizing the setup cost, thus, it shares as many number of substrate network nodes 

to host same type of VNFs, i.e., collocate the same type of VNFs on the substrate network 

nodes.  
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Figure 3-7 Operational cost at different optimization objectives. The operational cost is 

higher when network operator only wants to minimize the setup cost. 

Figure 3-7 shows the results of operational cost at different optimization objectives. The x-axis 

is the number of SFC requests arrived at a time, varying from 5 to 40. The y-axis is the total 

operational cost in units given by the optimizer at corresponding number of SFC requests. For 

example, at the number of SFC request 5, the total operational cost of long dash dot line is 371 

units, which is the summation of operational cost of these 5 SFC requests.  

We compared the operational cost with different optimization objectives. The dash line with 

triangle markers shows the operational cost when the optimization objective is the summation 

of setup cost and operational cost jointly. The dot line with rhombus markers shows the 

operational cost when the optimization objective is only operational cost, and the long dash dot 

line with square markers shows the operational cost when the optimization cost is only setup 

cost.  
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The growth of operational cost shown by each line is linear for the reason that the operational 

cost is the cost that the substrate nodes process one unit of VNF requests and it is charged 

according to the amount of resources the SFC requested. Thus, the operational costs could not 

be reduced by the collocation of VNFs.  

When only considering setup cost (setup cost objective) as the objective, its operational cost 

(long dash dot line with square markers) is larger than that at other objectives. This is because 

that the model attempts to collocate same type VNFs on as few numbers of substrate nodes as 

possible, and it does not consider whether a substrate node is an optimal one for processing 

VNF at lower operational cost. 

 

Figure 3-8 Bandwidth utilization ratio of substrate network. The bandwidth utilization ratio is 

lower when network operator only wants to minimize the setup cost. 

Figure 3-8 shows the results of bandwidth utilization ratio of the substrate network with 

different optimization objectives. The x-axis represents the number of SFC requests arrived at 

a time, varying from 5 to 40. The y-axis represents the bandwidth utilization at the 
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corresponding number of SFC requests. The bandwidth ratio is defined as in Eq. (20) and Eq. 

(21), that is the ratio of total requested bandwidth of SFCs with the total bandwidth of edges in 

the substrate network. 

We compared the bandwidth utilization ratio of substrate network with different optimization 

objectives.  The dash line with triangle markers shows the bandwidth utilization ratio when the 

optimization objective is the summation of setup cost and operation cost. The dot line with 

rhombus markers shows the bandwidth utilization ratio when the optimization objective is only 

the overall cost, and the long dash dot line with square markers shows the bandwidth utilization 

ratio when the optimization cost is only setup cost. 

We found that the bandwidth utilization ratio achieves a lower value when only take only setup 

cost (only S) as the optimization objective. Recall that the setup cost is machine type 

independent cost defined in the beginning of the chapter. When the model minimizes the setup 

cost only, the model will be independent of the location of substrate nodes, and it can increase 

the probability of an optimized traffic path in the substrate network for SFC. However, when 

the model minimizes the operation cost, the model must consider the best substrate network 

node to host a VNFs, since the operation cost is machine dependent. Some SFCs may suffer a 

less optimized traffic path, such as detour to comprise the minimizing of the operation cost.  

For example, an optimal traffic path for SFC should be the shortest path between the ingress 

node and egress node of the SFC; however, to meet the minimum operation cost, the traffic 

path has to travel a longer path, such as detour, to reach the substrate network node, which has 

a less operation cost for processing the VNF.  
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Figure 3-9 CPU utilization ratio of substrate network. The CPU utilization ratio are same for 

all optimization objectives. 

Figure 3-9 shows results of the CPU utilization ratio of the substrate network. The x-axis is the 

number of SFC requests arrived at a time, varying from 5 to 40. The y-axis is the bandwidth 

utilization at the corresponding number of SFC requests. The definition of CPU utilization ratio 

is described in Eqs. (20) and (22), that is the ratio of total requested CPU units and the total 

CPU units of nodes in the substrate network. In contrast to the bandwidth utilization ratio, 

which different optimization objectives have different value of bandwidth utilization ratio, the 

values of CPU utilization ratio are same for all three objectives at each number of SFC requests. 

This is because the summation of CPU requirements of at each request is fixed as a constant 

value. Thus, the CPU utilization ratio remains the same no matter what the optimization 

objective is.  
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3.6.3. Impact of keeping order of VNFs in an SFC 

It is an important requirement for some SFCs to keep the specified order of VNFs to realize 

the whole service correctly. For instances, a decryption function should come after an 

encryption function. In other cases, VNFs of an SFC could be independent and unrelated, thus 

it is unnecessary to place them in an order. For example, VNFs such as Firewall, Intrusion 

Prevention System (IPS) and Intrusion Detection System (IDS), could be placed in an arbitrary 

order, as illustrated in [28].  

In addition, new types of VNFs would be emerging with rapid softwarization process of 

network functions. These VNFs may or may not need to be placed in a specific order. Therefore, 

as mentioned in [89], it is necessary to analysis how the cost is affected by the order of VNFs. 

We conduct experiments and analysis the impact of order of VNFs to setup and operational 

cost. 

 

Figure 3-10 Setup cost with and without keeping the order of VNFs. The setup cost is higher 

when keeping the order of VNFs in an SFC. 
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Figure 3-10 shows setup cost with and without keeping the order of VNFs in the SFC request. 

The dash line with triangle markers shows the setup cost with keeping the order of VNFs in 

the SFCs, whereas the long dash dot line with square markers shows the setup cost without 

keeping the order of VNFs in the SFCs.  

We found that the setup cost without keeping the order of VNFs is much smaller compared to 

that with keeping the order. This is because without keep the order of VNFs in the SFCs, the 

model has more degrees of freedom to find an optimal solution of placement of VNFs. By 

relaxing the order of VNFs constraint, the model can collocate the same types of VNFs on as 

less as the number of substrate network nodes by sharing these nodes, without considering 

whether the traffic path could travel through these substrate network nodes. On the contrary, 

in the case of consideration of order constraint, due to the limited CPU and bandwidth resources, 

the path may not be able to travel to some specific substrate nodes, and the mode has to utilize 

more substrate nodes to host a type of VNF. This results in a relative high setup cost.  

Another observation is that the setup cost increases gradually when not keeping the order of 

VNFs. This is because the model would not look for a new node to host a type of VNFs if one 

node hosting this type of VNFs has sufficient CPU and bandwidth resources.  
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Figure 3-11 Operation cost with and without keeping the order of VNFs in SFC requests. The 

operational cost is higher when keeping the order of VNFs in an SFC. 

Figure 3-11 shows the results of the operational cost with and without keeping the specific 

order of VNFs in SFC requests. The operational cost with keeping the order of VNFs is larger 

than that without keeping the order of VNFs. This is reasonable since without keeping the order 

of VNFs of SFC, the model can use substrate nodes whose operational cost for a type of VNF 

is least.  

3.7. Discussion 

3.7.1. Discussion on model objective 

In section 3.4.6, we defined equations of setup cost and operational cost. We defined the overall 

cost as the summation of setup cost and operation costs as shown in Eq. (19). We attempted to 

use this equation as the objective of the model to find a solution with a reduced overall cost.  
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In the above setting, we consider the weight of setup cost and operational cost are same. In 

reality, the weight could be different to setup cost and operational cost. For example, the 

network operator may focus on setup cost more than operational cost for reasons like budget 

or policy. A better formulation of the optimization objective equation could be like following:    

ℂ = (1 − 𝛼)𝑆 + α𝑂 

where we introduce a new variable 𝛼 to balance the weight of setup cost and operation cost. 

Network operator could set a proper value to 𝛼 to adapt their own network environment or 

policy, or vary the value of 𝛼 to find a better cost estimation or balance. Note that extensive 

experiments in section 3.6 have demonstrated two special cases, only operational cost is taken 

as the objective of the model (𝛼 = 1), and only setup cost is taken as the objective of the model 

(𝛼 = 0). 

3.8. Conclusions 

SFC deployment problem with reducing cost requirement is complex due to many constraints 

and requirements in NFV. To better understand this problem, in this chapter, we formally 

formulated a mathematic model for the SFC deployment problem. The model takes CPU and 

bandwidth resources as constraints, as well as satisfying the end-to-end delay and order of 

VNFs in SFC. We defined the setup cost and operation cost. We showed that the definitions of 

cost are more practical than previous works in literature. We set the model with the objective 

to reduce these costs.  

In the model, we defined a setup cost and operation cost. With these definitions, our model can 

reduce cost up to 30% in average. Moreover, our model guarantees the end-to-end delay 

deadline, which is a critical requirement to SFCs, such as real-time applications. The results 

show that our model can satisfy 100% end-to-end delay deadline requirements of SFC requests. 

We also applied this model to analyze how the cost and network performance such as 

bandwidth and CPU utilization ratio are impacted by different objectives. We also studied the 

cost and performance of network with and without keeping the order of VNFs in SFC requests. 

We believe that our model can provide a way for network operators to analyze and estimate 

the cost incurred in deployment of SFCs with their own network environment and particular 

parameters.  
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Chapter 4  

4. Delay-aware Service Function Chain Deployment Algorithm 

4.1. Introduction 

NFV transforms the design, construction, operation, and management of network in a way of 

separation of software implementation of network functions and hardware. This new paradigm 

increases the flexibility and scalability of network service deployment and reduces CAPEX 

and OPEX. Due to benefits of NFV, many network operators are considering integrating NFV 

into their networks.  

However, different network services have their own requirements of Quality of Service (QoS). 

One critical QoS parameter is the end-to-end delay performance. Different end-to-end delay 

affects significantly the quality of users’ experience. Researchers in [96][97] have identified 

three important limits regarding response times which impact user’s experience. The first 

limitation is 10 seconds. A user would loss patient on the system if the response time is longer 

than 10 seconds. The second limitation is 1.0 seconds. A user could stay on the system but 

would be aware response delay. The third limitation is 0.1 second. A user would feel that the 

system responds instantaneously. S. Cheshire in [98] further argued that if the response is lower 

than 100ms, the user would feel it as an instantaneous system. Besides, Amazon has reported 

that every 100ms increase in response delay will cost 1% loss in e-commerce sales [99][100]. 

The ITU Recommendation in [101] has listed the performance considerations for different 

applications in terms of delay. For example, streaming audio/video may tolerate up to 10 

seconds, web-browsing and e-mail access require around 1 second response time, whereas 

conversational voice and video, interactive games require less than 200ms end-to-end delay. 

Moreover, as mentioned in [102], delay is a main metric in next generation network and 5G 

communication. In future 5G network communication [103], applications require the network 

provides high throughput, high availability and latency-sensitive services, such as self-driving 

car, remote medical surgery, or wireless control of industrial manufacturing. End-to-end delay 

is a key factor on the network service response time and user’s experience. 

In this chapter, we investigate the challenge of deployment SFCs on substrate network (NFVI) 

with an optimized end-to-end delay. As described above, many network services and 

applications require strict QoS requirement of a low end-to-end delay. However, it is a 

challenge to place VNFs of SFC onto NFVI with an optimized end-to-end delay. An algorithm 
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must find a proper location for VNFs and route the traffic through these locations in NFVI. As 

NFVI is a collection of substrate nodes (hosts or servers), and can be regarded as a distributed 

hardware resources, it is obvious that different deployment scheme will result in different 

resource consumption and affect the actual end-to-end delay of SFCs.  

The algorithm to this problem must satisfy following requirements. The first requirements is 

that the path found by algorithm should have a shorter delay with enough number of substrate 

nodes to host all VNFs in the SFC request. The second requirement is the substrate nodes 

hosting VNFs should have sufficient computation resources. And the third requirement is the 

path should travel through VNFs in a specific order.  

To tackle this problem, we design a dynamic programming-based algorithm for deploying SFC 

in this chapter. This algorithm deploys VNFs of an SFC with awareness of minimizing end-to-

end delay while taking computation, bandwidth and the order of VNFs into account. Our 

algorithm assumes the substrate network nodes can host any type of VNFs and the VNFs of 

SFCs can be deployed on any substrate network nodes. By recording intermediate information 

such as resource usage, minimum end-to-end delay, our algorithm deploys the VNFs of SFC 

along a path with a minimized end-to-end delay in substrate network. 

We perform experimental study on the proposed algorithm with comparison with other 

algorithms in literature on various network model. The results of the experiments show that 

our proposed algorithm outperform other algorithms in terms of short end-to-end delay of SFCs, 

high acceptance rate on various network models. 

Section 4.2 presents the related works on the VNF placement with end-to-end delay 

requirement. 

Section 4.3 introduces the problem of the SFC deployment with desire QoS requirement in 

terms of end-to-end delay of SFCs. This section also states the challenges to solve this problem. 

Section 4.4 presents a dynamic programming based heuristic algorithm for solve SFC 

placement problem with end-to-end delay requirement.  

In Section 4.5, we conduct numeric evaluations on our proposed algorithm with comparison 

with other algorithms on different network models. The results of evaluations show that our 

algorithm outperforms other algorithms in terms of end-to-end delay and acceptance rate. 

Section 4.7 makes a conclusion on this chapter.  
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4.2. Related works 

Previous works such as Miller [96], Nielsen [97] and Cheshire [98] have investigated how the 

end-to-end delay would impact users experiences on using the network system. The ITU 

Recommendation in [101] has listed the performance considerations for different applications 

in terms of delay.  

Many previous works in literature also place SFCs with considering the end-to-end delay of 

SFCs. Luizelli et al. [93] classified SFC requests into three topological components: line path, 

bifurcated path and bifurcated path. Any SFC requests can be obtained from these three 

components. Then the authors formulate an ILP placement model to minimize end-to-end delay 

and resource overprovision ratio. However, it takes a relatively long time for large scale 

network to computing the exact solution.  Our algorithm leverages the dynamical programming 

technique to record intermediate information which could reduce the computation time. Xia et 

al in [105] formulated VNF placement problem as a binary integer programming model. The 

authors proposed a heuristic algorithm to reduce conversions between optical/electrical/optical 

(O/E/O) by centralizing network functions in an SFC into fewer pods and reducing unnecessary 

flow traversals. However, although the authors consider the CPU resource limitation, other 

network resources such as pod capacity and bandwidth resource capacity are not considered.  

In contrast to this algorithm, our algorithm considers both CPU and bandwidth resources while 

finding a shorter end-to-end delay path. 

Liu et al. in [104] studied the VNF placement problem aiming to improve the performance of 

service function chain from the aspect of end-to-end delay as well as bandwidth resource 

consumption. The authors first formulate a 0-1 programming problem and then proposed a 

greedy algorithm to solve the deployment problem. The greedy algorithm deploys VNFs 

according to the importance factor of the VNFs, and then finds a path to deploy the virtual links 

between deployed VNFs. However, this work did not consider the computation resource 

constraints for processing VNFs. Moreover, as greedy algorithm finds best solution in each 

iteration, it cannot have a global information on the delay of substrate network, thus, the whole 

paths of solution may not be optimal.  

Qu et al. [115] proposed a delay guarantee route optimization frame for VNF placement and 

traffic routing based on k-shortest path algorithms. The algorithm first finds a shortest path, 

and then checks the resource capacity for VNF placement. If the resource capacity is not 
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sufficient, it finds resources around the shortest path by branching the shortest path. As the 

resources are limited around the shortest path, the algorithm has no global information on the 

resource capacity. Our algorithm explores global information of substrate network to obtain a 

path with relative shorter end-to-end delay.  

Hawilo et al. [116] formulate the problem as an MILP optimization model and proposed a 

betweenness centrality based VNF placement algorithms for minimizing intra-VNF end-to-end 

delay. Guan et al. [117] also utilized the concept of betweenness centrality for deployment of 

VNFs of an SFC in 5G wireless networking. Although betweenness centrality is a good metric 

for finding shortest path, a node with high betweenness centrality may not have a high resource 

capacity. Our algorithm checks the resource capacity while finding the path simultaneously. In 

such way, our algorithm can know global information of resource capacity rather than that 

limited around shortest path.  

With regard to these algorithms, greedy-based algorithm coordinates deploying and chaining 

VNFs, but it utilizes only local information resulting in a local optimization rather than global 

optimization. k-shortest paths-based algorithm and betweenness centrality-based algorithm 

separately place and chain VNFs of an SFC, and they use global information to find the SFC 

path but local information to check network resources. We can see that there are still rooms to 

improve the performance of these works.  

