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Abstract. We present improvements to a branch-and-bound maximum-
clique-finding algorithm MCS (WALCOM 2010, LNCS 5942, pp. 191–
203) that was shown to be fast. First, we employ an efficient approxima-
tion algorithm for finding a maximum clique. Second, we make use of ap-
propriate sorting of vertices only near the root of the search tree. Third,
we employ a lightened approximate coloring mainly near the leaves of
the search tree. A new algorithm obtained from MCS with the above
improvements is named MCT. It is shown that MCT is much faster than
MCS by extensive computational experiments. In particular, MCT is
shown to be faster than MCS for gen400 p0.9 75 and gen400 p0.9 65 by
over 328,000 and 77,000 times, respectively.

1 Introduction

We define a clique as a complete subgraph in which all pairs of vertices
are adjacent to each other. Algorithms for finding a maximum clique (e.g.,
[18]) in a given graph have received much attention especially recently,
since they have many applications. There has been much theoretical and
experimental work on this problem [3, 20]. In particular, while finding a
maximum clique is a typical NP-hard problem, considerable progress has
been made for solving this problem in practice. Furthermore, much faster
algorithms are required in order to solve many practical problems. Along
this line, Tomita et al. developed a series of branch-and-bound algorithms
MCQ [16], MCR [17] and MCS [18] among others that run fast in practice.
It was shown that MCS is relatively fast for many instances tested.

In this paper, we present improvements to MCS in order to make it
much faster. First, we turn back to our original MCS [14] that employs
an approximation algorithm for the maximum clique problem in order to
obtain an initial lower bound on the size of a maximum clique. We choose
here another approximation algorithm called k-opt local search [7] that
runs quite fast. Second, we sort vertices as in MCR [17] and MCS [18] only
appropriately near the root of the search tree. This technique is based on
our successful earlier result [8]. Third, we employ lightened approximate



2 E. Tomita, K. Yoshida, T. Hatta, A. Nagao, H. Ito, M. Wakatsuki

coloring mainly near the leaves of the search tree [8]. A new algorithm
obtained from MCS with the above improvements is named MCT. It is
shown that MCT is much faster than MCS by extensive computational
experiments.

2 Definitions and notation
We are concerned with a simple undirected graph G = (V,E) with a
finite set V of vertices and a finite set E of edges. The set V of vertices
is considered to be ordered, and the i-th element in it is denoted by V [i].
A pair of vertices v and w are said to be adjacent if (v, w) ∈ E. For
a vertex v ∈ V , let Γ (v) be the set of all vertices that are adjacent to v
in G = (V,E). We call |Γ (v)| the degree of v. For a subset R ⊆ V of
vertices, G(R) = (R,E ∩ (R × R)) is an induced subgraph. An induced
subgraph G(Q) is said to be a clique if (v, w) ∈ E for all v, w ∈ Q ⊆ V ,
with v ̸= w. In this case, we may simply say that Q is a clique. A largest
clique in a graph is called a maximum clique, and the number of vertices
in a maximum clique in G(R) is denoted by ω(R).

3 Maximum clique algorithm MCS
3.1 Search tree
The preceding branch-and-bound algorithm MCS [18] begins with a small
clique and continues by finding larger and larger cliques. More precisely,
we maintain global variables Q and Qmax, where Q consists of the vertices
of the current clique and Qmax consists of the vertices of the largest clique
found so far. Let R ⊆ V consist of vertices (candidates) that can be added
to Q. We begin the algorithm by letting Q := ∅, Qmax := ∅, and R := V
(the set of all vertices). We select a certain vertex p from R, add it to
Q (Q := Q ∪ {p}), and then compute Rp := R ∩ Γ (p) as the new set
of candidate vertices. Such a procedure is represented by a search tree,
where the root is V and, whenever Rp := R ∩ Γ (p) is applied then Rp is
a child of R. The edge between R and Rp := R∩Γ (p) is called a branch.

3.2 Approximate coloring: Numbering
In order to prune unnecessary searching, we used greedy approximate
coloring or Numbering of the vertices in MCS. That is, each p ∈ R is
sequentially assigned a minimum possible positive integer value No[p],
called the Number or Color of p, such that No[p] ̸= No[r] if (p, r) ∈
E. Consequently, we have that ω(R) ≤ Max{No[p]|p ∈ R}. Hence, if
|Q|+Max{No[p]|p ∈ R} ≤ |Qmax| holds, we need not continue the search
for R.

After Numbers (Colors) are assigned to all vertices in R, we sort the
vertices in nondecreasing order with respect to their Numbers. Vertices
are expanded for searching from the rightmost to the leftmost on this R.
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Let Max{No[r]|r ∈ R} = maxno and Ci= {r ∈ R|No[r] = i}, where
i = 1, 2, . . . ,maxno.

