
Studies on CUDA Offloading for Real-Time
Simulation and Visualization

Edgar Josafat Mart́ınez-Noriega

電気通信大学

情報・通信工学専攻

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Engineering

March 2020

Studies on CUDA Offloading for Real-Time
Simulation and Visualization

Chairperson: Prof. Narumi Tetsu (成見 哲 先生)

Member: Prof. Terada Minoru (寺田 実 先生)

Member: Prof. Nakatani Yoshinobu (仲谷 栄伸 先生)

Member: Prof. Yoshinaga Tsutomu (吉永 努 先生)

Member: Prof. Miwa Shinobu (三輪 忍 先生)

© Copyright

Edgar Josafat Mart́ınez-Noriega, 2020

All rights reserved.

概要

リアルタイムのシミュレーションと可視化のためのCUDAのオフロードに関する

研究

マルチネス　ノリエガ　エドガー　ホサファット

電気通信大学

本論文では, GPU を使ったリアルタイムのシミュレーションを可視化する際に, 計算部

分をネットワークの先にオフロードすることで計算効率を向上できることを示している.

GPU はもともと3D グラフィックス用に開発されたものではあるが, 近年はGPGPU を呼

ばれる汎用的な計算が行えるようになってきている.様々なコンピュータシミュレーショ

ンもGPU 上で実行出来るが, その中でCUDA と呼ばれるアーキテクチャはGPU 業界の事

実上の標準技術となっている.一方タブレットやスマートホンのようなモバイルデバイス

は, タッチ機能や加速度センサーのようなPCには無かった機能が追加されており,データ

を可視化し操作する際のやり方が以前とは変わってきている.例えば分子シミュレーショ

ンの世界では, インタラクティブに操作可能な程シミュレーションが高速化されてきてお

り, 特定の分子を人工的に動かすことで周りの分子の反応を見るなどシミュレーション技

術の新しい方向性が生まれている. ただしモバイルデバイスには消費電力的な制約があ

り, PC 用のGPU 程の性能は期待出来ない. このようなモバイルデバイスの性能を補完す

るために, クラウド技術を使う方法がある. つまり計算の重い部分に関してはネットワー

クの先のGPU サーバーに処理を任せる.このようなやり方をCUDA のオフロードと呼び,

GVirtus, ShadowFax, DS-CUDA, GPUvm, MGP, vCUDA, rCUDA 等のフレームワークが

提唱されている. 本論文では, リアルタイムの分子動力学シミュレーションを対象のアプリ

ケーションと定め,タブレット端末上で高速に実行するために有効なオフロードの方法を

検討した. 最初にDS-CUDA を用いてCUDA の計算だけをGPU サーバーにオフロードす

るシステムを評価した. 特にこれまでサポートされていなかったAndroidタブレットから

のオフロードシステムも開発した. この結果タブレット単体に比べて高い演算性能は達成

できたものの, 画面表示のフレームレートが十分に滑らかには出来なかった. これはタブ

レットとGPU サーバー間の通信がボトルネックになっていたからである. このボトルネッ

VII

クを無くすため, CUDA のDynamic Parallelism 機能を用い, rCUDA と組み合わせた. この

結果高い演算性能と同時に高いフレームレートを実現出来る組み合わせを発見した. 更

に, タブレットとGPU サーバーの合計の消費電力を測定し, 提案したシステムがGPU サー

バー単体よりも高い電力効率を達成したことを示した. つまりタブレットの操作性を持ち

ながら高い計算性能を持つシステムが実現した. 最後に, オフロードの性能を更に向上さ

せるための手法を提案した. CUDA 機能と描画機能でメモリを共有するInteroperability 機

能や, 動画のエンコード/デコード機能を用いることにより, よりオーバーヘッドが減るこ

とが期待出来る. 近年のゲームストリーミングサービスで同様の機能が使われていること

から, コンピュータシミュレーションの世界でもこのようなオフロードの仕組みが有用に

なることが期待される.

VIII

Abstract

Studies on CUDA Offloading for Real-Time Simulation and Visualization

by

Edgar Josafat Mart́ınez-Noriega

The University of Electro-Communications

Professor: Narumi Tetsu

The Graphics Processing Unit (GPU) is a co-processor designed to aid the Central Pro-

cessing Unit (CPU) for rendering 3D graphics. The prompt development of these graphics

chips due to the popularity of games and media design helped the GPU to evolve its ubiquitous

parallel architecture. The programmability of these devices increased with the introduction

of shaders, and thus using the GPU for more than rendering pixels. A new paradigm was

introduced by General Purpose Computing on Graphics Processing Unit (GPGPU). At the

present time, super computers in the top ten are powered by GPUs in order to accelerate

physical phenomena simulations. Moreover, programming models such as Compute Unified

Device Architecture (CUDA) and OpenCL have been proposed from major GPU manufac-

tures. Nevertheless, CUDA has proven to be the first choice from the developer community

due to its extensive support and applications.

On the other hand, post-PC devices such as smart phones and tablets have become

elemental in our daily life. These mobile devices equipped with touch screen and many

sensors, provide new ways to visualize and interact with data. Interactive modelling on

Molecular Dynamics (MD) simulation, is one example where these devices can offer a better

user experience. However, post-PC devices are designed for low power consumption, thus

their computational power is not enough to perform such compute intensive applications.

Moreover, a new approach that can complement the low computing power of mobile

devices is cloud computing. Implementing a server-client scheme, cloud computing allows

to offload computational intensive routines and hookup with massive parallel accelerators

such as GPUs. In order to have access to these hardware accelerators, tools such as GPU

virtualization frameworks has been proposed: GVirtus, ShadowFax, DS-CUDA, GPUvm,

IX

MGP, vCUDA, and rCUDA. These virtualization tools can handle a remote GPU in order

to accelerate execution within applications and reducing code complexity.

In this dissertation, we study and analyse the rendering, computational power, and power

efficiency when GPU virtualization tools are implemented to accelerate an MD simulation and

visualization on a tablet device. We proposed to offload the most computational intensive

routines to a remote GPU. Two cases are reported: In the first scenario, we used a low-

powered GPU from a notebook as a server in order to keep power efficiency of the whole

system. We selected DS-CUDA framework to enable the development of remote offloading

using an Android tablet. Only CUDA kernels were offloaded since DS-CUDA preprocessor

has the capability to wrap seamlessly CUDA code without modification. Calculation speeds

are reported when the MD was compared between GPU and CPU implementation inside

the tablet device. However, to get larger calculation performance, the visualization speed

need to be decreased. The efficiency of GPU can be improved by decreasing the frequency

of updating a frame to render. Nevertheless, this is not the optimal way to achieve real-time

visualization of MD simulations. By the time of performing the experiments, we were one of

the first attempts to bring GPU virtualization to an Android device.

In the second case, a novel idea to tackle communication reduction in the execution of

real-time MD simulation and visualization using tablets is proposed by applying Dynamic

Parallelism (DP) in the GPU. We switched to the rCUDA virtualization framework instead of

DS-CUDA, since the first one is more up to date and presents better communication latency

compared against the second one. We implemented DP in order to hide the latency to call

a GPU routine from a CPU in our MD simulation and visualization. This technique allows

our system to achieve better computational performance, more frames per second than a

tablet powered by a CUDA capable GPU. Moreover, our results confirm that keeping the

GPU saturated with more steps in the MD simulation per frame helped in the reduction

of the latency from the client-side. However, using more steps affects the frame rate of the

visualization. We found that 250 steps were optimal for our system achieving enough frame

rate and better power efficiency when multiple clients were used.

Our system proposal is capable of real-time MD simulation and visualization. With a

dt = 2× 10−15 we can reach proximately 800 nsec/day with a frame rate of 20 fps for a 2,744

particles using our proposed system. We were able to achieve interactive frame rates by

tuning parameters using a remote GPU from a tablet device. This is rather not conventional

since offloading involves the communication bottleneck from the network. However, applying

DP we were able to compensate computational and rendering speed.

Lastly, we set up the following research directions by reducing the communication over-

head between the rendering and computation process using a remote GPU. We proposed

to apply software capabilities such as Graphics Interoperability and take advantage of the

X

in-hardware modules of encoder/decoder for image processing. The main idea is to broadcast

through the network the final frame buffer. Preliminary results demonstrated poor perfor-

mance. However, customizing the communication routines with buffer techniques could lead

to better execution. This research path presents huge expectations since the evolution of the

GPU will be boosted by the incoming services such as game streaming.

XI

Acknowledgements

I would like to express my special appreciation and thanks to my advisor, Professor Dr.

Narumi Tetsu. For his continuous support, pieces of advice and encouragement, in both, life

and research. For all his feedback, knowledge and leverage on the topics using the GPU. To

provide me the chance to be in his laboratory for more than 7 years. For all his positive

energy and patience when I was through rough times during my Master and PhD. course.

Special thanks go to Professor Dr. Syunji Yazaki for his encouragement, bits of advice and

discussion on the preparation of the paper manuscript. As well as for all his feedback on my

research topic. Special mention also goes to Professor Uehara Suwako for her unconditional

support. For all her advice on English skills. Also for giving me the opportunity to work on

the SAP and contributing to her research with numerous projects. For her friendship and

advice during hard times. As well I would like to thank Professor Dr. Choo who is in charge

of the JUSST program. For all the opportunities to teach and to be part of the staff. Also, for

all his pieces of advice. I am in debt also with the JUSST program from this University. To

all my friends in UEC and lab members during all these years. Especially, to Jairo, Edgarito,

and Julio.

To my family for all their support. My mother Edith and my father Raul. Without their

love, wisdom and support, this achievement in my life would not be possible. To my brother

Raul for his encouragement, advice, and knowledge. For his support during hard times and

a positive vibe, always thank you very much, brother. As well, to all my family in Mexico.

Special thanks also to Dr. Trejo who provided me support in difficult times.

Finally, I would like to give a special mention to MengMeng who has been there always

for me. For all her love, inspiration, patience, support and the encouragement necessary to

conclude my PhD.

XIII

Contents

概要 . VII

Abstract . IX

Acknowledgements . XIII

List of Tables . XVII

List of Figures . XXI

List of Listings . XXIII

1 Introduction 1

1.1 Research Purpose - Objective . 3

1.2 Related Work . 5

1.3 Thesis Organization . 7

2 General-Purpose Computing on the GPU 9

2.1 General GPU Architecture . 10

2.2 CUDA Overview . 11

2.3 CUDA Programming Model . 11

2.3.1 Kernels . 12

2.3.2 Thread Management . 14

2.3.3 Memory . 15

2.4 CUDA Capabilities . 16

2.4.1 Dynamic Parallelism . 17

2.4.2 Graphics Interoperability . 18

2.4.3 Hardware-Based Video Encoder and Decoder 18

2.4.4 Tensor Cores for AI . 19

2.4.5 RT Cores for Ray Tracing . 19

2.5 CUDA on Mobile Devices . 19

2.6 Remote GPU through Virtualization . 20

2.6.1 GPU Virtualization Techniques . 20

2.6.2 Remote GPU using API . 21

3 Molecular Dynamics Simulation and Visualization - Claret 23

3.1 General Description of MD Simulations . 23

3.2 Claret MD Simulation Software . 25

3.2.1 MD Core Function . 28

3.2.2 Interactive Capabilities . 28

XIV

3.3 Claret Versions . 29

3.3.1 Version 0.11 . 30

3.3.2 Version 0.53 . 30

3.3.3 Version 1.0 . 31

3.3.4 Version 2.0 . 32

3.3.5 Android Version . 33

4 Offloading with a naive approach: DS-CUDA case 37

4.1 Method . 38

4.1.1 DS-CUDA Overview . 38

4.1.2 DS-CUDA for Android . 39

4.1.3 System Description . 41

4.2 Test Description . 41

4.2.1 Bandwidth Test . 43

4.2.2 Matrix Multiplication . 43

4.2.3 Molecular Dynamics Simulation and Visualization 43

4.3 Results . 45

4.3.1 Bandwidth Performance . 45

4.3.2 Matrix Multiplication Performance . 47

4.3.3 MD Simulation and Visualization Performance 48

4.4 Conclusion . 50

5 Reducing communication latency through Dynamic Parallelism: rCUDA

case 53

5.1 Communication Optimization Policy . 55

5.2 Analysis . 57

5.3 Methodology . 58

5.3.1 rCUDA Virtualization Framework Overview 58

5.3.2 Proposed System Overview . 60

5.4 Test Description . 61

5.4.1 Bandwidth Test . 62

5.4.2 Molecular Dynamics Simulation and Visualization 62

5.5 Performance Results . 65

5.5.1 Bandwidth Performance . 65

5.5.2 MD Simulation and Visualization Performance 66

5.6 Conclusion . 73

6 Future Directions 77

6.1 Migrating All to GPU: Avoiding Communication Bottleneck 77

6.1.1 Implementing Graphics Interoperability 78

6.1.2 Implementing Encode/Decoder on the GPU for Frame-Buffer Retrieval 80

6.1.3 EdRender: First Approach to Graphics Interoperability on GPU Vir-

tualization Frameworks . 81

XV

6.1.4 EdRender - Preliminary Results . 83

6.2 Conclusion . 86

7 Concluding Remarks 87

List of contributions 91

References 93

XVI

List of Figures

1.1 CUDA applications over different fields. 2

1.2 System prototype as main motivation of this study. 4

2.1 Basic architecture of a “Heterogeneous” system GPU-CPU. 10

2.2 C/C++ compilation trajectory using nvcc. 12

2.3 Thread, Block and Grid organization inside of CUDA architecture. 14

2.4 Different memory regions on CUDA architecture. 17

2.5 API remoting scheme. 22

3.1 A general flow for a Molecular Dynamic simulation. 24

3.2 Image sample of Claret MD simulator. 25

3.3 Sample image of version 0.11 . 30

3.4 Sample image of version 0.53 . 31

3.5 Sample image of version 1.0 . 32

3.6 Sample image of version 2.0 . 33

3.7 Force implementation on CUDA. 34

3.8 Sample image of Android version. 34

3.9 Life cycle of an Android application. 36

4.1 Diagram of a typical DS-CUDA system. 39

4.2 DS-CUDA pre-processor output example. 40

4.3 DS-CUDA client library code structure for socket communication through TCP

protocol. 40

4.4 Final client compilation phase for Android application using NDK. 41

4.5 Test bed system for a DS-CUDA proposal. 42

4.6 Simplified schematic algorithm of MD simulation. Step for simulation before

rendering can be switched to 10 or 100. 44

4.7 Data transfer speed using CUDA’s cudaMemcpy function over different types

of connection. H2D means Host to Device direction and D2H is opposite. . . 45

4.8 Computation performance for Matrix multiplication test. Horizontal axis

shows the i scaling factor which defines the size of the matrices. Results

are shown using Giga floating point operations per second. 47

XVII

4.9 Computation performance for MD simulation and visualization test. Perfor-

mance to compute force between particles for every 10 steps A) and 100 steps

B) are reported. Results are shown using Giga floating point operations per

second. 48

4.10 Visualization performance for MD simulation. Performance to render one

frame for MD is reported. The number of steps to update the system was

set to 10 steps A) and 100 steps B). Results are shown using frames/second. . 49

5.1 Total time percentage from kernel, data transfer and latency time of Claret

using DS-CUDA. MD step is set to 100. No DP is implemented. 58

5.2 Total time percentage from kernel, data transfer and latency time of Claret

using rCUDA. MD step is set to 100. DP is implemented. 59

5.3 Typical architecture for virtual GPU systems. 60

5.4 MD simulation performance between DS-CUDA and rCUDA frameworks. . . 61

5.5 Test system. 61

5.6 Simplified schematic algorithm of the MD simulation. The number of simula-

tion steps before rendering can be set to a few hundred. 64

5.7 Data transfer speed using CUDA’s cudaMemcpy function over different types

of connection. H2D: Host to Device; D2H: Device to Host. Pageable memory

is used. 65

5.8 MD simulation performance. Results of computing the force between particles

is shown every 100 and 500 steps. Configurations include using and excluding

DP. Performance is presented in Gflops. 68

5.9 MD simulation and visualization performance. The rendering speed of our

experiment is shown. 69

5.10 Computation performance vs frame rate. The number of particles is set to

n = 2744. Small similar objects represents the Gflops measured with only

GPU time as reference. 71

5.11 Power efficiency vs frame rate. The number of particles is set to n = 2744. . . 72

6.1 GPU scheme to perform general purpose computing using CUDA. 78

6.2 GPU scheme to perform rendering using OpenGL. 79

6.3 GPU scheme to perform rendering and general purpose computing. No opti-

mization is used between OpenGL and CUDA. 79

6.4 GPU scheme to perform rendering and general purpose computing. Graphics

interoperability optimization is used between OpenGL and CUDA. 79

6.5 GPU virtualization for general purpose computing using CUDA. 80

6.6 GPU virtualization for remote rendering using OpenGL. 81

6.7 Full GPU virtualization for remote rendering and general purpose computing.

CUDA and OpenGL are used. 81

6.8 EdRender process flow. Server and Client implementations are presented. . . 82

XVIII

6.9 MD simulation and visualization using graphics offloading. Rendering speed

is presented in seconds. CUDA-MemCPY and CUDA-Interop refers to local

execution. 85

XIX

List of Tables

1.1 Unit price in USD for specialized computer accelerators. 1

2.1 CUDA memory attributes. W/R = Reading and Writing. R = Read only. . . 15

3.1 Keyboard input list for Claret. 26

3.2 Parameters of Tosi-Fumi potential for Na Cl MD Simulation. B = 3.15Å−1 . 28

3.3 Technical differences between OpenGL / OpenGL ES on Claret port process. 35

4.1 Server specifications. Notebook powered with NVIDIA’s 970M GTX GPU. . 42

4.2 Client specifications. NVIDIA tablet “Shield Portable”. 43

4.3 Embedded system Jetson K1 powered with NVIDIA’s Tegra GPU. 43

4.4 Memory copy latency of CUDA and DS-CUDA. 46

5.1 Communication optimization strategy for Claret using GPU. The number of

Kernel and memory copy calls are reported. Variable step refers to how often

the MD simulation is executed during one frame. In our experiments it is set

to few hundreds. 56

5.2 Server specifications. Notebook powered with NVIDIA’s 1070 GTX GPU. . . 60

5.3 Client specifications. Surface Pro 4 tablet. 62

5.4 Desktop powered with NVIDIA’s 2080 RTX GPU. 62

5.5 Desktop powered with NVIDIA’s 1080 GTX GPU. 62

5.6 Notebook powered with NVIDIA’s 970M GTX GPU. 63

5.7 NVIDIA’s SHIELD Tablet specifications. 63

5.8 Memory copy and kernel latency. 66

5.9 Power efficiency (Gflops/watt) using multiple client combinations. 73

5.10 Detail information for Power efficiency (Gflops/watt) using multiple client

combinations. The number of steps are 250, and n = 2744. 74

6.1 Server specifications. Desktop powered with NVIDIA’s Quadro K5200 GPU. 84

6.2 Client specifications. Notebook powered with NVIDIA’s 1070 GTX GPU. . . 84

XXI

Listings

2.1 Simple kernel structure for CUDA C/C++ code. 13

3.1 C code for Claret main routine. 27

4.1 Configuration file (Android.mk) sample to generate DS-CUDA static library. 41

4.2 Configuration file (Application.mk) sample to include DS-CUDA static library. 42

XXIII

1

Introduction

At the beginning of the history of computers, models such as the Electronic Numerical In-

tegrator Computer (ENIAC) and the Universal Automatic Computer (UNIVAC) occupied a

whole room of a building providing only 1K Floating-point Operation Per Second (FLOPS).

These machines were the ancestors of the supercomputers, introducing a new field called

High Performance Computing (HPC) at the time. The applications for these big computers

were only for military usage. With the advance of the TTL technology on the decade of the

70’s, companies such as Intel, ARM, Zilog, IBM, and Motorola started the development of

microprocessors. They welcome a digital era for computing. Since that time, the Central

Processing Unit (CPU) was the core of the computers. The CPU evolved to become a sophis-

ticated piece of hardware which is focused on dispatching work through the Operating System

(OS) for modern computers. However, there has been the development of another kind of

hardware accelerator that is dedicated to a special purpose. These devices are designed at

a hardware level to solve a specific task, such as Molecular Dynamics (MD) simulations.

Some of the characteristics on these devices are highly parallel architecture and multi-core

implementation. Anton [1], ATOMS [2], FASTRUN [3], CSX600 [4], and MD-GRAPE [5]

are some examples. Nevertheless, the development of these specialized hardware involves a

huge budget, thus the price of each device is really high. Table 1.1 shows the estimated cost

of these devices when they were released.

Developer Accelerator Estimate cost per Unit

CSX600 ClearSpeed ˜ $10,0001

ATOMS AT&T Bell ˜ $186,000 (1990)
FASTRUN Columbia University ˜ $17,000 (1989)
MDGRAPE-3 Riken ˜ $9,000,000
GPU NVIDIA / ATI ˜ $200-8002

Table 1.1: Unit price in USD for specialized computer accelerators.

1

Chapter 1 Introduction

CUDA

Bio-Informatics

Experimental
Chemistry

Structural
Mechanics

Data Science

Defence

Computer Vision

Medical Imaging

Weather
Prediction

AI

Figure 1.1: CUDA applications over different fields.

The Graphics Processing Unit (GPU) was born due to the need for rendering pixels and

presents into a display that the modern OS requires. This is due to graphical applications

and the window system that the OS implemented for a better user experience. As well,

media, CAD design, and video games boosted the evolution of the GPU, making its mas-

sive production relatively cheap to develop. Yet, this is another specialized hardware that

presents a parallel architecture design. The GPU is optimized for Floating-point calculation

due to the primitive image processing operation for color output. This can be done using

its massively programmable processors. During the 80’s decade rendering machines such as

Ikonas [6], Pixel Planes 5 [7], the Pixel Machine [8] were proposed for general-purpose com-

puting. Hence, a new paradigm was introduced: General-Purpose computing on Graphics

Processing Unit (GPGPU). On the first attempts of using this new paradigm in recent GPUs,

advance knowledge of the graphics pipeline was necessary. Controlling buffers inside the GPU

for data allocation was necessary, and programming shaders provided the ability to imple-

ment the algorithm. The final computation did not involve pixels or any image-related data.

NVIDIA, the GPU company introduced Compute Unified Device Architecture (CUDA) in

2006. CUDA is an architecture and programming framework that enables dramatic increases

in computing performance by extending shader units to general-purpose computing. Since its

introduction, CUDA has successfully accelerated applications in some of the fields presented

in Figure 1.1. Hence, top of supercomputers, in the list of TOP500 [9], are equipped with

GPUs.

Moreover, in order to utilize a conglomerate of GPUs in the cloud environment, HPC

virtualization tools have been proposed. These frameworks provide the ease for programming

1This cost is not the actual cost per unit rather reflects the cost of one node.
2This cost represents only the public unit for the consumer.

2

Section 1.1 Research Purpose - Objective

in multi-node heterogeneous computers by virtualizing GPUs on a distributed network, as if

they were attached to a single node. Thus, using a remote GPU from another device as an

accelerator of this kind is feasible with such virtualization frameworks.

On the other hand, since the introduction of the first iPhone from Apple in 2007, so-

called Post-PC devices, came along to the scenario to define a new way to interact with

mobile computers. Nowadays, these devices are essential in our main daily activities such as

reading emails, taking pictures, playing games, using social networks and also creating our

own content. However, its inherent mobile nature forces the design of these devices with low

computation power.

Combining these two worlds, mobility (embedded devices) and GPUs have been blocked

in the growth path. This is mainly due to the huge power consumption that GPUs required

to work. Discrete or desktop GPUs have a range from ∼150 to ∼250 Watts presents a consid-

erable constraint to be implemented in low-power environments such as embedded devices.

However, for laptop PC computers integrated GPUs are implemented. These integrated

GPUs are designed for power efficiency and its power consumption in teens of Watt. Even

though integrated GPUs save a considerable amount of power consumption, they can deliver

almost the same computing power of their desktop counterpart models when a parallel task

is given [10]. In this dissertation the combination of mobile devices with these integrated

GPUs is presented in order to achieve a better power efficiency for the whole system.

1.1 Research Purpose - Objective

The main idea in the early stages of this research was the conception of a prototype similar to

that shown in Figure 1.2. The main motivation behind this study is merging high-performance

machines with post-PC devices. These touching screen devices present different sensors and

many user interface capabilities which lead to a new way to dive into the information presented

to the user. Nevertheless, the mobile device itself is not equipped with enough computational

power to perform heavy computational simulations. It presents a challenge that must be

tackle taking into account the different scenarios that are already proposed.

In order to understand the offloading from client devices to cloud servers, we have to

identify the different characteristics and capabilities that servers in the cloud offers. Narumi

et al. [11] classify these combinations in three different categories:

� A) 99K Most of the calculation and rendering is performed in the server cloud.

� B) 99K Only rendering is performed in the server cloud.

� C) 99K Only calculations is performed in the server cloud.

On the A) side, we can define the client as zero-client since only the input from sensors

is sent to the cloud. The server, retrieve only images in the form of video to the client.

3

Chapter 1 Introduction

Super Computer

Tablet device

Figure 1.2: System prototype as main motivation of this study.

There are currently solutions of this type such as NVIDIA GRID and Amazon EC2. This

kind of approach restrains the application development environment since they only provide

popular ISV applications. Moreover, Special API or another kind of mechanism is needed

if full tablet sensors are required. Finally, video transfer could become a bottleneck, thus

special compression may be needed, pushing and consuming computational power from the

client.

On the B) side, only rendering APIs such as OpenGL, Vulkan or Direct3D are viable

to utilize. Approaches such as VirtualGL have been proposed. However, the missing APIs

for high-performance computing such as CUDA are not supported which implies a a big

disadvantage since we want to merge HPC applications.

