# 修士論文の和文要旨

| 研究科・専攻  | 研究科・専攻 大学院 情報理工学研究科      |         | 基盤理工学専攻 博士前期課程 |  |  |
|---------|--------------------------|---------|----------------|--|--|
| 氏 名     | 中山遥介                     | 学籍番号    | 1833108        |  |  |
| 論 文 題 目 | RTM2Ga2(R:希土類元素、TM:遷移金属元 | 素)化合物の物 | 勿性             |  |  |

要 旨

CeCu<sub>2</sub>Si<sub>2</sub> ( $T_c \sim 0.6$ K)<sup>1)</sup>をはじめとする金属間化合物 RTM<sub>2</sub>X<sub>2</sub> (R:希土類元素, TM:遷移金属元素, X:p電子系典型元素)は,重い電子系や圧力誘起系等の多種多様な物性を示す物質群として盛んに 研究されている. RTM<sub>2</sub>X<sub>2</sub> 系化合物の多くは,空間反転対称性を有する ThCr<sub>2</sub>Si<sub>2</sub>型構造(*I4/mmm*) を持つが,類似構造として局所空間反転対称性の破れた CaBe<sub>2</sub>Ge<sub>2</sub>型構造(*P4/mm*)を持つ化合物も 存在する.後者はマルチギャップ超伝導 SrPt<sub>2</sub>As<sub>2</sub><sup>2)</sup>や構造多型超伝導 LaIr<sub>2</sub>Si<sub>2</sub><sup>3)</sup>が報告されており, 興味深い物質群である.CaBe<sub>2</sub>Ge<sub>2</sub>型構造を有する超伝導体 LaPd<sub>2</sub>Al<sub>2</sub> ( $T_c \sim 1.9$  K), LaPd<sub>2</sub>Ga<sub>2</sub> ( $T_c \sim 2.0$  K) の X サイトが(Al,Ga)の混晶となった場合,最大で  $T_c = 2.8$  K にまで増大する <sup>3)</sup>など興味深い報告が なされていることに着目し,類縁物質として新規化合物 RRh<sub>2</sub>Ga<sub>2</sub> (R = La, Pr, Nd)の合成を試みた.

試料は所定のモル比で原材料を Ar 雰囲気下でアーク溶解し, 真空下で焼きなまし処理を行って 作成された.粉末 X 線回折から試料中には微量の不純物が含まれるが, RRh<sub>2</sub>Ga<sub>2</sub>の多結晶試料の 合成に成功したことを確認し, Rietveld 解析から CaBe<sub>2</sub>Ge<sub>2</sub>型構造(*P*4/*nmm*)を有することが明らか になった.

右図に示す LaRh<sub>2</sub>Ga<sub>2</sub> の直流磁化率の温度依存性から 約 3.5 K 付近で超伝導転移による磁化率の大きな落ちを 観測した. さらに電気抵抗率においても 4.1 K 付近から 急激に電気抵抗率が減少し, 3.4 K 付近でゼロ抵抗を示 した. この転移の中間温度を  $T_c$  と決定し, LaRh<sub>2</sub>Ga<sub>2</sub> が  $T_c = 3.7$  K の新超伝導体であることを明らかにした.

 $RRh_2Ga_2$  (R = , Pr, Nd)の直流磁化率の温度依存性から 弱い強磁性転移を観測した. ワイス定数が負の値を持 ち,飽和磁化が小さいことから弱強磁性体であることを 明らかにした.

- 1) F. Steglich, et al., Phys. Rev. Lett. 43 (1979) 1892
- 2) X. Xiaofeng, et al., Phys. Rev. B 87 (2013) 224507
- 3) M. Vališka, et al., Supercond. J. Phys. Soc. Jpn. 81 (2012) 104715
- 4) M. Klicpera, et al., Supercond. Sci. Technol. 27 (2014) 085001



# 目次

| 第1章   | 序論                                           | 3  |
|-------|----------------------------------------------|----|
| 1.1   | 超伝導現象について                                    | 3  |
| 1.2   | 完全導電性                                        | 3  |
| 1.3   | 完全反磁性                                        | 3  |
| 1.4   | BCS 理論                                       | 4  |
| 1.5   | Type-Ⅰ超伝導と Type-Ⅱ超伝導                         | 5  |
| 1.6   | ゼロ磁場冷却((ZFC)と磁場中冷却(FC)                       | 6  |
| 1.7   | RTM <sub>2</sub> Ga <sub>2</sub> 化合物の結晶構造と物性 | 6  |
| 1.7.  | 1 重い電子系                                      | 6  |
| 1.7.2 | 2 構造多型                                       | 7  |
| 1.7.3 | 3 $SrPt_2As_2$                               | 7  |
| 1.7.4 | 4 $LaPd_2Al_{2-x}Ga_x$                       | 8  |
| 第2章   | 研究目的                                         | 9  |
| 第3章   | 実験方法                                         | 10 |
| 3.1   | 試料の作成                                        | 10 |
| 3.1.  | 1 アーク溶解法                                     | 10 |
| 3.1.2 | 2 焼きなまし処理                                    | 10 |
| 3.2   | 試料の評価                                        | 11 |
| 3.2.  | 1 超伝導量子磁束干涉計(SQUID)                          | 11 |
| 3.2.2 | 2 粉末 X 線回折(PXRD)                             | 11 |
| 3.2.3 | 3 Rietveld 法                                 | 12 |
| 3.2.4 | 4 電子線マイクロアナライザ(EPMA)                         | 12 |
| 3.2.5 | 5 物理特性測定システム(PPMS)                           | 12 |
| 第4章   | 実験結果                                         | 13 |
| 4.1   | LaRh2Ga2                                     | 13 |
| 4.1.1 | 1 試料作成                                       | 13 |
| 4.1.2 | 2  構造解析                                      | 13 |
| 4.1.3 | 3 磁化率測定                                      | 15 |
| 4.1.4 | 4       電気抵抗率測定                              | 18 |
| 4.1.5 | 5 比熱測定                                       | 20 |
| 4.2   | PrRh <sub>2</sub> Ga <sub>2</sub>            | 22 |
| 4.2.  | 1 試料作成                                       | 22 |
| 4.2.2 | 2 構造解析                                       | 22 |
| 4.2.3 | 3 磁化率測定                                      | 23 |

| 4.2.4 | .4 電気抵抗測定                                | 26 |
|-------|------------------------------------------|----|
| 4.2.  | .5 比熱測定                                  | 27 |
| 4.3   | NdRh <sub>2</sub> Ga <sub>2</sub>        | 28 |
| 4.3.  | .1 試料作成                                  | 28 |
| 4.3.  | .2 構造解析                                  | 28 |
| 4.3.  | .3 磁化率測定                                 | 29 |
| 4.3.4 | .4   電気抵抗測定                              | 32 |
| 4.3.  | .5 比熱測定                                  | 33 |
| 第5章   | 考察                                       | 34 |
| 5.1   | LaTM <sub>2</sub> Ga <sub>2</sub> 化合物の物性 | 34 |
| 5.2   | RRh <sub>2</sub> Ga <sub>2</sub> 化合物の物性  | 35 |
| 第6章   | まとめ                                      | 36 |
| 付録    |                                          | 37 |
| S1 Rh | n <sub>3</sub> Ga <sub>5</sub> の物性       | 37 |
| 謝辞    |                                          | 40 |
| 参考文南  | 献                                        | 40 |

## 第1章 序論

1.1 超伝導現象について

1911 年、オランダの物理学者 Onnes によって水銀の電気抵抗が T = 4.2 K で消失すると報告された.また 1933 年、ドイツの物理学者 Meissner と Ochsenfeld によって超伝導状態で強い反磁性を示すと報告された.これを完全反磁性と呼ぶ. 完全導電性と完全反磁性の 2 つの現象が超伝導体の代表的な特性である.またこれらの現象を起こす温度を超伝導転移温度( $T_c$ )という.