To fill these gaps, our algorithm explores substrate network to obtain global information rather 

than local information on delay and resources. By leveraging such global information, our 

algorithm deploys and chains VNFs coordinately to find a shorter end-to-end delay path with 

sufficient CPU and bandwidth resources. By storing the intermediate information, computation 

time could be reduced to an applicable time. Moreover, as shown in section 4.5, our proposed 

algorithm outperforms these works mentioned above in terms of end-to-end delay and 

acceptance rate. 

Table 4-1 shows a comparison of our algorithm with related works.   
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Table 4-1 Related works comparison table. 

Works Technique Features 

Our 

algorithm 

DP-based  Utilization of global information on delay and resource capacity. 

Coordination of placement and chaining of VNFs. 

Explore and record global network information. 

Low computation complexity with high performance. 

Liu [104] GD-based Lack of global information on delay. 

Coordination of placement and chaining of VNFs. 

Find best solution in each iteration (local optimization). 

Qu [115] 𝑘-SP-based  Lack of global information on resource capacity. 

Separation of placement and chaining of VNFs (First find a 

shortest path, then check resource capacity). 

Hawilo [116] 

Guan [117] 

BC-based  Lack of global information on resource capacity. 

Utilization of only topology property. 

Overload substrate nodes and low performance. 

Yang [114]  

Carpio [123] 

Random-

based 

With no any strategy.   

Compared to show the necessity of a well-designed SFC 

deployment algorithm. 

Luizelli [93] 

Xia [105] 

ILP-based Exact solution. 

High computation complexity. 

 
 

 DP: Dynamic Programming 
 GD: Greedy 

 𝒌-SP: k-Shortest Paths 
 BC: Betweenness Centrality  

 ILP: Integer Linear Programing  
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4.3. Problem statement and challenges 

4.3.1. Problem statement 

In this chapter, we consider deploying VNFs of an SFC with a guaranteed QoS in terms of end-

to-end delay of an SFC. The end-to-end delay of an SFC is the time that a packet entering the 

SFC from the 𝑠𝑟𝑐 node, travel through all VNFs of the SFC and leaves from the 𝑑𝑠𝑡 node of 

SFC. Note that here we only consider the propagation delay and not consider the processing 

delay by VNFs. In other word, the end-to-end delay of an SFC is the summation of the delay 

of edges along the path of an SFC in the substrate network. When an SFC request arrived at 

NFV system, the MANO is responsible to find suitable locations in the substrate network for 

deploying VNFs while meeting all constraints, and chain VNFs along a path that has minimum 

delay. 

4.3.2. Challenges  

It is obvious that an arbitrary deployment of VNFs on the substrate network cannot achieve a 

minimized end-to-end delay for SFC. Nevertheless, the random deployment cannot guarantee 

that the substrate node or traffic route have sufficient resources for processing VNFs in terms 

of computation and bandwidth. Therefore, a carefully designed algorithm is needed to solve 

this problem.  However, it is not easy to design such algorithm.  

As mentioned in introduction, the algorithm designed should fulfill following requirements.  

a) Finding a path with a minimum delay, with considering where there are enough number 

of nodes to host all VNFs of an SFC.  

b) The path of SFC must have sufficient bandwidth resources for routing traffic, and the 

server or host on the path must have sufficient computation resources for processing 

VNFs. 

c) The path of SFC must travel through the substrate nodes that host VNFs in a specific 

order requested by the SFC for end-to-end network service delivery. 

 



 
 

67 

 

Figure 4-1 An illustration of difficulty to find a minimum delay path in substrate network. 

Figure 4-1 shows an example of the difficulty to find a minimum delay path in the substrate 

network even without thinking the resource constraints. The linear graph on the top is an SFC 

request, and the seven-node graph at the bottom is a substrate network graph. A number along 

edges of the substrate network represents the latency or delay of each edge, such as 1-unit delay 

of edge (S0, A0), and 5 units delay of edge (A0, B0). VNF1 can be deployed on A0 as the delay 

is minimum from the ingress S0, and VNF2 can be deployed on E0, as edge (A0, E0) has the 

minimum delay of 4 units from A0, compared to the edge (A0, F0), whose delay is 5 units, and 

the edge (A0, B0) whose delay is 6 units. Then, the resultant path is S0→A0→E0 and its delay 

is 5 units. However, there is a better path, S0→B0→F0, whose delay is only 3 units, if we 

deploy VNF 1 on B0 and VNF 2 on F0, respectively. Thus, this greedy algorithm cannot find 

an optimal path with minimum delay. Moreover, even placing VNF 1 on B0 and VNF 2 on F0, 

the whole path for ingress S0 to egress D0 is S0→B0→F0→C0→D0, the path delay is 8 units. 

We could find a path S0→B0→C0→D0 with a shorter delay, which places the VNF 1 on B0, 

and VNF 2 on C0, respectively. This path delay is only 6 units. However, we must assure that 
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B0 and C0 have sufficient CPU resources for hosting VNF1 and VNF2, and the minimum 

bandwidth of path S0→B0→C0→D satisfies the bandwidth requirement of SFC. 

In following sections, we introduce the system model and our proposed algorithm for solving 

this problem. 

4.3.3. System model 

In this chapter, NFV architecture consists an NFVI, a MANO and a set of VNFs. The NFVI is 

represented as a substrate network in which are a set of servers with computation resource 

capacity and edges interconnecting servers with bandwidth resource capacity. The MANO 

receives the requests of SFC requests and deploy the SFC on the substrate network. Both the 

substrate network and an SFC is modeled as a linear directed graph.  

Substrate network model 

A substrate network is modeled as an undirected graph 	𝐺4 = (	𝑉4, 	𝐸4)	where 𝑉  and 𝐸 

represent the set of nodes and edges, respectively. 𝑐56 , 𝑐5
* and 𝑐5% denote the capacity, available 

and used CPU resource of node 𝑛 ∈ 	𝑉4 , respectively, where 𝑐56 	= 𝑐5
* + 𝑐5% . 𝑏76 , 𝑏7

*  and 𝑏7% 

denote the capacity, available and used bandwidth resource of edge 𝑒 ∈ 	𝐸4 , respectively, 

where 𝑏76 = 𝑏7
* + 𝑏7%. 𝑙7 denotes the latency of edge 𝑒 ∈ 	𝐸4. 

SFC request model 

A linear directed graph 	𝐺# = (	𝑉# , 	𝐸#) represents an SFC request, where 	𝑉# represents the 

VNF in SFC and 	𝐸# represents the link between two neighbor VNFs. 𝑟#6 represents the CPU 

request of VNF 𝑣 ∈ 	𝑉# . 𝑖𝑛𝑡𝑓#'  and 𝑖𝑛𝑡𝑓#8  represent the input and output bandwidths, 

respectively, and 𝑓# denotes a traffic processing function, where 𝑖𝑛𝑡𝑓#8 = 𝑓#�𝑖𝑛𝑡𝑓#' 	�. 𝑟(#!,#!$%)
9  

represents the bandwidth request of link (𝑣' , 𝑣'01) ∈ 	𝐸#  and 𝑟(#!,#!$%)
9 = 𝑖𝑛𝑡𝑓#!

8 = 𝑖𝑛𝑡𝑓#!$%
' . 

This means that the bandwidth request between two VNFs is equal to the output bandwidth 

request of prior VNF as well as the input bandwidth request of latter VNF. Two special VNFs 

𝑠𝑟𝑐 and 𝑑𝑠𝑡 represent the start and end points of SFC, i.e., ingress, and egress, respectively. 

Both 𝑠𝑟𝑐 and 𝑑𝑠𝑡 do not request CPU resources, but only request bandwidth resources. 
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4.4. End-to-end delay aware SFC deployment algorithm 

In this section, we introduce our proposed end-to-end delay aware SFC deployment algorithm. 

We first give a brief introduction on the dynamic programming technique, which we use it in 

our algorithm. Then, we describe our algorithm with details.   

4.4.1. Dynamic programming 

Dynamic programming (DP) is an advanced technique for designing an algorithm to find a 

solution with constraints. Usually, a complex problem contains multiple subproblems that are 

overlapped with each other. To solve the problem, DP first divides this complex problem into 

subproblems. Each of subproblems shares a sub-subproblems. DP then solves the sub-

subproblems only once and records the results for this sub-subproblems. Next time when DP 

encounters the same sub-subproblem, it can just reuse the records previously calculated, thus 

saves much time. Finally, DP obtains the solution by computing each subproblems only once 

[106].  

4.4.2. Algorithm description 

From the above example in section 4.3, we infer that it is not easy to find a path with a minimum 

delay and allocate proper resources even for this simple case for deploying SFC. However, 

when calculating a path for one VNF, it can reuse the results that have been already calculated 

previously to save calculation time. This motives us to utilize the DP technique.  

To address this problem, we propose a heuristic algorithm by leveraging DP technique to obtain 

a path with minimum delay for SFC. Our algorithm finds a proper substrate node for one VNF 

only once without extra recalculating precedents and decedents of this VNF. The algorithm 

stores information of feasible substrate network nodes, end-to-end delay of source to nodes for 

VNFs as the order of VNF in SFC. By backtracking the path from the destination node to 

source node of the SFC, the algorithm can find a minimum end-to-end delay path and guarantee 

the specific order of VNFs along the path. 

To check whether a substrate node have capability to host a VNF, the algorithm examines 

following three conditions: CPU resource sufficiency, connectivity, and bandwidth resource 

sufficiency. Only if all three conditions are satisfied, the SFC can be deployed on the substrate 

network.  
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The CPU resource sufficiency condition is satisfied if the amount of available CPU resources 

of a substrate network node is larger than the requirement of a VNF of an SFC. 

The connectivity condition is satisfied if there is at least a path for the VNF to connect itself to 

its precedent VNF.  

The bandwidth resource sufficiency condition is satisfied if the available bandwidth of the 

substrate path is larger than the requested bandwidth requirement of the SFC.  

The algorithm creates four matrices 𝐴 , 𝐿 , 𝑃 , and 𝑇  to keep tracking feasible location 

information. 

• 𝐴(𝑣, 𝑓) is a Boolean value that it is true, if the substrate node 𝑣 have capability to host 

VNF 𝑓 . This matrix is applied to check the connectivity between two neighboring 

VNFs.  

 

• 𝐿(𝑣, 𝑓) stores the minimum value of delay from 𝑠𝑟𝑐 of the SFC to the substrate node 𝑣 

on which VNF 𝑓 is placed. This matrix is applied to calcuate the minimum end-to-end 

delay of SFC. 

 

• 𝑃(𝑣, 𝑓) records a set of paths. Each path is composed a set of ordered substrate nodes 

along this path. This matrix is used for backtracking the final end-to-end path from 𝑠𝑟𝑐 

to 𝑑𝑠𝑡.  

 

• 𝑇(𝑣, 𝑓)  represents a temporary state of substrate network with residual CPU and 

bandwidth resources, when VNF 𝑓is supposed to be placed on substrate node 𝑣. It is 

necessary to create this matrix to track the available resources once a VNF is placed on 

a substrate node for succeeding placement of VNFs. As succeeding placement needs to 

refer to a network state in which all previous VNFs have been placed to assure that 

CPU and bandwidth resources are sufficient. 

Algorithm 1 and Algorithm 2 describe details of our proposed SFC placement algorithm.  

In Algorithm 1, our proposed SFC placement algorithm explores substrate nodes’ capability to 

host VNF 𝑓 in an SFC. If no one substrate node has the capability to host VNF 𝑓, the algorithm 

terminates with a 𝑓𝑎𝑖𝑙 return value. If there is at least one substrate network node can host VNF 

𝑓 of SFC, the algorithm continues to place next VNF. 



 
 

71 

Algorithm 2 describes details of checking node’s capability of hosting a VNF 𝑓. The procedure 

first checks CPU resource sufficiency of substrate node 𝑣 for hosting VNF 𝑓. If CPU resources 

of substrate node 𝑣 is not enough, the algorithm immediately returns 𝑓𝑎𝑙𝑠𝑒 (note 𝐴(𝑣, 𝑓) is 

initialized as 𝑓𝑎𝑙𝑠𝑒). If 𝑣 has enough CPU resources for hosting VNF 𝑓, the algorithm then 

examines the connectivity and bandwidth sufficiency between 𝑛 and all other substrate nodes 

which is capable to host VNF 𝑓’s precedent.  

Starting from line 6 in Algorithm 2, the algorithm finds the minimum delay path 𝑝##& between 

𝑣  and 𝑣/ , for any substrate node	𝑣/  (𝑣/ ≠ 𝑣), if 𝐴(	𝑣/, 𝑓) = 𝑡𝑟𝑢𝑒. (	𝑣/, 𝑓) = 𝑡𝑟𝑢𝑒 indicates 

that	𝑣/ is capable to host VNF 𝑓:, which is the precedent of VNF 𝑓. If the minimum delay path 

𝑝##& exists, and 𝑝##& has sufficient bandwidth resource to meet the bandwidth request between 

VNFs 𝑓: and 𝑓, then the algorithm summates 𝐿�𝑣/, 𝑓:� (i.e. the delay from 𝑠𝑟𝑐 to 	𝑣/) and the 

delay of 𝑝##& . The algorithm returns 𝑓𝑎𝑙𝑠𝑒 if any one of following three conditions is not 

satisfied: 𝐴�𝑣/, 𝑓:� is 𝑡𝑟𝑢𝑒, shortest path 𝑝##&  exists, and the available bandwidth of 𝑝##&  is 

sufficient. 

From line 11 in Algorithm 2, the algorithm calculates minimum delay paths for all pairs of 𝑣 

and 	𝑣/ . After all iterations of 	𝑣/ ∈ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑜𝑑𝑒𝑠, 𝑣/ ≠ 𝑣 , the algorithm set value of 

𝐿(𝑣, 𝑓)  to the minimum delay among all delays of possible paths from 𝑠𝑟𝑐  to 𝑣 , via 	𝑣/ . 

Meanwhile, the algorithm updates	𝐴(𝑣, 𝑓) by true, since substrate node 𝑣 is capable to host 

VNF 𝑓, updates 𝑃(𝑣, 𝑓) by concatenating 𝑃�𝑣/, 𝑓:� and 𝑝, which is the path from 𝑠𝑟𝑐 to 𝑣, 

updates 𝑇(𝑣, 𝑗) by 𝑇�	𝑣/, 𝑓:�, which is the temporary network state when 𝑓: were placed on	𝑣/. 

Finally, the algorithm allocates CPU and bandwidth resources on 𝑇(𝑣, 𝑓) according to the 

request of 𝑓. 

As Algorithm 1 iterates VNFs in SFC one by one from the first VNF of an SFC, our algorithm 

can guarantee the specific order of VNFs of SFC. Besides, for any VNF 𝑓, if there exists a 

substrate node 𝑣 , so that Algorithm 2 could return 𝑡𝑟𝑢𝑒, it indicates that there must be a 

substrate network path connecting VNFs from 𝑠𝑟𝑐 to 𝑓 orerly. And this path has a minimum 

end-to-end delay with enough CPU and bandwidth resources. 
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Algorithm 1 Dynamic programming based SFC mapping scheme 
1: procedure MAPPING (𝑆𝐹𝐶 , 	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘) 
2:     for all 𝑓 ∈ 𝑆𝐹𝐶 do 
3:            	ℎ𝑎𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑛𝑜𝑑𝑒 ← 𝑓𝑎𝑠𝑙𝑒 
4:             for all 𝑣 ∈ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑜𝑑𝑒𝑠 do 
5:                     if 	FEASIBILITY (𝑣,	𝑓,	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘) then 
6:                            	ℎ𝑎𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑛𝑜𝑑𝑒 ← 𝑡𝑟𝑢𝑒 
7:                     end if 
8:             end for 
9:             if  ℎ𝑎𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑛𝑜𝑑𝑒 = 𝑓𝑎𝑙𝑠𝑒 then 

10:                     return 𝑓𝑎𝑖𝑙	 
11:             end if 
12:     end for 
13:     return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠	 
14: end procedure 
 

Algorithm 2 Check node feasibility for VNF 
1: procedure FEASIBILITY (𝑣,	𝑓,	𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘) 
2:     𝑓: ← 𝑓. 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡 
3: 					𝐴(𝑣, 𝑓) ← 𝑓𝑎𝑙𝑠𝑒 
4:     𝐿(𝑣, 𝑓) ← ∞ 
5:     if 𝑐𝑝𝑢# > 𝑐𝑝𝑢* then 
6:         for all 	𝑣/ ∈ 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	𝑛𝑜𝑑𝑒𝑠		𝑣/ ≠ 𝑣 do 
7:             if 𝐴�	𝑣/, 𝑓:� = 𝑡𝑟𝑢𝑒 then 
8:                 𝑝##& ← 𝐹𝐼𝑁𝐷_𝑆𝐻𝑂𝑅𝑇𝐸𝑆𝑇_𝑃𝐴𝑇𝐻(𝑣, 	𝑣/) 
9:                 if ∃𝑝##& and 𝑏𝑤:''& > 𝑏𝑤*(* do 

10:                     𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← 𝐿�	𝑣/, 𝑓:� + 𝐿𝐴𝑇𝐸𝑁𝐶𝑌(𝑝##&)	 
11:                     if  𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝐿(𝑣, 𝑓) then 
12:                         𝐿(𝑣, 𝑓) ← 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 
13:                         𝐴(𝑣, 𝑓) ← 𝑡𝑟𝑢𝑒 
14:                         𝑃(𝑣, 𝑓) ← 𝑃�	𝑣/, 𝑓:� ∪ 𝑝##& 
15:                         𝑇(𝑣, 𝑓) ←  𝑇�	𝑣/, 𝑓:� 
16:                           Allocate CPU and bandwidth of 𝑣 on 𝑇(𝑣, 𝑓) 
17:                     end if 
18:                 end if 
19:             end if 
20:         end for 
21:     end if 
22:     return 𝐴(𝑣, 𝑓) 
23: end procedure 

 



 
 

73 

4.4.3. Route information extraction 

In the above algorithms, if the connectivity, CPU and bandwidth requirements are satisfied, the 

algorithm returns success and the recorded information 𝑃(𝑣;4+ , 𝑑𝑠𝑡) ,  where 𝑣;4+  is the 

substrate network node (egress) which hosts 𝑑𝑠𝑡 in the SFC. 