On the C) side, rendering, and other light processes are performed on the client-side.

The development environment is not a constraint here since only CUDA code is utilized

for offloading. Users have full control and access to the native development environment.

Thus, all access to sensors and other client capabilities. Finally, with this approach, the

developer can benefit from high-end GPUs on a cloud server by hooking CUDA APIs in their

applications.

Utilizing GPU virtualization frameworks are a feasible solution since they provide the

ability to use remotely a GPU in a cloud environment.

We highlight, the main objectives presented in this dissertation:

First

4

Section 1.2 Related Work

We proposed a system composed of a server equipped with a GPU accelerator device in

order to perform an MD simulation and to visualize on a tablet device. We used GPU

virtualization tools in order to use remotely a GPU in a cloud environment.

Second

We used DS-CUDA framework in order to offload intensive parts of the MD simula-

tions. Only kernel information is offloaded in this case. An analysis of communication,

computational power, and rendering performances are presented.

Third

We utilized rCUDA framework to further enhance our proposed system implementing

Dynamic Parallelism (DP) as a mechanism to avoid communication inside kernel launch.

An analysis of computational power, rendering speed, and electric power performance

is reported. Furthermore, results using various clients for better computational and

electric power distribution is included as well.

Fourth

We proposed to enable GPU graphics acceleration in our server-client scheme by im-

plementing graphics interoperability capabilities. These features are not available on

the GPU virtualization frameworks due to their local execution nature. However, using

in-hardware modules such as encoder-decoder, we give the first steps in broadcasting

the final image to the client-side using frame buffer through the network.

We proposed a system capable of interactive MD simulation and visualization by using a

remote GPU (server) and a tablet device (client). Offloading techniques are rather known to

enhance capabilities on the client-side, especially computing power. However, a communica-

tion bottleneck may be a concern due to the network. Our proposal alleviates this problem

by tuning parameters and using DP to hide latency when a remote GPU is used.

1.2 Related Work

As we mentioned in the section above, in our approach we proposed a system composed of a

tablet device (client) and a power-efficient GPU (server) attached to a laptop PC in order to

accelerate MD simulations. Other proposals in the field have been made similar to our idea.

Efforts to create new contents has lead a numerous variety of research topics such as

visualization data, virtual reality, health-based applications, between others [12] [13] [14] [15]

& [16]. Although these proposals use a mobile device for data visualization, they do not

implement any kind of acceleration offloading nor local.

Ideas to include interactive simulations and visualizations have been proposed [17], [18],

[19] & [20]. These proposals used the interactivity as a medium of facilitating the user a more

5

Chapter 1 Introduction

comprehensive and informative simulation. When MD is carried out, selected areas of the

molecule can be enhanced by the user for example. These ideas are rather to be executed in

normal PC machines, they do not support mobile architectures.

Several proposals including offloading from a mobile device have been made [21], [22],

[23]. These proposals use the cloud in order to get better performance inside the application

running in the mobile device. As well, they include patterns for better electric power use in

order to save battery life. Nevertheless, they do not include CUDA support for the offloading

part.

Furthermore, some ideas to take advantage of the parallel frameworks inside the mobile

device such as RenderScript, OpenCL, and ParallDroid has been made [24], [25] & [26].

The authors on these proposals used a local acceleration, utilizing the GPU for a particle

filter, synthetic radar imaging, and a benchmark. However, the corresponding reports do not

include electric power measurements.

Ideas similar to ours have been proposed in [27], [28], [29] & [30]. Differences between these

proposals ours are as follows: the first proposal used rCUDA GPU virtualization framework

in order to offload part of the image filter using an expose fusion algorithm using a mobile

device. However, the author claims a negative performance on the client-side. Moreover, they

report battery power consumption to be negative when offloading is performed. In the second

case, an image processing algorithm is applied running in a mobile device. They used the

cloud for offloading intensive computational parts of the algorithm for acceleration using the

OpenCL framework. They report gains in performance and power savings. However CUDA is

not supported. The third case used GVirtuS framework to offload a matrix multiplication to

several ARM GPU servers. Although the author reported performance gains and low latency

as the size of the matrix increases, they do not include power analysis. Moreover, their

application is not targeting any real-time visualization. In the last proposal, the author used

rCUDA to offload MD simulations to an ARM server equipped with several GPU hardware.

They characterized the execution using remote offloading and local one, mentioning that

using a server guided a power-saving. However, they do not include power measurements nor

visualization of the MD simulation.

Lastly, we mentioned some proposals that are similar to our approach in the future di-

rections [31], [32] & [33]. These proposals implemented real-time visualization for remote

simulations. They proposed to use in-hardware features of the GPU such as Ray-Tracing for

photo-realistic rendering. This is rather important since interactive photo-realistic visualiza-

tion will bring a better understanding of the physical phenomena. As well, they proposed

to used in-hardware encoder/decoder for frame buffer streaming using virtual reality (VR)

headset. Our idea is similar to their proposals for future directions. However, we propose to

take advantage of whole GPU hardware for simulation and visualization, with the possibility

6

Section 1.3 Thesis Organization

to include those features in GPU virtualization frameworks to facilitate the development of

such applications.

1.3 Thesis Organization

The present work is divided into 7 Chapters. In Chapter 2 we talk about the GPU as a

general-purpose computing device. As well, we introduce the CUDA programming model

and architecture. We highlight those features on the GPU which are fundamental in this dis-

sertation. Furthermore, we introduce the GPU virtualization frameworks which allow using

GPUs in a cloud environment. In Chapter 3, we introduce the MD simulation and visualiza-

tion which is the main application for our GPU offloading techniques. Relevant versions of

Claret software are mentioned, as well as the port for Android tablets. Chapter 4 discusses

our first approach to offload heavy computational parts from the MD simulation using a

tablet by DS-CUDA GPU virtualization framework. We report speed up on computational

power and rendering on the tablet side. On Chapter 5 we further optimize our MD simula-

tion and visualization using tablets by applying DP. In this case, rCUDA GPU virtualization

framework is used. Gains in computational power and reduction on latency were achieved by

applying DP. Moreover, we report power measurements using multiple clients. On Chapter

6, we settle the first steps towards GPU virtualization frameworks that enable graphics ac-

celeration on the server-side. Preliminary results of the broadcasting frame buffers over the

network are presented. Finally, in Chapter 7 we provide final thoughts and conclusions about

this dissertation.

7

2

General-Purpose Computing on

the GPU

The Graphics Processing Unit or GPU was conceived to aid the CPU in rendering high-quality

3D images. This hardware accelerator gained popularity since the demand for rendering

capabilities from the PCs was growing noticeably. This was mainly due to the graphical

operating systems that appeared in the late 80’s. With the arise of this new interactive

paradigm on computers, more applications for visualization were developed, such as video

games and CAD design among many others. Since then, graphics cards have become an

intrinsic part of computers and indispensable tool for software visualization. Due to the large

competitive market in this range of devices, the GPU has become powerful hardware for a

comparatively low cost.

During the beginning of the 2000s, a new paradigm that allows the computation of any

kind of data in GPUs were growing. This new paradigm has its origins based on the Gen-

eral Purpose Computing on Graphics Processing Units (GPGPU). GPUs at this point were

designed to produce a color for every pixel using programmable arithmetic units called pixel

shaders. In a general way, these shaders use the (x, y) position on the screen and some other

additional information to combine various inputs in computing the final color that will be

displayed. The additional information could be input colors, coordinates for textures, or

other attributes that the shader needs in order to be executed. However, the arithmetic is

performed on the input colors and textures were completely controlled by the programmer.

It was observed that these inputs “colors” could be replaced by any kind of data. Although,

this new shift for the usage of GPUs started promising with the idea of taking advantage of its

ubiquitous parallelism, yet it was particularly known for their great programming difficulty

due to the high level of knowledge in the graphics pipeline. Some of the first attempts on

GPGPU were specific to intensive computing applications and frameworks compatible with

9

Chapter 2 General-Purpose Computing on the GPU

Streaming Multiprocessor (SM)
Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM)

MMU
Memory

ALU FPU

SFU SFU SFU

Local Registers

GPU

 Memory
CPU
MMU

CPU

PCI BAR

Host

SFU

GPU

CPU

Device

 PCI Express

Figure 2.1: Basic architecture of a “Heterogeneous” system GPU-CPU.

OpenGL and Direct3D [34, 35, 36, 37].

2.1 General GPU Architecture

The Graphics Processing Unit is special hardware which is designed mainly to execute par-

allel applications being 3D graphics the fundamental one. This is rather different from the

counterpart, the CPU [38]. The GPU is also designed to offer many thousands of single cores

using a high bandwidth memory. As we can denote from these characteristics, this hardware

maximizes the throughput inside the application by exploiting the data parallelism launching

a large number of threads per call. In this scenario, memory access latency can be hidden

using big chunks of computing [39]. This kind of technique is rather slow per single thread

on execution performance. However, the total performance represents a gain in throughput.

Nowadays, heterogeneous systems composed of GPU and CPU are the common norm on

PCs. Figure 2.1 shows the traditional system. Although the GPU architecture may be differ-

ent from implementation and model, they all adopt a similar high-level implementation. The

GPU is composed of several streaming multiprocessors (SM) that contain several computing

modules or cores. Each core contains an integer Arithmetic Logic Unit (ALU), a Floating

Point Unit (FPU), several Special Functions Units (SFU) and local registers. The GPU

Memory Management Unit (MMU) grants virtual address spaces. A host can be connected

by utilizing a PCI-Express interface. A large amount of data can be transferred between the

host memory space and the GPU by the Direct Memory Access (DMA) engine. However,

this can cause data transfer overhead due to the low transfer bandwidth of the PCIe interface

when compared to the internal memory bandwidth of the GPU.

10

Section 2.2 CUDA Overview

2.2 CUDA Overview

Compute Unified Device Architecture (CUDA) is a framework and a computing architecture

developed by NVIDIA, first introduced in 2006 within the GPU GeForce 8800 GTX. This

first GPU chip aimed to alleviate many of the limitations that prevent previous graphics

processors from being legitimately useful for general-purpose computation. Before CUDA

conception, an advanced degree of the 3D graphics pipeline knowledge was needed to handle

GPUs. However, CUDA uses a base C like syntax and programming model. This makes

CUDA more program-affordable for more developers. The chip in GeForce 8800 GTX was

one of the first DirectX 10 compatible devices, bringing the speed up on science and start the

revolution of GPGPU. NVIDIA uses the standard IEEE 754-1985 [40] for single floating point

precision on the creation of the Arithmetic Logic Unit (ALU) inside the GPU chips. Also,

these chips include many functions not oriented to graphics rendering. The new memory

hierarchy inside of the device composed up to 5 levels were introduced.

Previously, GPUs were used primarily for the media design, high-end multimedia, and

games sector. Nowadays, CUDA has an impact on the following practical applications:

� Fast Video Transcoding

� Video Enhancement

� Oil and Natural Resource Exploration

� Medical Imaging

� Computational Sciences

� Neural Networks

� Gate-level VLSI Simulation

� Fluid Dynamics

In recent years, companies such as NVIDIA and other major GPU manufacturers have

implemented a much more easy way to reach and program GPUs for general-purpose com-

putation. Thus, industry-standard frameworks and architectures have been developed such

as CUDA and OpenCL.

2.3 CUDA Programming Model

The structure of a CUDA program is grouped in various phases that are executed in the host

(CPU) or inside of the device (GPU). The sections of the application which presents a lot

of parallelism are executed inside of the device. Contrarily, the serial parts are on the host

side. Hence, a CUDA program is a code execution combination inside of the host and device.

In order to compile and use CUDA with C/C++, NVIDIA provides a compiler called nvcc

which separates and processes the code for each part. Figure 2.2 shows this flow.

11

Chapter 2 General-Purpose Computing on the GPU

fatbin

ptxas

nvopencc

cpp

.gpu

.ptx

.cubin or ptx

.fatbin (embedded fat code data structure)

.cu or .c

cpp

cudafe

cpp

cudafe

.cu

.gpu

cpp

.c

host code

.gpu

ptxas

nvopencc

.ptx

Application independent

device code name

.fatbin (external device code repository)

-ext,-int,-dir

-arch option

-code optionfile hash

Figure 2.2: C/C++ compilation trajectory using nvcc.

Main CUDA files use .cu extension. The code that belongs to the host is ANSI C standard.

This part of the code is processed by a normal C language compiler such as gcc or clang.

The execution of this code is done in the CPU. The code executed in the device is processed

in different ANSI C standard that extends “key-words” for parallel functions called kernels

and its associated data structures.

2.3.1 Kernels

Subroutines that are executed inside of the GPU are called kernels. This GPU subroutines

are able to call a massive number of threads per launch in order to process several amounts

of data at the same time. Each GPU is composed of many Multiprocessors (MP) which

are the recipients of the actual threads inside of the hardware. Depending on the compute

12

Section 2.3 CUDA Programming Model

1 __global__ void MyKernel (float * x, float* v, float cons) {

2

3 int i = threadIdx .x;

4

5 x[i] = x[i] + v [i] * cons;

6

7 }

8

9

10

11 int main() {

12

13 // Kernel call from the Host

14 MyKernel <<<1,N>>>(X,V,Cons);

15

16 }

Listing 2.1: Simple kernel structure for CUDA C/C++ code.

capability1, we can launch up to 1024 threads per MP or more. One thread does not process

the same data at the same time considering that each thread have a different ID or Index.

This special identifier will allow the thread to access different data from different memory

regions. One simple kernel sample is shown in the List 2.1.

The definition of a kernel is done with the usage of a special identifier inside the code

using the reserved word global . As the sample code shown above, these definitions are

like normal C/C++ function declarations, with output and input type arguments. This is

the actual code that is executed in the GPU. The special index for each thread is reachable

by one built-in variable called threadIdx. In order to specify the number of threads to

be launched per kernel, another identifier is introduced <<<....>>>. This pattern of code

execution operates using the paradigm Single Instruction, Multiple Data (SIMD) which is

used on the GPUs, on the opposite side to the CPU which uses Single Instruction, Single

Data (SISD) paradigm. CUDA has implemented the concept of Single Instruction, Multiple

Thread (SIMT) which consists of executing code depending on the parity of the index of a

thread.

Implementing trivial kernels for GPU using CUDA is very straight forward for a C/C++

developer. However, to tune the GPU at maximum performance is rather complicated. We

have to take care of every hardware-specific details such as so-called warp. This specification

of the GPU is a set of threads that all share the same code, follow the same execution path

with minimal divergences and are expected to stall at the same places. A hardware design

can exploit the commonality of the threads belonging to a warp by combining their memory

accesses and assuming that it is fine to pause and resume all the threads at the same time.

Thus, the developer should handle and consider the conflict of memory between different

indexes.

1The compute capability of a GPU determines its general hardware specifications and available features.

13

Chapter 2 General-Purpose Computing on the GPU

Host Device

Kernel

1

Kernel

2

Grid 1

Block

 (0,0)

Block

 (1,0)
Block

 (2,0)

Block

 (0,1)
Block

 (1,1)

Block

 (2,1)

Grid 2

Block (0,0)

Thread

 (0,0)

Thread

 (1,0)

Thread

 (2,0)
Thread

 (3,0)

Thread

 (4,0)

Thread

 (0,1)
Thread

 (1,1)

Thread

 (2,1)

Thread

 (3,1)
Thread

 (4,1)

Thread

 (0,2)

Thread

 (1,2)

Thread

 (2,2)

Thread

 (3,2)

Thread

 (4,2)

 (1,1)

Bloc

Figure 2.3: Thread, Block and Grid organization inside of CUDA architecture.

2.3.2 Thread Management

The built-in variable threadIdx is a vector with 3 components that is able to identify threads

by an Uni-dimensional (1D), Bi-dimensional (2D) or Tree-dimensional (3D) arrangement.

� threadIdx.x

� threadIdx.y

� threadIdx.z

A bunch of threads can be grouped into blocks, which at the same time are collapsed by

1D, 2D and 3D index variable blockIdx. This provides a natural way to invoke computation

across the elements in a domain such as a vector, matrix, or volume.

� blockIdx.x

� blockIdx.y

� blockIdx.z

Blocks are organized as well into a one-dimensional, two-dimensional, or three-dimensional.

A group of blocks is called grid. The number of thread blocks in a grid is proportional by

the size of the data to be computed for the processors in the system. Figure 2.3 shows the

complete organization.

14

Section 2.3 CUDA Programming Model

Memory Global Constant Texture Shared Local

Access W/R R R W/R W/R
Size ≥ 1 GB 64 KB ≥ 1 GB 32 KB ≥ 100 MB
Scope Application Application Application Per Block Per Thread

Table 2.1: CUDA memory attributes. W/R = Reading and Writing. R = Read only.

There is a limit of threads that are able to be launched per block. Actual GPUs can

handle over 1024 threads per execution. However, this limit is constrained to a special

memory segment shared for all threads inside of the same SM. Moreover, a kernel is able

to execute a multiple amounts of blocks per time. Thus, the total amount of threads to

be launched inside the GPU is equal to the number of threads per block multiplied by the

number of blocks.

2.3.3 Memory

CUDA capable GPUs are integrated with 5 different memory regions. Each of them has

different characteristics, size, and functionality. In order to squeeze all the computing power

from the GPU, the understanding and management of these different memory spaces are

crucial. Table 2.1 shows the main characteristics of these types of memory. Depending

on the hardware, the size of this region may be bigger, especially with the newest GPU

generation.

Following, we add a brief description and usage of these 5 different memory spaces.

Global Memory

This is the main memory region as its name suggests on the hardware. It is the biggest zone

that a kernel is able to write and read data. The usage of dynamic memory allocation is not

allowed, it must be handled before the application starts. According to the GPU model, the

size may vary rounding the ∼ 1GB or more. During the kernel call, this memory space is

persistent.

Constant Memory

Constant memory is relatively small compared to other regions, reaching sizes of 64KB and

with an attribute of “read-only”. This space is persistent along with the kernel calls. The

host is able to load any kind of data inside of this region of memory. The attribute “read-

only” refers to the ability of a kernel for no modification on this region inside the application

by the device.

15

Chapter 2 General-Purpose Computing on the GPU

Texture Memory

Specialized memory to load, mapping, and modeling elements in 2D and 3D, which is fast and

“read-only”. This memory region offers the ability to communicate with graphics pipelines

such as Direct X and OpenGL. This could lead to time-saving when reaching objects in

memory space delivering faster rendering outputs.

Shared Memory

Shared memory is the smallest memory region among others. The size is about 32KB and

it is the closest similar to cache in CPUs. Shared memory is not persistent along with the

kernel’s call. The host (CPU) can not load data on application time. However, when the

device performs a kernel call, this can specify up to 32KB read and write zone for all the

threads within a block. Furthermore, all the threads inside of a block share this memory

space. After the last execution of the last thread, this space is deallocated. Performing

memory operations inside this space are faster than the global memory for the same threads

within a block.

Local Memory

Local memory has similar attributes and functionality to global memory. Differences are the

life time and the variable scope. For this memory region, the scope is limited to one single

thread. The main reason for this is that if every SM can run up to 1024 threads concurrently

and there are only 16384 registers, each thread can only use 16 of them with a full load.

If more different variables are needed at the same time, these will be allocated in the local

memory. Unfortunately, this choice is left for the compiler in order to save register spaces.

In Figure 2.4 we show the different memory types in CUDA architecture. As we can

denote, the closest access to the threads is faster memory but smaller in size. It is not

a trivial task to use them and manage. However, the proper handling of CUDA memory

regions may impact directly to the performance of the final CUDA application.

2.4 CUDA Capabilities

The CUDA platform, architecture, and programming ecosystem have been evolving since

its conception in 2006, adding new hardware and including new libraries to get exceptional

performance. Some of the libraries that are packed in the CUDA SDK are the followings:

� cuBLAS 99K CUDA Basic linear algebra subroutines

� cuFFT 99K CUDA Fast fourier transform

� cuRAND 99K CUDA Random number generation

16

Section 2.4 CUDA Capabilities

Grid

Block (0,0) Block (1,0)

Shared Memory Shared Memory

Registers

Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Local

Memory
Local

Memory

Local

Memory

Local

Memory

Global

Memory

Constant

Memory

Texture

Memory

Host

Registers Registers Registers

Figure 2.4: Different memory regions on CUDA architecture.

� cuSOLVER 99K CUDA Based collection of dense and sparse direct solvers

� cuSPARSE 99K CUDA Sparse matrix

� CUTLASS 99K CUDA Custom linear algebra algorithms

� nvJPEG 99K CUDA Hybrid JPEG processing

The libraries mentioned above provides good performance and it provides the developer

easy-to-handle functions, data types, and structures for each field. Although, there are many

features inside CUDA architecture, in the following sections we add a brief description of the

most important points inside this dissertation.

2.4.1 Dynamic Parallelism

Dynamic Parallelism (DP) is the capability inside the programming execution model that

CUDA provides in order to create and synchronize new nested workload. This can be ex-

plained as follows: the ability of a CUDA kernel parent to create new CUDA kernel child

invocation and synchronization. The parent kernel has the ability to get the output from the

child kernel without having to involve Host operations. A simple example is shown below:

Naturally, recursion methods are supported by Dynamic Parallelism. Additional, par-

allelism can be exposed to the GPU’s hardware schedulers and load balancers dynamically,

adapting in response to data-driven decisions or workloads. Now, programming patterns such

as recursion, an irregular loop structure, and single-level of parallelism can be more easy to

17

Chapter 2 General-Purpose Computing on the GPU

1 // GPU code execution

2 __global__ Child_K (void* data){

3 //Operate on data

4 }

5 __global__ Parent_K (void *data){

6 Child_K <<<16, 1>>>(data);

7 }

8

9 // CPU code execution

10 Parent_K <<<256, 64>>(data);

implement. Generally, using Dynamic Parallelism is convenient for implementing algorithms

that includes computing adaptive grids, performing recursion, and splitting the work among

different and independent threats and batches.

2.4.2 Graphics Interoperability

The graphics interoperability functions are related as its name suggests to the interconnection

between CUDA space and rendering API’s space. These functions allow CUDA to write and

read from OpenGL or Direct3D memory space. This is mainly to alleviate bottleneck on

applications that creates a lot of memory traffic between Host and Device. For the best

practice and performance effect, it is desirable that applications keep the data inside the

GPU as much as possible. Implementing the graphics interoperability function with CUDA

gives the kernels the ability to write data inside images and textures that are inside into the

graphical frame buffer output from OpenGL or Direct3D.

2.4.3 Hardware-Based Video Encoder and Decoder

From the beginning of Kepler architecture, NVIDIA provided an on-chip video encoder and

decoder named NVENC and NVDEC respectively. This hardware feature provides fully

accelerated video encoding and decoding capabilities supporting the most popular codecs.

This feature is independent of the graphics engine making the encoding/decoding process

suitable to be offloaded to the GPU. This provides the CPU and GPU free to perform other

operations. Some of the encoding capabilities are listed as follows:

� Formats 99K H.264, H.265 and Lossless

� Bit Depth 99K 8 and 10 bit

� Color 99K YUV 4:4:4 and YUV:4:2:0

� Resolution 99K Up to 8K

Some of the decoding capabilities are listed as follows:

� Formats 99K MPEG-2, VC1, VP8, VP9, H.264, H.265 and Lossless

� Bit Depth 99K 8,10 and 12 bit

18

Section 2.5 CUDA on Mobile Devices

� Color 99K YUV 4:4:4 and YUV:4:2:0

� Resolution 99K Up to 8K

This hardware accelerator engine for video encoding and decoding on the GPU is faster

than real-time video processing using CPU, which makes this feature suitable for video play-

back and transcoding applications.

2.4.4 Tensor Cores for AI

The tensor cores are specialized hardware execution units designed specifically to perform

the tensor and matrix operations that are the core in computing function for Deep Learning

algorithms. These cores provide significant performance in speed for matrix computations on

deep learning neural network training and inferencing operations. The tensor cores add new

INT8 and INT4 precision modes for inferencing processing that tolerate quantization and do

not require FP16 precision. These new cores add new deep learning-based AI capabilities to

gaming on PCs such as a technique called Deep Learning Super Sampling (DLSS). This new

technique allows a deep neural network to extract multidimensional features for rendering a

scene and smartly combine details from multiple frames to build a final image. This rendering

technique uses fewer input samples than traditional Texture Anti-Aliasing (TAA).

2.4.5 RT Cores for Ray Tracing

The RT cores introduce ray tracing in real-time. These new cores enable a single GPU to

render visually realistic 3D scenes. Different from a common rendering algorithm such as

rasterization, the ray-tracing algorithm builts complex professional models with physically

accurate shadows, reflections, and refractions. RT cores can accelerate ray-tracing by comput-

ing on hardware triangle intersections which are a fundamental operation. NVIDIA provides

interfaces such as NVIDIA’s RTX ray tracing technology, and APIs such as Microsoft DXR,

NVIDIA OptiX, and Vulkan ray tracing to deliver a real-time ray tracing experience.

2.5 CUDA on Mobile Devices

Due to the increased usage of smartphones, tablets, and other gadgets, new processor archi-

tectures were developed such as ARM. In order to follow the special computing and power

demand that these new devices require for daily task, NVIDIA company introduced a new

branch of mobile processors called Tegra. This system on chip (SoC) is aimed for mobile

architectures such as smart phones, digital cameras, personal digital assistants and internet

mobile devices. There are many iterations of this new SoC, Tegra APX, Tegra 2, 3 and 4.

However, all of these chips are not CUDA capable. It was in April 2014 when NVIDIA finally

released one mobile chip capable of CUDA architecture, the one called Tegra K1. This new

19

Chapter 2 General-Purpose Computing on the GPU

ARM cortex general purpose 32-bit processor includes a CUDA capable GPU. This processor

is also capable to run OpenGL ES 3.1, CUDA 6.5 and OpenGL 4.4. Some of the motivations

to use this new chip are solutions for compute-intensive embedded projects like autonomous

robotic systems, advanced driver assistance systems, mobile medical imaging and intelligent

video analytics.