1.2 完全導電性

完全導電性とは超伝導状態において電気抵抗がゼロとなる性質である. これ は Fermi 準位付近にギャップが生じるため, 電子対が励起を起こさないためである.

1.3 完全反磁性

完全反磁性とは超伝導状態において磁束を通さない性質である. これは超伝 導体に磁束が入らないように超伝導体表面に電流が流れて磁束の侵入を拒むた めである. 外部磁場B<sub>0</sub>を超伝導体に与えると, 内部の磁束密度B = 0であるので,

$$B = B_0 + \mu_0 M = 0$$
 1-1式

となる.これは完全反磁性を表し、磁化率χは、

$$\chi = \frac{M}{B_0} = -\frac{1}{\mu_0}$$

$$= -7.958 \times 10^5 \text{ J/T}^2 \text{m}^3$$

$$= -\frac{1}{4\pi} \text{ emu/Oe} \cdot \text{cm}^3$$
1-2 II

で与えられる.式(2)の値と測定した試料の磁化率を比較することで試料内の超 伝導物質の含有量をおおよそ算出することが可能である.算出した値を超伝導 体積分率といい、試料の評価に用いる.

## 1.4 BCS 理論

多くの超伝導体を説明する BCS 理論が 1957 年に提唱された. この理論によれ ば、伝導電子は Cooper 対を形成し、同じ軌道に Bose 縮退している. そして対を 破るためにエネルギーが必要となる. すなわちエネルギーギャップ  $E_g(0)$ が存在 し、

$$E_g(0) = 4\hbar\omega_D \exp\left(-\frac{1}{V_0 N(\varepsilon_F)}\right)$$
 1-3式

で表される. ここで $\omega_D$ は Debye 角周波数,  $V_0$ は電子間引力ポテンシャル,  $N(\varepsilon_F)$ は Fermi 準位における電子状態密度である. 転移温度 $T_c$ は

$$T_{\rm c} = \frac{1.14\hbar\omega_D}{k_{\rm B}} \exp\left(-\frac{1}{V_0 N(\varepsilon_F)}\right)$$
 1-4式

で表される.  $T_c$ を大きくするためには、 $\omega_D$ を大きくするために軽い元素を用いる、 $V_0$ を大きくするために電子格子相互作用の大きくする、 $N(\varepsilon_F)$ を大きくするために状態密度を大きくするということが求められる.

また BCS 理論では比熱の不連続が予測されており、

$$\frac{\Delta C_{\rm el}}{\gamma T_{\rm c}} = 1.43$$

の振る舞いを示す.

さらにパウリ対破壊効果の上限は,

$$H_P = 1.86 \times T_c \qquad 1-6 \vec{\mathfrak{z}}$$

で与えられる.

1.5 Type-I超伝導と Type-II超伝導

超伝導体に磁場が侵入する場合、2種類の振る舞いがある.

Type-I超伝導は臨界磁場H<sub>c</sub>以上で超伝導状態から常伝導状態に変化する.

Type-II超伝導は下部臨界磁場 $\mu_0 H_{c1}$ 以上で超伝導状態の一部が常伝導状態となり、2 つの状態が混合した混合状態となる。そして上部臨界磁場 $\mu_0 H_{c2}$ 以上ですべて常伝導状態となる(1-1 図).



1-1図 Type-I 超伝導(左)と Type-II 超伝導(右)の磁化曲線

これは超伝導体を記述する 2 つのパラメータ, (1)コヒーレンス長 $\xi$ と(2)磁場侵 入長 $\lambda$ の大小関係で説明される.

コヒーレンス長は磁束で壊された Cooper 対が回復可能な長さである.

磁場侵入長は超伝導体表面に磁場が近づくと表面に遮蔽電流が流れて磁場の 侵入を防ぐ.このとき電流の流れる層の厚さである.

ξ ≫ λを考える. 超伝導を壊す損の方が遮蔽電流を流すことによる磁場のエネ ルギーの損よりも大きいため、超伝導体を壊さずに磁場を通さない方が得であ る. したがって、磁場を受け続けてH<sub>c</sub>を超えたところで超伝導状態が壊れて常 伝導状態となる Type-I超伝導である.

ξ ≪ λを考える. 超伝導の壊れる損の方が超伝導体のまま磁場を通すことによる損より小さいため、超伝導体を部分的に壊してそこに磁束を通し、遮蔽電流を流す損を最小限に抑える方が得である. したがって、磁場を受け続けてH<sub>c1</sub>を超えたところで超伝導状態が壊れて磁束が侵入して混合状態となり、H<sub>c2</sub>を超えたところで常伝導状態となる Type-II超伝導である.

2つのパラメータの比を GL パラメータといい,

$$c_{GL} = \lambda / \xi$$
 1-7式

と表される.  $\kappa_{GL} < 1/\sqrt{2}$ のとき Type-I超伝導であり,  $\kappa_{GL} > 1/\sqrt{2}$ のとき Type-II 超伝導である.

これらのパラメータから臨界磁場を求めることができる.

$$H_{c1}(T=0) = \frac{\phi_0}{\pi \lambda^2}$$
 1-8 式

$$H_{c2}(T=0) = \frac{\Phi_0}{\pi^{\xi^2}}$$
 1-9式

ここで $\phi_0$ :磁束量子といい,

$$Φ_0 = \frac{h}{2e} ≈ 2.078 × 10^{-15} \text{ Wb}$$
 1-10式

である.

1.6 ゼロ磁場冷却((ZFC)と磁場中冷却(FC)

外部磁場ゼロの状態で試料を冷却する過程 ZFC (Zero Field Cooling)外部磁場 を与えた状態で試料を冷却する過程 FC (Field Cooling)という. ZFC と FC では超 伝導体と完全導体で振る舞いが異なる.

完全導体について考える. H = 0の状態で  $T_c$ 以下になるように冷却し、その後 磁場を与えると Lenz の法則に従ってB = 0を保つ向きに電流が流れる. 一方、  $H \neq 0$ の状態から  $T_c$ 以下になるように冷却すると、 $T_c$ 以下で電気抵抗はゼロとな るがBは変化せずにBを保つように電流が流れて磁石のように振る舞う.

超伝導体について考える. H = 0の状態で  $T_c$ 以下になるように冷却し、その後 磁場を与えると Lenz の法則に従ってB = 0を保つ向きに電流が流れる. 一方,  $H \neq 0$ の状態から  $T_c$ 以下になるように冷却すると,  $T_c$ 以下で磁束が超伝導体の外 に押し出されて超伝導体内部ではB = 0となる. これは  $T_c$ 以下で遮蔽電流が流れ、 内部の磁場を打ち消すからである.

## 1.7 RTM<sub>2</sub>Ga<sub>2</sub>化合物の結晶構造と物性

1.7.1 重い電子系

ThCr<sub>2</sub>Si<sub>2</sub>型構造 CeCu<sub>2</sub>Si<sub>2</sub>(1-2 図(a))は 1979 年に発見された重い電子系超伝 導として知られている[3]. 重い電子系とは、電子の有効質量が通常の金属の 数百から千倍程度の大きさを持つものである. すなわち、見かけ上非常に重 たい粒子が伝導電子として存在している系である.

重い電子系化合物は Ce をはじめとした 4f 電子を有するイオンを含んでいる.4f 電子は局在性が高く、同じ軌道に電子が入るためには大きな Coulomb 斥力を感じる.4f 電子の波動関数の裾は Bohr 半径を超えて外側に拡がっており、周囲のイオンから構成される伝導電子との混成が生じ、RKKY 相互作用という磁気的相互作用を示すことが知られている.また Spin-Singlet 状態を作る近藤効果が知られている.前者は反強磁性をはじめとした磁気秩序を

示し、後者は磁気秩序のない近藤格子系を示す.