3.3 Re-NUMBER
procedure Re-NUMBER(p,Nop,

No,C1, C2, ..., Cmaxno)

begin

Noth := |Qmax| − |Q|;
for k1 := 1 to Noth − 1 do

if |Ck1 ∩ Γ (p)| =1 then

q := the element in (Ck1 ∩ Γ (p)) ;

for k2 := k1 + 1 to Noth do

if Ck2 ∩ Γ (q) = ∅ then

{Exchange the Numbers

of p and q.}
CNop := CNop − {p};
Ck1 := (Ck1 − {q}) ∪ {p};
No[p] := k1;

Ck2 := Ck2 ∪ {q};
No[q] := k2;

return

fi od fi

od

end { of Re-NUMBER}
Fig. 1. Procedure Re-NUMBER

Because of the bounding condition
mentioned above, if No[r] ≤ |Qmax|−
|Q|, then it is not necessary to search
from vertex r. When we encounter a
vertex p with No[p] > |Qmax| − |Q|,
we attempt to change its Number by
Procedure Re-NUMBER described
in Fig. 1, where Nop denotes the
original value of No[p] and Noth :=
|Qmax| − |Q| stands for Nothreshold.
Try to find a vertex q in Γ (p) such
that No[q] = k1 ≤ Noth − 1, with
|Ck1 | = 1. If such q is found, then try
to find NUMBER k2 such that no ver-
tex in Γ (q) has Number k2. If such
number k2 is found, then exchange
the NUMBERs of q and p so that
No[q] = k2 and No[p] = k1. When the
vertex q with NUMBER k2 is found in
Fig. 1, No[p] is changed from Nop to
k1 (≤ Noth − 1); thus, it is no longer necessary to search from p.

Procedure Re-NUMBER was first proposed in MCS [14] and is
shown to be quite effective [14, 18, 19].

3.4 EXTENDED INITIAL SORT-NUMBER

At the beginning of MCR and MCS, vertices are sorted in nondecreas-
ing order from the rightmost to the leftmost mainly with respect to
their degrees [17, 18]. In addition, vertices are assigned initial Numbers.
More precisely, the steps from {SORT} to just above EXPAND(V,No) in
Fig.4 (Algorithm MCR) in [17] is named EXTENDED INITIAL SORT-
NUMBER to V . Note that global variable Qmax can be updated by “then
Qmax := Rmin” at the final stage of Fig.4 (Algorithm MCR) in [17].

Here, MCS introduced another new adjunct ordered set Va of vertices
in order to preserve the order of the vertices sorted by EXTENDED
INITIAL SORT-NUMBER. Approximate coloring is carried out in the
order of Va from the left to the right. Lastly, we reconstruct the adjacency
matrix in MCS just after EXTENDED INITIAL SORT-NUMBER. This
is to establish a more effective use of the cache memory.

The algorithm obtained as above is named MCS [18, 19].
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4 Improved algorithms

4.1 Effective use of an approximate solution

When the algorithm MCS was first proposed in [14], the first part of
MCS consisted of a procedure for finding an approximately maximum
clique of the given graph. Its approximation algorithm named init-lb [14]
is a local search algorithm based on our previous work [15]. It finds a
near-maximum clique in a very short time, and the result is used as an
initial lower bound of the size of a maximum clique. It demonstrated the
effectiveness of an approximate solution for finding an exactly maximum
clique. More precisely, when a sufficiently large near-maximum clique
Q′

max is found, we let Qmax := Q′
max at the beginning of MCS. Then

Noth := |Qmax|− |Q| becomes large and the bounding condition becomes
more effective.

The final version of MCS presented in [18, 19] excluded a procedure for
finding an approximately maximum clique. This is because it is important
to examine the performance of the main body of MCS [18] itself indepen-
dently of an approximation algorithm. Batsyn et al. [1] and Maslov et
al. [12] also demonstrated the effectiveness of an approximate solution,
independently.

We have many approximation algorithms for finding a maximum clique
[20], while finding a good approximate solution for the maximum clique
problem is considered to be very hard [21]. The most important problem
is a proper choice of the trade-off between the quality of the approximate
solution and the time required to obtain it. We now turn back to our
original MCS in [14] and choose another approximation algorithm called
k-opt local search [7]. It does not necessarily give the best quality solu-
tion, but it runs quite fast and it is easy to control the above trade-off.
The k-opt local search repeats a number of local searches from different
vertices of the given graph. In this repetition, we select a vertex with the
largest degree one by one from the sorted vertices with respect to their
degrees by EXTENDED INITIAL SORT-NUMBER. When the number
of repetitions becomes large, the quality of the solution increases but with
increased running time.