2.6 Remote GPU through Virtualization

Cloud computing is a platform that can help to ease the access to huge compute nodes

and to reduce the total cost of the ownership meanwhile achieving high performance and

saving energy. The cloud allows users to deploy computational intensive applications without

maintaining or acquiring large computational systems. Especially, heterogeneous systems

equipped with GPUs are the main focus on big types of equipment [41]. This has to lead to

major GPU manufacturers to develop and enhance programming environments [42]. Several

HPC applications have been benefited from this approach, such as particle simulation and

MD simulations [43, 44]. However, in order to handle remote GPUs, virtualization of some

sort is needed to achieve this task. Virtualization techniques allow the creation of elastic

components that are used by methods multiplexing system resources. Most of these resources

include processors and peripheral devices. The area of virtualizing hardware is not rather

new [45]. Nevertheless, virtualizing the GPU is just recently developing due to GPU driver

implementations which are not standardized and they are not open for modifications. Thus,

standard virtualization techniques can not be applied.

2.6.1 GPU Virtualization Techniques

According to the literature [46], there are basically 3 groups of GPU virtualization techniques.

These, are based on their implementation approach:

� API remoting

� Para and Full virtualization

� Hardware supported virtualization

On the first approach, API remoting provides a wrapper communication library between

the GPU and the guest machine. This library is in charge of intercepting GPU calls on the

guest machine which are redirected to the host machine. The host machine includes the

actual GPUs where the remote calls are executed. The results from the request are back to

the guest machine. This approach is rather at a higher level of the GPU in the execution

stack. However, this technique solves the difficulty of the virtualization of the GPU at the

driver level.

20

Section 2.6 Remote GPU through Virtualization

On the second approach, para and full virtualization happen at the driver level. As we

mentioned before, this is rather difficult since most GPU vendors do not provide the source

code of their driver implementation. Nevertheless, some architecture documentation has been

opened recently by some manufacturers as an open driver [47]. As well, some efforts from

the development community have done with reverse engineering [48] for research purposes.

Third and last approach, hardware-supported virtualization uses a guest OS to access a

GPU through the chipset on the motherboard. These capabilities are specified by individual

GPU vendors. The access occurs by remapping the DMAs for each call in the guest OS.

Some of the most important vendors such as NVIDIA, AMD and Intel support this kind of

virtualization [49, 50, 51]. However, one of the main problems of this approach is the lack of

supporting multiple GPUs.

Each GPU virtualization technique presents advantages in execution and also some dif-

ficulties with the implementation. Nevertheless, in this dissertation, we focus on the API

remoting. Next subsection, we present a more detail explanation on this approach.

2.6.2 Remote GPU using API

GPU virtualization presents similar challenges as other virtualization I/O devices. API

remoting is up to date and the most useful GPU virtualization technique, specially from

GPGPU computing developers. API remoting provides a wrapper library which is used from

a guest machine in order to intercept and forward GPU calls. This approach can emulate a

GPU execution as if the GPU where physically attach to the guest machine.

The main scheme for API remoting is shown in Figure 2.5. Here, we can denote a guest

machine which is able to issue a request to a GPU in another host machine. This virtualization

scheme is known as a split device model; the frontend and backend implementation for the

GPU drivers are placed inside guest and host machine respectively. The wrapper library

located on the guest side awaits for any calls from inside of the application. Once a call

is performed, the wrapper library transports the request to the front-end driver. Here, the

message is packed and prepared in a suitable format to be sent to the back-end driver in the

host machine which will parse the message and convert it to the original API call. Finally,

the call handler performs the request to the physical GPU and gets the result back using the

reverse path to the guest machine. The main advantage of this approach is the ability to use

GPUs without the need of recompiling the code since the wrapper library can be linked at run

time. As well, the virtualization presents a negligible overhead as bypasses the hypervisor and

other hardware related difficulties. On the other hand, this virtualization approach requires

updating the wrapper library constantly in order to cover new hardware features on GPUs.

This can be rather a daunting task. Moreover, since API remoting bypasses the hyper-visor,

basic virtualization techniques such as live migration, check point, and fault tolerance are

21

Chapter 2 General-Purpose Computing on the GPU

Backend

Original API call handler

GPU driver

GPU

GPU Application

Wrapper API

Frontend

Host Guest

Request

Transfer

Original stack

API remoting stack

Figure 2.5: API remoting scheme.

difficult to implement in this scheme.

API remoting virtualization technique can be classified according to target of acceleration

provided by the wrapper library; acceleration methods for graphics rendering and acceleration

methods for GPGPU computing. Inside the first category, the wrapper library consist in the

implementation of OpenGL or Direct3D render libraries. Implementations supporting this

method of acceleration have been proposed such as VMGL [52], Blink [53], Chromium [54],

Parallels Desktop [55] and VADI [56]. On the second category, the wrapper library supports

GPGPU computing APIs such as CUDA and OpenCL. Some implementations supporting this

method of acceleration include the following proposals: GViM [57], vCUDA [58], GVirtuS[59],

GVM [60], Pegasus [61], Shadowfax [62], VOCL [63], rCUDA [64] and DS-CUDA [65].

22

3

Molecular Dynamics Simulation

and Visualization - Claret

The term “Visualization” or visual data exploration plays an important role inside the scien-

tific process. Looking at or analyzing data from experiments is a crucial part of the process

of discovering and producing new science. At first, term “Visualization in scientific comput-

ing” was used in a report inside the computer graphics and visualization community [66].

Through a series of operations and processing steps, a visualization pipeline transforms ab-

stract data into comprehensible images. Today, scientific visualization plays a central role in

the description of computer simulation involving physical phenomenons.

A molecular dynamics simulation (MD) is a computer simulation of the natural phe-

nomena on the matter structure and composition. We can simplify the description as the

interaction between atoms. This kind of computer simulation is performed in order to achieve

a better understanding and interpretation of certain material structures. The MD simulation

is possible due to the advances in Physics Theory, Chemistry, Mathematics, and Computer

Science. The MD simulation and visualization is able to render information about the evo-

lution and behavior of the system. Furthermore, this physical computer simulation produces

results on many microscopic properties of the structure and dynamics that are difficult to

obtain by merely experimental methods in the lab. The main characteristic of this kind of

simulations is computationally intensive, which pushes the power to the limit inside of the

machine. This heavy workload is due to heavy and many computations per particle in the

system.

3.1 General Description of MD Simulations

An MD simulation comprises the integration of Newton’s motion laws, as well as the descrip-

tion of approximate force field generated based on the particle interactions. There are several

23

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

Initialize atoms positions

Compute the force

Move the atoms

Time step

Increase the time step

MD end ?

Start

End

no

yes

Figure 3.1: A general flow for a Molecular Dynamic simulation.

constrains in an MD implementation, such as the different force fields and limits of the sys-

tem. Thus, there are many software implementations that offer many different capabilities

according to the their specific algorithm. Some of them are ACEMD [67], OpenMM [68],

NAMD [69], Amber[70], and CHARMM [71] to mention some of the most developed and up

to date. Although all of them offer different capabilities, they follow a similar process which

is described in Figure 3.1.

As we can denote, the MD simulation includes a numeric solution of the motion equations.

This is performed by solving present forces that are residing on the atoms derivative from the

potential energy of its 3 spatial components (x, y & z). The time between each interaction

or time step is very small. Going from the order of t ∼ 10−3 − 10−6 seconds per step, which

represents a few nanoseconds in real life.

24

Section 3.2 Claret MD Simulation Software

Figure 3.2: Image sample of Claret MD simulator.

3.2 Claret MD Simulation Software

It was first developed by Dr. Takahiro Koishi as an education purposed software. However,

it was used to show the massive computational power of the Molecular Dynamics Gravity

Pipe (MD-GRAPE 2) [75]. This special-purpose hardware allows a parallel implementation

of the MD by using several processor units. This specialized hardware was first developed

in The University of Tokyo [76] and lately taken by the Institute of Physical and Chemical

Research (RIKEN) for further iterations.

Claret uses C/C++ as the implementation language and OpenGL as a rendering frame-

work. The software includes MD-GRAPE libraries. However, as educational software, the

versions and capabilities were changing gradually. Nowadays, claret is mainly used to under-

stand basic MD between particles and also to learn parallel computing techniques. It is the

main testbed for this dissertation. The original code is open source and it can be downloaded

from the site of the author [77].

Claret MD simulation and visualization software include interactions between sodium

(Na+) and chloride (Cl-) particles. This is basically a salt crystal in real life. However, in

Claret, we can visualize its behavior at the atomic level. This can be appreciated in Figure

3.2. As we can denote, all the particles reside at the vacuum level, delimited by a cubic

subspace. Some of the information in this version of the package includes a variation of the

temperature and pressure. A limiting capability of the software is the particle boundary: if

the crystal reaches its boiling or fusion steps, the particles are not able to escape from the

wall, instead, the movement and force are changed in the opposite direction.

Real-Time Visualization of the interaction and behavior of the particles are done in Claret.

25

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

Input key Description

q Exit the program

v Hide information on/off

t Increase temperature 100K

g Decrease temperature 100K

y Increase temperature 10K

h Decrease temperature 10K

! Restart

z Pause or Continue

s Increase Time step by 10

c Background color

M New 27 ion for collision

N New 4 ion for collision

m New 1 negative ion for collision

n New 1 positive ion for collision

1-9 Collision velocity OR number of particles

space Shoot ion for collision

Table 3.1: Keyboard input list for Claret.

The software includes various capabilities such as the following:

� Visualization of the evolution of the system in Real-Time

� Different angle view

� Temperature change (- +)

� Adding collision from new Ion

� Rendering using textures and polygons

� System Status: Force performance computation and frames/sec

� Stereoscopic1 view

These are the capabilities of the first version of the software. Thus, these features are

enabled during compilation time through # define C directives. Extra rendering options

such as rendering with polygons or textures, stereoscopic vision, and the usage of an external

accelerator are enabled in the same way. Some other features inside the program can be

modified once the program is launched. These options are managed by the keyboard. A list

of these options is shown in Table 3.1. As we can denote, for the numeric keys 2 options are

provided:

1. Select the velocity for collision on the newly generated ions

2. Select the number of ions present in the system

The number of particles in the system is computed as follows: If the key P = {1, 2, 3, 4, 5, 6, 7, 8, 9}

then the total amount of particles, is n = P × P × P × 8. Hence, 8 is the minimum and

1For 3D vision a special high frequency display and special glasses are needed.

26

Section 3.2 Claret MD Simulation Software

1 void main (int argc , char** argv){

2

3 // OpenGL settings

4 glutInit (&argc , argv);

5 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

6 glutInitWindowPosition (100, 0);

7 glutInitWindowSize (500, 500);

8 glutCreateWindow ("Claret ver0.53 ");

9

10 // Main variables , constants , and memory allocation

11 init ();

12 keep_mem ();

13 set_cd ();

14

15 // OpenGL functions

16 glutDisplayFunc(display);

17 glutReshapeFunc(reshape);

18 glutMouseFunc(mouse);

19 glutMotionFunc(motion);

20 glutKeyboardFunc(keyboard);

21 glutIdleFunc(md_run);

22

23 // Main loop function

24 glutMainLoop();

25 }

Listing 3.1: C code for Claret main routine.

5832 is the maximum amount of particles. Claret was initially coded using C and OpenGL.

In order to facilitate the implementation, we show all the main process and functions used

in the main loop in the List 3.1.

As auxiliary library to handle windowing system, keyboard and other important functions

inside the visualization, the auxiliary library glut 2 is used [78]. At first, the OpenGL state is

initialized, creating an appropriate window. Settings such as windows size and buffer type are

selected. Next, the initial state of the constants and variables are set: for example position,

pressure and temperature. Main OpenGL functions can be described as follows:

� Display 99K Is in charge of all the rendering of polygons/textures that represents the

whole simulation system

� Reshape 99K Computes the actual deformation, size and angle of the camera inside of

OpenGL

� Mouse 99K Enables the mouse input which makes the camera to rotate

� Motion 99K Computes a new frame according to the new angle provided by the mouse

motion

� Keyboard 99K Implements the actions provided in Table 3.1.

� Md run 99K The core of the MD simulation, where the computation of the force,

velocity and other constants are performed. This follows the general MD process, the

one depicted in Figure 3.1.

� Mainloop 99K Keeps the simulation alive

2GLUT is an OpenGL auxiliary library that handles all the system-specific implications required for creating
windows, initializing contexts, and handling input events.

27

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

A σi + σj C D
(10−19J) (Å) (10−79Jm6) (10−99Jm8)

++ 0.4225 2.34 1.68 0.80
+− 0.3380 2.75 11.20 13.90
−− 0.2535 3.17 116.00 233.00

Table 3.2: Parameters of Tosi-Fumi potential for Na Cl MD Simulation. B = 3.15Å−1

The description above represents the implementation in the original version of Claret

software.

3.2.1 MD Core Function

In order to describe the behavior between the particles inside of Claret, a force computation

using a direct method is performed. The inter-ionic potential of a rigid-ion model proposed

by Tosi and Fumi [79] is used as a force field between ions.

φij(r) =
qiqj
r

+AijB exp [
(σi + σj − r)

ρ
]−

Cij

r6
−

Dij

r8
(3.1)

This potential comprises a Coulomb term, a repulsion term, a dipole-dipole term, and

a dipole-quadruple term, where qi and qj are electric charges and r represents the distance

between them. It uses the constant parameters of Eq. 3.1 given by Tosi and Fumi. These

constants are shown on Table 3.2. A wall boundary condition is adopted.

Initially, the system at vacuum level is equilibrated at T = 300K. The number of floating

operations per time-step is given by n× n× 78 , where n is the number of particles, and 78

is the total operations inside Equation 3.1.

Although the core function used in Claret is not as complex as other MD simulators such

as Amber[70] or CHARMM [71], we are able to visualize the crystal structure evolution of

Na Cl ions.

3.2.2 Interactive Capabilities

Claret presents the behavior of Na and Cl particles at a vacuum level integrating simulation

and visualization at the same time. This approach is commonly referred to as computational

steering. Generally, data analysis and visualization of computer simulations are performed

after everything else is done. This leads in some cases to discover invalidating results or er-

rors during the simulation just after the pre-processing is performed. In this way, combining

visualization of the simulation at the same time not only presents the advantage of looking

at the evolution of the system but as well make an adjustment on the way. Computational

steering has been studied and used since the computational graphics become more accessi-

28

Section 3.3 Claret Versions

ble [72, 73, 74]. However, its need for extra computational power for rendering presents a

challenge compared to conventional computer simulations.

Claret was developed in order to interact with the particle system in both ways, visual-

ization, and simulation. A description of these capabilities are listed below:

� Simulation Interaction 99K On the simulation side, Claret is capable of of changing

variables of the system such as the temperature. This allows changing the state on the

conglomerate of Na Cl particles. As well, changing the number of particles and the

possibility to shoot ions to observe a collision.

� Visualization Interaction 99K Claret offers the capability of changing the camera

view angle in order to navigate to different spots in the simulation. We can freeze the

simulation which is useful to look at the state of the whole system. Also, an effect on

the temperature is visible on each particle. We can increase the time-step in order to

delay visualization for longer simulations as well.

These capabilities allow the user to observe a phase transition between different temper-

atures on Na Cl. As well, we can observe the crystal formation in different angle views. On

Claret, the visualization of this phenomenon is feasible by using accelerators such as GPU as

we will discuss in further sections.

The frequency ratio of updates between simulation and visualization is fixed to be ‘step’.

If step = 100, the visualization is performed every 100 MD steps. Though, the camera itself

can be changed independently to simulation steps. In principle, we used a fixed ratio between

them for simplicity. Therefore, frames per second are important for visual interaction. Note

that fps are also important for simulation interaction since the smooth steering of simulations

requests it.

3.3 Claret Versions

Given that Claret was initially conceived as an educational software package, it has changed

its original source code implementing new features. Some of these new changes include:

� New keyboard actions

� Adding information to the visualization

� Different force algorithm implementation

� Different hardware accelerator e.g. PlayStation 3 or GPU.

� Different rendering methods

There is no actual official record of the branching, but in this dissertation, we consider

to include 5 major versions. The latest ones serves as the testbed for the experiments in

Chapter 4 and 5.

29

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

Figure 3.3: Sample image of version 0.11

3.3.1 Version 0.11

This version is the original one created by Dr. Takahiro Koishi. Figure 3.3 shows a sample

image of the MD simulation. Version 0.11 includes some of the capabilities such as :

� Temperature in K scale

� Number of particles

� Time step

This version does not implement the cubic subspace, in other words, the wall is not

present. The keyboard actions listed in Table 3.1 are the same. The rendering method uses

polygons and the detail level can be changed by pressing the “R” key. All calculation process

is done through CPU or MD-GRAPE devices. Nevertheless, the original repository for the

source code is not available.

3.3.2 Version 0.53

In this iteration of the Claret MD simulator, the cubic sub space wall is present. Also, more

information is added to the display. Version 0.53 was developed by its original author. The

software can be found on this site [77]. Figure 3.4 shows a sample picture of this version.

Some of the main capabilities of this version are shown below:

� Temperature on K scale

� Number of particles in the simulation

� Time step

30

Section 3.3 Claret Versions

Figure 3.4: Sample image of version 0.53

� Flops measurement

� Frames per second

As for the rendering method in this version, polygons and textures are enabled. This

version includes a stereoscopic view if the special hardware is present. The collision of new

ions is possible as well. The force field between atoms can be performed by MD-GRAPE

devices or CPU hardware.

3.3.3 Version 1.0

Version 1.0 was developed in Narumi laboratory from The University of Electro-communications.

This version adds the GPU as a hardware accelerator using CUDA. Figure 3.5 shows a sample

image of this version of Claret. Some of the new capabilities in this version are:

� Hardware accelerator.

� Temperature on K or C scale.

� Number of particles present in the simulation.

� Flops measurement.

� Time step.

� Rendering speed.

� Ion type.

� Ion charge.

� Pressure information.

Major changes in this version are the ability to switch between hardware acceleration:

31

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

Figure 3.5: Sample image of version 1.0

GPU or CPU.

3.3.4 Version 2.0

The last version of Claret software is 2.0. This was developed by the author of this dissertation

and it is the main application for the testbed in Chapter 4 and 5. This version was re-written

in pure C++ code. As of version 1.0, this one supports GPU to compute the force between

particles using CUDA. Figure 3.6 shows a sample image of Claret version 2.0. New capabilities

include the following list:

� CPU implementation using OpenMP.

� GPU implementation using CUDA.

♦ OpenGL interoperability for rendering.

♦ Dynamic Parallelism for kernel launch type.

� Remote GPU execution.

DS-CUDA 2.5 compatible.

rCUDA 18.8 compatible.

� OpenGL 4.1 implementation.

♦ Vertex and Fragment shaders.

♦ GLFW as auxiliary library.

♦ Render to custom frame buffer.

� Number of particles present in the simulation.

� Flops measurement.

� Time step.

� Rendering speed.

32

Section 3.3 Claret Versions

Figure 3.6: Sample image of version 2.0

� Polygon count per sphere.

� Ion charge.

� Pressure information.

We enhance this version of Claret with many new features. A basic idea of the force

computation on CUDA is depicted in Figure 3.7. As well, on the CUDA side, we implemented

OpenGL interoperability. This CUDA feature allows sharing memory space between OpenGL

and CUDA context without double memory copies to the host. Thus, we keep the particle

memory space shared between both contexts to alleviate the transfer bottleneck. Dynamic

Parallelism over kernel launch was implemented over this version: this technique as is reported

in Chapter 5, allows to reduce communication between host and client. We tested this version

with DS-CUDA 2.5 and rCUDA 18.8 in order to use a remote GPU.

On the OpenGL side, we re-write the entire rendering engine. Before, Claret software it

used OpenGL 1.x specification which does not allow to implement shaders or custom matrix

states. This new version of Claret uses OpenGL 4.1, with the implementation of shaders in

the vertex and fragment side. As well, we replaced GLUT for GLFW [86] which is a more

capable and up to date utility library. Rendering particles were fixed to polygons and points.

Lastly, we implemented a custom frame buffer to obtain the final image. This was mainly

due to exploration for future works using coder/decoder inside of the GPU.

3.3.5 Android Version

The MD simulation is an interesting application that can benefit the user experience on a

tablet [81, 82, 83, 84, 85] due to its touching capabilities and many sensors. A more dynamic

33

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

GPU

Thread 0 Thread 1 Thread 2 Thread n-1

∂

∂= ≠

−

∑
φ0

0

1
j

j j i

n r

r

()

,

∂

∂= ≠

−

∑
φ1

0

1
j

j j i

n r

r

()

,

∂

∂= ≠

−

∑
φ2

0

1
j

j j i

n r

r

()

,

∂

∂

−

= ≠

−

∑
φ
n j

j j i

n r

r

1

0

1 ()

,

F0 F1 F2 F
n−1

Particle 1 Particle 2 Particle 3 Particle n...

Force vector

Figure 3.7: Force implementation on CUDA.

Figure 3.8: Sample image of Android version.

and immerse interface to interact with atoms is the aim of this version, as one of the main

objectives of this dissertation is to enable compute-intensive applications on mobile devices.

In order to achieve a port from Claret PC version, we need to understand the technicalities

involving rendering routines and software development. Claret for PC is a C/C++ based

software that uses OpenGL as a rendering framework. Most of the original implementations

are based on the OpenGL 1.x specification which lacks the shaders usage. Instead, it uses

the fixed pipeline to render. Also, a freeglut library toolkit is utilized to handle windows and

other interactive functions.

In this version of Claret for Android, we included 2 options as for medium of acceleration

when the force between particles is computed: CPU, and remote GPU with DS-CUDA. We

used the native tool NDK in order to port all the C code from the PC version. OpenGL

is selected to render in this version as well. Specifically, OpenGL ES 1.1 is utilized due to

the similarity of implementation against the PC version. Thus, the porting process becomes

34

Section 3.3 Claret Versions

Feature OpenGL OpenGL ES

Interface
WGL - Windows

EGLGLX - X11 Linux
CGL - Mac OS

Utility library tool-kit
freeglut

glut - Java only
glut

Rendering Routines
glBegin-glEnd

glDrawArray
glDrawArray

Types supported
Float

Float
Double

Main loop glutMainLoop()
onCreate()
onPause()
onResume()

Font rendering yes no

Table 3.3: Technical differences between OpenGL / OpenGL ES on Claret port process.

more transparent and seamless. However, some minor differences between the implementation

using OpenGL and OpenGL ES are noted. Table 3.3 shows these differences.

In the Android development ecosystem a class opengl.GLSurfaceView is provided in order

to handle the content view inside the App. This auxiliary library is used to connect the

OpenGL ES state to the Application state. Routines such as onCreate(), onStart() and

onResume() from the Figure 3.9 are implemented within its equivalent onSurfaceCreated(),

onSurfaceChanged() and onDrawFrame() on C through its proper interface using NDK. Next,

we describe the process flow for each important routine in our port for Claret on Android.

� onSurfaceCreated () : variables and constants are initialized. These variables

include initial temperature, time step, velocity, force and position of the particles. State

matrices for OpenGL and colors are initialized as well. Memory space is allocated.

� onSurfaceChanged () : resizing of the canvas for the actual size of the Android

tablet is performed here. On tablets, you may use it as portrait and landscape mode,

which changes the total size for the main window buffer in OpenGL. Nevertheless, we

restricted the usage as a landscape. The matrix model for OpenGL is defined here as

well as the initial perspective. Buffer depth for color and spatial depth are cleared in

this instance in order to generate a new frame.

� onDrawFrame () : here we included all the rendering part. Basically, we imple-

mented two main functions: One which is the core for the MD simulation where the

force of the particles is computed and another function that renders all the position

of the particles. The visual information such as the amount of floating operations per

second is performed here as well.

Finally, for this version, we decided to use polygons and points to render the particles in

the system. In the original code, textures and polygons are available for drawing. However,

35

Chapter 3 Molecular Dynamics Simulation and Visualization - Claret

Activity
launched

App
process

killed

onCreate()

onRestart()onStart()

onResume()

Activity
Running

onPause()

onStop()

onDestroy()

Activity
shut down

User navigates
to the activity

Another activity comes to foreground

The activity is no visible

The activity is destroyed

User returns
to the activity

User goes
to the activity

Figure 3.9: Life cycle of an Android application.

initially a function called glutSolidSphere () from the GLUT library was used. Moreover, if

we want to render a massive number of bodies without sacrificing performance in OpenGL

[87], functions such as glBegin-glEnd should be avoided. Instead, glDrawArrays functions

must be implemented.

36

4

Offloading with a naive

approach: DS-CUDA case

Post-PC devices such as tablets and smartphones have become part of our daily lives. These

mobile devices are changing the way users interact with computers and view data due to

their many capabilities. By using such technology, interactive simulations have become a

new way to artificially accelerate simulations by manually interacting with them. Mobile

devices are suitable for such simulations because they have touch capability and multiple

sensors. Nevertheless, mobile devices require more computational power to deliver the best

user experience for such an intensive computational task. Cloud computing is another ap-

proach that can complement the low computing power of mobile devices. This is achieved by

offloading intensive computations to a resource inside the same network. Cloud computing

provides the ability to remotely connect with accelerators such as GPUs. To use graphics

processors for GPGPU in a cloud environment, virtualization tools have been proposed, such

as MGP [105], rCUDA [89] and DS-CUDA [108]. These tools can handle remote GPUs to

accelerate applications and reduce code complexity. Specifically, DS-CUDA has proven to

be a reliable and simple solution to handle remote GPUs while providing a fault-tolerant

mechanism [94].