1.7.2 構造多型

CaBe<sub>2</sub>Ge<sub>2</sub>型構造は ThCr<sub>2</sub>Si<sub>2</sub>型構造の類似構造として知られている. ThCr<sub>2</sub>Si<sub>2</sub>型構造は *c* 軸方向に Si-Cr-Si 相が積層している. CaBe<sub>2</sub>Ge<sub>2</sub>型構造は *c* 軸方向に Ge-Be-Ge 相と Be-Ge-Be 相が積層した構造を有してし, *c* 軸方向 に局所空間反転対称性の破れた構造である. CaBe<sub>2</sub>Ge<sub>2</sub>型構造を持ち, La か らなる超伝導体として LaPd<sub>2</sub>Si<sub>2</sub>, LaRh<sub>2</sub>Si<sub>2</sub>, LaIr<sub>2</sub>Si<sub>2</sub>, LaPd<sub>2</sub>Al<sub>2</sub>, LaPd<sub>2</sub>Ga<sub>2</sub>, LaPd<sub>2</sub>Sb<sub>2</sub>, LaPd<sub>2</sub>Bi<sub>2</sub>が報告されている[4-11].

中でも LaIr<sub>2</sub>Si<sub>2</sub>は合成される温度によって構造を変化させ、ThCr<sub>2</sub>Si<sub>2</sub>型構造と CaBe<sub>2</sub>Ge<sub>2</sub>型構造の 2 つの構造を有し、後者だけが  $T_c = 1.2$  K の超伝導転移を示すと報告されている.

1.7.3 SrPt<sub>2</sub>As<sub>2</sub>

CaBe<sub>2</sub>Ge<sub>2</sub>型構造 SrPt<sub>2</sub>As<sub>2</sub>(1-2 図(b))は $T_c = 5.2$  Kの超伝導体として報告されている. 興味深い物性として CDW とマルチギャップ超伝導が挙げられる. SrPt<sub>2</sub>As<sub>2</sub>の示す CDW 転移温度は As-Pt-As 相の  $T_{CDW}^{AS(1)} = 410$  K と Pt-As-Pt 相の  $T_{CDW}^{AS(2)} = 255$  K で観測されている. さらに  $T_c = 5.2$  K では Spin-Singlet の s 波ギャップを持つと報告されている. すなわち異なる 2 つの相でそれぞれ別の CDW 転移を示すが, 超伝導転移は 2 つの相が同時に等しいギャップ を持つ[12].



1-2図 (a)ThCr<sub>2</sub>Si<sub>2</sub>型構造と(b) CaBe<sub>2</sub>Ge<sub>2</sub>型構造 結晶構造は VESTA[13]で描画した. 1.7.4  $LaPd_2Al_{2-x}Ga_x$ 

CaBe<sub>2</sub>Ge<sub>2</sub>型構造を有する LaPd<sub>2</sub>Al<sub>2</sub>と LaPd<sub>2</sub>Ga<sub>2</sub> はそれぞれ  $T_c = 1.9$  K と  $T_c$ = 2.0 K の超伝導体として報告され、共に構造相転移を示す. LaPd<sub>2</sub>Al<sub>2</sub> の Al サイトを一部 Ga に置き換えた LaPd<sub>2</sub>Al<sub>2-x</sub>Ga<sub>x</sub> は最大  $T_c = 2.8$  K (x = 1.6)の超伝 導体となり、ラインノードを持つと報告されている. さらにこの物質の上 部臨界磁場の温度依存性は非従来型の曲線が観測されたと報告されている [7].

#### 第2章 研究目的

本研究の目的は、重い電子系や CDW と超伝導の共存、構造多型などの特異な物性を示す RTM<sub>2</sub>X<sub>2</sub> 化合物に着目した新規超伝導物質の発見である.

本研究では典型元素 X = Ga とした.  $RTM_2Ga_2$  化合物の物性報告は少なく, LaPd<sub>2</sub>Al<sub>2-x</sub>Ga<sub>x</sub> といった非従来型の超伝導を発現する物質の理解につながる可能性 があるとして研究を行った. また, 非磁性元素 La を磁性元素に置き換えることで  $CeCu_2Si_2$ をはじめとした重い電子系超伝導の発現を期待して研究を行った.

以下,LaTM<sub>2</sub>Ga<sub>2</sub>化合物とRRh<sub>2</sub>Ga<sub>2</sub>化合物について報告する.

# 第3章 実験方法

- 3.1 試料の作成
  - 3.1.1 アーク溶解法

目的の物質に必要な各元素をモル比で計量し,アーク溶解炉の銅ハース 上にそれぞれ並べて Ar ガス雰囲気でアーク溶解した.

アーク溶解は、電極間に電位差が生じることで発生するアーク放電を利用して試料を溶解する方法である. 最高温度は 3273 K 程度である. 下部には銅ハースを用いて冷却水を流して急冷する.



3-1図 トリアーク溶解炉

3.1.2 焼きなまし処理

アーク溶解法で作成した試料を真空封管して電気炉で焼きなまし処理を 行った.焼きなましを行うことで試料の反応を促進させることができる.

## 3.2 試料の評価

#### 3.2.1 超伝導量子磁束干涉計(SQUID)

直流磁化率の温度依存性を SQUID (Superconducting Quantum Interference Device)で測定した.

SQUID では, dc-SQUID 素子と呼ばれるリング状に等価な 2 つ Josephson 結合を含んだ素子について Josephson 効果を適用する.

ゼロ電圧の直流 Josephson 効果は 2 つの Josephson 結合を流れる超伝導電 流の和であるので,

$$I = I_1 + I_2 = I_0(\sin\theta_1 + \sin\theta_2)$$
 3-1式  
Z 二 の電法の是士値は

となる.この電流の最大値は,

 $I_{max} =$ 

$$2I_c \cos \frac{\pi \Phi}{\Phi_0}$$
 3-2式

となる. dc-SQUID 素子を流れる超伝導電流はリングを貫く磁束Φの周期関数である. 電圧を印加すると素子を流れる電流は, 超伝導電流と電圧降下による電流の和となる. 電圧降下による電流も超伝導電流と同様にリングを貫く磁束Φによって周期的に変化するため, 磁束の増減を電圧変化として検出することができ, 磁化の測定が可能となる.

作成した試料をストローに 0.05 g 程度詰めて装置にセットし, ゼロ磁場 で 1.8 K まで冷却した. 次に任意の磁場をかけて任意の温度まで上昇させて 磁化の測定を行った(ZFC). さらに, 磁場をかけたまま 1.8 K まで冷却して 磁化の測定を行った(FC).

#### 3.2.2 粉末 X 線回折(PXRD)

試料の同定を PXRD (Powder X-Ray Diffraction)装置で行った.

PXRD では Bragg の条件

$$2d\sin(\theta) = n\lambda \qquad \qquad 3-3 \exists$$

を適用する. X 線源から Cu-K<sub>α</sub>線(特性 X 線)を試料に入射し,反射した X 線が検出器で観測される. Bragg の条件を満たす入射角と反射角の関係から 面間隔 d が決定され,ピーク位置と回折強度から結晶構造を同定する.