𝑃(𝑣;4+ , 𝑑𝑠𝑡)  consists a set of paths, each of which connects two neighboring VNFs of an SFC. 

For example, 𝑃(𝑣;4+ , 𝑑𝑠𝑡) = [[𝑣4<6], [𝑣4<6, …, 𝑣*%], [𝑣*%, …, 𝑣*)], …, [𝑣*!*%, …, 𝑣*!], [𝑣*!, …, 

𝑣;4+]] and each element of 𝑃, e.g. [𝑣*(, …, 𝑣*], is a set of nodes, in which the first node (say 

𝑣*) hosts VNF 𝑓: , and the last node (say 𝑓) hosts VNF 𝑓. 𝑓: and 𝑓 are neighbors and 𝑓: is 

preceding 𝑓. The nodes between 𝑣*(  and 𝑣*  in [𝑣*( , …, 𝑣* ] are in the path from 𝑣*(  to 𝑣* . 

Therefore, once the algorithm obtains 𝑃  successfully, the route information can be easily 

extracted. 

4.4.4. Matrices initialization 

Our proposed algorithm utilizes the information in substrate network nodes. The information 

records feasibility of a node to host a VNF, the connectivity and the minimum end-to-end delay 

path between 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of SFC. Therefore, the algorithm needs to initialize matrices for 

recording the information as well as backtracking from 𝑑𝑠𝑡 to 𝑠𝑟𝑐  to obtain the path. The 

algorithm initializes matrices as shown in below: 

• Set 𝐴(𝑣4<6 , 𝑠𝑟𝑐) = 𝑡𝑟𝑢𝑒 and other elements in	𝐴 as 𝑓𝑎𝑙𝑠𝑒. 𝑣4<6 is the substrate network 

node hosting 𝑠𝑟𝑐 of SFC.  

 

• Set 𝐿(𝑣4<6 , 𝑠𝑟𝑐) = 0 and other elements in 𝐿 as infinity. Set 𝑃(𝑣4<6 , 𝑠𝑟𝑐) = �[𝑠𝑟𝑐]� and 

other elements in 𝑃 as null.  

 

• Set 𝑇(𝑣4<6 , 𝑠𝑟𝑐) as a copy of current substrate network state which contains CPU and 

bandwidth resources. Other elements in 𝑇 are set to null.  

4.4.5. Computation complexity analysis 

The algorithm calculates substrate network nodes for VNFs of SFC orderly. This needs |𝑔| 

times iterations, where |𝑔|  is the number of VNFs. The algorithm examines all substrate 

network nodes for each VNF, which requires |V|	times. In each examination, the algorithm 
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checks the connectivity |𝑉| − 1  times. Thus, the overall computation complexity of the 

algorithm is O(|𝑔||𝑉	|=).  

4.5. Evaluation and analysis 

In this section, we evaluate our proposed SFC placement algorithm with comparison of other 

SFC placement algorithms in literatures on different network topologies. We wrote a simulator 

by using NetworkX [107] in Python [108]. We evaluate our algorithm in terms of end-to-end 

delay, acceptance rate, and resource utilization on two practical network models, JPN48 

[124][125] and NSFNET [129], and random graph network models. The random graph 

topologies are generated on the basis of Erdős-Rényi graph [109][110]. The results show that 

our algorithm can outperform in terms of end-to-end delay, acceptance rate, and resource 

utilization. 

4.5.1. Algorithms for comparison 

We compare our proposed algorithm with other SFC deployment algorithms in literatures as 

described in the related works sections. Specifically, they are greedy algorithm based, k-

shortest paths algorithm based, betweenness centrality-based and random algorithm based SFC 

deployment algorithms as described following:  

a) Greedy algorithm [104][114]: Greedy algorithm is a popular approach in solving NP 

problem as it can obtain a sub-optimal solution within an acceptable short computation 

time. A greedy strategy solves a problem by making a sequence of decision. At each 

point, it makes the decision that seems the best choice at that moment [106]. In the SFC 

deployment context, this algorithm 1) starts from the substrate network node, which 

hosts the 𝑠𝑟𝑐 of an SFC, 2) checks its neighbor nodes, 3) finds the neighbor node with 

the shortest latency edge, and 4) uses the node to host the next VNF. The algorithm 

greedily finds all nodes for hosting VNFs. Finally, the algorithm finds a shortest path 

from the substrate node who hosts the last VNF in the SFC to the substrate node who 

hosts the 𝑑𝑠𝑡 of the SFC.  

b) 𝒌-shortest paths algorithm [115][116]: 𝑘-shortest paths is an very important and often 

used algorithm in network research. In the SFC deployment context, this algorithm first 

finds 𝑘  shortest paths in terms of delay between 𝑠𝑟𝑐  and 𝑑𝑠𝑡  of SFC. Then the 

algorithm uses the longest path as the candidate path. Here the longest path is the path 

with the greatest number of nodes along the path. If the number of nodes along the path 
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cannot host all the VNFs in the SFC, the algorithm finds one edge with least available 

bandwidth resource in the path, say edge (𝑚, 𝑛), where m and n are substrate nodes. 

The algorithm removes the edge (𝑚, 𝑛) from the path, checks and compares the CPU 

capacity of node m's neighbor nodes and node n's neighbor. The algorithm selects the 

node who has the most available CPU capacity among 𝑚 and 𝑛’s neighbor nodes to 

host VNF, say node 𝑐. Finally, the algorithm finds the shortest paths in terms of latency 

from 𝑐  to 𝑚, and 𝑐  to 𝑛, and connects the path. Notice if 𝑘  is equal to one, it is a 

modified single shortest path algorithm. 

c) Betweenness centrality-based algorithm [116][117]: BC [118][119] is a measure of 

centrality of a graph based on shortest paths. BC is given by the expression:  

𝐵(𝑣) =p
𝜎4+(𝑣)
𝜎4+

						∀𝑣 ≠ 𝑠, 𝑣 ≠ 𝑡 

where  𝜎4+(𝑣) is the number of shortest paths from 𝑠 to 𝑡 that pass-through node 𝑣, and 

𝜎4+ is the total number of shortest paths from 𝑠 to 𝑡. It can be known that the node with 

a high value of betweenness centrality is the anchors and has the greatest number of 

shortest paths through it. In the SFC deployment context, the algorithm first deploys 

the middle VNF (say 𝑣𝑛𝑓 between 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of SFC) on the substrate node with 

highest value of betweenness centrality. Then the algorithm recursively deploys the 

middle VNF on the left side of 𝑣𝑛𝑓 that is between 𝑠𝑟𝑐 and 𝑣𝑛𝑓 and the middle on the 

right side of 𝑣𝑛𝑓 that is between 𝑣𝑛𝑓 and 𝑑𝑠𝑡 on the substrate nodes with higher value 

of betweenness centrality. Finally, the algorithm finds shortest paths to connect these 

substrate nodes. In the experiments, we utilize the algorithms[93][119][120][122] in 

NetworkX to calculate betweenness centrality value.  

d) Random algorithm [114][123]: In the SFC deployment context, this algorithm first 

randomly selects 𝑘 number of substrate nodes from substrate network, where 𝑘 is equal 

to the VNFs of an SFC. Note that these 𝑘 nodes cannot be the substrate nodes who host 

𝑠𝑟𝑐 and 𝑑𝑠𝑡 of SFC. Then the algorithm starts from 𝑠𝑟𝑐, finds shortest path one by one 

and connect the shortest paths between selected nodes. The order of substrate nodes 

selected for connected the shortest path is also randomly chosen. By comparing with 

this random algorithm, it can be known that whether our proposed algorithm has a 

considerable impact on reduce the end-to-end delay for service function chain, or 

alternatively simply deploy VNFs on the preferred nodes in substrate network is enough 

for end-to-end delay of an SFC.  
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4.5.2. Substrate network models for evaluation 

In this section, we introduce network models used in the experiments. We conducted our 

evaluations on three network models, JPN 48, NSFNET, and Random Graph network model.  

a) JPN 48 network model: JPN 48 is a network model developed based on publicly 

available information of Japan nationwide transportation network [124][125]. The 

network model contains 48 nodes and 82 edges. The nodes are placed on major cities 

in Japan. The model has been utilized for network research in Japan [126][127][128]. 

Figure 4-2 shows the topology of JPN 48. The number in the figure represents a city of 

Japan, e.g., node number 10 is Sapporo, node number 20 is Aomori, and node number 

131 is Tokyo. We set the delay of each edge according to the real distance between two 

nodes. For instance, the delay between 10 and 20 is 1.5884322213336	𝑚𝑠, which is 

calculated as 476.2	𝑘𝑚/299792458(𝑘𝑚/𝑠) ∗ 1000, where 476.2km is the distance 

between city Sapporo (10) and city Aomori (20), and 299792458𝑘𝑚/𝑠 is the speed of 

light. 1000 is used to adjust the unit from second to millisecond.  

b) NSFNET network model: National Science Foundation Network (NSFNET) was a 

program sponsored by National Science Foundation (NSF) to promote advanced 

research and education networking in United States [129]. Many prior works have 

utilized this network topology to test and evaluate their proposal [47][59][62][130][131] 

Figure 4-3 shows the NSFNET topology. The NSFNET contains 14 nodes and 21 edges. 

The number along the edges are delay of that edge in milliseconds similar to the setting 

in prior work[62]. 

c) Random Graph network model: To evaluate and compare our proposed algorithm on 

a larger, more complex but general substrate network without dependent on any specific 

topology, we introduce random graph model as the underlaying substrate network 

topology. Random graph model [109][110] is an intersection of graph theory and 

probability theory. There are two ways to generates a random graph, and we leverage 

the 𝐺(𝑛, 𝑝) model to generate a random graph topology, where 𝑛 is the number of 

nodes and 𝑝 is edge connectivity probability. Random Graph model has been utilized 

for evaluation algorithms such as in [78][111][112][127][131]. The delay of each edge 

is randomly chosen between 1 and 5 in milliseconds unit. Figure 4-4 shows an 

illustration of random graph network model.  
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Figure 4-2 JPN 48 network model, number aside nodes represent a city in Japan. 

 

 

Figure 4-3 NSFNET network model. 
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Figure 4-4 Random graph network model. 

 

4.5.3. Evaluation on performance of end-to-end delay 

The end-to-end delay of SFC is the delay of substrate path from the 𝑠𝑟𝑐 to the 𝑑𝑠𝑡 of an SFC 

for service delivery. We evaluate our proposed DP based algorithm with comparison of other 

five algorithms described above on different substrate network topologies. Specifically, KS-1 

is the 𝑘-shortest paths algorithm with 𝑘 = 1, and KS-10 is the 𝑘-shortest paths algorithm with 

𝑘 = 10. BC is the betweenness centrality algorithm.  

To evaluate how each algorithm could achieve a minimized end-to-end delay, we first consider 

that the network resources are sufficient for each algorithm. We vary the number of SFC 

requests from 100 to 500 and vary the number of VNFs in an SFC from 2 to 5. For each SFC 

request, the 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of an SFC are randomly selected from the substrate network. We 

evaluate the impact of number of VNFs as well as the impact of size of network on end-to-end 

delay by varying the number of VNFs in an SFC and number of substrate nodes. For each 

number of VNFs, we repeat 100-time experiments and in each time experiment, the 𝑠𝑟𝑐 and 

𝑑𝑠𝑡 of SFC are randomly selected from the substrate network.   
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Figure 4-5 End-to-end delay on the JPN 48 network model. 

a) End-to-end delay performance on JPN48 network model 

Figure 4-5 shows the results of performance in terms of end-to-end delay with various number 

of VNFs on the JPN 48 substrate network model. The results reflect that our proposed 

algorithm obtains a relatively low end-to-end delay in comparison of other algorithms at each 

number of VNFs.  

Specifically, the end-to-end delay of our proposed algorithm is 2.37𝑚𝑠 when the number of 

VNF is 2. In comparison, the end-to-end delay are 2.91𝑚𝑠, 3.58𝑚𝑠, 4.37𝑚𝑠, 3,96𝑚𝑠, and 

7.20𝑚𝑠, for Greedy, KS-1, KS-10, BC and Random algorithms respectively. In addition, the 

end-to-end delay of our proposed algorithm is 2.58 when the number of VNF is 5, whereas the 

end-to-end delay are 3.78𝑚𝑠, 3.97𝑚𝑠, 4.00𝑚𝑠, 7,65𝑚𝑠, and	14.24𝑚𝑠	for Greedy, KS-1, KS-

10, BC and Random algorithms respectively.  

The results demonstrate that our proposed algorithm is superior to all other algorithms. Our 

algorithm reduces the end-to-end delay with a maximum 67.08% and 81.95% comparing with 

random algorithm at the number of VNFs 2 and 5, respectively. 
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Figure 4-6 End-to-end delay on NSFNET network model. 

b) End-to-end delay performance on NSFNET network model 

Figure 4-6 shows the results of performance in terms of end-to-end delay with various number 

of VNFs on the NSFNET substrate network model. Our proposed algorithm achieves a better 

result in terms of low end-to-end delay.  

The end-to-end delay of our proposed algorithm is 11.47𝑚𝑠 at the number of VNFs of an SFC 

2, whereas the end-to-end delay are 15.31𝑚𝑠, 17.96𝑚𝑠, 34.35𝑚𝑠, 19.03𝑚𝑠, and 25.81𝑚𝑠	for 

Greedy, KS-1, KS-10, BC and Random algorithms respectively. In addition, the end-to-end 

delay of our proposed algorithm is 18.91 when the number of VNF is 5, whereas the end-to-

end delay are 23.50𝑚𝑠, 34.75𝑚𝑠, 34.39𝑚𝑠, 46.17𝑚𝑠, and	51.62𝑚𝑠 for Greedy, KS-1, KS-10, 

BC and Random algorithms respectively.  

The results reflect that our algorithm has a better performance than all other algorithms in 

reduction of end-to-end delay with a maximum 55.57% and 63.37% at the number of VNFs 

2 and 5, respectively. 

c) End-to-end delay performance on Random Graph network model 
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Figure 4-7 through Figure 4-10 illustrate the performance of end-to-end delay on four different 

random substrate network models with number of nodes 100, 200 at edge connectivity 

probability 0.05 and 0.2 similar to the parameter setting in [127]. Note that a higher 

connectivity probability leads to a graph with larger number of edges. 

Comparing four figures, the results reflect that our proposed algorithm outperforms other 

algorithms on all network models at different number of VNFs in an SFC.  

Specifically, the end-to-end delay of our proposed algorithm is 7.90𝑚𝑠, 8.61𝑚𝑠, 9.60𝑚𝑠, and 

10.83𝑚𝑠 on the random graph model with 100 nodes and 0.05 edge connectivity probability, 

whereas, the end-to-end delay of our algorithm is 4.56𝑚𝑠, 5.60𝑚𝑠, 6.56𝑚𝑠, and 7.54𝑚𝑠 on 

the random graph model with 100 nodes at 0.2 edge connectivity probability with respect to 

the number of VNFs in an SFC at 2, 3, 4, and 5, respectively. 