The main motivation leading this research is explained as follows: commonly, computer

simulations are carried out without visualization. After the computation is done, all gener-

ated results are visualized and analysed on different work stations. The mobile computing

devices, such as tablets, have shown better capabilities to interact with computers due to

their touch screen capabilities and a variety of many other sensors. Nonetheless, the com-

puting power of these devices is not sufficient enough to perform complex simulations such

as Molecular Dynamics (MD). Consequently, we propose the implementation of a client and

server scheme using a tablet and a remote GPU in order to perform real-time MD simula-

37

Chapter 4 Offloading with a naive approach: DS-CUDA case

tion and visualization. We execute the entire simulation inside of the tablet and only the

most computationally intensive parts are offloaded using a remote GPU through DS-CUDA

framework [92].

Some other efforts have done to offload data and an intensive portion of computation

from mobile devices to the cloud. Lin et al. [21], Elgendy et al. [22] and Kolb et al. [23] have

proposed frameworks to offload computation from a mobile device to a server. Their frame-

works consider different patterns to decide for offloading in order to save battery. However,

they do not support CUDA for offloading. There have been some proposals to implement

intensive applications on mobile devices held by parallel programming paradigms. Acosta et

al. [24] implemented a particle filter running on Android using several parallel frameworks on

such as RenderScript, OpenCL and ParallDroid. We used CUDA since its presence in HPC

is clear [91] and DS-CUDA is able to handle CUDA code with mobile devices.

Our test system is composed of NVIDIA’s “SHIELD” tablet, a notebook equipped with

GeForce 970M GTX GPU, and an 802.11ac WiFi router. We also included NVIDIA’s Jetson

K1 an embedded system for comparison purposes. At the time of performing the experiments,

this was the first CUDA capable chip for ARM devices. Details are described in a further

section.

The rest of the Chapter is organized as follows. Section 4.1 includes a brief description

of DS-CUDA as well as how we enable this virtualization framework on Android. Also, we

include in detail each component of the system we used for the performance comparison.

Section 4.2 is about the detail for each test we performed. In section 4.3 we present the

results obtained from some experiments. Finally, in section 4.4, we discuss and summarise

the contents of the Chapter.

4.1 Method

In this section, we present a general overview of DS-CUDA virtualization framework. We

also include the procedure to enable DS-CUDA on Android tablets. Furthermore, a detailed

description of each part of the test system is described.

4.1.1 DS-CUDA Overview

DS-CUDA is a framework that simplifies the usage of GPUs on a distributed network, rather

than using native CUDA APIs. A single client node and one or more server nodes compose

one DS-CUDA system, as shown in Figure 4.1.

The server nodes have one or more CUDA capable GPUs that are handled by server

processes. An application on the client-side can use GPU devices to process data without

having a physical GPU. The client program sees all GPUs contained in the server nodes as

38

Section 4.1 Method

LAN / WAN Network.

Client Node

Server Node 1

Server Node 2

Server Node n

Gateway

Gateway

Figure 4.1: Diagram of a typical DS-CUDA system.

if they were actually attached to the client node. Therefore, DS-CUDA is a kind of GPU-

virtualization tool at the source code level.

When the client program is compiled, native CUDA APIs are handled by a DS-CUDA

pre-processor. The DS-CUDA pre-processor replaces them with corresponding wrapper func-

tions. The substituted functions communicate with the server nodes through InfiniBand (IB-

Verb) or TCP socket. The wrapper functions send the proper arguments and data to the

server nodes and each server call the actual native CUDA APIs. Detailed implementation is

explained in other papers [92, 93].

DS-CUDA has demonstrated good performance when multiple GPUs are used for MD

simulation. Oikawa et al. [94] has conducted MD simulation with a replica-exchange method

using more than 1000 GPUs. They concluded that increasing the number of MD steps lead

to a better parallel efficiency even when Gigabit Ethernet was used.

4.1.2 DS-CUDA for Android

As we mentioned in the previous section, DS-CUDA is a GPU virtualization framework

that works in the client-server scheme. On the server-side, where the physical hardware is

located (the GPU), a daemon process is always listening for requests from the client. In order

to generate the executable from the client-side, DS-CUDA pre-processor dscudacpp is used

instead of nvcc compiler. This pre-processor is a Ruby script that replaces normal CUDA

API calls to DS-CUDA ones. Figure 4.2 shows a simplified example of output files.

The sample.cu file includes the CUDA code of our application. This file is inserted into

dscudaccp preprocessor. The output is composed by several files: the sample.ptx which

corresponds to low-level code inside of the kernel and the sample.ds.cup which is a similar

39

Chapter 4 Offloading with a naive approach: DS-CUDA case

sample.cu dscudacpp

sample.ptx

tmp

sample.ds.cup

sample

x86

Figure 4.2: DS-CUDA pre-processor output example.

libdscuda_tcp.a

dscudaverb.c sockutil.c dscudad.c dscudautil.c libdscuda_tcp.c

Figure 4.3: DS-CUDA client library code structure for socket communication through TCP
protocol.

version of the original code but wrapping all the native CUDA functions with the DS-CUDA

ones.

In order to generate the final executable, a static library is needed to be linked in the

final phase. This library is the implementation of the CUDA APIs through socket calls.

Figure 4.3 shows its code composition. In a normal scenario, this final phase will be handled

by dscudacpp through gcc compiler. However, to generate an executable for the Android

platform different tools are needed.

A native development tool is necessary to enable DS-CUDA for Android clients: the

Native Development Kit (NDK) [95] allows the usage of C code inside of the Java main based

program on Android devices. This framework and toolkit allow the usage of gcc compiler for

ARM devices. Hence, we can use the compiler to generate the client library and handle the

pre-process GPU code from dscudacpp as Figure 4.4 illustrate.

Two main make like files are required to generate and configure properly the NDK tool

inside of the Android project. The first one, Android.mk is used to include source files,

headers and some flags for the compilation phase. A sample is shown in List 4.1. The second

one, Application.mk is used for platform-specific configurations, type of library to generate,

architecture and some exceptions for the compiler. A sample of the file is included in List

4.2.

Finally, we can access the CUDA APIs from the Java code through the Java Native

40

Section 4.2 Test Description

libdscuda_tcp.a

arm-gnueabi-g++

sample.ds.cup

Sample.apk

ARM

Figure 4.4: Final client compilation phase for Android application using NDK.

1 ## Android .mk

2 ## Static Library libdscuda_tcp.a

3 LOCAL_PATH := $(call my -dir)

4 include $(CLEAR_VARS)

5

6 LOCAL_MODULE := dscuda_tcp1 .5.2

7

8 LOCAL_CFLAGS := -O0 -g -ffast -math -funroll -loops -I. \

9 -I/usr /local /cuda/include \

10 -I/usr /local /cuda -6.0/ NVIDIA_GPU_Computing_SDK /C/common /inc \

11 -I/usr /local /cuda/samples /common /inc -DTCP_ONLY =1

12 LOCAL_SRC_FILES := dscudaverb .cpp dscudautil .cpp \

13 sockutil .c libdscuda_tcp.cpp \

14 LOCAL_LDLIBS := -ldl -llog

15 include $(BUILD_STATIC_LIBRARY)

16 ## Static Library DS -CUDA Routine

Listing 4.1: Configuration file (Android.mk) sample to generate DS-CUDA static library.

Interface (JNI) [96] which can load C/C++ functions.

4.1.3 System Description

In Figure 4.5 our testbed system for simulations is shown. We utilized a mobile GPU GeForce

970M GTX from a notebook as a server. There are two methods to communicate between

the client and the server: Gigabit Ethernet or WiFi 802.11ac. As for the router and access

point, we used a Buffalo AirStation MZR-1750. The full characteristics of the server and

client are listed in Tables 4.1 and 4.2, respectively.

For comparison purposes, we also included an embedded system powered by a mobile

CUDA capable GPU. The full characteristics of the system are shown in Table 4.3.

4.2 Test Description

In this section, we present the details for each configuration test. Three different assessments

are proposed in order to evaluate different metrics. First, a bandwidth test to measure com-

munication performance between a client (Tablet) and a server (GPU). When DS-CUDA is

41

Chapter 4 Offloading with a naive approach: DS-CUDA case

1 ## Application .mk

2 APP_MODULES := dscuda_tcp1 .5.2

3 APP_ABI := armeabi

4 APP_PLATFORM := android -18

5 APP_STL := gnustl_static

6 APP_GNUSTL_FORCE_CPP_FEATURES := exceptions rtti

7 APP_OPTIM := debug

Listing 4.2: Configuration file (Application.mk) sample to include DS-CUDA static library.

DS-CUDA

Server

LAN Network.

Client Node

Server Node

Ehternet GiBitEthernet GiBit

Wireless

802.11ac

Figure 4.5: Test bed system for a DS-CUDA proposal.

utilized instead of native CUDA, there is some overhead in communication since DS-CUDA’s

wrapper functions substitute original CUDA functions. Furthermore, different mediums to

communicate CPU and GPU are used, e.g. PCI Express in the case of a Notebook using

native CUDA, and Ethernet and WiFi in the case of using DS-CUDA wrapper functions.

The second test consists of a simple matrix multiplication to measure a simple latency when

a GPU kernel is launched. Also, it is used to verify the computation saturation point of the

GPU. Finally, for the third test, MD simulation and visualization are performed. This test

aims the measurement of computation performance, communication overhead between client

and server, and graphics rendering bottleneck.

Element Description

CPU Intel Core i7-4720HQ, 2.60 GHz, 8 Cores
GPU GeForce 970M GTX , 1920 CUDA Cores
OS Ubuntu 16.04 LTS x86
CUDA Driver 352.55, Toolkit 6.0, SDK 6.0

Table 4.1: Server specifications. Notebook powered with NVIDIA’s 970M GTX GPU.

42

Section 4.2 Test Description

Element Description

CPU NVIDIA Tegra 4, 1.912 GHz, 4 Cores
GPU NVIDIA AP, 72 Custom Cores
OS Android 6.0, Tegra for Android 3.0r3

Table 4.2: Client specifications. NVIDIA tablet “Shield Portable”.

Element Description

CPU ARM cortex A-15, 2.32 GHz, 4 Cores
GPU Tegra K1 , 192 CUDA Cores
OS Linux for Tegra - Ubuntu 16.04 for ARM
CUDA Custom Jetson K1, Toolkit 6.0, SDK 6.0

Table 4.3: Embedded system Jetson K1 powered with NVIDIA’s Tegra GPU.

4.2.1 Bandwidth Test

We performed tests to measure data transfer speed between client (tablet) and server (GPU)

via cudaMemcpy function. Two options for memory copy functions are considered, i.e. from

Host to Device (H2D) and from Device to Host (D2H). The size of transfer data is increased

from 1 KB to 268 MB. We tested for four different settings: 1) Native CUDA on a notebook,

2) Native CUDA on a K1 embedded system, 3) Ethernet connection on a DS-CUDA system

and 4) WiFi connection on a DS-CUDA system.

4.2.2 Matrix Multiplication

A simple matrix multiplication code was implemented. Two matrices A and B are full with

random floating-point numbers and matrix C is the result of their multiplication. The CUDA

code for the kernel used in this test was taken from Nvidia’s SDK CUDA 6.0 as a reference.

The most naive implementation which does not use cuBLAS 1 library was used. Nevertheless,

this kernel implementation uses shared memory and it is optimized for GPUs with 192 CUDA

cores in SM. In our test, both devices equipped with a GPU have a multiple numbers of 192

as shown in Tables 4.1 and 4.3. The matrix size (width and height) for each input matrix (A

and B) is set as follows: WA = 128 ∗ i, HA = 192 ∗ i, WB = 128 ∗ i, HB = 128 ∗ i. Wx means

width of the matrix X, and Hx is height of matrix X. Here we defined i → {1, 5, 10, 15, 20}

as the scaling factor. In this test, only the time for kernel execution is measured.

4.2.3 Molecular Dynamics Simulation and Visualization

As we mentioned in Chapter 3, MD simulation is used in computational science to describe

physical phenomena at the atomic level. From the computational point of view, these kinds of

1The cuBLAS library is an proprietary implementation from NVIDIA of BLAS (Basic Linear Algebra
Subprograms) on top of the CUDA runtime.

43

Chapter 4 Offloading with a naive approach: DS-CUDA case

Initialize atom positions

Start MD

Compute force
between atoms

Update velocity,
temperature & position

Display/Render atoms

Step = 10 |100 ?

Step = 0

Step ++

End MD ?

End MD

No

Yes

Yes

No

Figure 4.6: Simplified schematic algorithm of MD simulation. Step for simulation before
rendering can be switched to 10 or 100.

simulations are very intensive due to its O(n2) complexity where n is the number of particles.

A simplified MD algorithm used in this test is shown in Figure 4.6.

We implemented this algorithm for the tablet, notebook and the embedded system. Ini-

tially, a particle conglomerate of NaCl is shown and its behavior under the vacuum level is

simulated. Tosi-Fumi potential [117] is used to describe the interaction between atoms. This

potential, as shown in Eq. (3.1), describes a Coulomb term, a repulsion term, a dipole-dipole

term and a dipole-quadruple term.

When we convert a serial version [77] of the MD program to GPU version, a general idea

of CUDA implementation is as follows. In order to compute Eq. (3.1) for all bodies in the

system, we allocate all constant parameters inside of the constant memory and send a fraction

of positions of particle j and charge qj to the shared memory. Thus, we update the partial

force for particle i within each block of threads and keep this result in the shared memory

as well. Finally, we apply a reduction sum in each thread block to obtain the complete force

for each particle. However, we do not send back the results to CPU every step. Instead, we

send back the results every 10 or 100 steps for each rendering.

44

Section 4.3 Results

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

210 214 217 220 224 228

D
at

a
tr

an
sf

er
 s

pe
ed

 (
M

by
te

/s
ec

)

Data Size (byte)

970M CUDA H2D
970M CUDA D2H

K1 CUDA H2D
K1 CUDA D2H

SHIELD Ethernet DSCUDA H2D
SHIELD Ethernet DSCUDA D2H

SHIELD Wifi DSCUDA H2D
SHIELD Wifi DSCUDA D2H

Figure 4.7: Data transfer speed using CUDA’s cudaMemcpy function over different types of
connection. H2D means Host to Device direction and D2H is opposite.

To implement the visualization side, we used OpenGL 3.0 for Linux based machines and

OpenGL ES 1.1 for Android. A single dot is used for the representation of each atom in the

simulation. An important thing to denote is that we disable vertical synchronization (Vsync)

on OpenGL in order to print out the actual amount of frames per second for the application.

This was only possible in Linux based systems through an variable vblank mode set to 0. For

the implementation of Android, we could not disable the Vsync because the control of this

function is fixed by the specific display vendor.

4.3 Results

This section presents the results obtained from our test over DS-CUDA system using tablets

for offloading. Computation performance from a matrix multiplication and MD simulation

and visualization are shown. As well, communication throughput using different physical

media is included.

4.3.1 Bandwidth Performance

Figure 4.7 shows the data transfer speed between Host and Device performed by CUDA API

cudaMemcpy(). Data transfer speed (Throughput) is calculated from data size (DataSize)

divided by the time (T ime) for data transfer.

First, we report on the performance of the notebook. In this case, the internal GPU

970M communicates with the CPU using PCI Express Gen 3x16. The top speed on H2D is

5.5 Gbytes/sec, and 3.5 Gbytes/sec on D2H. These numbers are rather expected to take into

account the bus connection from the PCI Express. The second case is the embedded system

Jetson K1 which uses on chip communication for sharing resources between CPU and GPU.

45

Chapter 4 Offloading with a naive approach: DS-CUDA case

H2D
latency
(sec)

D2H
latency
(sec)

970M CUDA 3.7× 10−6 6.3× 10−6

K1 CUDA 2.2× 10−4 3.2× 10−4

SHIELD Ethernet DSCUDA 9.2× 10−4 8.4× 10−4

SHIELD WiFi DSCUDA 2.0× 10−3 1.9× 10−4

Table 4.4: Memory copy latency of CUDA and DS-CUDA.

It reaches a top speed of 1.8 Gbytes/sec for H2D configuration, and 1.5 Gbytes/sec when

D2H is performed. Here, we can denote that the speed in both ways is similar, compared to

the notebook in which case D2H presents slower performance. Third is the case for the tablet

using DS-CUDA over Gigabit Ethernet and WiFi. Implementing Ethernet we reached a top

speed of 108.8 Mbytes/sec on H2D, and 110.3 Mbytes/sec on D2H. Utilizing WiFi we got a

top speed of 40.1 Mbytes/sec on H2D, and 25.2 Mbytes/sec on D2H. Comparing the results

using DS-CUDA against native CUDA, we can see almost 50 times slower against the case of

Ethernet, and almost 100 times slower communication compared with WiFi implementation.

To estimate communication time within the DS-CUDA application, latency is relatively

important because the GPU is connected through a network. For this purpose, we assume

the data transfer T ime as follows:

T ime = Latency +
DataSize

Bandwidth
(4.1)

where Bandwidth is the maximum data transfer speed when the data size is large enough.

Latency is the time needed to initiate or finalize the communication. As Bandwidth is

roughly the same as the maximum data transfer speed (Max.Throughput) in Figure 4.7,

Latency can be calculated as follows:

Latency =
Min.DataSize

Min.Throughput
−

Min.DataSize

Max.Throughput
. (4.2)

Table 4.4 includes the latency of cudaMemcpy for both cases, H2D and D2H. In com-

munication performance, CUDA achieves higher transfer speed and less latency in both the

notebook with 970M and the embedded system K1. Using DS-CUDA through Ethernet and

WiFi has a penalty in transfer speed and latency. However, as shown in Table 4.4, latency

between Host and Device is similar to CUDA on the SHIELD tablet when DS-CUDA is used

through Ethernet and WiFi.

46

Section 4.3 Results

1.00e-02

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

i = 1 i = 5 i = 10 i = 15 i = 20

G
flo

ps

Matrix size

970M CUDA
K1 CUDA

SHIELD Ethernet DSCUDA
SHIELD Wifi DSCUDA

970M CPU
K1 CPU

SHIELD CPU

Figure 4.8: Computation performance for Matrix multiplication test. Horizontal axis shows
the i scaling factor which defines the size of the matrices. Results are shown using Giga
floating point operations per second.

4.3.2 Matrix Multiplication Performance

In this test we consider the amount of floating-point operations per second (flops) in our

matrix multiplication sample. This is given according to Eq. (4.3):

flops = 2 ∗WA ∗ i ∗WB ∗ i ∗HA ∗ i/time. (4.3)

We show the complete results in Figure 4.8. The notebook and Jetson K1 using native

CUDA on the GPU achieve a maximum of 271.2 and 16.90 Gflops, respectively. In both

cases, constant performance is noticed because of the full usage of multiprocessors in the

GPU at all times. The SHIELD tablet with DS-CUDA using Ethernet and WiFi achieves

the same performance as the notebook for large matrix calculation. A performance difference

is perceived between the notebook and DS-CUDA cases for smaller matrix sizes (i < 10).

The best CPU results from the notebook, K1, and SHIELD tablet are 1.8, 0.34, and

0.12 Gflops, respectively. We used only a single thread for CPU implementation in this test.

These results are considerably lower than those utilizing the GPU.

On the DS-CUDA cases, the performance presented is lower for smaller matrix sizes

because of communication latency takes a longer time than the actual computation. Calling

the kernel over Ethernet and WiFi took 1.6 ms and 7.7 ms, respectively, while the matrix

calculation itself took only 23 µs for the smallest matrix size of i = 1. For a medium-sized

matrix, where i = 10, the calculation took 23 ms, greatly reducing the latency effect.

47

Chapter 4 Offloading with a naive approach: DS-CUDA case

1.00e-02

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

 100 1000

G
flo

ps

Number of particles

 100 1000

A) Step=10 B) Step=100

970M CUDA
K1 CUDA

SHIELD Ethernet DSCUDA
SHIELD Wifi DSCUDA

970M OpenMP CPU
K1 OpenMP CPU

SHIELD OpenMP CPU

Figure 4.9: Computation performance for MD simulation and visualization test. Performance
to compute force between particles for every 10 steps A) and 100 steps B) are reported.
Results are shown using Giga floating point operations per second.

4.3.3 MD Simulation and Visualization Performance

Two kinds of results are presented for the MD simulation and visualization; performance of

calculating force between particles and frame rendering performance.

Computation Performance

The first section shows the number of flops when solving Eq.(3.1). The positions of atoms are

internally updated every step and rendered to the screen every 10 or 100 steps. To calculate

the number of operations per second inside the MD simulation, Eq.(4.4) is used.

flops = (n ∗ n ∗ 78 ∗ step)/time, (4.4)

where n represents the number of particles in the system. There are 78 operations required

to solve the potential between a pair of particles. Step represents how often the system is

updated to render one frame, as shown in Figure 4.6.

First, we present the computation performance (Gflops) for Step = 10 in Figure 4.9 A).

The notebook and K1 embedded system using CUDA achieve a maximum of 1,655.3 and

78.5 Gflops, respectively, for a large number of particles. The SHIELD tablet using DS-

CUDA with Ethernet and WiFi accomplished 1,319.6 and 701.2 Gflops, respectively, for a

large number of particles. The SHIELD tablet outperforms the K1 embedded system when

the number of particles exceeds 1,728. Fewer particles affect the performance of DS-CUDA

owing to communication latency between Host and Device.

Second, Figure 4.9 B) shows the performance of computing force between particles when

Step = 100. In this case, only the GPU results are plotted because it is expected that CPU

48

Section 4.3 Results

1.00e-02

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

 100 1000

F
ra

m
es

 p
er

 S
ec

on
d

Number of particles

 100 1000

A) Step=10 B) Step=100

970M CUDA
K1 CUDA

SHIELD Ethernet DSCUDA
SHIELD Wifi DSCUDA

970M OpenMP CPU
K1 OpenMP CPU

SHIELD OpenMP CPU

Figure 4.10: Visualization performance for MD simulation. Performance to render one frame
for MD is reported. The number of steps to update the system was set to 10 steps A) and
100 steps B). Results are shown using frames/second.

results would be similar to Figure 4.9 A). The notebook and Jetson K1 using CUDA achieve

1,698.7 and 80.47 Gflops, respectively. SHIELD tablet using DS-CUDA with Ethernet and

WiFi reaches 1,692.4 and 1,368.4 Gflops, respectively. As we can observe, the results for

both CUDA implementations remain similar when we change the number of steps. However,

for the DS-CUDA implementation, communication between Host and Device is reduced by

increasing the number of steps from 10 to 100.

Frames per Second

The following section shows the number of frames per second. The main difference between

this test and the computation performance is as follows: this includes computation time and

also time to render the particles in the system.

Figure 4.10 A) shows the performance to visualize the MD simulation for Step = 10. The

notebook and Jetson K1 using CUDA reached 60.24 and 2.86 frames/sec, respectively for

a large number of particles. The SHIELD tablet using DS-CUDA with Ethernet and WiFi

achieved 20.46 and 19.61 frames/sec, respectively.

Figure 4.10 B) shows the rendering performance for Step = 100 configuration. Only the

GPU results are included at this time. The notebook and K1 using CUDA achieve 6.25

and 0.30 frames/sec, respectively, for a large number of particles. The SHIELD tablet using

DS-CUDA with Ethernet and WiFi achieve 5.92 and 5.00 frames/sec, respectively. In this

case, increasing the number of steps from 10 to 100 causes the GPU to take more time to

compute the force between particles. Thus, the rendering process for each frame becomes

relatively slow. Communication and rendering become less of a bottleneck compared with the

actual MD simulation. Results with Step = 10 and Step = 100 were compared in this study.

The main reason is to show the effect of reducing communication between Host and Device.

49

Chapter 4 Offloading with a naive approach: DS-CUDA case

This is a well-known technique among experts on GPGPU for CUDA programming because

copying data from the CPU to the GPU is a very expensive time-consuming operation.

Next, we report the numbers from the CPU implementation. In this case, OpenMP is

used to compute the force between the particles. The outcome of this experiment is plotted

in Figure 4.10 A). The notebook reaches 0.41 frames/sec for a large number of particles.

The Jetson K1 and SHIELD tablet accomplish only 0.026 and 0.011 frames/sec for 1,728

particles. For a smaller number of particles, using the CPU as a force accelerator is the best

visualization option because it excludes the communication bottleneck between the CPU and

GPU. However, for a larger number of particles computing force between atoms becomes the

bottleneck. In this case, GPU becomes the optimal solution.

Effects of the communication can be observed in Figures 4.9 and 4.10. Here, we denoted

that the communication frequency is reduced to 1/10 when Step = 100 is used, compared

with Step = 10. As we can note, the DS-CUDA performance is low for a small a number

of particles because of network overhead. Nevertheless, hiding this latency was possible by

increasing the number of steps in the MD simulation to keep the GPU busy on the server-side.

From the results, we showed that the number of steps to update the system directly affects

the frames per second. For Step = 10, the frames per second for the DS-CUDA system

reached more than 19 frames/sec. However, increasing the number of steps to 100 directly

affects rendering time. Importantly, the Jetson K1 could not handle more than 3 frames per

second for the larger number of particles. This was owing to a combination of fewer flops and

poorer rendering performance compared with the tablet-notebook combination.

4.4 Conclusion

In this Chapter, we demonstrated that intensive computations are accelerated on a non-GPU

tablet using a remote low-power integrated GPU through a DS-CUDA framework. This was

possible because of DS-CUDA’s ability to virtualize GPUs in a cloud environment. However,

communication between a client tablet and a server notebook with a GPU might become

a performance bottleneck. Therefore, we compared the performance results of our system

against the Jetson K1 which was the first embedded system equipped with a mobile GPU.

Our system achieved better computational performance and better frames per second.