試料を乳鉢と乳棒で粉末状にしてガラス試料板に乗せて装置にセットし, Cu-Kα 線を2 $\theta$  = 15~85°の角度で照射して PXRD パターンを測定した. PXRD パターンのピーク位置と強度から物質の同定を行った.本研究では Rietveld 法と既存のデータベース Jade を用いて照合した. 3.2.3 Rietveld 法

Rietveld法では実験で得られたPXRDパターンで結晶構造パラメータを精密化する.結晶構造や格子定数,原子位置などのパラメータを得ることが可能である.この方法では構成元素と結晶構造と格子定数を初期値として入力し,それぞれのパラメータを精密化していくため,未知の物質を同定することは不可能である.本研究では泉富士夫氏が配布しているRIETAN-FPを用いた[14].

3.2.4 電子線マイクロアナライザ(EPMA)

試料を構成する元素の割合を EPMA (Electron Probe Micro Analyzer)の定量 分析で測定した.

EPMA でも PXRD と同様に Bragg の条件を適用する. 特性 X 線を入射し て反射した特性 X 線を観測する PXRD に対して, EPMA では電子線を入射 して発生した特性 X 線が分光素子を反射して検出器で観測される. 検出さ れた特性 X 線の波長から元素を決定することができる.

WDS は試料表面の凹凸に影響されるため、試料表面の研磨を行って定量 分析した. 試料表面の測定では、二次電子像(SEM)と組成像(COMPO)と凹 凸像(TOPO)を撮影した.

3.2.5 物理特性測定システム(PPMS)

電気抵抗率の温度依存性, 比熱の温度依存性を PPMS (Physical Property Measurement System)で測定した.

Resistivity モードで電気抵抗率を四端子法で測定した. 断面積 S の試料の 両端に均一な電流 I を流し,電圧端子間の長さ L の電圧降下 V を測定して 得られる電気抵抗率  $\rho$  は

$$\rho = \frac{SV}{LI} \qquad 3-4 \pm 1$$

で表される.

Heat capacity モードで比熱を熱緩和法で測定した. 試料に与えていた熱を 切ったとき, 熱浴と試料の間の熱伝導率  $\kappa$ と試料温度の緩和時間  $\tau$  から得ら れる全比熱  $C_p$ は

$$C_{\rm p} = \kappa \tau$$
 3-5式

で表される.

## 第4章 実験結果

4.1 LaRh<sub>2</sub>Ga<sub>2</sub>

#### 4.1.1 試料作成

多結晶試料 LaRh<sub>2</sub>Ga<sub>2</sub> を仕込み組成比 La:Rh:Ga = 1:2:2 として Ar ガス雰囲 気下のアーク溶解法で作成した. 原材料は La chips (99.9 %), Rh powder (99.9 %), Ga shots (99.99999 %)を用いた. アーク溶解法で作成した ingot を 真空封管して 1073 K - 4 週間の焼きなまし処理をした.

#### 4.1.2 構造解析

試料を粉砕して PXRD で測定した. 得られた PXRD パターンを Rietveld 法で解析した.その結果を 4-1 図に示す. 図中の赤丸が観測されたパターン, 黒線が計算されたパターンであり,青線は前者から後者を差し引いたパター ンである.緑線は CaBe<sub>2</sub>Ge<sub>2</sub>型構造のピーク位置を示す. 試料のパターンは, CaBe<sub>2</sub>Ge<sub>2</sub> 型構造を有することが明らかになったがいくつかの余分なピーク を観測された.この余分なピークは不純物 RhGa<sub>3</sub>, LaRh<sub>3</sub> and/or LaRh<sub>2</sub>, LaGa, Ga であった.



4-1図 LaRh<sub>2</sub>Ga<sub>2</sub>の Rietveld 解析

また試料を EPMA で測定した. その結果を4-2 図に示す. 定量分析の結果, 試料は LaRh<sub>2</sub>Ga<sub>2</sub> で構成されていることが示唆され, その組成比は LaRh<sub>2.02</sub>Ga<sub>2.35</sub> であった. これは主相である LaRh<sub>2</sub>Ga<sub>2</sub> に加えて RhGa<sub>3</sub> をはじ めとした不純物が試料内均一に拡がっているからである.



4-2図 試料の EPMA, (a)SEM 像, (b)COMPO 像, (c)TOPO 像

Rietveld 解析の結果, 信頼性因子  $R_{wp} = 4.511$ %であった. その他の構造パラメータを 4-1 表に示す.

| Atom | Wyckoff<br>symbol | Х   | у   | Z         |
|------|-------------------|-----|-----|-----------|
| La   | 2c                | 1/4 | 1/4 | 0.7402(2) |
| Rh1  | 2c                | 1/4 | 1/4 | 0.1189(2) |
| Rh2  | 2b                | 3/4 | 1/4 | 1/2       |
| Ga1  | 2c                | 1/4 | 1/4 | 0.3669(4) |
| Ga2  | 2a                | 3/4 | 1/4 | 0         |

4-1 表 LaRh<sub>2</sub>Ga<sub>2</sub>の構造パラメータ

空間群 P4/nmm, Z = 2, a = 4.3423(2) Å, c = 9.9166(6) Å

 $R_{\rm wp} = 4.511$  %,  $R_{\rm e} = 2.291$  %, S = 1.969,  $R_{\rm B} = 3.338$  %,  $R_{\rm F} = 1.978$  %

以上の結果から、LaRh<sub>2</sub>Ga<sub>2</sub>をCaBe<sub>2</sub>Ge<sub>2</sub>型構造であると結論づけた.

#### 4.1.3 磁化率測定

試料の直流磁化率を SQUID で測定した. H = 1 mT の直流磁化率の温度依存性  $\chi(T)$ を 4-3 図に示す. 試料は  $T_c = 3.5 \text{ K}$  で強い反磁性を示した. これは バルク超伝導を示す結果である. ZFC と FC から求められたおおよその体積 分率はそれぞれ 56 % と 42 % であった. 超伝導を示す不純物は LaRh<sub>3</sub> ( $T_c = 2.6 \text{ K}$ ) [15] と Ga ( $T_c = 6.0 \text{ K}$ )である.

4-4 図に $\chi(T)$ を温度で微分した結果を示す. T = 2.5 K 付近で傾きがわずか に変化した. このことから不純物として微小の LaRh<sub>3</sub> が存在することが明ら かになった. LaRh<sub>3</sub>のメインピークは LaRh<sub>2</sub>と重なっていることから  $2\theta = 40^{\circ}$ のピークは, LaRh<sub>2</sub>が大部分であり, 一部が LaRh<sub>3</sub> であることが示唆された. また Ga のピークは LaRh<sub>3</sub> and/or LaRh<sub>2</sub>のピークよりも小さいため超伝導転 移が観測されなかった. したがって, 試料中にわずかに存在する不純物は LaRh<sub>2</sub>Ga<sub>2</sub>の物性に影響を与えないとした. よって観測された T = 3.5 K の超 伝導転移は LaRh<sub>2</sub>Ga<sub>2</sub>が示すものであると結論づけた.



4-3図 LaRh<sub>2</sub>Ga<sub>2</sub>の直流磁化率の温度依存性



4-4図 LaRh<sub>2</sub>Ga<sub>2</sub>の微分磁化率の温度依存性(FC)

試料の磁化の磁場依存性 *M*(*H*)を *T* = 1.8 K で測定した. その結果を 4-5 図 に示す. *M*(*H*)曲線は下部臨界磁場と上部臨界磁場を持つヒステリシスを描い ており, Type-Ⅱ 超伝導の振る舞いを観測した.

図中の図は下部臨界磁場を求めるためにいくつかの温度で M(H)を測定した.温度が大きくなるにつれ,  $T_c$ の抑制が観測された.各温度で超伝導転移が観測された下部臨界磁場を  $\mu_0H_{c1}$  とした.下部臨界磁場の温度依存性  $\Box_0H_{c1}(T)$ を 4-6 図に示す.T = 0の $\mu_0H_{c1}(0)$ は $\mu_0H_{c1}(T) = \mu_0H_{c1}(0)[1-(T/T_c)^2]$ から 推定され, $\mu_0H_{c1}(0) = 4.6$  mT であった.また $\Box_0H_{c1}(0)$ から推定された磁場侵入 長は  $\lambda(0) = 378$  nm であった.