Similarly, the end-to-end delay of our proposed algorithm is 6.58𝑚𝑠, 7.24𝑚𝑠, 8.08𝑚𝑠, and 

9.13𝑚𝑠	on the random graph model with 200 nodes and 0.05 edge connectivity probability, 

whereas, the end-to-end delay of our algorithm is 3.99𝑚𝑠, 4.80𝑚𝑠, 5.72𝑚𝑠, and 6.67𝑚𝑠 on 

the random graph model with 200 nodes at 0.2 edge connectivity probability with respect to 

the number of VNFs of an SFC at 2, 3, 4, and 5, respectively. 

It can be found that the end-to-end delay is smaller when the edge connectivity is larger on 

both 100 and 200 nodes random graph. This is reasonable since a larger value of edge 

connectivity probability leads to a larger number of edges in the graph, which could increase 

the degree of free to find a path with a shorter end-to-end delay between two nodes. However, 

the number of nodes of random graph at a fixed edge connectivity probability does not affect 

the end-to-end delay a lot. This is because that since the edge connectivity probability is fixed, 

as the number of nodes increases, the number of edges increases accordingly, which does not 

affect the density of the graph and the distance of two nodes.  

By comparing with Random Algorithm, our algorithm achieves 64.26%~75.75%  and 

60.20%~67.14% reduction in terms of end-to-end delay on the random graph model with 100 

nodes at 0.05 edge connectivity probability and 0.2 edge connectivity probability, respectively. 

Besides, our algorithm achieves 62.28%~74.17%	and 59.72%~66.42% reduction in terms 

of end-to-end delay on the random graph model with 200 nodes and 0.05 edge connectivity 

probability and 0.2 edge connectivity probability, respectively.   
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Figure 4-7 End-to-end delay on Random Graph network model.  

(100 nodes, 0.05 edge connectivity probability) 

 

Figure 4-8 End-to-end delay on Random Graph network model.  

(100 nodes, 0.2 edge connectivity probability) 
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Figure 4-9 End-to-end delay on Random Graph network model.  

(200 nodes, 0.05 edge connectivity probability) 

 

Figure 4-10 End-to-end delay on Random Graph network model.  

(200 nodes, 0.2 edge connectivity probability) 
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4.5.4. Evaluation on performance of acceptance rate  

The acceptance rate is the ratio of number of SFC requests that have been successfully deployed 

on the substrate, with total number of SFC requests. A higher acceptance rate indicates that the 

network can receive larger number of SFC requests which potentially utilizes the network 

resource efficiently and obtains a higher revenue to network operator.  

We evaluate our proposed DP based algorithm with comparison of other five algorithms 

described above on different substrate network topologies. Specifically, KS-1 is the 𝑘-shortest 

paths algorithm with 𝑘=1, and KS-10 is the 𝑘-shortest paths algorithm with 𝑘=10. BC is the 

betweenness centrality algorithm.  

To evaluate the performance in terms of acceptance rate, we vary the number of SFC requests 

from 100 to 500 and vary the number of VNFs in an SFC from 2 to 5. For each SFC request, 

the 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of an SFC are randomly selected from the substrate network. The amount of 

CPU requirement for one VNF is randomly chosen from (5, 10), and the amount of bandwidth 

requirement for one SFC is randomly chosen from (5, 10), respectively. We evaluate our 

algorithm in comparison with other algorithms on different substrate network models. The CPU 

capacity of each node in substrate network is set as 100 units, and the bandwidth capacity of 

each edge in substrate network is set as 1000 units, respectively.  

a) Acceptance rate on JPN48 network model 

Figure 4-11 through Figure 4-14 show the performance results in terms of acceptance rate with 

respect to the number of SFC requests and the number of VNFs on JPN48 network model. The 

results reflect that our proposed algorithm can outperform other algorithms with a higher 

acceptance rate.  

Specifically, at the number of VNFs 2, our algorithm can accept all SFC requests when the 

number of SFC requests is 100 and 200. In comparison, the acceptance rate at the number of 

SFCs 200 is 90%, 85%, 84%, 79%, and 58% for Greedy, SK-1, SK-10, BC and Random 

algorithms, respectively.  

Meanwhile, the acceptance rate decreases, as the number of SFCs increases. The acceptance 

rate is 64%  when the number of SFC is 500 for our proposed algorithm, whereas the 

acceptance rate is no more than 55% for all other algorithms, and the acceptance rate for 

random algorithm is only 32% which is only half of our proposed algorithm.  
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Figure 4-11 Acceptance rate on JPN48 network model. (#VNF=2) 

 

 

Figure 4-12 Acceptance rate on JPN48 network model. (#VNF=3) 
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Figure 4-13 Acceptance rate on JPN48 network model. (#VNF=4) 

 

 

Figure 4-14 Acceptance rate on JPN48 network model. (#VNF=5) 
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The result of acceptance rate at the number of VNFs-3,4,5 also show a similar trend as the 

number of VNFs 2. Moreover, at the number of VNFs 5, our proposed algorithm can still 

achieve a	100% acceptance rate when the number of SFCs is 100, whereas other algorithms 

are all below 80%. In addition, at the number of SFCs 500, which indicates a high work load, 

acceptance rates of all algorithms are falling below 30% due to limited resources, however, 

our algorithm achieves a 25% acceptance rates which is higher than other algorithms that 

20%, 20%, 21%, 19%	 and 15%  for Greedy, SK-1, SK-10, BC and Random algorithms, 

respectively.  

b) Acceptance rate on NSFNET network model 

We next evaluate the performance of acceptance rate on our algorithms on NSFNET network 

model. Figure 4-15 through Figure 4-18 show the results of the evaluation at different number 

of VNFs in an SFC. Compared with the JPN48 network model, which consists 48 number of 

nodes, the NSFNET network model has a smaller of 14 number of nodes, which indicates less 

amount of total resources. This results in a relatively lower value of acceptance rate compared 

with that in JPN48 network model, with the same parameter setting, like length of an SFC or 

number of SFC requests.  

The acceptance rate cannot reach 100% even at the number of SFCs 100 with a shorter length 

of SFC for all algorithms as shown at number of VNFs 2. However, even in this small network 

model, our proposed algorithm can achieve a relatively high acceptance rate. Our algorithm 

achieves an acceptance rate 95%, 63%, 46% and 37% at number of SFCs 100 with various 

number of VNFs 2, 3, 4, and 5, respectively, whereas all other algorithms achieve acceptance 

rate lower than 87%, 60%, 43%,  and 33%,  respectively, from which we can see that our 

algorithms is superior to other algorithms at most 8% in terms of acceptance rate. When the 

number of SFCs is 500 at various number of VNFs, which indicates the network source is 

extremely limited, our algorithm performs higher or no lower than other algorithms in terms of 

acceptance rate as shown in  Figure 4-15 through Figure 4-18.  
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Figure 4-15 Acceptance rate on NSFNET network model. (#VNF=2) 

 

 

Figure 4-16 Acceptance rate on NSFNET network model. (#VNF=3) 

0%

20%

40%

60%

80%

100%

100 200 300 400 500

Ac
ce

pt
an

ce
 ra

te

Number of SFC requests

NSFNET-Number of VNFs = 2
Proposed Greedy SK-1 SK-10 BC Random

0%

20%

40%

60%

80%

100%

100 200 300 400 500

Ac
ce

pt
an

ce
 ra

te

Number of SFC requests

NSFNET-Number of VNFs = 3
Proposed Greedy SK-1 SK-10 BC Random



 
 

89 

 

Figure 4-17 Acceptance rate on NSFNET network model. (#VNF=4) 

 

 

Figure 4-18 Acceptance rate on NSFNET network model. (#VNF=5) 
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Figure 4-19 Acceptance rate on Random Graph network model. (#VNF=2) 

 

 

Figure 4-20 Acceptance rate on Random Graph network model. (#VNF=3) 
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Figure 4-21 Acceptance rate on Random Graph network model. (#VNF=4) 

 

 

Figure 4-22 Acceptance rate on Random Graph network model. (#VNF=5) 
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c) Acceptance rate on Random Graph network model 

Figure 4-19 through Figure 4-22 shows acceptance rate at various number of VNFs on the 

random network model consisting 100 number of nodes at edge connectivity probability 0.05. 

At the number of VNFs 2, on both random network models, our proposed algorithm can 

acceptance almost all the SFC requests from 100 to 500 number of SFCs. The acceptance rate 

of our proposed algorithm starts decreasing at 400 number of SFCs when number of VNFs is 

3, at 300 number of SFCs when number of VNFs is 4, and at 200 number of SFCs when number 

of VNFs is 5, respectively. This is reasonable since an SFC with a larger number of VNFs 

requires more resources. As larger number of SFCs arrive, more SFCs are rejected due to 

limited resources. By comparing with Random Algorithm, our proposed algorithm can accept 

at most 24%, 36%, 34%, and 34% more SFC requests on the random network model at edge 

connectivity probability 0.05. 

4.6. Discussion 

4.6.1. Discussion on end-to-end delay performance 

Previous sections show that our algorithm could find a shorter end-to-end delay path than other 

algorithms. The logic behind it is reasonable. Every time our algorithm deploys a VNF, it can 

find a shortest path from the 𝑠𝑟𝑐 of SFC. By storing the intermediate results, our algorithm 

does not need to recalculate the path from very beginning 𝑠𝑟𝑐 node but utilize the intermediate 

results. As all the substrate network nodes are exanimated, our algorithm utilizes the global 

information to achieve a relatively shorter end-to-end delay. Greedy algorithm deploys a VNF 

on a substrate node who has a shortest path to the previous VNF rather than to the 𝑠𝑟𝑐 of SFC. 

𝑘-shortest path could find a shortest path from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 of SFC, but it does not consider the 

number of nodes thus has to break some links to branch the link to other nodes, which increases 

the end-to-end delay. Betweenness centrality algorithm deploys VNFs on nodes with high 

value of betweenness centrality, but it could overload the nodes and other SFC cannot use it.  

4.6.2. Discussion on acceptance rate 

Previous sections show that our algorithm has a better performance than other algorithms in 

terms of acceptance rate. We can see that random algorithm always has the lowest acceptance 

rate, because random algorithm places VNFs of SFCs arbitrarily without considering 

optimizing resource consumptions. Greedy and k-shortest path algorithms achieve a higher 

acceptance rate, as they consider finding a path with a minimum delay. However, a shortest 
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path may not have enough substrate nodes or sufficient CPU resources on the nodes to host 

VNFs of SFCs, which lowers the value of acceptance rate. In a smaller network model, the 

greedy algorithm even performs a relatively low acceptance rate, because greedy algorithm 

rejects an SFC request if any link or node have not sufficient resources to host the SFC. BC 

algorithms could achieve a relatively shorter delay path than random algorithm, but as it always 

deploys the VNFs on nodes who have a higher betweenness centrality value, some nodes with 

higher BC value could get a higher CPU workload and reject the SFC request.  

4.7. Conclusion 

In this chapter, we analyzed the necessities and difficulties to deploy SFCs with a desired QoS 

requirement in terms of end-to-end delay of SFCs. As stated in section 4.3.2, designing this 

algorithm is different due to complex requirements and constraints of SFCs in NFV. The 

algorithm must satisfy the computation and bandwidth resource constraints when deploying 

SFCs on the NFV system. The algorithm must keep the order of VNFs of SFCs when routing 

traffic through the SFC.  

To tackle this problem, we presented an SFC placement algorithm with satisfying CPU and 

bandwidth resource constraints, keeping the order of VNFs and achieving a desired minimum 

end-to-end delay of SFC. The proposed algorithm is designed based on dynamic programming 

technique, which obtains a global information of the network by recording the intermediate 

information when searching the solution. We described the details of the algorithm. 

We also conducted experimental studies on different substrate network models in comparison 

with other algorithms in literature. The results show that our proposed algorithm performs 

better than other algorithms in terms of both end-to-end delay and acceptance rate. This 

indicates that our algorithm can achieve a relatively better QoS guarantee with efficient 

network resource utilization.  

Specifically, our algorithms achieved a maximum 81.95% reduction of end-to-end delay 

comparing with random algorithm at the number of VNFs 5 on JPN48 network model. On the 

other network model, our algorithms achieved more than 50% reduction of end-to-end delay 

comparing with random algorithms. In addition, our algorithm has a good performance with 

more or no less acceptance rate than other algorithms on different network models. These 

results indicate our algorithm can achieve a better QoS requirement and efficient resource 

usage.  
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Chapter 5  
 

5. Distributed Service Function Chain Placement Algorithm 

5.1. Introduction 

Network function virtualization (NFV) separates the software implementation of network 

function from hardware by leveraging virtualization technologies. In the context of NFV, 

network services are composed of a series of ordered virtual network functions (VNFs) that are 

deployed on the network function virtualization infrastructure (NFVI). This separation way is 

different from the traditional network functions that is integrated into a dedicated hardware and 

deployed in a network operator’s server room or on-premise of custom. This paradigm of NFV 

improves the capital and operational efficiencies of network, increases the flexibility and 

scalability of network, accelerates the speed of service innovation, and reduces the power usage 

of hardware [6].  

Because of the advantages of NFV, many network operators are planning to integrate NFV 

technology into their network [18]. However, the network operators must guarantee the 

performance of the network service in terms of service quality while benefitting from the NFV. 

The white paper in [132] summaries NFV service quality metrics associated with quality 

criterion such as speed, accuracy, and reliability, and service/lifecycle category such as 

orchestration, operation. For instances, packet delay, packet loss ratio, and network outage are 

belonged to speed, accuracy, and reliability criterion of virtual network operation category of 

service metric, respectively. Moreover, each NFV service metric can impair the VNF user 

service quality in terms of provisioning latency, scheduling latency, packet delay, etc.  

One of the important metrics is anti-affinity rules, as placement policy compliance metrics 

[132]. The anti-affinity rules describe the relationship between virtual machine and hosts [133], 

that two VMs should be deployed distributedly on different hosts. ETSI resilience requirement 

white paper [134] points out that the distributed deployment of VNFs should be considered to 

prevent from failure of VNFs. More specifically, distributed deployment of SFC can improve 

network service robustness by avoiding VNFs to sharing same physical resources [136].  

Moreover, according to the IDC survey [137] and white paper [138] of IBM, it costs $100, 000 

per hour if an infrastructure failed, and $500,000 to $1million per hour if a critical application 

failed in organization such as Fortune 1000 company. Therefore, a long recovery time is not 
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tolerable for both user and provider. Nevertheless, if two VNFs are deployed in a same host, 

once this host is failure due to an incident such as power outages, software problems, 

misconfiguration or disaster, both VNFs cannot perform function correctly. Consequently, this 

failure increases the recovery time to reestablish the end-to-end network service delivery, as it 

requires restarting the VNFs that in the same failure substrate nodes or reconfigure the VNFs. 

All these show that distributed deployment of network service is critical for preventing the 

network service from single-point failure and helps to restore services quickly to users affected 

by an incident [139]. 

In addition, VNFs in an SFC should be placed following a specific order to process traffic flow 

correctly. Consolidating multiple VNFs on a same substrate node would leads the traffic flow 

travelling back-and-forth in the substrate network, thus increase the risk of traffic loops in the 

substrate network. 

Furthermore, a centralized deployment of VNFs can lead to an unbalanced network resources 

utilization and result in the overloading of some hosts for providing sufficient computation 

resources. The consequences of overloading increase risks of a node failure under high resource 

usage loads [100], cause a service level agreement (SLA) violations or decrease the 

performance of VNFs [140]. 

An example of network performance degradation in terms of packet loss is described in [19] 

due to collocation of VNFs of an SFC in a same host. Two VNFs of SFC consume 100 MIPS 

for processing normal traffic, and 200 MIPS for processing peak traffic. The probability to 

reach peak traffic is 30% for VNFs. If both VNFs of an SFC are deployed in a same server 

with capacity of 400 MIPS, the probability of both VNFs are reaching peak traffic is 30%, and 

once both VNFs are reaching peak traffic, it will need all capacity of 400 MIPS of host for 

processing traffic, which will result in packet loss. However, the probability is only 9% for two 

VNFs that reach peak traffic and consume all capacity of 400 MIPS of host if these two VNFs 

are belonged to different SFCs. Therefore, researchers in [19] explicitly claimed that VNFs of 

the same SFC should not be deployed on the same server.   