In order to give a proper compromise between the high quality of the
solution and the time required to obtain it for the given graph G = (V,E)
with n = |V |,m = |E|, and dens = 2m/n(n−1) (density), we have chosen
the number rep of repetitions as follows by preliminary experiments:

rep = min{20n1/2 × dens3, n} for n ≥ 1.
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Hereafter, a procedure for finding an approximate maximum clique
of the given graph G = (V,E) under the above condition is named
KLS(V,Q′

max) and its solution is given to Q′
max.

The new MCS that is composed of a combination of the KLS proce-
dure and MCS in [18] as above is named MCS1.

4.2 EXTENDED INITIAL SORT-NUMBER near the root of
the search tree

It is shown that both search space and overall running time are reduced
when vertices are sorted in a nondecreasing order with respect to their
degrees prior to application of a branch-and-bound depth-first search for
finding a maximum clique [5, 15, 4, 16]. All of the preceding algorithms
MCQ, MCR and MCS employ such sorting of vertices at the root level
(depth = 0) of the search trees. It is also made clear that if the vertices
are sorted as above and followed by Numbering at every depth of the
search tree then the resulting search space becomes more reduced but
with much more overhead of time [8].

Therefore, it becomes important to choose a good trade-off between
the reduction of the search space and the time to realize it. For an ear-
lier algorithm MCLIQ [15] that is a predecessor of MCQ, we proposed
a technique to solve the above trade-off and reduced the overall running
time successfully in the way as follows [8]:
(i) At the first stage near the root of the search tree, we apply sorting of
vertices followed by Numbering. ([8])
(ii) In the second stage of the search tree, we apply Numbering without
new sorting of vertices. (Just as in [15])
(iii) In the third stage of the search tree near the leaves, we expand ver-
tices by only inheriting the order of vertices and the previous NUMBERs.
(Just as in [5])

The above techniques are considered to be promising for any algorithm
for finding a maximum clique if we control these three stages appropri-
ately. So, we apply the techniques of [8] to MCS. Here, we make full use
of the adjunct ordered set Va of vertices in MCS [18] in which vertices
are sorted in nondecreasing order with respect to their degrees from the
rightmost (end) to the leftmost (front) by EXTENDED INITIAL SORT-
NUMBER in [18]. In addition, we avoid the set R of vertices in MCS
[18] so that we are free from the task of reconstructing such R in which
vertices are sorted with respect to their NUMBERs. From now on, we
rename Va as R, for simplicity. So, be careful that the set R in this paper
corresponds to Va, and not to R in MCS [18].
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procedure NUMBER-R(R,No)
begin
{NUMBER}
maxno := 0;
C1 := ∅;
for i := 1 to |R| do
{ Conventional greedy
approximate coloring }

p := R[i] ;
k := 1;
while Ck ∩ Γ (p) ̸= ∅
do k := k + 1 od

if k > maxno then
maxno := k;
Cmaxno := ∅

fi
Ck := Ck ∪ {p};
No[p] := k;

{ - Re-NUMBER starts - }
Noth := |Qmax| − |Q|;
if (k > Noth) and

(k = maxno) then
Re-NUMBER(p, k,No,

C1, C2, ..., Cmaxno) ;
if Cmaxno = ∅ then
maxno := maxno− 1

fi
fi
{ - Re-NUMBER ends - }

od
end { of NUMBER-R }

Fig. 2. Procedure NUMBER-R

procedure NUMBER-RL(R,No, newNo)
begin
Noth := |Qmax| − |Q|;
for i := 1 to |R| do
Ci := ∅;

od
maxno := 1;
for i := 1 to |R| do
if No[R[i]] ≤ Noth then
k := No[R[i]];
if k > maxno then maxno := k fi
Ck := Ck∪{R[i]}; newNo[R[i]] := k;

fi
od
for i := 1 to |R| do
if No[R[i]] > Noth then
p := R[i] ; k := 1;
while Ck ∩ Γ (p) ̸= ∅
do k := k + 1 od

if k > maxno then
maxno := k;

fi
Ck := Ck ∪ {p};
newNo[p] := k;
if (k > Noth) then
Re-NUMBER1(p, k,No,
C1, C2, . . . , Cmaxno) ;

if Cmaxno = ∅ then
maxno := maxno− 1

fi
fi

fi
od

end { of NUMBER-RL}

Fig. 3. Procedure NUMBER-RL

Hereafter, the NUMBERing procedure combined with Re-NUMBER
is named NUMBER-R and is shown in Fig. 2. This is exactly the first
half of the procedure Re-NUMBER-SORT in Fig.2 of MCS [18].