4-6図 LaRh<sub>2</sub>Ga<sub>2</sub>の下部臨界磁場の温度依存性

#### 4.1.4 電気抵抗率測定

試料の電気抵抗率を PPMS の resistivity モードを用いて四端子法で測定した. H = 0 T の電気抵抗率の温度依存性  $\rho(T)$ を 4-7 図に示す.  $\rho(T)$ から得られた残留抵抗比は RRR = 2.24 であった. 試料の純度は低いが,  $T_c^{\text{onset}} = 4.1$  K と  $T_c^{\text{zero}} = 3.7$  K で超伝導転移を示した.

図中の図は上部臨界磁場を求めるために磁場を変化させて  $\rho(T)$ を測定した. 磁場が大きくなるにつれ、 $T_c$ の抑制が観測された. 各磁場で超伝導転移が観測された上部臨界磁場を  $\mu_0 H_{c2}$  とした.

上部臨界磁場の温度依存性  $\mu_0H_{c2}(T)$ を 4-8 図に示す. $\mu_0H_{c2}(T)$ は線形に増加 する傾向にあり,一般的な超伝導を説明する WHH 理論[16-18]の曲線から逸 脱する可能性が示唆された.このような $\mu_0H_{c2}(T)$ はマルチギャップ超伝導[19] や強結合型超伝導[20]から起因すると報告されている.実際に、マルチギャ ップ超伝導として YNi<sub>2</sub>B<sub>2</sub>C[21]や BaFe<sub>2</sub>As<sub>2</sub>[22], SrPt<sub>2</sub>As<sub>2</sub>[12, 23, 24]が報告さ れている.しかしながら、WHH 理論からの逸脱は僅かなものであるため、 より低温まで測定を行わなければ断言することはできない.WHH 理論は

$$\mu_0 H_{c2}(0) = 0.693 \times T_c^{onset} \times \left| \mu_0 \frac{dH_{c2}}{dT} \right|_{T_c}$$
 5-1 I

で表され、この式から $\mu_0 H_{c2}(0) = 1.32 \text{ T}$ と推定された. また上 $\mu_0 H_{c2}(0)$ から推定されたコヒーレンス長は $\xi = 23.9 \text{ nm}$ であった.

LaRh<sub>2</sub>Ga<sub>2</sub>の Pauli 破壊効果の上限は  $H_P = 6.88$  T と推定され,  $\mu_0 H_{c2}(0)$ は  $H_P$  より小さい. したがって軌道対破壊効果によって  $\mu_0 H_{c2}$ が決定されている.



4-7図 LaRh<sub>2</sub>Ga<sub>2</sub>の電気抵抗率の温度依存性



## 4.1.5 比熱測定

試料の比熱を PPMS の Heat capacity モードを用いて熱緩和法で測定を行った. H = 0 T と H = 3 T の比熱の温度依存性  $C_p(T)/T$  を 4-9 図に示す. H = 0 T の  $C_p(T)/T$  は $\chi(T)$ や $\rho(T)$ の測定から得られた  $T_c$  と近しい温度で比熱のとびが 観測され, 超伝導状態の  $C_p(T)/T$ を示した. H = 3 T の  $C_p(T)/T$  は推定された  $\mu_0 H_{c2}(0)$ よりも大きい磁場であり, 常伝導状態の  $C_p(T)/T$  を示した. 測定され た比熱  $C_p$  は電子比熱  $C_{el}$ と格子比熱  $C_{lattice}$ の和であり,

$$C_{\rm p} = C_{\rm el} + C_{\rm lattice} = \gamma T + \beta T^3$$
 5-2式

で表される. 図中の黒破線は常伝導状態の  $C_p(T)/T$  から Debye モデルによっ て求めた. それぞれ, 電子比熱係数  $\gamma = 7.39$  mJ/mol K<sup>2</sup>, 格子比熱係数  $\beta = 0.906$  mJ/mol K<sup>4</sup>, Debye 温度  $\Theta_D = 220$  K と推定された.



4-9図 LaRh<sub>2</sub>Ga<sub>2</sub>の比熱の温度依存性

 $H = 3 \text{ T} \text{ o} C_{el}$ から $H = 0 \text{ T} \text{ o} C_{el}$ を差し引いた値を $C_{el}(0\text{ T})-C_{el}(3\text{ T})$ として温 度依存性を 4-10 図に示す.  $T_c$ での比熱のとび $\Delta C_{el}$ を推定すると $\Delta C_{el} = 37.1$ mJ/mol K,  $T_c^{mid} = 3.45$  K となった. したがって, 比熱の比は $\Delta C_{el}/\gamma T_c = 1.46$ と導出された. これは BCS 理論から予想された弱結合の値に近く, LaRh<sub>2</sub>Ga<sub>2</sub> は電子格子相互作用の小さい超伝導であることが示唆された.



4-10図 LaRh<sub>2</sub>Ga<sub>2</sub>の電子比熱の温度依存性

 $T_c$ の大きさは電子格子結合定数 $\lambda_{e-p}$ と Fermi 準位の状態密度  $N(E_F)$ で説明されると知られている.  $\lambda_{e-p}$ は Macmillan の式[25]より

$$\lambda_{e-p} = \frac{1.04 + \mu^* \ln(\theta_D / 1.45T_c)}{(1 - 0.62\mu^*) \ln(\theta_D / 1.45T_c) - 1.04}$$
5-3式

で表される. ここで Coulomb 斥力の大きさを $\mu^* = 0.13$  とすると,  $\lambda_{e-p} = 0.641$  と導出された. LaRh<sub>2</sub>Ga<sub>2</sub> は弱結合型超伝導であることが示唆された. また  $N(E_F)$ は

$$N(E_{\rm F}) = \frac{3\gamma}{\pi^2 k_{\rm B}^2 (1 + \lambda_{e-p})}$$
 5-4式

で表される. この式から  $N(E_F) = 1.91$  states/eV/f.u.と導出された.

## 4.2 PrRh<sub>2</sub>Ga<sub>2</sub>

4.2.1 試料作成

多結晶試料 PrRh<sub>2</sub>Ga<sub>2</sub> を仕込み組成比 Pr:Rh:Ga = 1.05:2:2 として Ar ガス雰 囲気下のアーク溶解法で作成した. 原材料は Pr powder (99.9 %), Rh powder (99.9 %), Ga shots (99.99999 %)を用いた. アーク溶解法で作成した ingot を 真空封管して 1023 K - 4 週間の焼きなまし処理をした.

4.2.2 構造解析

試料を粉砕して PXRD で測定した.得られた PXRD パターンを Rietveld 法で解析した.その結果を 4-11 図に示す.試料のパターンは、CaBe<sub>2</sub>Ge<sub>2</sub>型 構造を有することが明らかになったがいくつかの余分なピークを示した.この余分なピークは不純物 Rh<sub>3</sub>Ga<sub>5</sub>, Pr<sub>2</sub>Ga, PrGa であった.