Motivated by these concerns, in this chapter, we address the problem of deploying VNFs of an 

SFC in a distributed manner with satisfying distributed deployment (anti-affinity) requirement 

while keeping a desired end-to-end delay of SFCs. More specifically, VNFs belonged to the 

same SFCs should not be deployed on the same substrate network node to avoid network issues 

mentioned above, and the end-to-end delay of substrate path of an SFC should be minimized 
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simultaneously. We also consider that one type of VNF can be deployed on only a certain 

number of candidate substrate network nodes. This differs to the scenario in previous chapter 

in which one type of VNF can be deployed on all substrate network nodes. This scenario is 

practical when considering placement policy compliance metrics. As described in [134], some 

VNFs should not be deployed on some certain substrate network nodes. For example, some 

service providers prefer to deploying VNFs in a certain region because of legislative 

restrictions or high cost of some substrate network nodes. Another reason that this scenario is 

practical is that some VNF instances may have been already deployed on the substrate nodes, 

and it could be better to select one instance to host the VNF in an SFC rather than installing a 

new VNF instance into a new server, which may increase the power consumption or extra 

license fee as described in Chapter 2.  

However, it is challenging to distributed deploy VNFs while keeping a desired end-to-end 

delay. The first challenge is that the VNF deployment scheme must decide which VNF a 

substrate network node should host, if this substrate network node could host more than one 

VNFs of an SFC. The second challenge is that while the VNF deployment scheme making the 

decision of which VNFs a substrate node should host, it must guarantee a relative lower end-

to-end delay for SFC to achieve a desired QoS. The third challenge is that the VNF deployment 

scheme must keep the order of VNFs of SFC for successful network service delivery. It can be 

obvious that varies deployment strategies would result a very different results of deployment 

of SFCs in terms of distributed deployment requirement, end-to-end delay, and the order of 

VNFs of an SFC, and it is obvious that random deployment of VNFs cannot achieve these 

requirements.  

To address this problem, we utilize a modified layered graph algorithm to realize the distributed 

deployment of VNFs in an SFC while satisfying distributed deployment requirement. The 

layered graph algorithm is an easy way and a proper tool to find a shortest path between 𝑠𝑟𝑐 

and 𝑑𝑠𝑡 nodes of SFC, while guaranteeing the order of VNFs simultaneously. By leveraging 

the advantages of layered graph, we apply it to solve the distributed deployment of VNFs 

problem to jointly guarantee distributed deployment requirement and a minimum end-to-end 

delay of SFC path. 

5.2. Related work 

Most of current researches on the deployment of SFCs consider constraints on network capacity 

and computing resources. However, location constraints like affinity and anti-affinity are 



 
 

97 

critical metrics for measuring QoS of network services. Bouten et al. in [141] analyzed the 

affinity and anti-affinity constraints in the placement of VNFs from the aspect of efficiency, 

resilience, legislation, privacy, and economic. Authors proposed a set of affinity and anti-

affinity constraints on both deployment of virtual functions and virtual edges.  Jacobs et al. in 

[142] proposed a solution for measurement of two VNFs’ affinity and anti-affinity. The 

criterion used for measurement are classified into two types, static criteria, such as minimum 

CPU and memory, and dynamic criteria such as CPU usage, package loss and latency. For 

those VNFs that have not use any network resources, the authors proposed an affinity 

prediction model by leveraging artificial neural network in [143]. Zhou et al. in [19] observed 

that VNFs of an SFC should be placed onto different physical servers to guarantee performance 

and scalability of the SFC. The authors solve this distributed deployment problem by utilizing 

bipartite matching algorithm with maximizing vertical scalability and minimizing packet loss 

rate. Zhu et al. in [144] proposed a cost-efficient VNF placement strategy for IoT network. The 

authors find an effective placement policy for each configuration of VNF and guarantee the 

availability and confidentiality by leveraging affinity and anti-affinity placement rules while 

achieving a low cost. Allybokus et al. in [136] formulate an ILP model for VNF placement 

with a partial order constraints and anti-affinity rules by considering reducing total financial 

cost. The authors also proposed a heuristic algorithm based on a linear relaxation. However, 

few of them consider the anti-affinity rules with a minimizing end-to-end delay of an SFC.  

The layered graph approach has been applied to solve the SFC deployment problem by many 

previous studies. We leverage the advantages of layered graph and apply it to solve the 

distributed deployment of VNFs problem to jointly guarantee the anti-affinity rules and a 

minimum end-to-end delay of SFC path. Dwaraki et al. [111] uses layered graphs [145] to place 

SFC with a minimized network delay in an adaptive way. Huin et al. [146] modeled two ILP 

formulations and utilizes layered graph to investigate the tradeoff between bandwidth demands 

and number of substrate nodes that can possibly host VNFs. Tomassilli et al. [112] transformed 

SFC placement problem into a set cover problem based on layered graph concept to reduce 

overall placement cost with correct order of VNFs in SFC requests. Authors also designed a 

greedy algorithm as well as an optimal algorithm specific to tree topologies. Sallam et al. in 

[147] modified the layered graph to reduce the computation time by utilizing directed graph to 

remove the nodes without incoming edges. The authors proved the correctness of the layered 

algorithm. The authors also formulated an ILP model to solve the maximum flow problem with 

SFC constraints. Gu et al. in [148] also utilized layered graph to joint optimize the delay and 
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resource allocation for SFC orchestration. However, these works did not take the anti-affinity 

into account. In this thesis, we take anti-affinity rules into account. We consider anti-affinity 

rules as distributed deployment of SFC. Specifically, we consider satisfying distributed 

deployment requirement which is defined as to place VNFs of an SFC onto different substrate 

network nodes.  

5.3. System model  

In this section, we first introduce necessity of distributed SFC deployment requirement and 

then state the preliminary assumption on the system model. Finally, we describe the substrate 

network and SFC model in which the notations are used in the following sections. 

5.3.1. Necessity of distributed SFC deployment requirement 

Distributed SFC deployment in this thesis is defined as to deploy VNFs of an SFC to different 

substrate network nodes. This is necessary in some cases as shown in the following: 

Case 1: Overload substrate network node resource 

Consider an SFC composed of two VNFs. Each VNF needs 300 units CPU resources to process 

normal traffic flow. CPU resource requirement of VNFs increases as the traffic flow increases. 

Suppose the probability to reach peak traffic of the SFC is 30%, and VNFs require 600 units 

resource to process peak traffic. Also suppose a substrate node have 1000 units available CPU 

resource capacity.  If both VNFs are deployed on the substrate network, then, there will be 30% 

probability for the SFC overloading the substrate network node, as the summation of CPU 

requirement of two VNFs is 1200 whereas the substrate node has only 1000 units available 

CPU resources. 
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Figure 5-1 Case 1: Two VNFs are placed on one substrate node. 

 

Figure 5-2 Case 1: Two VNFs are placed on two substrate nodes. (normal traffic) 

 

Figure 5-3 Case 1: Two VNFs are placed on two substrate nodes. (peak traffic) 



 
 

100 

Case 2: Risk of traffic loop 

Consider an SFC with 3 VNFs. As shown in the following figures, if VNF1 and VNF3 are 

collocated on a same server, the traffic will travel back and forth between VNF1, VNF2 

and VNF3, which would increase the risk of traffic loop.  

 

 

 

Figure 5-4 Case 2: Two VNFs are placed on a same substrate node. 

 

 

 

Figure 5-5 Case 2: Two VNFs are placed on two substrate nodes. 
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Case 3: Long time to recovery from failures 

When a VNF fails, the MANO must find other location to recover this VNF, or the whole 

SFC cannot function. This requires restarting the VNF, reconfigure the VNF, and reroute 

the traffic through the VNF. If more than 2 VNFs are deployed on a same substrate 

network node, once this substrate network node fails, multiple VNFs in this node must be 

recovered, which will take a long time comparing to recovering only one VNF. Thus, 

distributed VNFs onto different substrate network nodes would reduce the time to 

recovery.  

5.3.2. Preliminary assumption 

In this chapter, we assume that the CPU and bandwidth resources are always sufficient for the 

deployment of SFC. We consider the edges of substrate network have some delay, and we try 

to find an optimal placement strategy that satisfies both the distributed deployment requirement 

and determines a path that has minimum end-to-end delay for SFC.  

We consider that it is a distributed deployment requirement violation or anti-affinity rule 

violation if more than one VNFs of an SFC are placed on a same substrate network. We 

consider that some instances of VNFs have been already installed on the substrate network 

differing from the previous chapters, i.e., the VNFs of an SFC can be only deployed on a certain 

limited number of substrate network nodes. We call a substrate network node is a candidate 

node to one type of VNF if it can host this type of VNF.  
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Figure 5-6 An example of preinstalled VNFs on substrate networks.  

(FW, NAT and DPI are preinstalled in substrate node A; IDS, NAT, and DPI are preinstalled on 

substrate node B. NAT in SFC request can be only placed on Node A and B, and IDS can be placed 

only on Node B.)  

Figure 5-6 shows an example of this assumption. The substrate network consists six nodes. The 

bottom-left node is node A, on which the instances of FW, NAT, and IDS have been 

preinstalled. The top-right node is node B, on which the instances of IDS, NAT, and DPI have 

been preinstalled. This indicates that substrate node A is a candidate node for hosting VNF FW, 

NAT and DPI, and substrate node B is a candidate node for hosting IDS, NAT and DPI. 

Suppose an SFC request with two VNFs, NAT and IDS, then this SFC can be deployed in a 

path of S→A→B→D, or S→B→B→D. where S and D are 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of SFC. However, 

notice that the later placement is violated the distributed deployment requirement, as both NAT 

and IDS in the SFC are placed on the same substrate node B. 

5.3.3. Substrate network and SFC request model notations 

Notations below represent the substrate, SFC, VNF, etc. These notations are used in the 

following sections. 
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𝐺 = (𝑉, 𝐸): an undirected graph represents the substrate network. 

𝑉: the set of substrate network nodes. Specially, |𝑉| represents the number of nodes in 

the substrate network. 

𝐸: the set of substrate network edges. 

𝐹: set of virtual network functions (VNFs) 𝑓 ∈ 𝐹. 

𝑑'): edge latency between node 𝑖 and node 𝑗, where (𝑖, 𝑗) ∈ 𝐸. 

𝑆: service function chain that contains a series of ordered VNFs	{𝑓1, 𝑓=, … , 𝑓' , … , 𝑓+}	,	 

where 𝑓' is the 𝑖th VNF in S and 𝑡 is the total number of VNFs in	𝑆. 

𝑅: service function chain request which contains a service function chain 𝑆 and source 

node 𝑣4 and destination 𝑣; node (i.e., 𝑅 = {𝑣4, 𝑣; , 𝑆}	). 

𝑁*: set of candidate nodes for hosting VNF 𝑓. Specially, ª𝑁*ª represents the number of 

substrate network nodes for hosting VNF 𝑓. 

5.4. Layered graph algorithm  

In this section, we introduce an SFC placement scheme based on layered graph approach, and 

then discuss the insufficiency of layered graph algorithm for distributed placement of VNFs. 

5.4.1. Layered graph algorithm description 

The layered graph algorithm provides a simple but powerful approach to find the shortest path 

between 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of an SFC, while keeping the order of VNFs of an SFC. The layered 

graph algorithm receives a substrate network topology graph 	𝐺 , and an SFC request 𝑆 

consisting 𝑘 VNFs. The procedure of layered graph algorithm is shown in below. 

Step 1. Create 𝑘 copies of substrate network graph, where 𝑘 is the number of VNFs in 

the SFC request. Each copy is exactly same as 𝐺’s topology. We denote 𝐺>  as the 

original substrate network graph	and 𝐺' as the 𝑖th copy network graph.  

Step 2. Connect substrate nodes in each neighboring network graphs	 𝐺'?1  and 𝐺' 

vertically if they can host 𝑖th VNF of the SFC. 
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Step 3. The original substrate graph 𝐺>, 𝑡 copies of substrate network graphs 𝐺1~𝐺@, 

and edges between these layered networks compose a new graph, denoted as 𝐺AB8C7.  

Step 4. Find a shortest path between the ingress node in 𝐺>	and the egress node in 

𝐺AB8C7. Each transition node on the shortest path connecting 𝑖 − 1 and 𝑖 layers is the 

selected substrate node to host the 𝑖th VNF of the SFC.  

Figure 5-7 illustrates the layered graph approach for deployment of VNFs. In this example, 𝐺> 

represents the original substrate network topology. An SFC contains two types of VNFs, VNF1, 

and VNF2. The 𝑠𝑟𝑐 and 𝑑𝑠𝑡 of the SFC are substrate network nodes S0 and D0, respectively.  

B0 and F0 are candidate substrate nodes for hosting VNF1, i.e., the type of VNF1 instance has 

been pre-installed on B0, F0. B0, C0 and E0 are candidate substrate nodes for hosting VNF2, 

i.e., the type of VNF2 instance has been pre-installed on B0, C0 and E0. 

 

 

Figure 5-7 Layered graph approach: An example of SFC request and substrate network with 

preinstalled VNF instances. 
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Figure 5-8 Layered graph approach step 1 & 2: create and connect 𝑘 layers of substrate 

network. 

The layered graph approach firstly constructs two new graphs 𝐺1	and 𝐺=, which are exactly 

same as 𝐺>, and connects these layers as shown in Figure 5-8. It connects B0 to B1, and F0 to 

F1 as shown by the green dash lines, because B0 and F0 can host VNF 1, and it connects B1 

to B2, C1 to C2, and E1 to E2 as shown by yellow dash lines in the figure, because B0, C0, 

and E0 can host VNF 2. 
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Figure 5-9 Layered graph approach step 3 & 4: compose whole graph and find shortest path. 

After created and connected layers, layered graph approach tries to find a shortest path between 

S0 and D2, by taking edge delay as weight, as shown by red arrow lines in Figure 5-9. Since 

B0 and C1 are transition nodes along the shortest path from 𝐺> to 𝐺1 and 𝐺1 to 𝐺=, B and C 

are selected to host VNF1 and VNF2 of SFC, respectively. Therefore, the deployment path in 

the original graph is (S0 → B0 → C0 → D0).  
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Figure 5-10 Insufficiency of layered graph algorithm. 

5.4.2. Insufficiency of layered graph algorithm for distributed deployment of VNFs 

The insufficiency of layered graph algorithm is that this algorithm cannot guarantee the 

distributed deployment requirement of an SFC request. It is highly possible that the shortest 

path traverse through a substrate network node several times to avoid a longer path in the last 

step of the algorithm.  

Figure 5-10 shows an example. The SFC deployment path could be (S0 → B0 → B0 → D0), 

where VNF1 and VNF2 are collocated in the same substrate network node B0, and this violates 

the distributed deployment requirement.  

As described in the previous sections, this collocated deployment of VNFs causes overload 

resource utilization, risk to forming loops and long recovery time. Thus, distributed SFC 

placement is necessary to ensure the performance of network services. 
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5.5. Distributed SFC placement algorithm 

This section describes our proposed distributed SFC placement algorithm. This SFC placement 

algorithm is based on the layered graph approach. This algorithm is aiming to place VNFs of 

an SFC onto different substrate network nodes, so that prevents SFCs from potential 

performance degradation.  

To complete this goal, the placement algorithm avoids to connecting two or more layers via a 

same substrate node. If one substrate node connects more than one layers, the algorithm should 

remain only one layers for the node and break all other layers. As shown in Figure 5-7, both 

VNF 1 and VNF 2 can be placed on substrate B, which will lead a high possibility of collocation 

of VNF1 and VNF2 on node B. To avoid this collocation, the algorithm should remain only 

one connection and break others among the connection of B0 and B1, and connection of B1 

and B2. Thus, for each substrate node, the algorithm needs to examine all layers to find all 

connections of this node, and then make a decision of which connection should be remained 

for this node. This ensures that one substrate node could only hosts one VNF of an SFC.  

Since one VNF can be placed on multiple candidate substrate nodes, the algorithm must select 

an appropriate substrate node among candidate nodes to host this VNF. Namely, if one 

substrate node connects multiple layers, the algorithm must select one connection of two 

neighbor layers and break all other connections. As each time a connection of two layers is 

eliminated, the chance is reduced to calculate a shorter path for an SFC. In the worst case, all 

connections of a node would be eliminated without any design. Then, this node cannot host 

any VNF.  

In our algorithm, to decide which VNF a node should host, we first get the value of ª𝑁*ª, the 

number of candidate substrate nodes that could host a VNF 𝑓, as defined in Section 5.3. The 

algorithm finds the VNF whose value of ª𝑁*ª is smallest among all VNFs of the SFC by 

comparing values of ª𝑁*ª of all 𝑓 in SFCs. Once the VNF with the smallest ª𝑁*ª is found, the 

substrate node becomes a candidate node only for this VNF of this SFC. 

For example, considering an SFC with two VNFs, VNF 1 and VNF 2. Substrate nodes {B, F} 

are candidate nodes to host VNF 1, and substrate nodes {B, C, E} are candidate nodes to host 

VNF 2. To avoid VNF 1 and VNF 2 being placed on substrate node B, our algorithm decides 
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node B to be the candidate node to host VNF 1, and remove B from VNF 2’s candidate node 

set. This is because VNF 1 has a smaller number of candidate substrate nodes than VNF 2.  