We tested the DS-CUDA framework to facilitate and enable the development of remote

offloading using mobile devices. Using the same code as native CUDA, the DS-CUDA pre-

processor replaces the CUDA APIs with wrapper functions that implement the connection

between client and server. In this sense, a remote GPU located in the cloud can be pulled

and looked at as if it were attached to the mobile device.

50

Section 4.4 Conclusion

We show an MD simulation and visualization including several hundred particles in the

system. However, in order to increase the size of the simulation, a similar approach from

previous DS-CUDA implementations could be followed. It has been proven that DS-CUDA

can be used in a multiple GPU environment for MD simulation. Nevertheless, latency and

communication between nodes could become a bottleneck in our proposed system.

Our heterogeneous system proved to be suitable for executing an interactive molecular

dynamics simulation. Using the DS-CUDA virtualization framework, only kernels for inten-

sive computation are offloaded to the server-side. Mobile devices are not expected to perform

intensive computations due to saving battery life and low powered CPU. However, cloud

computing or similar systems like ours are an interesting approach to simultaneously achieve

more computational power on mobile devices.

51

5

Reducing communication latency

through Dynamic Parallelism:

rCUDA case

Interactive modeling, such as interactive Molecular Dynamics (MD) simulations [100, 101],

enables the artificial acceleration of simulations through manual interaction. Mobile devices

are suitable for such simulations because they have touch capability and multiple sensors.

Nevertheless, mobile devices require more computational power to deliver the best user expe-

rience for such intensive computational tasks, because simulations like these are characterized

by high frame rates and processor-intensive routines.

Cloud computing provides the ability to remotely connect with other machines and hook

up accelerators like GPUs. In a cloud environment, virtualization tools such as GVirtuS

[102], Shadowfax[103], GPUvm[104], MGP [105], vCUDA [106], GridCuda [107], DS-CUDA

[108, 11], and rCUDA [109, 110] have been proposed in order to use remote GPUs. These

tools and frameworks are able to manipulate remote GPUs to accelerate applications in a

cloud environment. In particular, rCUDA has proven to be a reliable, simple, and up-to-date

solution for handling remote GPUs [111, 112, 113, 114]. In the previous Chapter, we were

able to use DS-CUDA as a medium of connection between an Android tablet and a remote

GPU from a notebook. However, as we will see in section 5.5, the performance delivered from

rCUDA overpass the one from DS-CUDA.

We analyze the computing, rendering, and power efficiency when the rCUDA framework

is used to accelerate computations on a mobile device, offloading most of its intensive com-

putations to a notebook leveraged by a low-power GPU. As we can denote, despite their

great acceleration and high performance, desktop GPUs are considered non-green computing

solutions since they consume around 270 W [115], substantially more than the low-power

53

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

GPUs present on notebook computers which are in order of the 170 W. This is because of

they are designed for energy efficiency and low power use [10, 116].

Compared to the previous Chapter, here we present a performance evaluation of a het-

erogeneous system composed of a non-CUDA-capable tablet device and a notebook powered

by a low-power GPU. We show the effectiveness of using GPGPU techniques such as Dy-

namic Parallelism (DP) to reduce the kernel call latency. As well, we investigated using a

server/client scheme. Moreover, the possibility and outcome of increased power efficiency

using various clients are shown.

There have been some proposals that implement a paradigm similar to ours. Fatica et

al. [25] implemented a synthetic aperture radar imaging application using a Tegra K1, which

is a CUDA-capable GPU. In both cases, speed improvements were achieved implementing

the GPU compared against CPU implementation. However, the authors on their study did

not include any outcomes on performance per watt or battery life. Heungski et al. [28] and

Kemp et al. [27] conducted a set of a test similar to ours. The main difference between our

approach and that of Heungski et al. is the API used for offloading. They chose OpenCL,

because it is open source and covers more devices to offload, whereas we use CUDA because

of its presence in HPC is clear [99] and rCUDA is able to handle CUDA code. Kemp also

used rCUDA to offload intensive computations to mobile devices. Our proposal is related to

theirs in the sense that we both claim speed gains when heavy parts are offloaded for certain

applications. Additionally, both proposals present results about energy usage. However,

their study shows that for exposure fusion algorithm on images there is no lead to better

execution or saving power consumption. The main reason is that they used CPU on the

client side (Tablet) for image compression and thus the amount of data sent to remote GPU

is reduced. We were able to tackle the communication problem in a different way. We

implemented Dynamic Parallelism to reduce GPU kernel calls. Also, they consider only

client-side power consumption, whereas we include both client-and server-side consumption

for performance per watt measurements. Furthermore, we also examine the power efficiency

for combinations of multiple clients. Another study related to low-power systems is that

of Reaño et al. [30], who investigated the performance of rCUDA on a combination of low-

powered CPUs such as ARM, Atom, and Xeon D. They used the GROMACS package to

conduct MD simulations and concluded that the acceleration and handling of the virtual

GPUs by the Xeon D processor was superior to that using the ARM or Atom. However,

they did not present any power consumption results. Montella et al. [29] proposed to use

offloading for heavy computations from an ARM cluster (Client) composed by 3 NVIDIA

Jetson TK1 utilizing GVirtuS framework to a remote GPU TITAN X (Server). Although,

Jetson TK1 contains on SoC with a CUDA capable GPU, they offload several sizes of matrix

multiplications to a server and compared the results against the local execution, claiming

54

Section 5.1 Communication Optimization Policy

gain in performance when offloading. Furthermore, they report that latency is neglected as

the problem size increases. Despite the similitude to our proposal, this study does not tackle

a real-time application, including several copy memory functions or kernel calls. Moreover,

they do not include power metrics between server or client, even thought GPUs such as

TITAN X are very power-hungry, consuming around ∼250W. In our study, we selected a

low-power client and server since we want to squeeze every Gflop/Watt delivered from the

system.

The contents of this Chapter is organized as follows. Sections 5.1 and 5.2 provides an

insight into how the strategy for implementing DP was decided to compare results from the

previous Chapter. Section 5.3 provides a brief description of rCUDA, before Section 5.4

describes each component of the test system. In Section 5.5, we present the results obtained

from a series of tests. Finally, in Section 5.6, we discuss and summarize the contents.

5.1 Communication Optimization Policy

In the previous Chapter, we were able to offload intensive computations from a mobile device

to a remote GPU through virtualization framework DS-CUDA. Our results showed that the

communication between the server and client still presents a constraint in order to achieve

enough frame rate even though a significant gain of computation speed was observed. Op-

timizing communication can lead to various approaches. Our target application is designed

for real-time visualization and simulation. Thus two factors are important:

� Bandwidth 99K This factor is related to the total information transfer between server

and client. Upgrading the medium of connection is always a reasonable solution. Fur-

thermore, reducing the data size in the application is crucial.

� Latency 99K This factor refers to the amount of communication between server and

client including the number of kernel calls and the memory copies. Although latency

is directly related to the medium used to communicate both entities, we can alleviate

this constraint by reducing the number of calls.

In our system proposal, the MD simulation and visualization from the tablet device needs

to overcome these two factors. A better way to understand the strategy for optimization in

our system proposal is shown in Table 5.1. This reference to optimization strategies shows

the total communication between GPU and CPU in a local machine environment. However,

we can observe the reduction for communication and data transmission which is our primary

target. In the first case, only force is performed in the GPU, thus only one kernel call per

MD step is performed. However, the amount of transfer data is set to 18 (9 from CPU to

GPU and 9 from GPU to CPU) for each MD step. This is due to the Integration part of

55

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

Optimization Kernel call cudaMemcpy

Only Force step× 1 step× (9 + 9)
Force + Integration step× 4 2
Force + Integration + DP 1 2
Force + Integration + DP + Interop. 1 0

Table 5.1: Communication optimization strategy for Claret using GPU. The number of Kernel
and memory copy calls are reported. Variable step refers to how often the MD simulation is
executed during one frame. In our experiments it is set to few hundreds.

velocity, temperature and other variable calculations are done in the CPU. Therefore excessive

communication is observed between CPU and GPU.

The first optimization is to perform the Integration part in the GPU, thus communication

for memory copies are reduced. However, the number of kernel calls per MD step is increased

to 4 per MD step. We can denote that here, all the data necessary to compute an MD step

still remains in the GPU. Only data necessary to render is sent back to the CPU. In this

case, only position and velocity variables are sent back.

The second optimization, which is the main objective of analysis in this Chapter is includ-

ing DP. This will allow reducing the kernel call per MD step to only 1. DP allows to wrap

the kernel inside the kernel, then our MD step loop is located inside the GPU code. This ap-

proach executed locally in a GPU presents a slow execution. However, we expect to increase

performance when the server and client scheme is used since the number of communication

for kernel call is reduced.

The last optimization technique is to avoid any copy memories from the GPU to the

CPU. This can be achieved by sharing memory space between OpenGL and CUDA through

Graphics Interoperability. This allows making zero memory copy calls since information for

rendering still resides in the GPU. Nonetheless, this capability is not yet supported in the

virtualization frameworks.

We can add that the computational power does not represent a vital constraint in our

approach since the proposal system achieves enough computational performance to allow a

few thousands of particles present in the simulation. Nevertheless, one of the most important

capabilities of using virtualization frameworks such as DS-CUDA and rCUDA is the ease of

multi-GPU. In this sense, the size of the system could be increased.

Considering the optimization techniques mentioned below we can denote that our ap-

proach is to use as minimal information as possible for rendering each particle. The total

amount of data transferred between the server and client is on the order of KB. For example,

for n = 2744, 66 KB are returned to the server. This amount of data does not impact severely

the performance of our proposed system, even when WiFi is used as a medium of connection.

However, the last factor which is the latency represents an issue in our system. This is due to

56

Section 5.2 Analysis

the high number of kernel calls inside of the MD simulation. We can expand this explanation

with the following example: for n = 2744, the data transfer takes 1msec, while 400 times of

kernel calls (the number inside of MD simulation) need 0.5msec × 400 = 200msec only for

latency. Note that 200msec is over estimate since a series of kernel calls can hide latencies

of following kernel calls. Even taken into account such effect, the reduction of kernel calls is

important to leverage our proposed system.

5.2 Analysis

As we mentioned in the previous section, the latency and bandwidth are important factors

to overcome in order to provide better performance to our proposal system. From previous

results on Chapter 4 we could observe an impact on the performance due to the high com-

munication generated from the kernel launch inside of MD simulation. In this section, we

present the direct impact of implementing DP as a better way to understand the strategy to

reduce latency. Figures 5.1 and 5.2 show the percentage of time spent on the kernel, data

transfer, and latency. Kernel time refers to the actual computation of the MD simulation

inside of the GPU. The data transfer takes into account memory copies from CPU to GPU.

In both scenarios, DS-CUDA and rCUDA, the data transfer is only performed when MD sim-

ulation is finished, sending back only position and velocity of particles to CPU for rendering

purposes as mentioned in Chapter 3. In order to calculate the percentage, we take the total

time to generate one frame for each configuration of particles, n = 1000, and n = 5832. We

selected this number of particles in order to compare and observe the latency effect when DP

is present. Kernel percentage was computed from Eq. 4.4. Data transfer and latency were

calculated using Eq. 4.1

In Figure 5.1 we can observe for 1000 particles in the system the huge part of the latency

generated from several kernel calls. It is almost the same as the computing time itself, nearly

46%. As for the data transfer, we can denote only 12%. As we increase the number of

particles to 5832, we can denote that the time for kernel is increased to 73%. However, the

latency still presents 24% whereas the data transfer is not a constraint. This is the first

insight in order to reduce latency by applying DP.

When we apply DP using rCUDA a reduction of the communication between server and

client can be achieved. Figure 5.2 shows the results. Using 1000 particles we can denote a

latency percentage of 14% which is significantly reduced compared to DS-CUDA is 46% for

the same configuration. Utilizing DP allows wrapping the kernel calls to one single call which

explains this reduction. Moreover, when we used 5832 particles the latency is reduced to 11%

of the total time making the actual computation time to 88%.

Even when we are using different GPU architecture from DS-CUDA and rCUDA cases,

57

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

T
im

e
 P

e
rc

e
n

ta
g

e

0

25

50

75

100

N = 1000, No DP N = 5832, No DP

Kernel Latency Data Trasnfer

Figure 5.1: Total time percentage from kernel, data transfer and latency time of Claret using
DS-CUDA. MD step is set to 100. No DP is implemented.

our strategy still consistent since the connection medium (Gigabit Ethernet) still presents the

same latency. On the rest of this Chapter, we will conduct more experiments in order to show

the effectiveness of our strategy when using DP for our MD simulation and visualization.

5.3 Methodology

This section provides a general overview and introduction of rCUDA virtualization middle-

ware, including a description of how it works. We also include the motivation for using this

virtualization GPU middleware. Additionally, each component of the proposed system for

our test is described in detail.

5.3.1 rCUDA Virtualization Framework Overview

Different approaches for the virtualization of GPUs have been proposed [105, 106, 107, 108,

109]. The ones wrapping the original APIs share the same principle: provide the same

CUDA interface to ensure the ease and re-usage of code when using GPUs in the cloud

environment. A typical architecture for systems using these tools is shown in Figure 5.3.

The main advantage of using virtualization frameworks is the reduction in code development

time. The normal way of writing client and server applications would be to implement

one application for each side, implementing a socket or some other type of communication

protocol. Nonetheless, with virtualization frameworks such as rCUDA, we can simply link

our CUDA GPU code on the compilation phase with the corresponding library to create a

connection without developing other parts. Furthermore, we can still have the advantage of

the whole development, and tools environment for the remote device in order to facilitate the

58

Section 5.3 Methodology

T
im

e
 P

e
rc

e
n

ta
g

e

0

25

50

75

100

N = 1000, DP N = 5832, DP

Kernel Latency Data Trasnfer

Figure 5.2: Total time percentage from kernel, data transfer and latency time of Claret using
rCUDA. MD step is set to 100. DP is implemented.

access of other sensors and resources.

The virtualization framework rCUDA is a middleware that simplifies the usage of GPUs

on a distributed network. One system using rCUDA is composed of a number of client nodes

and server nodes. Each server node has one or more CUDA-capable GPUs that are handled

by a server process. Applications on the client-side can use GPU devices to process data

without having a physical GPU. The client program recognizes GPUs contained in the server

nodes as if they were attached physically to the client node. The client utilizes the nvcc

compiler to generate GPU code. Thus, during the linking process, the option flag --cudart

=shared is passed to the compiler to generate the final executable. This allows loading at run-

time the rCUDA dynamic library. This library implements the communication between the

client and the server code. rCUDA supports communication via TCP sockets and InfiniBand

verbs. For implementation details, readers are referred to [111].

From the previous Chapter, we also conducted a test between rCUDA and DS-CUDA in

order to certify the better performance from the rCUDA framework. As Figure 5.4 shows, the

execution of an MD simulation and visualization from rCUDA is faster against DS-CUDA.

This is due to better communication implementation in the library. This lead to less latency

when remote API calls are performed from the client-side. In this study, we selected the

rCUDA framework due to its good maintenance and the ability to achieve better performance

than other similar approaches [110], as well as the compatibility of newest CUDA 8.0 and

other CUDA libraries such as cuDNN and CUBLAS. The weak point of rCUDA is that it

cannot support Android since NVIDIA does not support it now.

59

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

Client

Client Node

Node 0

Server Nodes

N
e
tw

o
rk

 I
n
te

rc
o
n
n
e
c
ti
o
n

GPU 0

Server 0
GPU 1

GPU 0

Server 1
GPU 1

Node 1

GPU 0

Server 0
GPU 1

GPU 0

Server 1
GPU 1

Figure 5.3: Typical architecture for virtual GPU systems.

Element Description

CPU Intel Core i7-6700HQ, 2.60 GHz, 8 Cores
GPU GeForce 1070 GTX , 2048 CUDA Cores, PCIe Gen3
OS Ubuntu 18.04 LTS x86-64
CUDA Driver 410.48, Toolkit 8.0, SDK 8.0

Table 5.2: Server specifications. Notebook powered with NVIDIA’s 1070 GTX GPU.

5.3.2 Proposed System Overview

In Figure 5.5, we show the system used to perform our tests and simulations. We used a

notebook powered by a 1070 GTX GPU as a server. We choose the most recent (at the time

of conducting this study) NVIDIA GPU architecture (Pascal). As for the client, we utilized

Microsoft’s Surface Pro 4 tablet. Full characteristics of each item are listed in Tables 5.2 and

5.3.

As the main hub, we choose Buffalo AirStation MZR-1750 for the server and client. For

communication between the client and the server, two choices are available: Gigabit Ethernet

through a USB 3.0 adapter and WiFi 802.11ac/n, which supports 867 Mbps over 5 GHz. For

comparison purposes, we included a desktop computer powered by a 2080 RTX. The main

specifications of the system are listed in Table 5.4. Section 5.5.2 includes results from a 1080

GTX GPU, another notebook with a 970M GTX, and NVIDIA SHIELD tablet powered

by a Tegra K1. Full characteristics of those devices are listed in Tables 5.5, 5.6, and 5.7

60

Section 5.4 Test Description

1.00e-04

1.00e-03

1.00e-02

1.00e-01

 100 1000

S
ec

on
ds

Number of particles

CUDA
rCUDA

DSCUDA

Figure 5.4: MD simulation performance between DS-CUDA and rCUDA frameworks.

Surface Pro 4 Tablet

GPU Powered Notebook

Wireless router

Gigabit Ethernet

Wifi 802.11 ac

USB 3.0
 Ethernet

Figure 5.5: Test system.

respectively. CUDA 8.0 of the nvcc compiler was used to ensure compatibility with the

rCUDA library.

5.4 Test Description

In this section, we show the details for each test. Two main experiments were conducted to

evaluate and measure the performance of our system. We designed a bandwidth evaluation to

measure the communication performance between the server and the client. Using rCUDA,

some overhead from the usage of different mediums (Ethernet and WiFi) of communication

exist. Furthermore, we describe details of the MD simulation, a method for collecting floating

point operations per second (flops), and power measurements. These sets of experiments are

useful to examine the computation performance, the impact of DP when using rCUDA,

graphics rendering, and power efficiency.

61

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

Element Description

CPU Intel Core im3-6Y30, 0.90 GHz, 4 Cores
GPU Intel HD graphics 515
OS Ubuntu 18.04 LTS x86-64

Table 5.3: Client specifications. Surface Pro 4 tablet.

Element Description

CPU Intel Core i5-6400HQ, 2.70 GHz, 4 Cores
GPU GeForce 2080 RTX , 2944 CUDA Cores, PCIe Gen3
OS Ubuntu 18.04 LTS x86-64
CUDA Driver 410.48, Toolkit 8.0, SDK 8.0

Table 5.4: Desktop powered with NVIDIA’s 2080 RTX GPU.

5.4.1 Bandwidth Test

In order to measure the data transfer speed between the server and client, we used the

cudaMemcpy function with pageable memory. Two configurations for memory copy are

available: Host to Device (H2D) and Device to Host (D2H). In this experiment, the size of

the data transfer increased from 1 KB to 268 MB. We also included measurements using

native CUDA calls. In total, three different scenarios were considered: 1) Native CUDA, 2)

Ethernet connection, and 3) WiFi connection using rCUDA.

As for the communication time within the rCUDA application, we calculated the latency

which is relatively important because the GPU is connected through a network. Furthermore,

we also provide kernel latency measurements for comparison purposes. This test aims to

measure the time required for a kernel to be executed.

5.4.2 Molecular Dynamics Simulation and Visualization

MD simulations from a computational point of view are very intensive due to their O(n2)

complexity, where n is the number of particles in the system. Another important challenge

in conducting MD simulations is to achieve real-time visualization.

In this study, we implemented the algorithm shown in Figure 5.6 which describes the

crystallization process of Na+ Cl- particles using a direct method. Including the Bandwidth

Element Description

CPU Intel Core i5-2500HQ, 3.30 GHz, 4 Cores
GPU GeForce 1080 GTX , 2560 CUDA Cores, PCIe Gen3
OS Ubuntu 18.04 LTS x86-64
CUDA Driver 410.48, Toolkit 8.0, SDK 8.0

Table 5.5: Desktop powered with NVIDIA’s 1080 GTX GPU.

62

Section 5.4 Test Description

Element Description

CPU Intel Core i7-4720HQ, 2.60 GHz, 8 Cores
GPU GeForce GTX 970M, 1920 CUDA Cores, PCIe Gen3
OS Ubuntu 18.04 LTS x86-64
CUDA Driver 410.48, Toolkit 8.0, SDK 8.0

Table 5.6: Notebook powered with NVIDIA’s 970M GTX GPU.

Element Description

CPU ARM cortex A15, 2.2 GHz, 4 Cores
GPU Tegra K1, 192 CUDA Cores
OS Android 5.0.1, ARM-32 bit
CUDA Driver 6.0 custom, Tegra Android Development Pack 3.0r3

Table 5.7: NVIDIA’s SHIELD Tablet specifications.

test, pageable memory is utilized. The behavior of a conglomeration of sodium chloride par-

ticles at the vacuum level is shown. We consider a similar GPU implementation as explained

in Section 4.2.3. Furthermore, the step variable is changed to select the saturation GPU level

for the experiments, also controls the evolution of the MD simulation, as well as the frequency

of rendering. Thus, we vary this parameter to a few hundred in order to acquire the desired

frame rate. Moreover, by increasing this variable we can reduce the communication overhead

between the CPU and GPU. Another important technique used in GPGPU programming is

Dynamic Parallelism (DP). It was first introduced on CUDA 3.5. This capability is inherently

born from the need for nested parallelism for GPUs. DP allows a kernel to be invoked inside

of a kernel. Nevertheless, compared with normal kernel launch, this may reduce performance

due to threads from child kernels synchronization with the parent kernel. DP is suitable to

implement in algorithms that compute adaptive grids, perform recursion, and split the work

among different and independent threats and batches. However, in our approach, we applied

DP for a different reason. We want to reduce the communication between the client(host)

and server(device) through the virtualization of GPUs. Applying DP for communication

reduction in our approach can be explained as follows. Normal kernel invocation case we

have up to four kernel calls for each MD simulation step. If we set the number of MD steps

to 100, there would be 400 kernel calls. Executing this number of kernel calls using native

CUDA over PCI Express will not generate too much latency. However, using Gigabit or

WiFi communication, the latency could increase severely. To implement DP in our original

MD simulation we wrapped our 4 original kernels into one single parent kernel call. This

allows the reduction of kernel calls from the client-side since the MD loop is situated inside

of the GPU. Thus, the use of DP could reduce the communication load, as running many

MD simulation steps, would only require a single kernel call from the client.

63

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

Initialize atom positions

Start MD

Compute force
between atoms

Integration of velocity
& position

Display/Render atoms

Steps

completed ?

Step = 0

Step ++

End MD ?

End MD

No

Yes

Yes

No

Update velocity,
temperature & position

Reduction & constant
update

CPU

GPU

Pre-Rendering operations

cudaMemcpy()

Figure 5.6: Simplified schematic algorithm of the MD simulation. The number of simulation
steps before rendering can be set to a few hundred.

For visualization, we implemented OpenGL 4.2 and GLFW 3 in our MD simulation. A

single dot is used to represent each atom in the simulation. Consequently, only we need

position and velocity variables information from the GPU. The amount of data sent back to

the CPU is in the order of KB, as we want the minimum information to visualize the MD

simulation.

On the experiments, we disabled vertical synchronization (Vsync) in OpenGL to get out

the actual number of frames per second inside the application. To achieved this mode, we set

the variable vblank mode to 0. The number of operations per second (flops) was computed

using Eq. 4.4.

As for the power measurements, we used a watt meter attached to the electrical terminal of

both the client and the server. However, we do not include power measurement from the access

point. This can be explained as follows: our system is proposed implying the fact of the usage

of mobile devices and the internet/network seamlessly. We want to show the performance of

the server and client without restraining the type of network used. Additionally, we configured

the NVIDIA PowerMizer Settings on the test machines to Prefer Maximum Performance.

In the normal mode, this tends to reduce GPU performance to save power, especially on

notebook equipment.

64

Section 5.5 Performance Results

1.00e-01

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

210 214 217 220 224 228

D
at

a
tr

an
sf

er
 s

pe
ed

 (
M

by
te

/s
ec

)

Data Size (byte)

2080 CUDA H2D
2080 CUDA D2H
1070 CUDA H2D
1070 CUDA D2H

SFP4 USB to 1070 rCUDA H2D
SFP4 USB to 1070 rCUDA D2H
SFP4 WiFi to 1070 rCUDA H2D
SFP4 WiFi to 1070 rCUDA D2H

Figure 5.7: Data transfer speed using CUDA’s cudaMemcpy function over different types of
connection. H2D: Host to Device; D2H: Device to Host. Pageable memory is used.

5.5 Performance Results

In this section, we report the outcome obtained from our tests to evaluate CUDA offloading.

First, we report the communication performance and latency measurements from the different

mediums communicating with a GPU. Second, the raw computation power and rendering

performance results are presented, as well as the impact of using DP on the system. Third,

we show electric power metrics from three sets of MD simulations: computation performance

vs frame rate, power efficiency vs frame rate, and power efficiency utilizing multiple client

configurations.

5.5.1 Bandwidth Performance

On Figure 5.7, we show the data transfer speed between the host and device achieved by

cudaMemcpy memory function. We calculated latency using Eq. 4.2.

The desktop GPU 2080 using native CUDA uses PCI Express Gen 3x16 as a communi-

cation medium. Maximum speed of 9.0 Gbytes/s was achieved for H2D, and 6.0 Gbytes/s in

D2H mode.

Utilizing the notebook using the 1070 GPU, the medium of communication is again PCI

Express Gen 3x16. A top speed of 8.3 Gbytes/s for H2D and 6.1 Gbytes/s for D2H was

achieved. As we expected, the 2080 presents slightly better performance than the 1070 for

H2D data bandwidth. However, their performance of D2H is similar.