4-11図 PrRh<sub>2</sub>Ga<sub>2</sub>の Rietveld 解析

Rietveld 解析の結果, 信頼性因子 *R<sub>wp</sub>* = 5.470 % であった. その他の構造パ ラメータを 4-2 表に示す.

| Atom | Wyckoff<br>symbol | x   | у   | Z         |
|------|-------------------|-----|-----|-----------|
| Pr   | 2c                | 1/4 | 1/4 | 0.7446(3) |
| Rh1  | 2c                | 1/4 | 1/4 | 0.1486(3) |
| Rh2  | 2b                | 3/4 | 1/4 | 1/2       |
| Ga1  | 2c                | 1/4 | 1/4 | 0.4044(3) |
| Ga2  | 2a                | 3/4 | 1/4 | 0         |

4-2表 PrRh<sub>2</sub>Ga<sub>2</sub>の構造パラメータ

空間群 P4/nmm, Z = 2, a = 4.3337(7) Å, c = 9.598(2) Å

 $R_{\rm wp} = 5.470$  %,  $R_{\rm e} = 2.417$  %, S = 2.237,  $R_{\rm B} = 5.767$  %,  $R_{\rm F} = 3.168$  %

#### 4.2.3 磁化率測定

試料の直流磁化率を SQUID で測定した.  $\chi(T)$ を 4-12 図に示す. 試料は  $T_c$  = 7.4 K で強磁性を示した.

不純物 PrGa は,  $T_C = 28$  K,  $T_N = 36$  K を持つことが報告されている[26]. しかし PrGa の磁気転移が観測れていないことから不純物の寄与は物性に影響しないとした. また Pr<sub>2</sub>Ga は PrGa と同じ大きさのピーク強度であることから物性に影響しないとした. さらに Rh<sub>3</sub>Ga<sub>5</sub>[S1]も磁性に影響しないことから, 観測された T = 7.4 K の超伝導転移は PrRh<sub>2</sub>Ga<sub>2</sub> が示すものであると結論づけた.

4-13 図に逆磁化率の温度依存性  $1/\chi(T)$ を示す. この結果から、有効ボーア 磁子  $\mu_{\text{eff}} = 3.52$ , Weiss 定数  $\Theta = -14$ K と推定された.



4-12図  $PrRh_2Ga_2$ の直流磁化率の温度依存性



4-13図 PrRh2Ga2の逆磁化率の温度依存性

試料の M(H)を T = 1.8 K で測定した. その結果を 4-14 図に示す. この結果 から, H = 7 T の飽和磁化は  $0.9\mu_B$  程度であった. これは  $Pr^{3+}$ が持つ磁化の 25% 程度の値である.

Weiss 定数が負の値であること, 飽和磁化が有効ボーア磁子の 25%である ことから, PrRh<sub>2</sub>Ga<sub>2</sub> は反強磁性相関の傾いた弱強磁性体であると結論づけた.



4-14図 PrRh<sub>2</sub>Ga<sub>2</sub>の磁化率の磁場依存性

4.2.4 電気抵抗測定

試料の電気抵抗率を PPMS の resistivity モードを用いて四端子法で測定した.H = 0 T の  $\rho(T)$ を 4-15 図に示す.T = 5 K でわずかに電気抵抗が減少した. $\chi(T)$ の測定で観測された転移温度と近しいことから,これは強磁性転移によるものである.



4-15図 PrRh<sub>2</sub>Ga<sub>2</sub>の電気抵抗率の温度依存性

# 4.2.5 比熱測定

試料の比熱を PPMS の Heat capacity モードを用いて熱緩和法で測定を行った. H = 0 T の  $C_p(T)/T$  を 4-16 図に示す. H = 0 T の  $C_p(T)/T$  は  $\chi(T)$ や  $\rho(T)$ の測定から得られた転移温度と近しい温度で比熱の増加が観測された. 図中の黒破線は磁気転移前の  $C_p(T)/T$  から Debye モデルによって求めた. それぞれ,  $\gamma = 238$  mJ/mol K<sup>2</sup>,  $\beta = 0.680$  mJ/mol K<sup>4</sup>,  $\Theta_D = 242$  K と推定された.  $\gamma$  が数百程度の値を持つことが明らかになった.



4-16図 PrRh<sub>2</sub>Ga<sub>2</sub>の比熱の温度依存性

## 4.3 NdRh<sub>2</sub>Ga<sub>2</sub>

4.3.1 試料作成

多結晶試料 NdRh<sub>2</sub>Ga<sub>2</sub> を仕込み組成比 Nd:Rh:Ga = 1:2:2 として Ar ガス雰囲 気下のアーク溶解法で作成した. 原材料は Nd powder (99.9 %), Rh powder (99.9 %), Ga shots (99.99999 %)を用いた. アーク溶解法で作成した ingot を 真空封管して 1023 K - 4 週間の焼きなまし処理をした.

4.3.2 構造解析

試料を粉砕して PXRD で測定した.得られた PXRD パターンを Rietveld 法で解析した.その結果を 4-17 図に示す.試料のパターンは、CaBe<sub>2</sub>Ge<sub>2</sub>型 構造を有することが明らかになったがいくつかの余分なピークを示した. この余分なピークは不純物 Rh<sub>3</sub>Ga<sub>5</sub>であった.



4-17図 NdRh<sub>2</sub>Ga<sub>2</sub>の Rietveld 解析

Rietveld 解析の結果, 信頼性因子 *R<sub>wp</sub>* = 4.159 % であった. その他の構造パ ラメータを 4-3 表に示す.

| Atom | Wyckoff<br>symbol | x   | у   | Z         |
|------|-------------------|-----|-----|-----------|
| Nd   | 2c                | 1/4 | 1/4 | 0.7692(2) |
| Rh1  | 2c                | 1/4 | 1/4 | 0.1201(3) |
| Rh2  | 2b                | 3/4 | 1/4 | 1/2       |
| Ga1  | 2c                | 1/4 | 1/4 | 0.3871(3) |
| Ga2  | 2a                | 3/4 | 1/4 | 0         |

4-3 表 NdRh<sub>2</sub>Ga<sub>2</sub>の構造パラメータ

空間群 P4/nmm, Z = 2, a = 4.3305(2) Å, c = 9.5176(5) Å

 $R_{\rm wp} = 4.159$  %,  $R_{\rm e} = 2.430$  %, S = 1.712,  $R_{\rm B} = 6.843$  %,  $R_{\rm F} = 4.498$  %

4.3.3 磁化率測定

試料の直流磁化率を SQUID で測定した.  $\chi(T)$ を 4-18 図に示す. 試料は  $T_C = 13$  K で強磁性を示した.

不純物 Rh<sub>3</sub>Ga<sub>5</sub>[S1]も磁性に影響しないことから, 観測された T = 13 K の超 伝導転移は NdRh<sub>2</sub>Ga<sub>2</sub> が示すものであると結論づけた.

4-19 図に  $1/\chi(T)$ を示す. この結果から、有効ボーア磁子  $\mu_{\text{eff}} = 3.67$ , Weiss 定数  $\Theta = -13$  K と推定された.



4-18図  $NdRh_2Ga_2$ の直流磁化率の温度依存性



4-19図 NdRh<sub>2</sub>Ga<sub>2</sub>の逆磁化率の温度依存性

試料の M(H)を T = 1.8 K で測定した. その結果を 4-20 図に示す. この結果 から, H = 7 T の飽和磁化は  $2.1\mu_B$  程度であった. これは Nd<sup>3+</sup>が持つ磁化の 57 % 程度の値である.

Weiss 定数が負の値であること、飽和磁化が有効ボーア磁子の 57%程度であることから、NdRh<sub>2</sub>Ga<sub>2</sub> は反強磁性相関の傾いた弱強磁性体であると結論づけた。



4-20図 NdRh<sub>2</sub>Ga<sub>2</sub>の磁化率の磁場依存性

4.3.4 電気抵抗測定

試料の電気抵抗率を PPMS の resistivity モードを用いて四端子法で測定した. H = 0 T の  $\rho(T)$ を 4-21 図に示す. T = 12 K でわずかに電気抵抗が減少した.  $\chi(T)$ の測定で観測された転移温度と近しいことから, これは強磁性転移によるものである.