Algorithm 3 shows the node selection algorithm described in above contents. The inputs of 

Algorithm 3 are 𝑁 and 𝑉, where 𝑁 = ­𝑁*ª∀𝑓 ∈ 𝑆® is a set of 𝑁* for all VNFs, and 𝑉 is the 

node set in substrate network. The output of Algorithm 3 is a new set of 𝑁* which are the 

candidate nodes selected to host VNF 𝑓. 

From lines 3 to 11, Algorithm 3 iterates to find suitable substrate network nodes. For each 

substrate node 𝑣, the algorithm first initializes a set 𝐹#. Inside 𝐹# are VNFs that node 𝑣 can host. 

The algorithm fills 𝐹# with VNFs that node 𝑣 can host by examining all 𝑁* as shown from lines 

5 to 9. At line 10, the algorithm fills 𝐿D with 𝐹#. 𝐿D is a set containing sets of VNFs which can 

be placed on a common candidate substrate node.  

From lines 12 to 30, the algorithm remains only one VNF and removes all other VNFs of an 

SFC. The remained VNF is the one that could be placed on this substrate node 𝑣. At lines 13 

and 14, the algorithm creates two variables 𝑚𝑖𝑛* and 𝑚𝑖𝑛E with initial value 𝑁𝑜𝑛𝑒 and a large 

enough integer (say 𝑀𝑎𝑥_𝐼𝑛𝑡 ). 𝑚𝑖𝑛*  tracks the VNF of 𝐹#  that has the least number of 

candidate substrate nodes, and 𝑚𝑖𝑛E records the number of candidate substrate nodes to host 

𝑚𝑖𝑛*. 

At line 15, the algorithm examines whether substrate node 𝑣 is able to host more than one 

VNFs. If substrate node 𝑣 cannot host more than one VNFs, the algorithm does nothing and 

continues to iterate the next 𝐹#, because in this condition, at most one VNF is able to be placed 

on this node, which satisfies distributed deployment requirement. From line 16, it indicates that 

this substrate node 𝑣 is a candidate node for multiple VNFs. The algorithm then iterates and 

check each VNF 𝑓 whether it is the VNF with minimum ª𝑁*ª among all VNFs in 𝐹#.  

If VNF 𝑓 is the VNF with minimum ª𝑁*ª, the algorithm set 𝑚𝑖𝑛E as this ª𝑁*ª and removes 

substrate node 𝑣 from 𝑁F'5+ at line 20. Then the algorithm updates 𝑚𝑖𝑛* by 𝑓 at line 22. If 

VNF 𝑓 is not the VNF with minimum ª𝑁*ª at line 17, the algorithm removes the substrate node 

𝑣 from ª𝑁*ª at line 25, which indicates that substrate node 𝑣 is no longer the candidate node 

for hosting VNF 𝑓. Here the variable 𝑚𝑖𝑛* in lines 19 and 20 is the VNF with minimum value 

of ª𝑁*ª found previously. The reason to remove 𝑣 from °𝑁F'5+° at line 20 is that VNF 𝑓 has 
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not been the VNF that has the minimum ª𝑁*ª, as the algorithm has found a new VNF. Therefore, 

in line 20, the substrate node 𝑣 should not host the VNF because it is not the VNF that has the 

minimum ª𝑁*ª among 𝐹#.  

Next, the algorithm creates a new layered graph by utilizing new set of candidate nodes for 

hosting VNFs and calculates the shortest path in terms of delay, as shown in Algorithm 4. 

Algorithm 4 receives 𝑅 , 𝐺 , and 𝑁  as inputs. 𝑅  is an SFC request. 𝐺  is graph of original 

substrate network. 𝑁 is a new set of nodes for VNFs that 𝑁 = ­𝑁*ª	∀𝑓 ∈ 𝑆® is generated by 

Algorithm 3.  

Algorithm 4 creates |𝑅. 𝑆| + 1 copies of 𝐺. 𝐺 is graph of original substrate network. 𝑅. 𝑆 is the 

SFC of request 𝑅. |𝑅. 𝑆| is the length of the SFC 𝑅. 𝑆. At line 2, 𝐺57A is a variable storing the 

new graph composed of 𝐺 and copies of 𝐺. From lines 3 to 7, the algorithm connects layers in 

𝐺57A according to 𝑁 obtained from Algorithm 3. At lines 8 and 9, Algorithm 4 assigns 𝑅. 𝑣4 in 

𝐺> to 𝑣4> as the source node of the SFC, and assigns 𝑅. 𝑣; in 𝐺|..I| to 𝑣;
|..I| as the destination 

node of the SFC. Finally, the algorithm finds the shortest path between 𝑣4>  and 𝑣;
|..I|  and 

returns the path at lines 10 and 11. 

Note that in some situations, our algorithm (and also all other algorithms) cannot find a solution 

to distributed place VNFs on different substrate nodes, because there is no such solution. For 

example, in a scenario of three VNFs 𝑓1, 𝑓2, and 𝑓3, and 𝑁*1 = {𝐴, 𝐵}, 𝑁*= = {𝐴, 𝐵}, 	𝑁*J =

{𝐴, 𝐵}, which means 𝑓1 can be placed on either 𝐴 or 𝐵, and so forth, then VNFs 𝑓1, 𝑓2, and 

𝑓3 cannot be placed onto different substrate nodes, and node A or B will always host more 

than one VNF.  

In this section, we solve the SFC placement with satisfaction of distributed requirement, which 

is merely touched by previous works. we described a distributed SFC placement algorithm 

based on a modified layered graph approach. Our proposed algorithm can also achieve a 

relatively low end-to-end delay and guarantee order of VNFs of an SFC. Note that the 

computation complexity for VNFs stays at almost the same level comparing to original layered 

graph either in distributed or centralized placement of VNFs.  
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Algorithm 3 Node selection 
1: Procedure NodeSelection(𝑁, 𝑉) 
2:     𝐿! ← [] 
3:     for each 𝑣 in 𝑉 do 
4:         𝐹" ← [] 
5:         for each 𝑁# in 𝑁 do 
6:             if 𝑣 in 𝑁# then 
7:                 insert 𝑓 into 𝐹" 
8:             end if 
9:         end for 

10:         insert 𝐹" to 𝐿! 
11:     end for 
12:     for each 𝐹" in 𝐿! do 
13:         𝑚𝑖𝑛# ← 𝑁𝑜𝑛𝑒 
14:         𝑚𝑖𝑛$ ← 𝑀𝑎𝑥_𝐼𝑛𝑡 
15:         if |𝐹"	| > 1 then 
16:             for each 𝑓 in 𝐹" do 
17:                 if 𝑚𝑖𝑛$ > :𝑁#: then 
18:                     𝑚𝑖𝑛$ ← :𝑁#: 
19:                     if  𝑚𝑖𝑛# ≠ 𝑁𝑜𝑛𝑒 and <𝑁%&'!< > 1 then 
20:                         delete 𝑣 from 𝑁%&'! 
21:                     end if 
22:                     𝑚𝑖𝑛# ← 𝑓 
23:                 else 
24:                     if  :𝑁#: > 1 then 
25:                         delete 𝑣 from 𝑁# 
26:                     end if 
27:                 end if 
28:             end for 
29:         end if 
30:     end for 
31:     return 𝑁 
32: end procedure 
  
Algorithm 4 Layered graph based routing 

1: Procedure LinkRouting(𝑅, 𝐺, 𝑁) 
2:     𝐺'() ← |𝑅. 𝑆| + 1 copies of 𝐺 stored in a new graph  
3:     for 𝐺& in 𝐺'() do 
4:         for 𝑛𝑜𝑑𝑒𝑠 in 𝑁#"#$ do 
5:             connect 𝑛𝑜𝑑𝑒𝑠 in 𝐺& and 𝑛𝑜𝑑𝑒𝑠 in 𝐺&*+ 
6:         end for 
7:     end for 
8:     𝑣,- ← 𝑅. 𝑣, in 𝐺- 
9:     𝑣.

|0.2| ← 	𝑅. 𝑣. in 𝐺|0.2| 
10:     𝑝 ← shortest path in 𝐺'() between 𝑣,- and 𝑣.

|0.2| 
11:     return 𝑝 
12: end procedure 
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5.6. Evaluation and analysis 

In this section, we compare our proposed algorithm with other algorithms in literature. 

Specifically, the based layered graph algorithm, a bipartite matching algorithm utilized in the 

work [19] and a random deployment algorithm. We wrote a simulator in Python language. We 

evaluate the performances of these algorithms in terms of distributed deployment requirement 

satisfaction rate, and end-to-end delay of an SFC. The metric of ant-affinity requirement 

satisfaction rate indicates whether the algorithm can distributed deploy VNFs of an SFC in 

such way that no more than two VNFs are collocated on a same substrate network node. And 

the metric of end-to-end delay of an SFC shows how the algorithm could guarantee a desired 

QoS of network service. The topology used for evaluation is a random graph with 100 nodes 

and 0.05 edge connectivity probability.  

5.6.1. Algorithms for comparison  

In this section, we introduce algorithms in literature for comparison with our proposed 

algorithm. We compare our algorithm with the non-modified layered graph algorithm, the 

bipartite matching algorithm, and the random algorithm.  

a) Bipartite matching algorithm[19] 

Bipartite graph: A bipartite graph (bigraph) is a graph whose vertices can be 

partitioned into two disjoint sets such that no two vertices from the same set are adjacent 

[149]. Figure 5-11 shows an example of bipartite graph. The graph can be divided into 

two vertices sets {a, b, c, d, e} and {1, 2, 3}.   

 

Figure 5-11 An example of bipartite graph. 
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Bipartite matching: a matching in a graph is to find a sub graph in which no two edges 

share a common vertex, and a maximum matching is a matching that finds as many 

edges as possible. Figure 5-12 shows an example of matching of Figure 5-11. In this 

figure, node 1 is matching to node c, node 2 is matching to d, and node 3 is matching 

to b, respectively.   

 

Figure 5-12 A matching corresponding to Figure 5-11. 

Distributed deployment of VNFs by bipartite matching: A distributed deployment 

of VNFs can be transferred into a bipartite maximum matching problem. In particular, 

the VNFs of an SFC and the substrate network nodes together construct a bipartite graph. 

The VNFs of an SFC is belonged to one vertex set, and the substrate network nodes is 

belonged another vertex set. The result of the bipartite matching problem is the solution 

of the deployment of VNFs.  For example, vertices 1, 2 and 3 in Figure 5-11 can 

represent an SFC request with three VNFs, vnf-1, vnf-2 and vnf-3. Vertices a, b, c, d 

and e can represent substrate network with five nodes. Nodes b, c, and e are candidate 

nodes for hosting vnf-1, nodes a and d are candidate nodes for hosting vnf-2, and nodes 

b, c, e and e are candidate nodes for hosting vnf-3, respectively. As the goal of 

distributed deployment of VNFs is to find a scheme that no more than two VNFs are 

deployed on a same substrate node, which indicates that no two edges share a common 

substrate node.  The bipartite matching problem can be solved by well-known 

augmenting path method. Figure 5-12 shows a solution of the deployment, that vnf-1 is 

placed on substrate node c, vnf-2 is placed on substrate node d, and vnf-3 is placed on 

substrate node b, respectively. In the experiments, we utilize the maximum matching 

algorithms in NetworkX [150][151]. After found substrate nodes for each VNFs, we 
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connect the substrate nodes from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 of the SFC through each substrate nodes 

by shortest path method.  

b) Random algorithm 

This algorithm randomly chooses a substrate node from the candidate substrate network 

node set of a type of VNF. For instance, consider an SFC composed of two VNFs, vnf-

1, and vnf-2. Suppose vnf-1 can be deployed on substrate network nodes {a, b, c} and 

vnf-2 can be deployed on substrate network nodes {b, c, d}. Then, this algorithm 

randomly chooses a node from {a, b, c} for hosting vnf-1, and randomly chooses a node 

from {b, c, d} for hosting vnf-2.  

5.6.2. Substrate network model for evaluation 

In this section, we introduce the network model used in the experiments. We conducted our 

evaluations on two network models, JPN 48, and Random Graph network model. 

a) JPN 48 network model: JPN 48 is a network model developed based on publicly 

available information of Japan nationwide transportation network [124][125]. The 

network model contains 48 nodes and 82 edges. The nodes are placed on major cities 

in Japan. The model has been utilized for network research in Japan [126][127][128]. 

Figure 4-2 shows the topology of JPN 48. The number in the figure represents a city of 

Japan, e.g., node number 10 is Sapporo, node number 20 is Aomori, and node number 

131 is Tokyo. We set the delay of each edge according to the real distance between two 

nodes. For instance, the delay between 10 and 20 is 1.5884322213336	𝑚𝑠, which is 

calculated as 476.2	𝑘𝑚/299792458(𝑘𝑚/𝑠) ∗ 1000, where 476.2km is the distance 

between city Sapporo (10) and city Aomori (20), and 299792458𝑘𝑚/𝑠 is the speed of 

light. 1000 is used to adjust the unit from second to millisecond.  

b) Random Graph network model: To evaluate and compare our proposed algorithm on 

a larger, more complex but general substrate network without dependent on any specific 

topology, we introduce random graph model as the underlaying substrate network 

topology. Random graph model [109][110] is an intersection of graph theory and 

probability theory. There are two ways to generates a random graph, and we leverage 

the 𝐺(𝑛, 𝑝) model to generate a random graph topology, where 𝑛 is the number of 

nodes in the graph and the 𝑝 is the probability that whether two nodes in graph is 

connected. Random Graph model has been utilized for evaluation algorithms such as in 
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[78][111][112][127][131]. In this experiment, we generate a random graph of 100 

nodes with 0.05 edge connective probability. The delay of each edge is randomly 

chosen from [1, 10] in milliseconds unit.  

We evaluate the performance of algorithms in terms of distributed deployment requirement 

satisfaction and end-to-end delay. As mentioned above, distributed deployment requirement is 

satisfied if no more than two VNFs are deployed on a same substrate network node, or the 

requirement is violated, and end-to-end delay is a metric that how well the algorithm can 

guarantee a desired QoS of network service.   

To utilize maximum matching algorithm, the bipartite graph must be a connected graph as 

described in [151], or it will raise an AmbiguousSolution exception when run the algorithm, 

which indicates that more than on valid solution is possible. To avoid this exception, we assume 

half number of the substrate network nodes can host any type of VNFs and the other half 

number of the substrate nodes can arbitrarily host any type of VNFs. This scenario is practice, 

for example, some of devices in the substrate network can host all types of the VNFs, whereas 

some other devices can only host a certain type of VNFs due to interoperability, regulation, or 

license issues. We repeat the experiment 100 times and collect the times that distributed 

deployment requirement is satisfied by each algorithm.  

5.6.3. Performance on JPN48 network model 

Figure 5-13 and Figure 5-14 shows the results of performances in terms of distributed 

deployment satisfaction rate and end-to-end delay of SFCs, respectively, with respect to the 

length of an SFC. Specifically, proposed (triangle marker), BM (cross marker), LG (rhombus 

marker), and RA (square marker) represent our proposed algorithm, bipartite matching 

algorithm, layered graph algorithm, and random algorithm, respectively. 

The results show that both our proposed algorithm and the bipartite matching algorithm (BM) 

could perform 100% distributed deployment satisfaction rate, which indicate all VNFs in an 

SFC are deployed on the substrate network nodes in such a way that no more than two VNFs 

are collocated on a same substrate network node. The random algorithm (RA) performs a 98% 

distributed deployment satisfaction rate at the length of an SFC 2, and then the rate decreases 

as the length of an SFC increases. This is reasonable as the longer an SFC is, the higher 

probability that two VNFs could be randomly deployed on a same substrate network node. The 

non-modified layered graph (LG) algorithm first achieves 26% of distributed deployment 
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satisfaction rate at the length of an SFC 2, and then decreases to values around 0%, at the length 

of an SFC 2, 4, and 5. This is because layered graph only considers to find a deployment 

solution with a minimum path for an SFC, without considering the collocation issues.  

Meanwhile, Figure 5-14 shows that our proposed algorithm can outperform the bipartite 

matching algorithm in terms of end-to-end delay which is a critical network metrics of QoS. 

Specifically, our algorithm is superior to the bipartite matching algorithm with 46%, 38%, 27%, 

and 22% reduction in terms of end-to-end delay of SFCs at various length of an SFC 2, 3, 4, 

and 5, respectively. With comparing the random algorithm, our algorithm outperforms with 

37%, 36, 38%, and 32% reduction in terms of end-to-end delay of SFCs at various length of an 

SFC 2, 3, 4, and 5, respectively, while our algorithms can simultaneously achieve a 100% 

distributed deployment satisfaction rate at each length of an SFC. By comparing with the non-

modified layered graph algorithm, our proposed algorithm improved at most 100% 

performance in terms of distributed deployment satisfaction.  