The third and fourth cases are using the Surface tablet using rCUDA’s function to transfer

data through the network. Using Gigabit Ethernet, the Surface tablet reached 114.8 Mbytes/s

for H2D and 116.9 Mbytes/s for D2H. With WiFi 802.11ac as the communication medium,

the top speeds were 31.4 Mbytes/s for H2D and 17.8 Mbytes/s for D2H.

Latency results for copy memory function and kernel launch are shown in Table 5.8. In

65

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

H2D
latency

(s)

D2H
latency

(s)

Kernel
latency

(s)

RTX 2080 3.9× 10−6 6.3× 10−6 2.8× 10−6

GTX 1070 7.0× 10−6 8.1× 10−6 2.6× 10−6

SFP4 USB to GTX 1070 8.0× 10−4 6.9× 10−4 5.2× 10−4

SFP4 WiFi to GTX 1070 2.0× 10−3 1.8× 10−3 1.1× 10−3

Table 5.8: Memory copy and kernel latency.

terms of communication performance, using native CUDA inherently achieves higher transfer

speeds and lower latency for both cases: the notebook and desktop. The latency between

memory copy and kernel functions are in the order of microseconds. Utilizing rCUDA through

Ethernet and WiFi incur a drop in transfer speed. The latency using rCUDA with Ethernet

is at least a hundred times greater than native CUDA, and a thousand times larger in case

of using rCUDA with WiFi. As mentioned in the previous section, our MD simulation

performs more kernel calls compared with cudaMemcpy before rendering a frame. This

points that reducing the number of kernel calls is the most important factor in attaining high

performance.

5.5.2 MD Simulation and Visualization Performance

Two main aspects of the MD simulations were examined: raw computation and power-related

performance. To investigate the raw computation power, we explored the impact of using

DP through rCUDA to reduce communication between the client and the server. As well,

we report the number of flops and frames per second obtained on each configuration test.

To evaluate electric power-related performance, we compared the power consumption against

the computational power. We also included multiple client configurations to search for the

best arrangement for power efficiency.

Computational Performance and Frame Rate

On the following set of tests, we set the number of particles in the simulation to n =

{64, 216, 512, 1000, 1728, 2744, 4096, 5832}. The number of simulation steps is switched

between 100 and 500. This was fixed to observe the DP effect on communication of the

GPU during kernel calls. As is shown in Figure 5.6, step variable controls the MD loop. For

comparison purposes, the MD simulations were also performed using native CUDA. The set

of tests were conducted both with and without DP. Thus, for each GPU combination, the

following combinations were tested:

• Steps = 100, No DP

66

Section 5.5 Performance Results

• Steps = 500, No DP

• Steps = 100, DP

• Steps = 500, DP

First, we present the number of flops. We measured the performance of each MD simula-

tion using the cudaEventElapsedTime function. The rendering phase was omitted from this

test, and the copy memory functions were discarded as well. Only GPU time is measured.

The results corresponding to the four test combinations are shown in Figure 5.8. The

2080 RTX GPU achieved a top speed of 9,280 Gflops and 8,975 Gflops for 500 and 100 steps,

respectively, without DP. Implementing DP, the maximum performance was 8,470 Gflops

(500 steps) and 8,170 Gflops (100 steps).

On the 1070 GTX GPU case, the maximum speed achieved was 4,415 Gflops (500 steps)

and 4,353 Gflops (100 steps) without DP. Using the DP, decreased to 4,338 Gflops (500 steps)

and 4,254 Gflops (100 steps).

If we compared both cases, the normal kernel launch (No DP) throws similar results

for a small number of particles. This is rather expected since the computing load of the

GPU is not saturated. Nevertheless, for more than 1728 particles, the 2080 RTX overcomes

the 1070 GTX, delivering more performance due to more computing CUDA cores inside of

this architecture. It is well known that using DP will cause a slight difference in performance

because of kernel synchronization. However, the performance of the newer Turing architecture

used on the 2080 GPU seems to be worse than that of the 1070 Pascal GPU architecture

when the number of particles is less than 1728.

In the case where rCUDA is used, the best Gflops peak is obtained with Ethernet as the

communication medium. This combination achieved speeds of 4,330 Gflops (500 steps) and

4,320 Gflops (100 steps) in the case without DP. Implementing DP reduced the maximum

performance to 4,132 Gflops (500 steps) and 4,099 Gflops (100 steps). Using WiFi, similar

results are reached: 4,290 Gflops and 4,280 Gflops without DP, 4,119 Gflops and 4,075 Gflops

with DP. In both cases, DP and No DP, we can denote that for a large number of particles, the

client achieved similar performance as the server GPU. For a small number of particles, the

latency becomes a factor, especially when DP is not used. Using the subframes in Figure 5.8,

we can clarify the difference between using DP or not on A) and B). For the same number

of steps, the performance for Ethernet and WiFi is increased since only one kernel call is

executed from the client-side. Furthermore, when we increase the number of steps to 500

in subframe D), we can denote that the execution in the client is similar to the server-side.

Nonetheless, this has a big impact on the frames per second since the execution time in the

GPU is increased, which will be shown in the next Figure.

67

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

 100 1000

G
flo

ps

Number of particles

2080 CUDA
1070 CUDA

SFP4 USB to 1070 rCUDA
SFP4 WiFi to 1070 rCUDA

 100 1000

1.00e+00

1.00e+01

1.00e+02

1.00e+03

1.00e+04

C) Step=500, No DP D) Step=500, DP

A) Step=100, No DP B) Step=100, DP

Figure 5.8: MD simulation performance. Results of computing the force between particles is
shown every 100 and 500 steps. Configurations include using and excluding DP. Performance
is presented in Gflops.

Following the results section on power performance, we show the results that concern

frames per second (fps). The main difference between this and the previous one is the

inclusion of all the time required to render the MD simulation. In this case memory copy

and rendering operations are included.

As we can see in Figure 5.9, the results for various configurations are shown. The 2080

GPU system reached 7 fps and 33 fps for 500 and 100 steps, respectively, without DP for

the largest number of particles. Implementing DP, similar results of 7 fps and 31 fps were

achieved. The 1070 GPU rendered 4 fps (500 steps) and 17 fps (100 steps) without DP

and 4 fps and 16 fps with DP. Although this test also includes copy memory and rendering

operations, we can denote similar behavior with previous test. Using native CUDA without

DP for a small number of particles we can reach a higher frame rate ∼600 fps for 100 steps.

Whereas, using DP the frame rate is decreased to ∼400 fps.

Implementing rCUDA with Ethernet, the visualization speed reached 4 fps (500 steps)

and 15 fps (100 steps) without DP, compared with 3 fps and 14 fps when DP was applied.

Changing the communication medium to WiFi, we obtained a maximum of 3 fps (500 steps)

and 14 fps (100 steps) without DP and 3 fps and 13 fps with DP. With a small number of

particles, the communication medium has a direct impact on rendering performance. Never-

theless, in the presence of DP, we obtained better frame rates with both Ethernet and WiFi

68

Section 5.5 Performance Results

1.00e+00

1.00e+01

1.00e+02

1.00e+03

 100 1000

F
ra

m
es

 p
er

 S
ec

on
d

Number of particles

2080 CUDA
1070 CUDA

SFP4 USB to 1070 rCUDA
SFP4 WiFi to 1070 rCUDA

 100 1000

1.00e+00

1.00e+01

1.00e+02

1.00e+03

C) Step=500, No DP D) Step=500, DP

A) Step=100, No DP B) Step=100, DP

Figure 5.9: MD simulation and visualization performance. The rendering speed of our ex-
periment is shown.

for less than 2744 particles in the system. We can clarify this as follows: in the presence

of 1,000 particles in the simulation for 100 steps, using DP and WiFi, a frame rate of 64

fps is reached. Whereas, without DP, a 30 fps are reached. Using Ethernet on the same

configuration, 104 fps are reached on DP, and 87 fps without it. The frame rate in the MD

simulation is directly related to the number of particles in the system and the number of

steps. As we increase n, the time for computing is also higher. When using native CUDA,

No DP and 100 steps are the best choice to achieved a high frame rate. However, in the case

of using a remote GPU, the client reaches more frame rate when DP is used for the same

number of steps.

Computation Performance vs Frame Rate

Here, we show the relation between computational power and the rendering performance.

Different from previous configurations, we set the number of particles in the simulation to

n = 2744. This was selected since this is typically the order at which the computational

power becomes a factor. From the point of MD simulation of NaCl, this number of particles

has a practical benefit. For example, when we observe the melting phase of a crystal the

temperature differs depending on the number of particles. When n < 2000 the temperature

is from 1,040K to 1,070K. With n = 2744 the temperature is 1,080K, which is close to the

69

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

melting temperature of 1,081K for NaCl.

We can see this in Figures 5.8 and 5.9. This is observable when the remote execution of

the GPU is closer to the native one. As well, we changed the number of simulation steps to

250 and 100. Previous test, setting step to 500 saturates the GPU performing more Gflops

but lower frame rate ∼4 fps from the client-side.

Another desktop GPU (1080 GTX) and notebook GPU (970M GTX) are included for

comparison. Figure 5.10 shows the complete results of this test. We also included a reference

for the client side (similar small point) to the number of Gflops computed excluding commu-

nication time. The 2080 GPU achieves better frame rates and computation performance in

any of the four cases. The GeForce 1080 achieved 4,736 Gflops when 250 steps and No DP.

Using DP 4,400 Gflops are achieved. The amount of Gflops using DP in this architecture is

decreased as expected.

On the 1070 case as a server, we can observe from the client side that using No DP with

100 steps provides a high frame rate, 36 fps on WiFi, and 45 fps with Ethernet. However,

the Gflops peak from the server-side is not close enough. Contrastingly, using DP always

reduces the performance distance between client and server. More precisely, in the 250 step

DP configuration, we can observe through our reference points, the Gflops performance is

almost similar to the server attaining 19 fps using WiFi, and 20 using Ethernet.

Using the 970 delivers 1,488 and 1,471 Gflops for No DP and DP respectively. Utilizing

this GPU as the server provides a closer peak performance from the client-side. This is due

to the configuration for n = 2744 almost reaches the top computational performance of 970.

However, implementing DP with 250 steps, the client using Ethernet is executed faster than

the server itself. This effect is rather well documented by the rCUDA authors [109, 114].

The main reason for this behavior is that the algorithm used for synchronization points and

finalizing tasks on rCUDA is faster than the one provided for native CUDA.

CPU implementation using OpenMP is included as well. This achieved performance of

3.56 Gflops and 0.060 fps.

Power Efficiency vs Frame Rate

The results in this section present power efficiency using the configurations similar to the

previous experiment. The number of particles is set to n = 2744 in order to make a direct

comparison. As well, the number of steps is selected from 250 and 100. To compute the

number of Gflops/W we consider the total amount of computing power delivered by the

GPU using both (client and server) electric power consumption. The number of flops per

watt is shown in Figure 5.11.

Turing architecture of the 2080 provides the best outcome in terms of performance per

watt, with 26.2 Gflops/W with no DP and 100 steps which are rather expected. The GeForce

70

Section 5.5 Performance Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50

C) Step=250, DP

G
flo

ps

Frames per Second

 0 20 40 60 80 100 120

D) Step=100, DP

2080
1080
1070
970

SFP4 USB to 1070
SFP4 WiFi to 1070
SFP4 USB to 970
SFP4 WiFi to 970

SFP4 CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000
A) Step=250, No DP

B) Step=100, No DP

 1100

 1400

 1700

 7 9 11

 1100

 1400

 1700

 18 23 28

 1100

 1400

 1700

 7 9 11

 1100

 1400

 1700

 18 23 28

Figure 5.10: Computation performance vs frame rate. The number of particles is set to
n = 2744. Small similar objects represents the Gflops measured with only GPU time as
reference.

1080 reached only 17.9 Gflops/W compared to the 21.7 Gflops/W from the 1070 GPU for the

same configuration. Desktop GPUs consume 272 W under maximum computing performance

which provides a better frame rate but low power efficiency. Moreover, when the step is set to

250 and DP is used, the 1070 GPU achieves 21.3 Gflops/W compared to the 20.6 Gflops/W

delivered from 2080 GPU.

In the case of 1070 as a server, we reached 15.9 and 15.5 Gflops/W using Ethernet and

WiFi respectively for 100 steps and No DP. The power efficiency is higher than 15.5 and 14.3

Gflops/W when DP is used. The main reason for this is the variation in the Gflops delivered

from DP and No DP from Figure 5.10 are not huge for the same amount ∼150 W of electrical

power. Nonetheless, when we set to 250 steps, we can get 18.8 and 18.3 Gflops/W when DP

is used for Ethernet and WiFi respectively compared to the 18.5 and 18.1 Gflops/W on No

DP configuration. Although, using DP on 250 steps impact on fps minimally, achieves better

computational performance.

The 970 reached 11.5 Gflops/W when the step is set to 250 and DP is used over WiFi.

This is higher than the 11.3 Gflops/W delivered by Ethernet connection due to the faster

execution and more power consumption compared to the native one.

Using the CPU implementation reached 3.5 Gflops/W and 3.6 Gflops/W for 100 and 250

steps respectively.

71

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

 0

 5

 10

 15

 20

 25

 10 20 30 40 50

C) Step=250, DP

G
flo

ps
 /

W
at

t

Frames per Second

 0 20 40 60 80 100 120

D) Step=100, DP

2080
1080
1070
970

SFP4 USB to 1070
SFP4 WiFi to 1070
SFP4 USB to 970
SFP4 WiFi to 970

SFP4 CPU

 0

 5

 10

 15

 20

 25

A) Step=250, No DP

B) Step=100, No DP

 11

 12

 8 9.5 11

 11

 12

 8 9.5 11

Figure 5.11: Power efficiency vs frame rate. The number of particles is set to n = 2744.

Power Efficiency implementing Multiple Clients

Here, we show the results using one server and multiple clients. In our previous results,

we have shown that the GeForce 1070 using DP at 250 steps is the optimal server-side

configuration for MD simulations and visualization. We compute the amount of Gflops/W

and consider the power consumption from both client and server. As well, we varied n =

{1000, 1728, 2744, 4096} since exploring the saturation area of the GPU is needed. Table 5.9

presents the results on the following client configurations:

• Conf.1A: Only one client using Gigabit USB 3.0 Ethernet.

• Conf.1B: Only one client using WiFi 802.11ac 5 GHz.

• Conf.2A: Two clients using WiFi 802.11ac 5 GHz

• Conf.2B: One client using WiFi 802.11ac 5 GHz, another client using Gigabit USB 3.0

Ethernet.

• Conf.2C: Two clients using Gigabit USB 3.0 Ethernet.

• Conf.3A: Three clients using Gigabit USB 3.0 Ethernet.

• Conf.3B: Two clients using WiFi 802.11ac 5 GHz, another client using Gigabit USB 3.0

Ethernet.

72

Section 5.6 Conclusion

Steps=250, DP

n 1000 1728 2744 4096

RTX 2080 6.2 13.6 20.7 26.5
GTX 1070 12.2 18.3 21.3 23.6
Conf.1A 8.7 14.1 18.8 23.1
Conf.1B 7.6 13.5 18.3 22.0
Conf.2A 8.3 14.8 18.5 22.8
Conf.2B 10.2 15.2 21.7 23.3
Conf.2C 9.8 14.9 18.7 21.5
Conf.3A 9.7 14.8 16.5 20.2
Conf.3B 9.6 15.5 16.2 20.0
SHIELD 6.3 7.5 8.8 8.8

Table 5.9: Power efficiency (Gflops/watt) using multiple client combinations.

Various configurations for each number of particles is presented. For more than one client,

we include at least one Gigabit USB 3.0 Ethernet, as the latency and bandwidth are higher

than those of WiFi. Moreover, we also examined the performance from the server-side using

native CUDA and tested the SHIELD tablet from NVIDIA. This tablet is equipped with a

Tegra K1 GPU and is able to handle CUDA calls through the Java Native Interface (JNI)

[95, 96]. However, the results are from normal kernel calls since Tegra K1 is CUDA 3.2

architecture and is not capable of DP.

The outcome is as follows: the best power efficiency combination was achieved with the

two-client configuration using Ethernet and WiFi when n = 2744. Table 5.10 shows details of

the multiple combinations. As we can follow, this configuration of two clients distributes the

resources (Gflops) from the GPU keeping a good balance of electric power usage. Nonetheless,

the frame rate is significantly reduced for the WiFi client. Compared to two clients using

Ethernet or WiFi, we can see a more stable frame rate from both clients. The combination of

both resources can not achieve better performance per watt. A similar scenario of distributed

resources on the GPU is observable when we used three client configurations.

5.6 Conclusion

In this Chapter, we were able to accelerate heavy parts of an application from a tablet using a

remote low-power GPU from a notebook through the rCUDA middleware. Comparisons using

GPGPU techniques such as DP to hide the kernel call latency were conducted, and different

GPU architectures were examined. Our system achieved better computational performance,

more frames per second, and higher performance per watt than a tablet powered by a CUDA-

capable GPU and the server itself.

Only the kernels required for intensive computations are downloaded to the server-side.

This technique has an advantage over frameworks such as Desktop as a Service (DaaS),

73

Chapter 5 Reducing communication latency through Dynamic Parallelism: rCUDA case

FPS Gflops
Power (Watt)

Gflops/Watt
Client Server

RTX 2080 39.7 5827 282 20.7

GTX 1070 23.8 3499 164 21.3

Conf.1A USB 20.2 2970 8.0 150 18.8

Conf.1B WiFi 18.4 2706 8.0 140 18.3

Conf.2A
WiFi 11.0 1618 7.5

161 18.5
WiFi 11.1 1637 7.5

Conf.2B
WiFi 6.7 978 7.5

160 21.7
USB 19.2 2813 7.5

Conf.2C
USB 11.1 1632 7.5

161 18.7
USB 11.3 1654 7.5

Conf.3A
USB 7.1 1037 7.5

167 16.5USB 7.0 1027 7.5
USB 7.2 1056 7.5

Conf.3B
WiFi 6.9 1013 7.5

166 16.2USB 7.1 1041 7.5
WiFi 6.9 1007 7.5

SHIELD 0.5 78 8.8 8.8

Table 5.10: Detail information for Power efficiency (Gflops/watt) using multiple client com-
binations. The number of steps are 250, and n = 2744.

because the main objective of DaaS is to offload everything to a server or virtual machine,

including rendering resources and I/O events. The main problem with this approach is that

every user-interface event on the client has to be sent to the server in the cloud. Because of

this, the network communication time may significantly affect the usability of the application.

Conversely, the kernel offloading approach processes all interactive events on the client-side,

so network performance is not seriously affected.

Using DP has significant meaning when offloading is performed. We show that keeping

the GPU saturated with more steps helps in the reduction of latency from the client-side.

However, as more steps are used, the frame rate is reduced. We found that for 250 steps, not

only achieving a good frame rate is feasible for our MD simulation, but also a better power

efficiency when multiple clients are used. Our approach can also be applied for many other

scenarios where kernels could be wrapped using DP for offloading. Applications such as fluid

dynamics, weather forecasting, and video analysis are few examples to mention where the

GPU is implemented to overcome computational bottlenecks. Most of them consist of many

kernel implementations that could be implemented using our approach. However, we need to

assure the consistency of the data access in those different scenarios.

From the MD simulation point of view, we achieved the visualization of the crystallization

phase for Na Cl particles. This was possible due to enough computational performance and

frames per second delivered from our system. We can explain the outcome of the visualization

74

Section 5.6 Conclusion

as follows: for crystallization phase, we need 3 × 105 MD steps for around n = 2000. By

gradually decreasing the temperature, liquid Na Cl forms a crystal. This takes one minute

for a user to observe when calculation speed is step = 250 and fps = 20, which we can achieve

with our system for N = 2744. When n > 2744 particles the user might find it difficult to

interact or observe in real-time the crystallization phase.

From a casual point of view, mobile devices are not expected to perform intensive compu-

tations and save energy at the same time. However, cloud computing or similar systems like

ours are an interesting approach along the lines of simultaneously achieving more computa-

tional power and better performance per watt on mobile devices. There exist some situations

in which systems such as ours can deliver positive differences for interactive systems. For

instance, when the user is in a remote location and there is no sufficient internet connection

to reach the cloud, a notebook powered by a GPU could execute interactive simulations.

Examples include oil extraction points in the sea or when diving and the tablet must be used

underwater.

75

6

Future Directions

We have studied GPU techniques in order to accelerate MD simulations and visualization

using tablets as a medium for interaction. On Chapter 4 and 5 we proposed to offload

intensive computations to a remote GPU using virtualization framework tools. Furthermore,

in Chapter 5 we proposed to use Dynamic Parallelism to tackle latency between server and

client. DP is a capability inside the GPU that was originally designed to allow GPUs to use

recursion inside the kernels. This characteristic allows a child kernel to be invoked from a

parent kernel. However, our purpose to use DP inside our MD simulation and visualization is

to reduce kernel call latency. It is common for GPU applications to be constituted from more

than one kernel. In our approach we needed to wrap all kernel calls inside the MD simulation

code. Nevertheless, all the data that kernels use need to be inside of the GPU all the time.

This may be a constraint in different applications from ours since other applications may

require to sent back data to the CPU.

Even though we applied DP to reduce the communication bottleneck between the host

(CPU) and device (GPU), they’re still more space for improvement using the newer GPU

capabilities in software and hardware. One of them is the usage of Graphics Interoperability

which enables common memory space between CUDA and OpenGL/Direct3D. This allows

the reduction of memory copies during the visualization process, thus speeding up the exe-

cution of the rendering. Another technique is the usage of the hardware decoder/encoder for

images inside the GPU. In this Chapter, we present how we can complement our system by

applying these features, as well as tackling the rendering problem in a server-client scheme.

6.1 Migrating All to GPU: Avoiding Communication Bottleneck

Since the conception of the GPU, the main bottleneck using this parallel hardware is residing

on the data transferring to the CPU. Data movement between GPU and CPU is done through

the PCIe bus. This communication process can have a large impact on performance, especially

77

Chapter 6 Future Directions

CPU

Memory

CUDA

command / data

General

Purpose

ComputingGPU

Memory

CUDA data

Figure 6.1: GPU scheme to perform general purpose computing using CUDA.

when we consider that the bandwidth of the PCIe is much lower than the GPU device memory

bandwidth [118, 119]. It is rather well known that naive implementations in GPU code incur

in delaying GPU computation until data transferrer is completed. This is an important

reason for overlapping computation and communication. However, this presents a nontrivial

optimization which requires a considerable effort from the developer [120, 121]. Furthermore,

in our approach not only computations for the simulation are happening inside the GPU but

also for rendering the visualization. Thus, communication with the CPU is necessary for

setting, manipulating, and drawing.

6.1.1 Implementing Graphics Interoperability

The main concept behind this idea can be express as follows. The GPU can be used to

overcome intensive computation through CUDA. Figure 6.1 shows a naive scheme using the

GPU for general-purpose computations. Here, we can denote that not only communication

inside the GPU memory is needed but between CPU and GPU as well. Moreover, Figure

6.2 shows the access to the GPU in order to render geometry by calling OpenGL API.

Similar communication behavior is noted in this scenario as well as using the GPU with

CUDA. Furthermore, a naive implementation for simulation and visualization using the GPU

is shown in Figure 6.3. This scenario shows the excessive communication between CPU and

GPU due to the null awareness in memory resources between CUDA and OpenGL. In our MD

simulation, the positions of atoms, which are essential data for visualization, are calculated

on the GPU and sent back to the CPU. However, this variable data is sent back again to

the GPU. This operation is needed since OpenGL need to bind the data into its context to

finalize the rendering process.

In order to reduce the overhead of redundant communications, CUDA provides a soft-

ware feature called graphics interoperability which allows sharing memory resources between

CUDA and the rendering context, OpenGL and Direct3D. Applying this technique, the data

back and forth between CPU and GPU is not needed, alleviating the communication and

providing better performance on the simulation and visualization. However, using this fea-

78

Section 6.1 Migrating All to GPU: Avoiding Communication Bottleneck

Display
CPU

Memory

OpenGL

command / data

RenderingGPU

Memory

OpenGL data

Figure 6.2: GPU scheme to perform rendering using OpenGL.

Display
CPU

Memory

OpenGL

command / data

Rendering

GPU

Memory

OpenGL data

CUD(����

CUD�

command / data

General

Purpose

Computing

Figure 6.3: GPU scheme to perform rendering and general purpose computing. No optimiza-
tion is used between OpenGL and CUDA.

ture is not straight forward: the developer needs to keep congruency between CUDA and

OpenGL memory space.

On the first steps on this research, we have successfully accelerated our MD simulation

and visualization using CUDA and OpenGL graphics interoperability [122]. Other proposals

report better performance using this technique as well as [123, 124, 125]. Another motivation

using graphics interoperability is that GPU virtualization frameworks such as rCUDA and

DS-CUDA are lack of this feature. This is rather expected since graphics interoperability is

Display
CPU

Memory

OpenGL command

Rendering

GPU

Memory

CUDA & OpenGL
data

CUDA command

General

Purpose

Computing

Figure 6.4: GPU scheme to perform rendering and general purpose computing. Graphics
interoperability optimization is used between OpenGL and CUDA.

79

Chapter 6 Future Directions

Display

Tablet
Remote CUDA

command / data

GPU

Memory

CUDA data

CPU

Server

CPU

GPU

Client

OpenGL

command / data

General

Purpose

Computing

Figure 6.5: GPU virtualization for general purpose computing using CUDA.

a feature to work inside of the local rendering and computation context. More specifically,

CUDA and OpenGL could not be easily mapped using a remote GPU. However, in the

following section, we tackle the idea of sharing the final frame buffer between the client and

the server.