4-21図 NdRh<sub>2</sub>Ga<sub>2</sub>の電気抵抗率の温度依存性

# 4.3.5 比熱測定

試料の比熱を PPMS の Heat capacity モードを用いて熱緩和法で測定を行った. H = 0 T の  $C_p(T)/T$ を4-22 図に示す. H = 0 T の  $C_p(T)/T$ は $\chi(T)$ や $\rho(T)$ の測定から得られた転移温度と近しい温度で比熱の増加が観測された. 図中の黒破線は磁気転移前の  $C_p(T)/T$ から Debye モデルによって求めた. それぞれ,  $\gamma = 521$  mJ/mol K<sup>2</sup>,  $\beta = 0.340$  mJ/mol K<sup>4</sup>,  $\Theta_D = 306$  K と推定された.  $\gamma$  が数百程度の値を持つことが明らかになった.





## 第5章 考察

5.1 LaTM<sub>2</sub>Ga<sub>2</sub>化合物の物性

新規の超伝導体 LaRh<sub>2</sub>Ga<sub>2</sub> と既存の超伝導体 LaPd<sub>2</sub>Ga<sub>2</sub> の物性を比較する. 各 超伝導体の物性パラメータを表 5-1 に示す.  $\Delta C_{el}/\Delta T_c$ から弱結合型超伝導である ことが明らかになった. LaRh<sub>2</sub>Ga<sub>2</sub>の  $T_c$  は LaPd<sub>2</sub>Ga<sub>2</sub>の  $T_c$ の約 2 倍である.  $T_c$ の 大きさに起因する  $\lambda_{e-p} \ge N(E_F)$ を比較すると, LaRh<sub>2</sub>Ga<sub>2</sub>の  $\lambda_{e-p}$  は LaPd<sub>2</sub>Ga<sub>2</sub>の  $\lambda_{e-p}$ の約 1.1 倍であり, LaRh<sub>2</sub>Ga<sub>2</sub>の  $N(E_F)$ は LaPd<sub>2</sub>Ga<sub>2</sub>の  $N(E_F)$ の約 0.7 倍である. 以 上のことから, LaTM<sub>2</sub>Ga<sub>2</sub> 化合物の  $T_c$  は  $\lambda_{e-p}$ の大きさが関係している可能性があ る. しかし  $\lambda_{e-p}$ の大きさの差は小さいため, 局所空間反転対称性の破れた CaBe<sub>2</sub>Ge<sub>2</sub>型構造を有する LaTM<sub>2</sub>Ga<sub>2</sub> 化合物の  $T_c$  は,  $\lambda_{e-p}$  以外の重要な因子が関係 している可能性がある.

|                                      |                          | LaRh <sub>2</sub> Ga <sub>2</sub> | LaPd <sub>2</sub> Ga <sub>2</sub> [6,7] |
|--------------------------------------|--------------------------|-----------------------------------|-----------------------------------------|
| T <sub>c</sub>                       | (K)                      | 3.7                               | 1.9                                     |
| $\mu_0 H_{c1}$                       | (mT)                     | 4.6                               | -                                       |
| $\mu_0 H_{c2}$                       | (T)                      | 1.32                              | 0.67                                    |
| $\lambda(0)$                         | (nm)                     | 378                               | -                                       |
| $\xi(0)$                             | (nm)                     | 15.8                              | -                                       |
| $\kappa_{ m GL}$                     |                          | 23.9                              | -                                       |
| γ                                    | (mJ/mol K <sup>2</sup> ) | 7.39                              | 10.2                                    |
| β                                    | (mJ/mol K <sup>4</sup> ) | 0.906                             | 1.86                                    |
| $\varTheta_{ m D}$                   | (K)                      | 220                               | 174                                     |
| $\Delta C_{\rm el}/\gamma T_{\rm c}$ |                          | 1.46                              | 1.53                                    |
|                                      |                          |                                   |                                         |
| $\lambda_{e-p}$                      |                          | 0.641                             | $0.570^{*}$                             |
| $N(E_{\rm F})$                       | (states/eV/ f.u.)        | 1.91                              | $2.76^{*}$                              |

5-1 表 LaRh<sub>2</sub>Ga<sub>2</sub> と LaPd<sub>2</sub>Ga<sub>2</sub>の物性パラメータ

\*の値は[6]で報告された値を用いて算出した.

5.2 RRh<sub>2</sub>Ga<sub>2</sub>化合物の物性

新規化合物として報告した R = La, Pr, Nd に既存化合物の R = Ce を加えて比較する[27]. 各化合物の物性を 5-2 表に示す.  $RRh_2Ga_2$  化合物は非磁性元素 La で超伝導を示したが,磁性元素では超伝導を示さなかった. 一般的に超伝導と磁性は競合関係にあることから,従来の超伝導理論に沿った結果となった. Ce からNd まで 4f 電子を増やした結果,転移温度 $T_{ord}$ が大きくなり c が小さくなった. 転移温度は de Gennes factor に比例し,

$$T_{\rm ord} \propto (g-1)^2 J(J+1)$$
 5-1式

で表される. したがって 5-1 式に比例して $T_{ord}$ が大きくなったと示唆される[28]. また c はランタノイド収縮によって小さくなったと示唆される[28].

| R                    |                                         | La                | Ce [27] | Pr            | Nd           |
|----------------------|-----------------------------------------|-------------------|---------|---------------|--------------|
| 磁気秩序                 |                                         | 超伝導               | 常磁性     | 弱強磁性          | 弱強磁性         |
| 転移温度T <sub>ord</sub> | (K)                                     | $T_{\rm c} = 3.7$ | -       | $T_{C} = 7.4$ | $T_{C} = 13$ |
| γ                    | (mJ mol <sup>-1</sup> K <sup>-2</sup> ) | 7.39              | 130     | 238           | 521          |
| С                    | (Å)                                     | 9.9166            | 9.7202  | 9.5977        | 9.5176       |
| de Gennes            |                                         |                   | 0.170   | 0.8           | 1 0/1        |
| factor               |                                         | -                 | 0.179   | 0.0           | 1.041        |

5-2 表 RRh<sub>2</sub>Ga<sub>2</sub>の物性

#### 第6章 まとめ

本研究では新しい Type-II超伝導体 LaRh<sub>2</sub>Ga<sub>2</sub> (*T*<sub>c</sub>= 3.7 K)を発見した. さらに磁化 率と電気抵抗率と比熱の測定から物性パラメータを報告した. 上部臨界磁場の温 度依存性から LaRh<sub>2</sub>Ga<sub>2</sub> はマルチギャップ超伝導の可能性が示唆されたが、明確な 証拠は得られなかった. NMR 測定を行うことでより詳細な物性の評価が望まれ る. また LaRh<sub>2</sub>Ga<sub>2</sub> と LaPd<sub>2</sub>Ga<sub>2</sub> の比較から,局所空間反転対称性の破れた CaBe<sub>2</sub>Ge<sub>2</sub> 型構造を有する LaTM<sub>2</sub>Ga<sub>2</sub> 化合物の超伝導転移温度は、電子格子結合定数以外の因 子が関係している可能性がある.

さらに非磁性元素 La を磁性元素に置き換えた化合物 PrRh<sub>2</sub>Ga<sub>2</sub>, NdRh<sub>2</sub>Ga<sub>2</sub> を作 成し,磁化率と電気抵抗率と比熱の測定から物性パラメータを報告した.共に超 伝導を示さず,比熱の測定から y が数百程度の値を持つことが明らかになった. その他の磁性元素に置き換えた場合の物性を評価し, CaBe<sub>2</sub>Ge<sub>2</sub> 型構造を持つ化合 物の超伝導と磁性の関係性を明らかにすることが望まれる. S1 Rh<sub>3</sub>Ga<sub>5</sub>の物性

付録

多結晶試料 Rh<sub>3</sub>Ga<sub>5</sub> を仕込み組成比 Rh:Ga = 3:5 として Ar ガス雰囲気下のア ーク溶解法で作成した.