 

Figure 5-13 Distributed deployment satisfaction rate on JPN48 network model. 
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Figure 5-14 End-to-end delay of SFCs on JPN48 network model. 

5.6.4. Performance on the random graph network model 

Figure 5-15 and Figure 5-16 show the results of performances in terms of distributed 

deployment satisfaction rate and end-to-end delay of SFCs, respectively, with respect to the 

length of an SFC. Specifically, proposed (triangle marker), BM (cross marker), LG (rhombus 

marker), and RA (square marker) represent our proposed algorithm, bipartite matching 

algorithm, layered graph algorithm, and random algorithm, respectively.  

It can be observed that both our proposed algorithm and bipartite matching algorithm (BM) 

can achieve a 100% distributed deployment satisfaction rate. The random algorithm (RA) 

could perform a high satisfaction rate, but the rate decreases as the number of VNFs in an SFC 

request increases. This is reasonable since the more VNFs in an SFC requests, the higher 

probability that one node can be randomly chosen to host more than one VNF of an SFC.  The 

non-modified layered graph (LG) algorithm performs almost 0% satisfaction rate since this 

algorithm always finds a shortest path without considering distributed deployment of VNFs.  
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Meanwhile, as shown in the Figure 5-16, our proposed algorithm can achieve a better 

performance in terms of end-to-end delay of SFC. Specifically, our proposed algorithm reduced 

the end-to-end delay around 57%, 58%, 60%, and 59% comparing with the bipartite matching 

algorithm at the length of an SFC 2, 3, 4, and 5, respectively, while keeping a same 100% 

distributed deployment satisfaction rate, simultaneously.  By comparing with random 

algorithm, our proposed algorithm achieved around 56%, 59%, 60%, and 58% reduction on 

the end-to-end delay with various of length of SFC, while our algorithm outperforms at most 

8% higher than random algorithm in terms of distributed deployment satisfaction rate. By 

comparing with the non-modified layered graph algorithm, our proposed algorithm can achieve 

100% performance in terms of distributed deployment satisfaction.  

 

 

Figure 5-15 Distributed deployment satisfaction rate on random graph network model. 
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Figure 5-16 End-to-end delay of SFCs on random graph network model. 

5.7. Extensive evaluation and analysis 

5.7.1. Simulation setup 

We evaluate our proposed algorithm in terms of distributed deployment requirement 

satisfaction, end-to-end delay, and computation cost. The simulator used in the evaluation is 

written in Python language. The simulator was executed on an Intel-4600M 2.90GHz CPU 

Ubuntu 16.04 server with 8 GB memory. We conduct experiments on different network 

topologies generated on the basis of Erdős-Rényi graph[109][110]. The types of VNFs of an 

SFC were different to each other. 

0

10

20

30

40

50

60

70

80

2 3 4 5

En
d-

to
-e

nd
 d

el
ay

 (m
s)

Length of an SFC (Number of VNFs)

proposed
BM
LG
RA

60% reduction on 
end-to-end delay 



 
 

120 

5.7.2. Performance of distributed deployment requirement satisfaction 

We first evaluate the performance of our proposed algorithm in terms of distributed deployment 

satisfaction.  In this context, a deployment satisfied distributed deployment requirement if there 

is no more than two VNFs collocated on a same substrate network node.  

We evaluated our proposed algorithm on various substrate networks whose topologies are 

generated by random graph, also known as Erdős-Rényi graphs. Similar to prior works 

[78][111][112], the numbers of substrate network nodes were varied from 50 to 100, and the 

edge connectivity probabilities between two nodes were 1.0, 0.5, and 0.1. The edge 

connectivity probability value of 1.0 indicates the network is a fully connected mesh network. 

The edge connectivity probability value of 0.5 indicated the substrate network is a densely 

connected network, such as a partial mesh network. The edge connectivity probability of 0.1 

indicated the substrate network is sparsely connected with only a few links, such as Germany50 

[112][113], which is composed of 50 nodes and 88 links.  

The number of VNFs of each SFC was varied from 5 to 20. ª𝑁*ª of each VNF was varied from 

1 to |𝑉| − 2. Nodes in 𝑁* were selected randomly from the substrate network except source 

and destination nodes of the SFC. ª𝑁*ª was identical to each VNF of an SFC, namely, ª𝑁*ª was 

a constant value for all 𝑓. As |𝑉| is the number of substrate network nodes, |𝑉| − 2 indicated 

that the source and destination nodes of an SFC could not host VNFs.  

The number of nodes in the substrate network was varied from 50 to 100. In each setting, the 

algorithm placed SFC requests by increasing ª𝑁*ª from 1 to |𝑉| − 2. We collected statistics in 

terms of the number of times that distributed placement requirement was not satisfied during 

these |𝑉| − 2 times experiments. The distributed placement requirement was not satisfied if 

more than one VNF were placed on the same substrate network node. 
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Table 5-1 Number of times distributed deployment requirement was unsatisfied.  

(edge connectivity probability=1.0) 

Number of VNFs 50 nodes 60 nodes 70 nodes 80 nodes 90 nodes 100 nodes 

5 VNFs 0 0 0 0 0 0 

10 VNFs 0 1 0 0 0 0 

15 VNFs 1 1 0 1 1 0 

20 VNFs 2 1 0 1 1 1 

 

Table 5-2 Number of times distributed deployment requirement was unsatisfied.  

(edge connectivity probability=0.5) 

Number of VNFs 50 nodes 60 nodes 70 nodes 80 nodes 90 nodes 100 nodes 

5 VNFs 0 0 0 0 0 0 

10 VNFs 0 0 0 1 0 1 

15 VNFs 1 0 1 1 1 0 

20 VNFs 2 2 1 1 1 1 

 

Table 5-3 Number of times distributed deployment requirement was unsatisfied.  

(edge connectivity probability=0.1) 

Number of VNFs 50 nodes 60 nodes 70 nodes 80 nodes 90 nodes 100 nodes 

5 VNFs 0 0 1 0 0 0 

10 VNFs 1 1 0 1 0 1 

15 VNFs 1 0 1 0 0 1 

20 VNFs 2 2 1 1 1 1 

Table 5-1, Table 5-2, and Table 5-3 summarize results of evaluation in terms of the number of 

times that distributed deployment requirement was unsatisfied. The number in the table 

indicates how many times distributed deployment requirement was unsatisfied. For example, 

in Table 1, the value “2” on the cross cell of 20 VNFs and 60 nodes means it was twice that the 
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distributed deployment requirement was unsatisfied in 1000 times experiments. Therefore, a 

zero value in the table indicates there was zero time that the distributed deployment 

requirement was unsatisfied, that is, all VNFs were deployed on different substrate network 

nodes in all experiments.  

From above tables, most of the values were 0, indicates that our algorithm satisfied well the 

distributed deployment requirement of SFCs. Furthermore, by carefully check, we found that 

the non-zero values in the above tables only happened at value of ª𝑁*ª 1 or 2. This is because 

in the parameter setting, ª𝑁*ª was same to all VNFs, and the candidate nodes in 𝑁* were chosen 

randomly from the substrate network nodes. For example, for any VNF in the SFC, suppose 

ª𝑁*ª is 1, which indicates each VNF has only one candidate node. As the candidate node is 

selected randomly from substrate network, there is possibility that more than one VNFs’ 

candidate nodes are same node in substrate network. In this case, it is inevitable to collocate 

these VNFs on a same substrate node. 

 
Figure 5-17 Performance of distributed deployment satisfaction. 

(100 nodes, edge connectivity probability 0.5) 
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To evaluate the performance of the distributed deployment requirement was satisfied in 

different ª𝑁*ª , we generated a substrate network with 100 nodes at edge connectivity 

probability 0.5. We fixed the length of an SFC at 5, that an SFC is composed of 5 VNFs. We 

conducted the evaluation experiment 1000 times. In each time, the number of candidate nodes 

for hosting one VNF ª𝑁*ª was set as 5, 10, 15, and 20. We compared our proposed algorithm 

with a base algorithm, specified in related work [18] and [27]. The base algorithm is to place 

VNFs by utilizing layered graph approach but not considering distributed placement of VNFs.  

Figure 5-17 show the results of the comparison in terms of distributed deployment satisfaction 

rate. Our proposed algorithm can satisfy the distributed deployment requirement 100% (1000 

out of 1000 times) at each value of ª𝑁*ª, whereas the base algorithm can only satisfy the 

distributed deployment requirement 54.6% (454 out of 1000 times) and 5.2% (52 out of 1000 

times) at value of ª𝑁*ª 5 and 20, respectively. The satisfaction rate decreases as the value of 

ª𝑁*ª increases in the based layered graph approach, because at a higher value of ª𝑁*ª, more 

VNFs could be placed on a substrate node than that at a lower value of ª𝑁*ª. 

5.7.3. Performance of end-to-end delay of SFC 

To evaluate end-to-end delay performance, we set edge latency to a value selected uniformly 

between 1 to 10 milliseconds. We suppose substrate network node computation capacity and 

substrate network edge bandwidth capacity are sufficient to host SFC. The time to process a 

VNF on a substrate node are ignored in evaluations. We conducted the evaluations on substrate 

networks whose topologies are random graphs with 50 and 100 nodes at edge connectivity 

probability 1.0, 0.5, and 0.1.  

Figure 5-18 and Figure 5-19 illustrate SFCs’ end-to-end delay on substrate networks with 100 

nodes at edge connectivity probability 1.0 and 0.1. The x-axis is the number of candidate 

substrate nodes for hosting a VNF. The y-axis is the results of SFCs’ end-to-end delay. Curves 

in each graph represent the end-to-end delay of SFCs at numbers of VNFs 5, 10, 15, and 20. 
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Figure 5-18 Performance of end-to-end delay of SFC. 

(100 nodes, edge connectivity probability 1.0) 

 
Figure 5-19 Performance of end-to-end delay of SFC. 

(100 nodes, edge connectivity probability 0.1). 
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As the number of VNFs of an SFC increases, the end-to-end delay of the SFC increased 

proportionately in both figures. This is because distributed placement of VNFs led a longer 

substrate path for an SFC.  

Figure 5-18 and Figure 5-19 also show that end-to-end delay of SFCs decreased as the number 

of substrate nodes and edge connectivity probability increase. The reason for this is that more 

nodes and higher edge connectivity probability increases the degree of free to find a shorter 

latency substrate path.  

At each specific length of SFC, we evaluated our algorithm by varying	ª𝑁*ª. Figure 5-18 and 

Figure 5-19 show that when ª𝑁*ª was at low value, as ª𝑁*ª increased, end-to-end delay of SFCs 

decreased. Finally, end-to-end delay of SFCs did not decrease with ª𝑁*ª increased, but remain 

stable. This is because at a low value of	ª𝑁*ª the substrate nodes for hosting SFC are few and 

scattered in the substrate network, which results in a larger end-to-end delay.  

Figure 5-20 shows the average end-to-end delay of SFCs in substrate network. We conducted 

the evaluation on a substrate network with 100 substrate nodes at 0.5 edge connectivity 

probability. The length of an SFC request was five. ª𝑁*ª was set to values of 5, 10, 15, and 20. 

At each ª𝑁*ª value, the experiment was conducted 100 times. The results show that the average 

of end-to-end delay of SFC was 11.287ms by using our algorithm against 10.292ms by using 

the base algorithm. As number of candidate substrate nodes for one VNF got higher, our 

algorithm results in a bit longer latency in comparison of base algorithm. This is reasonable 

since our algorithm distributes VNFs on different substrate network nodes, which results in a 

longer end-to-end delay path. 
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Figure 5-20 Performance of average end-to-end delay of SFC.  

(100 nodes, edge connectivity probability 0.5) 

5.7.4.  Performance of computation time 

To evaluate the performance of computation time on our algorithm, we generate substrate 

network topologies with the number of nodes 50 and 100, at a fixed edge connectivity 

probability 0.5. A VNF have 5 candidate substrate nodes (ª𝑁*ª is fixed at 5). The length of an 

SFC is 5, 10, 15 and 20. We conducted the evaluation experiment 100 times at each length of 

SFC and on each substrate network topologies. We collected computation time and draw the 

results.  

Figure 5-21 and Figure 5-22 illustrate the cumulative distribution function (CDF) of 

computation time of Algorithm 3. The computation time was longer when an SFC consisted 

larger number of VNFs. Also, the time was longer when the substrate network contains more 

substrate nodes. This is because either a longer SFC or a larger substrate network would 

increase the computation time. However, in all topologies, the algorithm performs less than 1 

millisecond to obtain the results which is acceptable. 
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Figure 5-21 Performance of computation time of proposed algorithm. 

(100 nodes, edge connectivity probability 0.5) 

 
Figure 5-22 Performance of computation time of proposed algorithm.  

(50 nodes, edge connectivity probability 0.5) 
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5.8. Discussion 

5.8.1. Discussion on the necessity of distributed SFC deployment 

In section 5.3.1, we have described the necessity of distributed SFC deployment. We showed 

that distributed SFC deployment could potentially avoid substrate network node overload, 

reduce risk of traffic loop and shorten time to recovery. We proposed an algorithm to satisfy 

the distributed SFC deployment requirement.  

Although our algorithm can satisfy the requirement well, some deep investigations could be 

conducted. For example, how much load a distributed SFC deployment algorithm can release 

to the substrate network, how extent the risk of traffic loop can be reduce, and how much the 

recovery time would be shortened when failure of the substrate network node happened. We 

consider these as future works.  

5.8.2. Discussion on large number of SFC requests 

As shown in previous sections, our algorithm could obtain a higher distribution requirement 

satisfaction rate while maintaining a shorter end-to-end delay for an SFC. To achieve this, we 

modified the layered graph approach by breaking connections between layers of graph. This is 

efficient for one SFC, but it must consider the case of large number of SFC requests. In such 

case, multiple SFCs with same types of VNFs but different 𝑠𝑟𝑐 and 𝑑𝑠𝑡 would be deployed on 

several same server nodes which pre-install these VNFs. As 𝑠𝑟𝑐 and 𝑑𝑠𝑡 in SFC requests are 

different, solutions to some of these SFC requests may not travel through optimal paths. 

Although distribution requirement satisfaction is the main purpose of this chapter, an optimal 

path (shorter end-to-end delay path) should be achieved as much as possible.  

Regarding to this consideration, there may be several approaches to solve this problem. One of 

such approach could be to try to break the connections between layers based on some other 

metrics such as degree of a node or betweenness centrality value of a node. These metrics are 

topology property of substrate network thus can be helpful to find a solution with awareness of 

substrate network topology. Another approach could be to calculate the shortest path without 

firstly breaking the connections. After found the path, it could migrate VNFs that have been 

deployed on the same node to other substrate nodes one by one in order to satisfy the 

distribution requirement. As the solution is derived from the shortest path, the end-to-end delay 

could be relatively shorter than no any design.  
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Besides, an algorithm could leverage deployment information on substrate network such as 

number of VNFs that has been deployed on one node, or resource consumption of nodes, to 

balance the usage of resources among substrate network nodes. We consider these approaches 

as future work as they should be carefully designed and evaluated.  

5.9. Conclusion 

In this chapter, we analyzed the necessity for distributed deployment of VNFs of an SFC in 

terms of distributed deployment requirement. Distributed deployment of VNFs of an SFC is 

critical for guaranteeing network services performance. As mentioned in the previous sections, 

a distributed deployment can shorten recovery time, balance load usage, avoid loops, etc. 

However, current researches in literature focus more on deployment of VNFs with satisfying 

resource constraints than placement policy such as distributed deployment requirement in this 

chapter. As shown in previous sections, only considering QoS such as end-to-end delay of 

SFCs will result in a distributed deployment requirement violation. The deployment algorithm 

must consider both distributed deployment requirement and the end-to-end delay of SFCs. 

To solve this problem, we borrow this advantage of the layered graph, modify it to applicable 

to deploy VNFs of an SFC with satisfying the distributed deployment requirement and 

simultaneously obtaining a minimum end-to-end delay of an SFC. We conducted numerical 

evaluations on different substrate network topologies. The results of evaluations show that our 

proposed distributed SFC placement algorithm performs well in ensuring distributed 

deployment requirement with an acceptable computation time cost. We conducted extensive 

experiments to compare our algorithm against other algorithms in literature. The results show 

that our algorithm can 100% satisfy the distributed deployment requirement superior to the 

non-modified layered graph algorithm which can merely satisfy the distributed deployment 

requirement. Moreover, our proposed algorithm can outperform the bipartite matching 

algorithm and random algorithm in terms of end-to-end delay of SFCs, while keeping an equal 

or higher distributed deployment satisfaction rate comparing with these two algorithms. 