6.1.2 Implementing Encode/Decoder on the GPU for Frame-Buffer Re-

trieval

As we mentioned in Chapter 2, since the introduction of NVIDIA’s GPU Kepler architecture

a hardware-based video encoder and decoder acceleration called NVENC and NVDEC were

included on the GPU [126]. This is an independent and fully dedicated hardware which does

not use the graphics engine on the GPU. This presents an advantage since the GPU and CPU

are free to perform other operations. According to previous studies [127, 128], utilizing this

video codec engine on the GPU saves time: both process, rendering and encoding happen

in the GPU memory space. It also reduces the size of the transfer in a server-client scheme.

For example, a 1920 × 1080 on 24 bit using RGB format is about 6 MBytes on data size.

Using, H.264 on the GPU encoder engine can drastically compact the data to 13 KBytes.

Thus, implementing this feature shortens the transferring time in a server-client scheme, thus

enabling a better interaction. Using our approach for MD simulation and visualization using

remote tablets, we can implement this GPU hardware feature as follows: we propose to bind

a remote frame buffer on the server-side. This final outcome will be broadcasted to the

client-side. The frame buffer is chosen to be shared since it contains all the final render pixel

information processed through the OpenGL pipeline. Bringing this buffer information only

from the server-side will lead to the alleviation of the heavy graphics process for non-high-end

GPU clients.

A basic scheme for this implementation is as follows. In Figure 6.5 we can denote the usage

of a remote GPU for offloading intensive computations from a client-side. Figure 6.6 shows a

80

Section 6.1 Migrating All to GPU: Avoiding Communication Bottleneck

Display

Tablet

Remote OpenGL

command / data

GPU

Memory

Frame buffer

CPU

Server

CPU

GPU

Client

Frame buffer

Rendering

Frame buffer

Figure 6.6: GPU virtualization for remote rendering using OpenGL.

!�����	

Client Remote OpenGL command

GPU

Memory

Frame buffer

CPU

Server

CPU

GPU

Client

Frame buffer

Rendering

Frame buffer
General

Purpose

Computing

CUDA & OpenGL
Data

Remote CUDA command

Figure 6.7: Full GPU virtualization for remote rendering and general purpose computing.
CUDA and OpenGL are used.

scenario where the OpenGL frame buffer is rendered on a server-side and it is sent back to the

client-side. A naive implementation using both schemes will create a huge communication

bottleneck between server and client. Consider as well that the connection speed between

client and server can be slow e.g. WiFi.

To this aim, CUDA and OpenGL graphics interoperability must be implemented on the

server-side. Figure 6.7 highlights the communication reduction, since only the frame buffer

is back to the client-side. Furthermore, the frame buffer can be shared using compression

techniques such as H.264 which are natively supported by GPUs. This will allow reducing,

even more, the transfer size; thus more speed performance is expected on the application

running on the client-side.

6.1.3 EdRender: First Approach to Graphics Interoperability on GPU

Virtualization Frameworks

In order to proceed the reduction of bottleneck communication between GPU and CPU in

the server-client scheme, we propose to implement Graphics Interoperability utilizing the

Encoder and Decoder on hardware capabilities in our MD simulation and visualization using

81

Chapter 6 Future Directions

Init OpenGL

Start

Init MD Simulation

Start NVENC

Client

connected ?

Render Frame?

End

No

Yes

Yes

No

Init CUDA

Run MD Step

Update Frame Buffer

Sent Frame Buffer

Init OpenGL

Start

Start NVDEC

Server

connected ?

Render Frame?

Yes

Yes

No

Init CUDA

Receive Frame
Buffer

Decode Image

Render Image

End

Encode Frame Buffer

Acknowledge Transfer

Wait for Acknowledge

No

Server Client

Figure 6.8: EdRender process flow. Server and Client implementations are presented.

tablets. As we know, rCUDA [113] and DS-CUDA [108] GPU virtualization frameworks do

not support this feature.

Figure 6.8 shows a simplified schematic chart flow of the main algorithm for our EdRender

framework. We implemented both, server and client-side, considering that both sides are

powered by NVIDIA GPUs. This is due to the Encoder and Decoder capability that was

described in the previous section. Despite the fact that there are not so many tablets powered

by NVIDIA GPU, we take the first step in this direction by using a Laptop machine powered

by NVIDIA GPU as a client. A server machine is using a High-End GPU Quadro model.

Our approach later could be applied to a real-case scenario using a mobile device since most

of these devices are equipped with a video decoder.

We can expand the explanation of the implementation of the server-side as follows. First,

we start the application by setting up the OpenGL context. This process includes the shaders,

the auxiliary library for window handling, and buffer registration for rendering to a custom

frame buffer. Next, we initialize the CUDA context, setting up the device and providing access

to OpenGL memory space through Graphics Interoperability. Following, the MD simulation

82

Section 6.1 Migrating All to GPU: Avoiding Communication Bottleneck

is initialized, including variables for atoms, position, velocity and other main variables. Before

the next step, we wait for the connection from the client. The communication is performed

via socket implementations using the TCP protocol. Once the client has been connected to

the server, the encoder engine is set up. After this process the main loop starts. Here, we can

set up the amount of number of steps for the MD simulation. Once the steps are completed,

we render the atoms using OpenGL. However, we do not render to a normal output: since we

want to encode the final output or image, a special frame buffer is prepared at the beginning.

Thus, the rendering is re-directed to a texture map which is used to be encoded by the

NVENC engine on the GPU. After the encoding is done, the data finally is returned to the

CPU and be transmitted using sockets to the client-side. Our naive implementation waits

from an acknowledge answer from the client-side before another frame is processed.

On the client-side, we can denote the following. When the application starts, we initialize

and set up the OpenGL context. This includes, as well as the server-side, variables for shaders,

the auxiliary library for windows handling and the texture which will be used for rendering

the decoded frame from the server. The next step is the initialization of CUDA context,

as well we set up the device to be able to perform Graphics Interoperability with OpenGL.

Here, we used this feature in order to handle the decoded image inside the GPU memory.

Without this technique enabled, we would have to send back this data to the CPU. Following

is the connection to the server-side by sockets. Once the connection is performed, the decoder

engine is set up and we enter the main loop of the client side. Here, the first procedure is to

wait for a frame buffer from the server-side. Once the broadcasting is successful, we respond

with an acknowledge message. In the next step, the decoder of the frame buffer rendered by

the server is processed. It is important to mention that NVDEC provides APIs for handling

and parsing the image to decode. However, the implementation of the parser included in this

API might be not the optimal [126]. After the decoded image is ready, we can use this inside

OpenGL due to the implementation of the Graphics Interoperability feature. The last step

is to render the final image to a texture in the proper resolution on the client-side.

6.1.4 EdRender - Preliminary Results

In order to test our idea for implementing Graphics Interoperability for remote devices, we

prepared two machines powered by NVIDIA’s GPU. Table 6.1 shows the full specifications

of the server equipment. Note that here we are using Quadro High-End GPU. The main

reason to use this GPU for the experiment is only due to the API for handling the encoder.

Compared to the commodity GPU models or GeForce GTX, Quadro GPUs offer a more

handy API for managing the encoder/decoder called NvIFRO [129]. Table 6.2 shows the

full characteristics of the client machine. We choose a low powered GPU which we used for

previous experiments on offloading kernel using DP mechanism. In this case, we use the

83

Chapter 6 Future Directions

Element Description

CPU Intel Core i5-2500HQ, 3.30 GHz, 4 Cores
GPU Quadro K5200 , 2304 CUDA Cores, PCIe Gen3
OS Ubuntu 16.04 LTS x86-64
CUDA Driver 390.48, Toolkit 7.0, SDK 7.0

Table 6.1: Server specifications. Desktop powered with NVIDIA’s Quadro K5200 GPU.

Element Description

CPU Intel Core i7-6700HQ, 2.60 GHz, 8 Cores
GPU GeForce 1070 GTX , 2048 CUDA Cores, PCIe Gen3
OS Ubuntu 16.04 LTS x86-64
CUDA Driver 390.48, Toolkit 7.0, SDK 7.0

Table 6.2: Client specifications. Notebook powered with NVIDIA’s 1070 GTX GPU.

normal API for NVDEC. We also used the image parser for the decoder which is provided

by the video codec SDK from NVIDIA.

For comparison purposes, we selected another two different proposals to offload OpenGL

graphics in a server-client scheme. The first one is VirtualGL [130, 131] Linux-toolkit which is

an open-source solution for graphics acceleration in a remote display. This framework allows

the OpenGL commands and 3D data to be re-directed to a server machine where the actual

rendering is processed. After the final image is rendered, VirtualGL sends back the result

over the network to the virtual display. The second proposal for comparison is X11[132, 133]

forwarding or indirect rendering on X11 window system machines. Since the core of the

implementation for X11 is a server-client scheme, we can use a remote display in order to

process all the OpenGL remotely. This can be set up via ssh tunneling. We also included

test using the GPU virtualization frameworks DS-CUDA and rCUDA using DP mechanism

for kernel offloading.

Gigabit Ethernet connection is used between client and server. CUDA-MemCPY and

CUDA-Interop are executed in the server machine locally for comparison purposes. CUDA-

MemCPY returns data to the CPU in order to execute rendering. CUDA-Interop uses the

technique explained in Section 6.1.1 for memory copy avoidance between CPU and GPU.

The resolution for the final screen is set to 1280 × 720 which is standard 720p. The MD

simulation step is set to 10.

Figure 6.9 shows the results of our MD simulation and visualization using various graph-

ics offloading techniques. The time taking to render one frame is presented in seconds. The

faster execution is performed by using CUDA locally and Graphics Interoperability as ex-

pected. For a low amount of particles, we can denote the difference between both executions.

Graphics Interoperability alleviates the communication bottleneck, making a faster execu-

84

Section 6.1 Migrating All to GPU: Avoiding Communication Bottleneck

1.00e-03

1.00e-02

 100 1000

S
e

c
o

n
d

s

Number of particles

CUDA-MemCPY
CUDA-Interop
X Forwarding

Virtual GL
DS-CUDA

rCUDA
EdRender

2.00e-02

 5832

Figure 6.9: MD simulation and visualization using graphics offloading. Rendering speed is
presented in seconds. CUDA-MemCPY and CUDA-Interop refers to local execution.

tion. However, for more than 2744 particles the performance of both approaches are similar.

In this case, the computation of the simulation takes longer than other processes, saturating

the GPU in order to compute force, position, and velocity for the particles. Using rCUDA

with DP for kernel wrapping shows close performance for a low amount of particles compared

to local execution, as shown in Chapter 5. Implementing X11 forwarding provides us the best

range of execution for several hundred particles in the system in a server-client scheme. This

may be due to high-tuned latency in X11 implementation. Nevertheless, a more detailed

analysis would confirm this assumption. DS-CUDA implementation is the worst for a large

number of particles. However, it overperformed our naive implementation and VirtualGL for

a low amount of particles. In the case of VirutalGL, we suspected a more efficient execution

against X11, since they claim its communication library is better implemented. However, in

our test, the performance is rather poor. More detailed analysis is necessary as well to confirm

our assumption. Lastly, we have our proposal EdRender which presents a bad performance

for a low number of particles. This is due to the naive implementation of our communica-

tion socket library. In Figure 6.9, we used knowledge in order to process the data request

from both sides, server, and client. This could be alleviated by using buffering techniques.

Nevertheless, for a large number of particles, we can denote a faster execution than X11 and

rCUDA. Our implementation still has a big room for improvement.

85

Chapter 6 Future Directions

6.2 Conclusion

We have proposed to further alleviate the communication bottleneck between CPU and GPU

for MD simulations and visualizations in a server-client scheme. Our results from Chapter

4 and 5 offloading kernel and using DP as a wrapping mechanism show that it is feasible

to use a tablet to execute interactive MD simulation in real-time. In this Chapter, we

proposed to improve the execution performance of our MD simulation using tablets. The

first steps were to apply software capabilities that reduce communication overhead between

the rendering and computation process inside the GPU. As well, we took advantage of the

hardware capabilities of the encoder/decoder for sharing the frame buffer. This proposal

could be seen as implementing graphics capabilities for GPU virtualization frameworks. From

the nature of a server and client system, these features are rather known to be difficult to

implement, especially sharing render resources. However, such efforts are considered in X11

forwarding and VirtualGL. We implemented a naive framework called EdRender which uses

CUDA capabilities for computation and also sharing Graphics Interoperability by sharing the

frame buffer through the network. Our results showed a poor performance of our proposal.

Nevertheless, by customizing the communication routines further we can expect better results.

Techniques similar to our proposal are becoming real applications for gaming on stream-

ing. They include the cases of Stadia from Google [134], PlayStation Now from Sony [135],

and Xbox Game Streaming form Microsoft [136]. This approach applies a very robust GPU

on the server-side in order to render the game at maximum detail. After rendering is per-

formed the frame buffer is encoded for streaming. On the other side, there is a medium-power

client terminal (tablet or smartphone) which decodes the final image. However, the input

for the game comes from the client-side. This means that latency becomes a very important

factor in this new approach in order to get a good experience.

86

7

Concluding Remarks

The co-processor called GPU was originally designed to support the CPU in the acceleration

of image rendering. The rapid development of these graphics chips due to the popularity

of games and media helped the GPU industry to evolve its ubiquitous parallel architecture.

Nowadays, supercomputers are powered by GPUs performing heavy and large computations.

This trend of using GPUs for general-purpose computing had become a natural way to ac-

celerate applications in the HPC field such as MD simulations, Deep Learning, Networking

topology, etc. Scientific computer simulations of physical phenomena are usually executed

without visualization. After the simulation is performed, the results are analyzed and visu-

alized using another special computer entity. To overcome this split scheme, the early stages

of this research has been focused on the ability to perform real-time high-performance MD

simulation and visualization using GPUs. Furthermore, post PC devices such as tablets have

proved to be a path to redefine the way users interact with computers and visualize data,

especially when interactive manipulation and simulation have become a new trend for analyz-

ing a large amount of data on the fly. However, the computing power of touch devices is still

not enough for such simulations. In this dissertation, we proposed the exploration of using

GPU virtualization frameworks with tablets in order to achieve real-time MD simulation and

visualization. GPU virtualization frameworks can complement the low computing power,

handling GPUs remotely in order to perform heavy simulations on mobile devices.

In Chapter 4 we proposed to offload intensive computations from a tablet performing

an MD simulation and visualization through DS-CUDA virtualization framework. We used

a low-powered GPU from a notebook in order to keep the power efficiency of the whole

system. We used the DS-CUDA framework to enable the development of remote offloading

using mobile devices. Only CUDA kernels were offloaded due to the ability of DS-CUDA

preprocessor to wrap seamlessly CUDA code without modification. Speed up of Gflops were

obtained when the MD was compared between GPU and CPU implementation. However, a

trade of less amount on frames/sec were noted when a large amount of Gflops was attained. It

87

Chapter 7 Concluding Remarks

was found that saturating the GPU the communication overhead could be hidden between the

tablet and the GPU. However, this is not the optimal way to achieve real-time visualization

of MD simulations.

In Chapter 5 we applied Dynamic Parallelism as a novel idea to tackle communication

reduction in the execution of real-time MD simulation and visualization using tablets. We

used the rCUDA virtualization framework instead of DS-CUDA. The main reason includes

that rCUDA is more up to date and presents better kernel latency compared against DS-

CUDA. We implemented DP in order to hide kernel call latency in our MD simulation and

visualization. This technique allows our system to achieve better computational performance,

more frames per second than a tablet powered by a CUDA capable GPU. As well, we found

that keeping the GPU saturated with more steps in the MD simulation helped in the reduction

of the latency from the client-side. However, using more steps affects the frame rate of the

visualization. We found that 250 steps were optimal for our system achieving enough frame

rate and better power efficiency when multiple clients were used.

Lastly, in Chapter 6 we made the first steps in order to further alleviate the congestion

in the communication between client and server for MD simulations and visualizations. Im-

plementing graphics capabilities for GPU virtualization frameworks are rather known to be

difficult, especially sharing rendering resources. This is due to the nature of a server and

client scheme. First thoughts to reduce communication overhead between the rendering and

computation process inside the GPU were to apply software capabilities such as Graphics

Interoperability and take advantage of the hardware capabilities of encoder/decoder. This

will allow putting all together inside the GPU, in order to perform both simulation and visu-

alization. We implemented a naive framework that uses such capabilities, sharing the frame

buffer through the network. Our preliminary results demonstrated a poor performance from

our proposal. However, by customizing the communication routines further, we can expect

better results.

Our initial aim was to be able to hook up a tablet from a supercomputer in order to

achieve real-time simulation and visualization. Through this dissertation, we discussed the

main problems in order to use the main hardware accelerator in the supercomputer which

is the GPU. We proposed a system capable of MD simulation and visualization in real-time

using a tablet. We realized that the actual frameworks for using remote GPUs are not ready

for such a task. Reducing the communication between server and client is a key factor in

order to achieve such kind of simulations. We paved the path to complement these GPU

remote frameworks, including a technique using DP for better performance and also sharing

frame buffers techniques for a complete offload to a GPU. This dissertation walk trough this

topic using a small server and client scenario in order to analyze the basic problems and

bottlenecks. This will aid to achieve the use of more sophisticated and robust servers in the

88

future.

Complementing the real-time simulation and visualization, another important topic inside

this dissertation is the interactivity that handheld devices provide whit so many sensors.

Our system proposal aims the offloading of only kernel parts (computationally intensive) to

the GPU. Using this approach allows the developer to maintain control and access to all

development ecosystem on the tablet device. As well as to keep the asynchronous execution

of the application: on this scenario meanwhile the intensive routines are performed in the

remote GPU, we still have computational resources on the tablet to perform other actions.

This allows access with minimum latency to other sensors in order to react and provide

feedback to the simulation. As we mentioned in Chapter 3, we can take advantage of this

feedback in order to interact and alter the simulation and visualization. Our approach in

the current MD simulation is rather simple, only modifying certain values and the possibility

to visualize different angles of the simulation. However, using other interactive sensors we

can provide a new level of interactivity to the simulation. For example, we can use haptic

sensors to provide real-time force feedback. The ability to modify the crystal structure using

3D hand recognition is another example. Moreover, utilizing VR glasses in order to provide

more depth and realism to the visualization.

A huge room for improvement is expected since the evolution of the GPU will continue

to boost by the incoming services for gaming on the cloud. These new coming technologies

and services will leverage new features such as real-time ray tracing rendering for photo-

realistic images. Furthermore, the server-client scheme will become also more common in the

incoming years.

89

List of contributions

Related to this dissertation
Journals

1. Martinez-Noriega Edgar Josafat, Syunji Yazaki, and Tetsu Narumi, “CUDA Of-
floading for Energy-Efficient and High-Frame-Rate Simulations using Tablets”, Concur-
rency and Computation: Practice and Experience, e5488, August 2019. (The contents
of Chapter 5)

International conferences

1. Martinez-Noriega Edgar Josafat, and Tetsu Narumi, “Remote Graphics Rendering
for MD simulation using NVIDIA’s Pascal Architecture”, 2017 International Summer
School on HPC Challenges in Computational Sciences, USA, Co, Boulder, June 2017.
(The contents of Chapter 6)

2. Martinez-Noriega Edgar Josafat, and Tetsu Narumi, “High Performance Comput-
ing on Mobile Devices through Distributed-Shared CUDA”, GPU Technology Confer-
ence (GTC), USA, San Jose CA, S5290, March 2015. (The contents of Chapter 4)

Domestic conferences

1. Martinez-Noriega Edgar Josafat, and Tetsu Narumi, “MD simulation and visu-
alization for low powered devices offloading CUDA code”, RIKEN AICS HPC Youth
Work-Shop, Kobe, Japan, November 2016. (The contents of Chapter 5)

2. Martinez-Noriega Edgar Josafat, and Tetsu Narumi, “CUDA Offloading for Molec-
ular Dynamics Simulation”, 21st Computational Engineering Conference, Niigata, Japan,
May 2016. (The contents of Chapter 5)

3. Tetsu Narumi, Minoru Oikawa, Martinez-Noriega Edgar Josafat, and Kenji Ya-
suoka, “DS-CUDA: GPU Virtualization Middleware to Support Migration Function-
ality”, 153th High Performance Computing Research, Ehime, Japan, February 2016.
(The contents of Chapter 4)

Others
International conferences

1. Martinez-Noriega Edgar Josafat, Atsushi Kawai, Kazuyuki Yoshikawa, Kenji Ya-
suoka and Tetsu Narumi, “Running CUDA through GPU virtualization”, GPU Tech-
nology Conference (GTC), USA, San Jose CA, P4160, March 2014.

2. Martinez-Noriega Edgar Josafat, Atsushi Kawai, Kazuyuki Yoshikawa, Kenji Ya-
suoka and Tetsu Narumi, “CUDA on Android tablets”, Super Computing Conference
(SC), USA, Denver, November 2013.

91

Chapter 7 Concluding Remarks

3. Martinez-Noriega Edgar Josafat, Gualberto Aguilar Torres, and Gabriel Sanchez
Perez, “Alto Rendimiento en Simulaciones Moleculares Dinamicas a traves de la Unidad
de Procesamiento Grafico”, 9th Student Congress on Prototypes and Projects of Com-
puter Engineering, Mexico, Mexico City, June 2012.

Domestic conferences

1. Martinez-Noriega Edgar Josafat, Atsushi Kawai, Kazuyuki Yoshikawa, Kenji Ya-
suoka and Tetsu Narumi, “CUDA enabled for Android Tablets through DS-CUDA”,
Annual Symposium on Advance Computing Systems and Infrastructures (SACSIS 2013),
Sendai,Japan, May 2013.

2. Kazuyuki Yoshikawa, Martinez-Noriega Edgar Josafat, Atsushi Kawai, Kenji Ya-
suoka and Tetsu Narumi, “Reliability improvement of GPGPU system using DS-CUDA”,
Annual Symposium on Advance Computing Systems and Infrastructures (SACSIS 2013),
Sendai,Japan, May 2013.

3. Martinez-Noriega Edgar Josafat, and Tetsu Narumi, “High Performance N-Body
Simulation and Visualization through CUDA Architecture”, Bulletin of the University
of Electro-communications, Tokyo, Japan, pp. 59-64, March 2011.

92

References

[1] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,

C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P.

Grossman, C. R. Ho, D. J. Ierardi, I. Kolossvry, J. L. Klepeis, T. Layman, C. McLeavey,

M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles,

and S. C. Wang., “Anton, a special-purpose machine for molecular dynamics simulation.

”, In Proceedings of the 34th International Symposium on Computer Architecture, June

2007.

[2] Bakker, A.F., Gilmer,G.H.,Grabow, M.H., Thompson,K. “A special purpose computer

for molecular dynamics calculations ”, J.Comput. Phys. 1990, 90, 313-35.

[3] Fine, R., Dimmler, G., Levinthal, C. “FASTRUN: A special purpose, hardwired computer

for molecular simulation ”, Protein Struc. Funct. Genet. 1991, 11, 242-53.

[4] Yuri N. “Performance analysis of clearspeed’s CSX600 interconnects, in Parallel and

Distributed Processing with Applications ”, 2009 IEEE International Symposium, pp.

203-10

[5] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya.

“Protein explorer: A petaflops special-purpose computer system for molecular dynamics

simulations. ”, In Proceedings of the ACM/IEEE SC2003 Conference, November 2003.

[6] England, J.N., “A system for interactive modeling of physical curved surface objects.”,

In Proceedings of SIGGRAPH 78 1978, 336-340. 1978.

[7] Rhoades, J., Turk, G., Bell, A., State, A., Neumann, U. and Varshney, “A. Real-Time

Procedural Textures”, In Proceedings of Symposium on Interactive 3D Graphics 1992,

ACM / ACM Press, 95-100. 1992.

[8] Potmesil, M. and Hoffert, E.M., “The Pixel Machine: A Parallel Image Computer.”, In

Proceedings of SIGGRAPH 89 1989, ACM, 69-78. 1989.

[9] Top500 Supercomputer Sites. Top500 and Green500 Supercomputers lists - June 2019,

https://www.top500.org/lists/2019/6/ [October 2019].

93

References

[10] Scogland TRW, Lin H, Feng WC. A first look at integrated GPUs for green high-

performance computing. Computer Science-Research and Development, 2010;25:125-134.

[11] Narumi T. DS-CUDA: A Handy Tool to Use GPUs in a Cloud Network. Tsubame ESJ.:

e-Sciencie Journal, March 2017, 15;12-17.

[12] Y Weng, C Cao, Q Hou, K Zhou, “Real-time facial animation on mobile devices ”,

Computational Visual Media Conference 2013,Volume 76, Issue 3, May 2014, Pages

172:179.

[13] Pei-Jung Lin, Sheng-Chang Chen, Yi-Hsung Li, Meng-Syue Wu, Shih-Yue Chen, “An

Implementation of Augmented Reality and Location Awareness Services in Mobile De-

vices ”, Lecture Notes in Electrical Engineering Volume 274, 2014, pp 509-514.

[14] M Bedford, T Wheeler, J Bloor, “Directing specialist care through alerting to mobile

devices ”, International Digital Health and Care Congress, The King’s Fund, London,

September 10-12 2014.

[15] M Miknis, P Plassmann, C Jones, “Virtual environment stereo image capture using the

Unreal Development Kit”, Computer and Information Technology (GSCIT),14-16 June

2014,1 - 5.

[16] S Burigat, L Chittaro, “Visualizing the results of interactive queries for geographic data

on mobile devices”, Proceedings of the 13th annual ACM international workshop on

Geographic information systems,Pages 277 - 284, New York, NY, USA 2005.

[17] Krone, M., Bidmon, K., Ertl, T. Interactive visualization of molecular surface dynamics.

IEEE transactions on visualization and computer graphics, 15(6), pp.1391-1398.