試料を粉砕して PXRD で測定した. 得られた PXRD パターンを Rietveld 法 で解析した. その結果を S1-1 図に示す. 試料のパターンは Rh<sub>3</sub>Ga<sub>5</sub>を主相とし, 不純物 RhGa<sub>3</sub>を含んでいることが明らかになった. また  $2\theta = 30^{\circ}, 78^{\circ}$ に未知の ピークが観測された.



S1-1図 RhGa<sub>3</sub>の Rietveld 解析

37

Rietveld 解析の結果, 信頼性因子  $R_{wp} = 11.402$ %であった. その他の構造パラメータを S1-1 表に示す.

| Atom | Wyckoff<br>symbol | X       | у        | Z        |
|------|-------------------|---------|----------|----------|
| Rh1  | 2i                | 0.41(1) | 0.206(6) | 0.594(5) |
| Rh2  | 2i                | 0.37(1) | 0.202(7) | 0.95(1)  |
| Rh3  | 2i                | 0.13(1) | 0.46(1)  | 0.752(8) |
| Ga1  | 2i                | 0.71(1) | 0.44(1)  | 0.948(7) |
| Ga2  | 2i                | 0.06(1) | 0.929(7) | 0.389(7) |
| Ga3  | 2i                | 0.50(1) | 0.853(8) | 0.848(6) |
| Ga4  | 2i                | 0.12(1) | 0.800(9) | 0.975(6) |
| Ga5  | 2i                | 0.29(1) | 0.496(7) | 0.511(8) |

S1-1 表 Rh<sub>3</sub>Ga<sub>5</sub>の構造パラメータ

空間群 *P*1, *Z* = 2, *a* = 5.03(2) Å, b = 6.64(2) Å, *c* = 7.86(3) Å, *a* = 100.6(1) °,  $\beta = 104.3(2)$  °,  $\gamma = 101.0(1)$  °,

 $R_{\rm wp} = 11.402$  %,  $R_{\rm e} = 2.397$  %, S = 4.7564,  $R_{\rm B} = 3.855$  %,  $R_{\rm F} = 1.933$  %

試料の直流磁化率を SQUID で測定した. H = 1 mT の直流磁化率の温度依存 性 $\chi(T)$ を S1-2 図に示す. 試料は  $T_c = 4.3 \text{ K}$  でわずかに反磁性を示した. このわ ずかな反磁性は Rh<sub>3</sub>Ga<sub>5</sub>の強度と対応しない大きさであることから, 超伝導転 移は未知不純物のものである. したがって Rh<sub>3</sub>Ga<sub>5</sub> の物性は常磁性であり, RRh<sub>2</sub>Ga<sub>2</sub> の物性に影響を与えないと結論づけた.



S1-2図 RhGa3の直流磁化率の温度依存性

謝辞

本研究を行うにあたって多くの方々のお力をお借りしました.指導教員である村 中隆弘准教授には,研究の進め方をはじめ,実験装置の取扱や物性に関する議論, 科学雑誌への寄稿まで多くのことを指導していただきました.3年間研究をともに した潮田君をはじめ,研究室のメンバーとは雑談や議論をすることができました. 分析にあたって青山学院大学機器分析センター下山淳一教授にご協力いただきま した.最後になりますが,上京から6年間学業に専念できるように支えていただ いた両親に感謝致します.皆様,本当にありがとうございました.

#### 参考文献

- [1] 溝口正,物質科学の基礎物性物理学,裳華房,1989年
- [2] 上田和夫,大貫惇睦,重い電子系の物理,裳華房,1998年
- [3] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, *Phys. Rev. Lett.* 43 (1979) 1892
- [4] T. T. M. Palstra, G. Lu, A. A. Mcnovsky, G. J. Nieuwenhuys, P. H. Kes, J. A. Mydosh, *Phys. Rev. B* 34 (1986) 4566
- [5] M. Vališka, J. Pospíšil, J. Prokleška, M. Diviš, A. Rudajevová, V. Sechovský, J. Phys. Soc. Jpn. 81 (2012) 104715
- [6] J. Kitagawa, M. Ishikawa, J. Phys. Soc. Jpn, 68 (1999) 2380
- [7] M. Klicpera, J. Pásztorová, P. Javorský, Supercond. Sci. Technol.27 (2014) 085001
- [8] P. Klicpera, P. Javorský, A. Hoser, J. Alloys Compd. 596 (2014) 167
- [9] P. Doležala, A. Rudajevováa, K. Vláškováa, D. Kriegnera, K. Václavováb, J. Prchala, P. Javorskýa, J. Cryst. Growth. 475 (2017) 10
- [10] S. Ganesanpotti, T. Yajima, T. Tohyama, Z. Li, K. Nakaoka, K. Nakano, Y. Nozaki, C. Tassel, Y. Kobayashi, H. Kageyama, J. Alloys Compd. 583 (2014) 151
- [11] Q. G. Mu, B. J. Pan, B. B. Ruan, T. Liu, K. Zhao, L. Shan, G. F. Chen, Z. A. Ren, Sci. China-Phys. Mech. Astron. 61 (2018) 127409
- [12] S. Kawasaki, Y. Tani, T. Mabuchi, K. Kudo, Y. Nishikubo, D. Matsuoka, M. Nohara, G. Zheng, *Phys. Rev. B* 91 (2015) 060510(R)
- [13] K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653
- [14] F. Izumi, K. Momma, Solid State Phenom. 130 (2017) 15
- [15] T. H. Geballe, B. T. Matthias, V. B. Compton, E. Corenzwit, Jr., G. W. Hull, L. D. Longinotti, *Phys. Rev.* 137 (1965) A119
- [16] E. Helfand, N. R. Werthamer, Phys. Rev. Lett. 13 (1964) 686
- [17] E. Helfand, N. R. Werthamer, Phys. Rev. 147 (1996) 288-
- [18] N. R. Werthamer, E. Helfand, P. C. Hohenberg, Phys. Rev. 147 (1966) 295

- [19] F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, D. Mandrus, *Nature* 453 (2008) 903
- [20] J. P. Carbotte, Rev. Mod. Phys.62 (1990) 1027
- [21] S. V. Shulga, S. -L. Drechsler, G. Fuchs, K. -H. Müller, K. Winzer, M. Heinecke, K. Krug. *Phys. Rev. Lett.* 80(1998) 1730
- [22] N. Ni, M. E. Tillman, J. -Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud'ko, P. C. Canfield, *Phys. Rev. B* 78 (2008) 214515
- [23] K. Kudo, Y. Nishikubo, M. Nohara, J. Phys. Soc. Jpn, 79 (2010) 123710
- [24] X. Xiaofeng, B. Chen, W. H. Jiao, B. Chen, C. Q. Niu, Y. K. Li, J. H. Yang, A. F. Bangura, Q. L. Ye, C. Cao, J. H. Dai, G. Cao, N. E. Hussey, *Phys. Rev. B* 87 (2013) 224507
- [25] W. L. McMillan, Phys. Rev. 167 (1968) 331
- [26] J. Chen, Q. Zheng, Q. Y. Dong, J. R. Sun, B. G. Shen, Appl. Phys. Lett. 99 (2011) 122503
- [27] V. K. Anand, D. T. Adroja, A. Bhattacharyya, B. Klemke, B. Lake, J. Phys.: Condens. Matter, 29 (2017) 135601
- [28] Shuang Jia, Ni Ni, S. L. Bud'ko, P. C. Canfield, Phys. Rev. B 80 (2009) 104403