Specifically, our proposed algorithm achieves a maximum 46% and 60% reduction of end-to-

end delay by comparing with bipartite matching algorithm on JPN48 and random graph 

network models, respectively. our proposed algorithm achieves a maximum 38% and 60% 

reduction of end-to-end delay by comparing with random algorithm on JPN48 and random 

graph network models, respectively.   
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Chapter 6  

6. Conclusions and Future Work 

6.1. Conclusions 

SFC deployment is a key technology to realize network service in NFV. In this thesis, we 

focused on the problem of service function chain deployment with satisfying particular 

requirements. Specially, we consider the cost requirement, end-to-end delay requirement, and 

distributed deployment requirement.  

To deploy SFC with a minimized cost, in chapter 3, we formulated a mathematic model with 

objective of minimizing setup costs and operational costs. With a realistic definition of setup 

cost and operation cost, our model can reduce cost up to 30% in average. Moreover, our model 

also considers guaranteeing the end-to-end delay deadline, which is a critical requirement to 

SFCs, such as real-time applications. Our model can satisfy 100% end-to-end delay deadline 

requirements of SFC requests. 

In chapter 4, we analyzed that the end-to-end delay of an SFC is one of critical QoS metrics 

for network services. A shorter end-to-end delay can significantly improve the user’s 

experiences. Motivated by this, we addressed the problem of SFC deployment with shorter 

end-to-end delay requirement. We proposed a delay aware SFC deployment algorithm by 

leveraging dynamic programming technique. The results of experiments show that our 

algorithms achieved a maximum 81.95% reduction of end-to-end delay comparing with 

randomly deployment of SFC on JPN48 network model, and more than 50% reduction of end-

to-end delay on the other network model. Besides, our algorithm achieves a good performance 

in terms of acceptance rate. The short end-to-end delay and high acceptance rate indicate that 

our algorithm can achieve a better QoS guarantee and efficient network resource utilization. 

In chapter 5, we perceived that consolidating VNFs of an SFC onto a substrate network node 

will potentially lead to overload resource usage, traffic loops, long recovery time, etc. 

Motivated by this observation, we addressed the problem of SFC deployment with distributed 

deployment requirement. Distributed deployment requirement avoids to deploying multiple 

VNFs of an SFC onto a same substrate network, so that reduce the risk of degradation. We 

designed a distributed SFC deployment algorithm with distributed deployment requirement by 

leveraging advantages of layered graph approach. The results of experiments show that our 
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proposed algorithm can 100% satisfy the distributed deployment requirements on different 

network model. Besides, our algorithm can achieve a maximum 46% and 60% reduction of 

end-to-end delay by comparing with bipartite matching algorithm on JPN48 and random graph 

network models, respectively. Our proposed algorithm achieves a maximum 38% and 60% 

reduction of end-to-end delay by comparing with random algorithm on JPN48 and random 

graph network models, respectively. The 100% satisfaction of distributed deployment 

requirements and high reduction of end-to-end delay indicates that our algorithm can perform 

a reliable network service and a better QoS guarantee.  

6.2. Future works 

This thesis has studied the problem of resource allocation to SFCs, formulated a mathematic 

model and proposed several algorithms for solving this problem from different aspects. To gain 

all benefit from NFV, there are still many works to consider. We provide some directions for 

future works. 

SFC at MEC: Multi-access edge computing (MEC) allows applications deployed at the edge 

of network where is closed to the end users. By leveraging this feature, MEC enables an ultra-

low latency and high bandwidth environment and many new applications and business are 

emerging in MEC, such as connected autonomous cars, video analytics, Internet of Things 

(IoT), and augmented reality (AR). By incorporation of NFV, the MEC can benefit flexibility 

and efficiency in network service deployment. However, issues such as mobility are still 

remained to research. 

Machine learning for SFC: The future network such as 5G are expected to provide various 

services such as enhanced Mobile Broadband (eMBB), massive IoT connections(mMTC), 

ultra-reliable low latency communications (uRLLC), with dynamic traffic load, and various 

QoS requirements. Thus, it needs a fast and dynamic resource allocation mechanism for future 

networks to adapt to different the demand of network services. Machine learning is considered 

as a promising technique for tackling such problem. By exploiting past experiences, machine 

learning can improve the future performance of the whole network system. As described in this 

survey [152], machine learning technique has already been utilized in many aspects of network, 

such as traffic classification, routing optimization, QoS/QoE prediction, security and resource 

management. Therefore, it is an interesting topic to study how to incorporate machine learning 

technique to improve the performance of network service chain with maximized utilization of 
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resource and minimized cost of a substrate network. For example, real time network resources 

consumption could be predicted by machine learning techniques such as reinforcement learning 

and long short-term memory model (LSTM), and on basis of the prediction, the resources can 

be efficiently allocated.   

Interdomain SFC deployment: Internet consists multiple domains operated by many network 

operators. Each network operator has different policies and strategies. A network service may 

travel through multiple domains for end-to-end service delivery. In such context, the 

deployment of SFCs will be very difficult as it must deal with different network operators 

among which some information such as topology, management policies cannot be shared [153]. 

To address interdomain SFC deployment, two types approaches are envisioned, centralized 

approach and distributed approach, as described in [154] and [155][156], respectively. 

However, as more network operators are considering to integrating NFV into their networks, 

interdomain SFC deployment will be more challenge and deserved to be researched more 

deeply.   
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Appendix A Setup Cost Settings 

In this appendix, we show the cost parameter settings of evaluations in section 3.5.3. 

Figure A. 1 shows the setup cost setting at different number of SFC requests for evaluation in 

section 3.5.3. The x-axis is the number of SFC requests, and the y-axis is the setup cost to 

process VNFs. In the evaluation, we use four types of VNFs. In our proposed model, we 

randomly select four values from 5 to 10 to set the setup cost for each type of VNFs, and in 

previous model, we randomly select one value from 5 to 10 for all types of VNFs. 

At each number of SFC requests, we select a new set of setup costs to types of VNFs and 

conduct the evaluation. The square marks show the setup costs at each number of SFC requests 

in previous model. As the previous model assumes that all types of VNFs have a same setup 

cost, the square marks have no variability at each number of SFC requests. 

The triangle marks in the figure are the mean of setup costs to types of VNFs at each number 

of SFC requests. The error bars on the triangle marks are standard deviations of setup costs. 

The error bars indicate the variability of setup costs in our proposed model, as our model 

considers the setup costs are different to each type of VNFs. 

However, it must be careful when select different setup cost values to different types of VNFs 

in such random way for our model, as it could select four identical values which is not the case 

for our model. Some approaches could avoid to this situation. One of such approach is to drop 

the identical values and select a new set values of setup costs. 

As the sample size is small, we also show all data in Table A. 1 under the figures. 
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Figure A. 1 Setup cost setting at different number of SFC requests 

 

 

Table A. 1 Data of setup cost settings at different number of SFC requests. 

#SFC requests Models 
Setup cost for types of VNF (unit) 

Mean Deviation 
VNF1 VNF2 VNF3 VNF4 

5 
Proposed 7 5 6 5 5.75 0.957427 
Previous 8 - - 

6 
Proposed 10 9 7 7 8.25 1.5 
Previous 9 - - 

7 
Proposed 10 6 10 6 8 2.309401 
Previous 5 - - 

8 
Proposed 10 6 9 6 7.75 2.061553 
Previous 5 - - 

9 
Proposed 6 6 7 9 7 1.414214 
Previous 9 - - 

10 
Proposed 8 9 8 7 8 0.816497 
Previous 5 - - 
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Appendix B Operational Cost Settings 

 

Figure B. 1 through Figure B. 6 show the operational cost settings at each number of SFC 

requests for evaluation of cost reduction in section 3.5.3. The x-axis is the node index of the 

substrate network and the y-axis is the operational cost setting. For each substrate node (index), 

we randomly choose four value from 5 to 10 for operational cost of different types of VNFs in 

our proposed model, and randomly choose one value from 5 to 10 for operational cost of all 

types of VNFs in previous model.    

The square marks show the operational costs to process a unit of VNFs in previous model. As 

previous model assumes one substrate node process all types of VNFs at same costs, the setting 

of operational cost is identical to all types of VNFs for a node index.   

The triangle marks show the operational costs to process a unit of VNFs in our proposed model. 

The error bars on the triangle marks are the standard deviations of operational costs at different 

substrate nodes. The error bars indicate the variability of operational costs, as our model 

considers that a substrate node processes different types of VNFs at different operational costs. 

In both previous model and our model, the operational costs are different values to different 

substrate nodes.  

However, it must be careful when select different operational cost values to different types of 

VNFs in such random way for our model, as it could select four identical values to four types 

of VNFs for all substrate nodes which is not the case for our model. Some approaches could 

avoid to this situation. One of such approach is to drop the identical values and select a new set 

values of operational costs. Note that same values of operational costs for a few number of 

substrate nodes could be kept instead of dropped, as shown in the figure of #SFC requests = 9, 

index 1. But it should be better to evaluate how such cases could affect the overall costs.       

As the sample size is small, we also show all data from Table B. 1 through Table B. 6 below 

each figure.  
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Figure B. 1 Operational cost setting at number of SFC requests 5 

 

 

Table B. 1 Data of operational cost settings at number of SFC requests 5. 

 
Proposed Previous 

Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 
1 5 6 5 5 5.25 0.433012702 9 
2 6 9 10 7 8 1.58113883 10 
3 10 7 9 7 8.25 1.299038106 6 
4 9 7 6 10 8 1.58113883 10 
5 7 7 5 8 6.75 1.089724736 5 
6 8 9 7 8 8 0.707106781 6 
7 8 8 7 7 7.5 0.5 9 
8 7 9 5 6 6.75 1.479019946 7 
9 6 10 8 6 7.5 1.658312395 5 

10 7 8 8 10 8.25 1.089724736 9 
11 5 9 5 6 6.25 1.639359631 8 
12 10 5 10 6 7.75 2.277608395 8 
13 5 6 10 5 6.5 2.061552813 9 
14 9 10 6 5 7.5 2.061552813 6 

 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

op
er

at
io

na
l c

os
t s

et
tin

g 
(u

ni
t)

Node index

#SFC requests = 5

Proposed

Previous



 
 

150 

 

Figure B. 2 Operational cost setting at number of SFC requests 6. 

 

 

Table B. 2 Data of operational cost settings at number of SFC requests 6. 

 Proposed Previous 
Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 

1 9 6 8 9 8 1.224745 6 
2 7 9 8 6 7.5 1.118034 8 
3 8 10 9 6 8.25 1.47902 5 
4 8 10 9 10 9.25 0.829156 5 
5 5 9 6 9 7.25 1.785357 8 
6 8 9 9 9 8.75 0.433013 7 
7 8 5 9 8 7.5 1.5 5 
8 10 7 5 7 7.25 1.785357 10 
9 9 10 8 10 9.25 0.829156 9 

10 10 10 8 8 9 1 10 
11 7 9 6 5 6.75 1.47902 6 
12 10 5 10 10 8.75 2.165064 10 
13 5 10 9 6 7.5 2.061553 5 
14 7 8 9 6 7.5 1.118034 5 
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Figure B. 3 Operational cost setting at number of SFC requests 7. 

 

 

Table B. 3 Data of operational cost settings at number of SFC requests 7. 

 Proposed Previous 
Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 

1 8 8 8 7 7.75 0.433013 7 
2 7 5 7 9 7 1.414214 7 
3 5 10 8 5 7 2.12132 8 
4 5 9 10 10 8.5 2.061553 6 
5 5 10 8 9 8 1.870829 10 
6 6 7 5 8 6.5 1.118034 9 
7 7 9 10 10 9 1.224745 9 
8 9 7 5 9 7.5 1.658312 9 
9 7 6 8 9 7.5 1.118034 9 

10 9 5 6 5 6.25 1.63936 7 
11 7 6 10 7 7.5 1.5 10 
12 10 9 10 6 8.75 1.63936 5 
13 6 10 9 8 8.25 1.47902 9 
14 7 5 7 8 6.75 1.089725 8 
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Figure B. 4 Operational cost setting at number of SFC requests 8. 

 

 

Table B. 4 Data of operational cost settings at number of SFC requests 8. 

 Proposed Previous 
Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 

1 9 6 6 6 6.75 1.299038 8 
2 9 8 9 6 8 1.224745 9 
3 8 10 9 9 9 0.707107 8 
4 5 8 7 6 6.5 1.118034 6 
5 8 9 10 8 8.75 0.829156 7 
6 5 5 8 10 7 2.12132 8 
7 10 5 9 6 7.5 2.061553 9 
8 9 7 5 8 7.25 1.47902 5 
9 8 8 10 8 8.5 0.866025 5 

10 6 10 5 10 7.75 2.277608 10 
11 9 5 7 5 6.5 1.658312 7 
12 7 5 9 8 7.25 1.47902 5 
13 10 5 9 6 7.5 2.061553 8 
14 7 7 7 10 7.75 1.299038 5 
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Figure B. 5 Operational cost setting at number of SFC requests 9. 

 

 

Table B. 5 Data of operational cost settings at number of SFC requests 9. 

 Proposed Previous 
Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 

1 6 6 6 6 6 0 7 
2 6 8 9 7 7.5 1.118034 10 
3 7 8 7 5 6.75 1.089725 10 
4 5 5 6 5 5.25 0.433013 10 
5 7 5 6 8 6.5 1.118034 9 
6 5 8 6 5 6 1.224745 9 
7 9 6 9 10 8.5 1.5 8 
8 6 9 9 10 8.5 1.5 5 
9 8 7 7 5 6.75 1.089725 7 

10 5 7 8 6 6.5 1.118034 5 
11 8 10 9 7 8.5 1.118034 6 
12 7 8 7 5 6.75 1.089725 7 
13 7 6 9 5 6.75 1.47902 5 
14 8 10 6 5 7.25 1.920286 10 
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Figure B. 6 Operational cost setting at number of SFC requests 10. 

 

 

Table B. 6 Data of operational cost settings at number of SFC requests 10. 

 
Proposed Previous 

Node index VNF1 VNF2 VNF3 VNF4 Mean Deviation All VNFs 
1 9 5 9 7 7.5 1.658312 7 
2 5 9 8 5 6.75 1.785357 8 
3 10 9 10 9 9.5 0.5 6 
4 5 8 6 8 6.75 1.299038 7 
5 8 5 7 8 7 1.224745 9 
6 8 5 5 7 6.25 1.299038 9 
7 10 10 5 5 7.5 2.5 9 
8 7 7 9 7 7.5 0.866025 10 
9 7 8 10 10 8.75 1.299038 8 

10 5 9 7 7 7 1.414214 5 
11 8 6 6 8 7 1 5 
12 8 7 8 8 7.75 0.433013 9 
13 7 7 5 10 7.25 1.785357 8 
14 8 10 5 10 8.25 2.046338 9 
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List of Abbreviations  

5G the Fifth Generation (5G) Mobile Communication 

AR Argument Reality  

ARPANET The Advanced Research Projects Agency Network 

CAPEX Capital Expenditure 

CPE Customer Premise Equipment 

CPU Central Processing Unit 

DoS Denial of Service 

DP Dynamic Programming  

DPI Deep Packet Inspector 

eMBB Enhanced Mobile Broadband  

ETSI European Telecommunications Standards Institute  

IDS Intrusion Detection System  

ILP Integer Linear Programming  

IoT Internet of Things 

IPS Intrusion Prevention System 

ISP Internet Service Provider 

ITU International Telecommunication Union 

JPN Japan Photonic Network 

LB Load Balancer 

LSTM Long Short-term Memory Model 

MANO Management and Orchetstration 

MEC Multi-access Edge Computing 

MILP Mixed Integer Linear Programming  

MIP Mixed Integer Programming 

MIPS Millions of Instructions Per Second 

mMTC Massive Machine Type Communication  

NAT Network Address Translation 



 
 

156 

NF Network Functions 

NFV Network Function Virtualization  

NFVI Network function Virtualization Infrastructure 

NSFNET National Science Foundation Network 

OPEX Operational Expenditure 

QoE Quality of Experience 

QoS Quality of Services  

SDN Software-Defined Networking  

SFC Service Function Chain  

SLA Service Level Agreement  

SSL Secure Sockets Layer 

URLLC Ultra-Reliable and Low Latency 

VNE Virtual Network Embedding  

VNF Virtual Network Function 

WAN Wide Area Network 
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