[18] Stone, J. E., Messmer, P., Sisneros, R., Schulten, K. High performance molecular vi-

sualization: In-situ and parallel rendering with EGL. IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pp. 1014-1023. IEEE, 2016.

[19] Nonaka, J., Sakamoto, N., Shimizu, T., Fujita, M., Ono, K., Koyamada, K. Distributed

Particle-based Rendering Framework for Large Data Visualization on HPC Environ-

ments. 2017 International Conference on High Performance Computing & Simulation

(HPCS), pp. 300-307. IEEE, 2017.

[20] Sabou, A., Gorgan, D. Remote interactive visualization for particle-based simulations

on graphics clusters. 40th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pp. 253-258. IEEE, 2017.

94

References

[21] Lin YD, Chu ETH, Lai YC, Huang TJ. Time-and-Energy-Aware Computation Offload-

ing in Handle Devices to Coprocessors and Clouds. IEEE Systems Journal, 2015;9:393-

405.

[22] Elgendy IA, El-Kawkagy M, Keshk A. Improving the Performance of Mobile Applications

Using Cloud Computing. The 9th International Conference on Informatics and Systems

(INFOS2014), December 2014, Cairo, Egypt;109-115.

[23] Kolb J, Chaudhary P, Schillinger A, Chandra A, Weissman J. Cloud-Based, User-Centric

Mobile Application Optimization. Cloud Engineering (IC2E), 2015, IEEE International

Conference, 2015;26-35.

[24] Acosta A, Almeida F. Parallel Implementations of the Particle Filter Algorithm for

Android Mobile Devices. in Parallel, Distributed and Network-Based Processing (PDP),

March 2015, 23rd Euromicro International Conference;244-247.

[25] Fatica M, Phillips EH. Synthetic Aperture Radar imaging on a CUDA-enabled mobile

platform. High Performance Extreme Computing Conference, 2014, HPEC;1-5.

[26] Ju, Q., Chen, S. T., Zhang, Y. Benchmarking renderscript: potential for energy effi-

cient multi-core mobile devices. 12th Annual IEEE International Conference on Sensing,

Communication, and Networking-Workshops, pp. 1-6. IEEE, 2015.

[27] Kemp R, Palmer N, Kielmann T, Bal HE, Aarts B, Ghuloum AM. Using RenderScript

and rCUDA for Compute Intensive Tasks on Mobile Devices: a Case Study. Software

Engineering (Workshops), 2013;13:305-318.

[28] Eom H, Juste PS, Figueiredo R, Tickoo O, Illikkal R, Iyer R. OpenCL-Based Remote

Offloading Framework for Trusted Mobile Cloud Computing. Parallel and Distributed

Systems (ICPADS), December 2013, International Conference;240-248.

[29] Montella R, Giunta G, Laccetti G, Lapegna M, Palmieri C, Ferraro C, Pelliccia V, Hong

C, Spence I, Nikolopoulos D. On the Virtualization of CUDA Based GPU Remoting on

ARM and X86 Machines in the GVirtuS Framework. International Journal of Parallel

Programming, Oct 2017, 45;5:1142-1163.

[30] Reaño C, Prades J, Silla F. Exploring the Use of Remote GPU Virtualization in Low-

Power Systems for Bioinformatics Applications. In Proceedings of the 47th International

Conference on Parallel Processing Companion (ICPP), International Conference on Par-

allel Processing Companion, 2018;8:1-8.

95

References

[31] Pratapa, S., Krajcevski, P., Manocha, D. MPTC: video rendering for virtual screens

using compressed textures. Proceedings of the 21st ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, p. 14. ACM, 2017.

[32] McCarthy, D., Schulze, J., Urgen, P. Distributed VR rendering using NVIDIA OptiX.

Electronic Imaging, 29;2017(3):36-41, 2017.

[33] Stone, J. E., Sherman, W. R., Schulten, K. Immersive molecular visualization with

omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1048-1057.

IEEE, 2016.

[34] Lindholm, E., Kligard, M. J., and Moreton, H. A user-programmable vertex engine. In

Proceedings of SIGGRAPH 2001, ACM Press/Addison-Wesley Publishing Co., 149:158.

[35] Mark, W. R., Glanville, R. S., Akeley, K., and Kil- gard, M. J. Cg: A system for

programming graphics hardware in a C-like language. ACM Transactions. Graph. 22, 3,

896:907.

[36] Thompson, C. J., Hahn, S., and Oskin, M. Using modern graphics architectures for

general-purpose computing: A framework and analysis. Proceedings of the 35th annual

ACM/IEEE international symposium on Microarchitecture, 2002, pp. 306-317.

[37] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan,

P. Brook for GPUs: stream computing on graphics hardware. ACM transactions on

graphics (TOG), 2004 Aug 1;23(3):777-86.

[38] Kirk, D. B., W. M., W. H.. Programming massively parallel processors: a hands-on

approach. Book,Morgan kaufmann; 2016 Nov 24.

[39] Patterson, D. The top 10 innovations in the new NVIDIA Fermi architecture, and the

top 3 next challenges. Nvidia Whitepaper, 2009 Sep 30;47.

[40] ANSI-IEEE 754-1985. “American National Standard – IEEE Standard for Binary

Floating-Point Arithmetic.”, American National Standards Institute, Inc., New York,

1985.

[41] Lee, G., Chun, B. G., Katz, Y. H. Heterogeneity-Aware Resource Allocation and Schedul-

ing. University of California Workshop, California, Berkeley 2011.

[42] Exposito, R. R., Taboada, G. L., Ramos, S., Tourino, J., Doallo, R. General-purpose

computation on GPUs for high performance cloud computing, Concurrency and Com-

putation: Practice and Experience, no. 12 (2013): 1628-1642.

96

References

[43] Green, S. Particle simulation using cuda. NVIDIA whitepaper, 2010 May;6, pp.121-128.

[44] Glaser, J., Nguyen, T. D., Anderson, J. A., Lui, P., Spiga, F., Millan, J. A., Glotzer, S. C.

Strong scaling of general-purpose molecular dynamics simulations on GPUs. Computer

Physics Communications, 2015 Jul 1;192:97-107.

[45] Goldberg, R. P. Survey of virtual machine research. Computer, 1974 Jun;7(6):34-45.

[46] Hong, C. H., Spence, I.,Nikolopoulos, GPU virtualization and scheduling methods: A

comprehensive survey. ACM Computing Surveys (CSUR), 2017 Oct 9;50(3):35.

[47] FreeDesktop.org. Noveau: Accelereted open source driver for nvidia cards,

https://nouveau.freedesktop.org/wiki [September 2019].

[48] Menychtas, K., Shen, K., Scott, M. L. Enabling OS Research by Inferring Interactions in

the Black-Box GPU Stack. In Presented as part of the 2013 USENIX Annual Technical

Conference, 2013 (pp. 291-296).

[49] Herrera, A. NVIDIA GRID: Graphics accelerated VDI with the visual performance of a

workstation. White paper - Nvidia Corp,2014:1-8.

[50] Van Doorn, L. Hardware virtualization trends. ACM Usenix International Conference

On Virtual Execution Environments: Proceedings of the 2nd international conference on

Virtual execution environments vol. 14, no. 16, pp. 45-45. 2006.

[51] Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Regnier, G., Sankaran, R.,

Wiegert, J. Intel Virtualization Technology for Directed I/O. Intel technology journal,

2006 Aug 1;10(3).

[52] Lagar-Cavilla, H. A., Tolia, N., Satyanarayanan, M., De Lara, E. VMM-independent

graphics acceleration. Proceedings of the 3rd international conference on Virtual execu-

tion environments, pp. 33-43. ACM, 2007.

[53] Hansen, J. G. Blink: Advanced display multiplexing for virtualized applications. Pro-

ceedings of NOSSDAV, 2007 Jun 4.

[54] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D.,Klosowski,

J. T. Chromium: a stream-processing framework for interactive rendering on clusters.

ACM transactions on graphics (TOG), vol. 21, no. 3, pp. 693-702. ACM, 2002.

[55] Kuzkin, M. A., Tormasov, Method and system for remote device access in virtual envi-

ronment. U.S. Patent No. 8,805,947, Patent 8,805,947, issued August 12, 2014.

97

References

[56] Lee, C., Kim, S. W., Yoo, C. VADI: GPU virtualization for an automotive platform.

IEEE Transactions on Industrial Informatics, no. 1 (2015): 277-290.

[57] Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ran-

ganathan, P. GViM: GPU-accelerated virtual machines. Proceedings of the 3rd ACM

Workshop on System-level Virtualization for High Performance Computing, pp. 17-24.

ACM, 2009.

[58] Shi, L., Chen, H., Sun, J., Li, K. vCUDA: GPU-accelerated high-performance computing

in virtual machines. IEEE Transactions on Computers, no. 6 (2011): 804-816.

[59] Giunta, G., Montella, R., Agrillo, G., Coviello, G. A GPGPU transparent virtualization

component for high performance computing clouds. European Conference on Parallel

Processing, pp. 379-391. Springer, Berlin, Heidelberg, 2010.

[60] Li, T., Narayana, V. K., El-Araby, E., El-Ghazawi, T. GPU resource sharing and virtu-

alization on high performance computing systems. International Conference on Parallel

Processing pp. 733-742. IEEE, 2011.

[61] Gupta, V., Schwan, K., Tolia, N., Talwar, V., Ranganathan, P. Pegasus: Coordinated

scheduling for virtualized accelerator-based systems. USENIX Annual Technical Confer-

ence (USENIX ATC 11), p. 31. 2011.

[62] Merritt, A. M., Gupta, V., Verma, A., Gavrilovska, A., Schwan, K. Shadowfax: scaling

in heterogeneous cluster systems via GPGPU assemblies. Proceedings of the 5th interna-

tional workshop on Virtualization technologies in distributed computing, pp. 3-10. ACM,

2011.

[63] Xiao, S., Balaji, P., Zhu, Q., Thakur, R., Coghlan, S., Lin, H., Feng, W. C. VOCL:

An optimized environment for transparent virtualization of graphics processing units.

Innovative Parallel Computing (InPar), pp. 1-12. IEEE, 2012.

[64] Duato, J., Pena, A. J., Silla, F., Mayo, R., Quintana-Orti, E. S. rCUDA: Reducing the

number of GPU-based accelerators in high performance clusters. International Confer-

ence on High Performance Computing and Simulation, pp. 224-231. IEEE, 2010.

[65] Oikawa, M., Kawai, A., Nomura, K., Yasuoka, K., Yoshikawa, K., Narumi, T. DS-

CUDA: a middleware to use many GPUs in the cloud environment. SC Companion:

High Performance Computing, Networking Storage and Analysis, pp. 1207-1214. IEEE,

2012.

[66] Defanti, Thomas A., and Maxine D. Brown. Visualization in scientific computing. Ad-

vances in Computers, 1991 Jan 1, Vol. 33, pp. 247-307.

98

References

[67] Harvey, M.J., Giupponi, G., De Fabritiis, G. “ACEMD: Accelerating biomolecular dy-

namics in the microsecond time scale”, J. Chem. Theory Comput. 2009, 5, 1632-9.

[68] Friedrichs, M.S., Eastman, P., Eastman, P., Vaidyanathan, V., Houston, M., Le Grand,

S., Beberg, A.L. Ensing, D. L., Bruns, C.M., Pande, “Accelerating molecular dynamic

simulation on graphics processing units.”, J. Comput. Chem. 2009, 30, 864-72.

[69] G. Shi and V. Kindratenko, “Implementation of NAMD molecular dynamics non-bonded

forcefield on the Cell Broadband Engine processor”, In Proceedings of the 9th Inter-

national Workshop on Parallel and Distributed Scientific and Engineering Computing,

April 2008.

[70] Hailong Yang, Bo Li, Yongjian Wang, Zhongzhi Luan, Depei Qian and Tianshu Chu

“Accelerating Dock6s Amber Scoring with Graphic Processing Unit ”, Department of

Computer Scinece and Engineering, Sino-German Joint Software Institute, Beihang Uni-

versity, 2010, China.

[71] Brooks, B. R., Brooks III, C. L., Mackerell Jr, A. D., Nilsson, L., Petrella, R. J., Roux, B.,

Caflisch, A. CHARMM: the biomolecular simulation program, Journal of computational

chemistry, 2009 Jul 30;30(10):1545-614.

[72] Ribarsky, William, Yves Jean, Thomas Kindler, Weiming Gu, Gregory Eisenhauer,

Karsten Schwan, and Fred Alyea, An integrated approach for steering, visualization,

and analysis of atmospheric simulations, In Proceedings IEEE Visualization, vol. 95.

1995.

[73] Beazley, David M., and Peter S. Lomdahl, Lightweight computational steering of very

large scale molecular dynamics simulations, In Supercomputing 96: Proceedings of the

1996 ACM/IEEE Conference on Supercomputing, pp. 50-50. IEEE, 1996.

[74] Vetter, Jeffrey Scott, and Karsten Schwan, Progress: A toolkit for interactive program

steering, Georgia Institute of Technology, 1995.

[75] Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., and Sugimoto, D., “A Highly-

Parallelized Special-Purpose Computer for Many-body Simulations with An Arbitrary

Central Force: MD-GRAPE.”, Astrophysical Journal, 468, pp. 51-61, 1996.

[76] Taiji, M., Fukushige, T., Makino, J., Ebisuzaki, T., and Sugimoto, D., “MD-GRAPE:

A Parallel Special-Purpose Computer System for Classical Molecular Dynamics Simu-

lations.”, Physics Computing ’94 Lugano, Switzerland, in Proceedings of the 6th Joint

EPS-APS international conference on Physics Computing, European Physical Society,

Geneva, pp. 200-203, 1994.

99

References

[77] University of Fukui, Department of Applied Physics. Real Time Molecular Dy-

namics Simulation and Visualization - Claret Ver 0.53, http://polymer.apphy.u-

fukui.ac.jp/˜koishi/claret/index.php [October 2018].

[78] Freeglut - The Free OpenGL Utility library - Sep 2019, http://freeglut.sourceforge.net

[September 2019].

[79] M.P. Tosi,F.G. Fumi, “J. Phys.Chem. Solids”, 25, 1964, 45.

[80] M.P. Allen,D.J. Tildesley, “Computer Simulation Liquids”, Clarendon,Oxford,1987.

[81] Kiss, G., Khan, N. H., Tegnander, E., Eik-Nes, S. H., Torp, H. Fast ultrasound signal and

image processing on a tablet device. In 2015 IEEE International Ultrasonics Symposium,

2015 Oct 21 (pp. 1-4). IEEE.

[82] Sabou, A., Gorgan, D.Remote interactive visualization for particle-based simulations on

graphics clusters. 40th International Convention on Information and Communication

Technology, Electronics and Microelectronics, 2017 May 22 (pp. 253-258). IEEE.

[83] Stone, J. E., Sherman, W. R., Schulten, K. Immersive molecular visualization with om-

nidirectional stereoscopic ray tracing and remote rendering. In 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1048-1057.

IEEE, 2016.

[84] Krone, M., Bidmon, K., Ertl,T. Interactive visualization of molecular surface dynamics.

IEEE transactions on visualization and computer graphics 15, no. 6 (2009): 1391-1398.

[85] Stone, J. E., Gullingsrud, J., Schulten, K. A system for interactive molecular dynamics

simulation. In Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 191-

194. ACM, 2001.

[86] FGLFW multi-platform Utility library library for OpenGL, OpenGL ES and Vulkan,

https://www.glfw.org [September 2019].

[87] Matthias Trapp, “OpenGL-Performance and Bottlenecks”, Seminar, University of Post-

dam, Winter semester 2003.

[88] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, “A package for OpenCL based heteroge-

neous computing on clusters with many GPU devices.”, Workshop on Parallel Program-

ming and Applications on Accelerator Clusters, 2010.

[89] J.Duato, A.J.Pena, F.Silla, R.Mayo, and E.S.Quintana, “Performance of CUDA Virtual-

ized Remote GPUs in High Performance Clusters.”, 2011 IEEE International Conference

on Parallel Processing, 2011, pp. 365:374.

100

References

[90] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi, “Distributed-Shared CUDA:

Virtualization of Large-Scale GPU Systems for Programmability and Reliability.”, The

Fourth International Conference on Future Computational Technologies and Applica-

tions, Nice, France, 2012, pp.8-10.

[91] J-H. Huang, “Opening Keynote at GTC 2015:Leaps in Visual Computing.”, GPU Tech-

nology Conference, Silicon Valley,Keynote presentation, April 4-7, 2016.

[92] Atsushi Kawai, Kenji Y asuoka, Kazuyuki Yoshikawa, and Tetsu Narumi, “Distributed-

Shared CUDA: Virtualization of Large-Scale GPU Systems for Programability and Re-

liability”, The Fourth International Conference on Future Computational Technologies

and Applications, Nice, France, 2012.

[93] Narumi Laboratory Web Page, “DS-CUDA Software Package”,

http://narumi.cs.uec.ac.jp/dscuda/

[94] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, and T. Narumi, “DS-

CUDA:a Middleware to Use Many GPUs in the Cloud Environment”, SC Compan-

ion:High Performance Computing, Networking Storeage and Analysis, pp. 1207-1213,

2013.

[95] Android Developer Sites. Android NDK, http://developer.android.com/intl/es/tools/sdk/ndk/index

[October 2019].

[96] Android Developer Sites. JNI Tips, http://developer.android.com/intl/es/training/articles/perf-

jni [October 2019].

[97] Khronos group. The open standard for parallel programming of heterogeneous systems,

https://www.khronos.org/opencl [October 2018].

[98] CUDA for developers. CUDA Zone, https://developer.nvidia.com/cuda-zone [October

2019].

[99] Huang J-H. Opening Keynote at GTC 2018. GPU Technology Conference, March 2018,

Silicon Valley.

[100] Stone JE, Gullingsrud J, Schulten K. A system for interactive molecular dynamics simu-

lation. Proceedings of the 2001 Symposium on Interactive 3D Graphics, 2001;I3D’01:191-

194.

[101] Luehr N, Jin AG, Martinez TJ. Ab Initio Interactive Molecular Dynamics on Graphical

Processing Units (GPUs). Journal of Chemical Theory and Computation, 2015;11:4536-

4544.

101

References

[102] Giunta G, Montella R, Agrillo G, Coviello G. A GPGPU Transparent Virtualization

Component for High Performance Computing Clouds. European Conference on Parallel

Processing - (Euro-Par 2010), 2010, 6271;379-391.

[103] Merrit A, Gupta V, Verma A, Gavrilovska A, Schwan K. Shadowfax: Scaling in Hetero-

geneous Cluster Systems via GPGPU Assemblies. Proceedings of the 5th International

Workshop on Virtualization Technologies in Distributed Computing, June 2011, 11;3-10.

[104] Suzuki Y, Kato S, Yamada H, Kono K. Gpuvm: Gpu virtualization at the hypervisor.

IEEE Transactions on Computers, September 2016, 1;65:2752-2766.

[105] Barak A, Ben-Nun T, Levy E, Shiloh A. A package for OpenCL-based heterogeneous

computing on clusters with many GPU devices. Workshop on Parallel Programming and

Applications on Accelerator Clusters, IEEE International Conference, 2010;1-7.

[106] Shi L, Chen H, Sun J. vCUDA: GPU accelerated high performance computing in virtual

machines. In Proc. of the IEEE Parallel and Distributed Processing Symposium, IPDPS,

2019;1-11.

[107] Liang TY, Chang YW. GridCuda: A Grid-Enabled CUDA Programming Toolkit. In

Proc. of the IEEE Advanced Information Networking and Applications Workshops, 2011,

WAINA;141-146.

[108] Kawai A, Yasuoka K, Yoshikawa K, Narumi T. Distributed-Shared CUDA: Virtual-

ization of Large-Scale GPU Systems for Programmability and Reliability. The Fourth

International Conference on Future Computational Technologies and Applications, 2012,

Nice, France;8-10.

[109] Reaño C, Silla F, Shainer G, Schultz S. Local and Remote GPUs Perform Similar with

EDR 100G InfiniBand. In Proceedings of the International Middleware Conference, 2015,

Middleware Industry 15;4:1-7.

[110] Reaño C, Silla F. A Performance Comparison of CUDA Remote GPU Virtualiza-

tion Frameworks. In 2015 IEEE International Conference on Cluster Computing, 2015,

CLUSTER 15, IEEE Computer Society;488-489.

[111] Duato J, Pena AJ, Silla F, Mayo R, Quintana-Orti ES. rCUDA: Reducing the number

of GPU-based accelerators in high performance clusters. High Performance Computing

and Simulation (HPCS), 2010, International Conference on IEEE;224-231.

[112] Duato J, Pena AJ, Silla F, Mayo R, Quintana-Orti ES. Performance of CUDA Virtu-

alized Remote GPUs in High Performance Clusters. IEEE International Conference on

Parallel Processing, 2011;365-374.

102

References

[113] Silla F, Iserte S, Reano C, Prades J. On the benefits of the remote GPU virtualization

mechanism: The rCUDA case. Concurrency and Computation: Practice and Experience,

2017;29:e4072.

[114] Reaño C, Silla F, Castello A, Peña A, Mayo R, Quintana-Orti E, Duato J. Improving

the user experience of the rCUDA remote GPU virtualization framework. Concurrency

and Computation: Practice and Experience, 2015, 27;14:3746-3770.

[115] Huang S, Xiao S, Feng WC. On the energy efficiency of graphics processing units for sci-

entific computing. Parallel & Distributed Processing, IPDPS, 2009, IEEE International

Symposium;1-8.

[116] Azmat S, Wills L, Wills S. Parallelizing Multimodal Background Modeling on a Low-

Power Integrated GPU. Journal of Signal Processing Systems, 2016;1-11.

[117] Tosi MP, Fumi FG. Ionic sizes and born repulsive parameters in the NaCl-type alkali

halides—II: The generalized Huggins-Mayer form. Journal of Physics and Chemistry of

Solids, 1964;25:45-52.

[118] Fujii, Y., Azumi, T., Nishio, N., Kato, S., Edahiro, M. Data transfer matters for GPU

computing. International Conference on Parallel and Distributed Systems, pp. 275-282.

IEEE, 2013.

[119] van Werkhoven, B., Maassen, J., Seinstra, F. J., Bal, H. E. Performance Models for

CPU-GPU Data Transfers. ACM International Symposium on Cluster, Cloud and Grid

Computing, pp. 11-20, 2014.

[120] White III, J. B., Dongarra, J. J, Overlapping computation and communication for

advection on hybrid parallel computers. International Parallel and Distributed Processing

Symposium, pp. 59-67. IEEE, 2011.

[121] GoMez-Luna, J., GonzaLez-Linares, J. M., Benavides, J. I., Guil, N. Performance mod-

els for asynchronous data transfers on consumer graphics processing units. Journal of

Parallel and Distributed Computing, no. 9 (2012): 1117-1126.

[122] Martinez-Noriega Edgar Josafat, Narumi Tetsu, High Performance N-Body Simula-

tion and Visualization through CUDA Architecture The 25th UEC International Mini-

Conference for International Students, Tokyo-Japan, March, 2011, pp 59,64.

[123] Demir, V., Elsherbeni, A. Z. Utilization of CUDA-OpenGL interoperability to display

electromagnetic fields calculated by FDTD. CEM’11 Computational Electromagnetics

International Workshop, pp. 95-98. IEEE, 2011.

103

References

[124] Abdellah, M., Eldeib, A., Owis, M. I. GPU acceleration for digitally reconstructed

radiographs using bindless texture objects and CUDA/OpenGL interoperability. 37th

Annual International Conference of the IEEE Engineering in Medicine and Biology So-

ciety (EMBC), pp. 4242-4245. IEEE, 2015.

[125] Camillo, M. S., Shin-Ting, W. Accessing CUDA features in the OpenGL rendering

pipeline: A case study using N-Body simulation. 30th SIBGRAPI Conference on Graph-

ics, Patterns and Images, pp. 315-322. IEEE, 2017.

[126] NVIDIA Developer Sites - NVIDIA Video Codec SDK,

https://developer.nvidia.com/nvidia-video-codec-sdk [October 2019].

[127] Wilhelmsen, M. A., Stensland, H. K., Gaddam, V. R., Mortensen, A., Langseth, R.,

Griwodz, C., Halvorsen, P. Using a commodity hardware video encoder for interactive

video streaming. IEEE International Symposium on Multimedia, pp. 251-254. IEEE,

2014.

[128] de Souza, D. F., Ilic, A., Roma, N., Sousa, L. GHEVC: An efficient HEVC decoder for

graphics processing units. IEEE Transactions on Multimedia, 19(3), pp.459-474, 2016.

[129] NVIDIA Developer Sites - NVIDIA Capture SDK,

https://developer.nvidia.com/capture-sdk [October 2019].

[130] VirtualGL 3D without Boundaries - The VirtualGL project, https://virtualgl.org/ [Oc-

tober 2019].

[131] Nagella, S., Sastry, L., Fowler, R. Remote rendering on visualization cluster using

VirtualGL and Chromium. Proc. VizNET Conf., October 2008.

[132] Nye, A. X Protocol Reference Manual: For X11, Book, Release 6. “O’Reilly Media,

Inc.”, 1995.

[133] Rosmanith, H., Volkert, J. Traffic forwarding with GSH-GLOGIN. 13th Euromicro

Conference on Parallel, Distributed and Network-Based Processing, pp. 213-219. IEEE,

2005.

[134] Google sites - Stadia, games without a console or downloads,

https://store.google.com/srp=/product/stadia [October 2019].

[135] PlayStation sites - PlayStation Now, gaming on demand,

https://www.playstation.com/en-us/explore/playstation-now [October 2019].

[136] Xbox sites - Xbox Game Streaming Preview, https://www.xbox.com/en-US/xbox-

game-streaming [October 2019].

104