A slightly stronger procedure Re-NUMBER1 is defined as the one
obtained from procedure Re-NUMBER by replacing “for k2 := k1 + 1
to Noth do” by “for k2 := 1 to k1− 1 and k1+1 to Noth do”. Another
slightly modified procedure NUMBER-R+(R,No) is defined as the one
obtained from procedure NUMBER-R(R,No) by replacing “if (k >
Noth) and (k = maxno) then” by “if (k > Noth) then” and “Re-
NUMBER-R” by “Re-NUMBER1” in NUMBER-R(R,No). That is, the
condition for applying Re-NUMBER is relaxed in procedure NUMBER-
R+(R,No).
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At the first stage near and including the root of the search tree, we
sort a set of vertices by EXTENDED INITIAL SORT-NUMBER to R fol-
lowed by Numbering by NUMBER-R+(R,No). The procedure is shown
in Fig. 4 with “Th1 = 0.4, Th2 = 0” instead of “Th1 = 0.4, Th2 = 0.1”
at {Switches}. It is experimentally confirmed that NUMBER-R+(R,No)
is better than NUMBER-R(R,No), since NUMBER-R+(R,No) is ap-
plied only a few times with better results but with more overhead than
NUMBER-R(R,No).

These task of preprocessing (of sorting vertices followed by NUMBER-
R) is time-consuming. So, as stated at the beginning of Sect. 4.2, it is
important to change this first stage to the second stage at an appropriate
switching depth that is near the root of the search tree. First, for a vertex
p ∈ R at a certain depth of the search tree, consider newR := Rp =
R ∩ Γ (p) that is a child of R. If the ratio |{v|No[v] > Noth}|/|newR|
becomes large, it is considered that much more preprocessing becomes
appropriate. In addition, when dens (density) of the graph becomes larger
it generally requires more time for finding a maximum clique and then
much more number of preprocessing becomes appropriate. As a result, we
consider the following value:

T = |{v|No[v]>Noth}|
|newR| × dens.

From preliminary experiments, we have chosen that if T ≥ 0.4 then we
continue the same procedure described for the first stage. Otherwise, we
switch the stage to the second stage. Thus, we let Th1 := 0.4 in Fig. 4. The
new procedure obtained from Fig. 4 by replacing “Th1 := 0.4, Th2 :=
0.1” by “Th1 := 0.4, Th2 := 0” at {Switches} is named MCS2. Here, we
control the stage = 1 so that it never returns back to stage = 1 after it
changed to the second or the third stage(̸= 1). Konc and Janežič [9] also
improved MCQ [16] successfully in a similar way as in [8], independently.

4.3 Lightened Numbering mainly near the leaves of the
search tree

Mainly near the leaves of the search tree, the ratio |{v|No[v] > Noth}|/|newR|
tends to be small. In this third stage, it is preferable to lighten the task
of preprocessing before expansion of vertices. So, we only inherit the or-
der of vertices from that in their parent depth, as in the second stage.
In addition, we inherit the assigned NUMBERs from those assigned to
their parents only if their NUMBERs are less than or equal to Noth. If we
inherit all the assigned NUMBERs from those assigned to their parents
as in [5] the resulting bounding condition becomes too weak. In order to
remedy this weakness, if the inherited NUMBERs from those assigned
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to their parents are greater than Noth then we give them new NUM-
BERs. For vertices whose inherited NUMBERs from their parents are
greater than Noth we newly give them NUMBERs by sequential num-
bering combined with Re-Numbering. For this Re-Numbering we adopt
stronger Re-NUMBER1 instead of Re-NUMBER since Re-Numbering is
required not so many times in this stage. The resulting procedure in this
stage named procedure NUMBER-RL is shown in Fig. 3.

From preliminary experiments, we have chosen to turn to the new
stage = 3 if the previously given value T = (|{v|No[v] > Noth}|/|newR|)×
dens is less than 0.1. Then we let Th2 := 0.1 in Fig. 4. The procedure
NUMBER-RL is weaker than the previous procedure NUMBER-R for
obtaining strong bounding condition, but it requires less overhead than
the previous one. However, if the given graph is too dense then proce-
dure NUMBER-RL becomes too weak and the number of branches of
the search tree grows quite large. So, we choose to go to new stage = 3
only if dens ≤ 0.95. In addition, a simpler algorithm is generally better
than sophisticated algorithms for sparse graphs. So, if dens ≤ 0.1 we

procedure MCT(G = (V,E))
begin
global Q := ∅;
global Qmax := ∅;
global dens := 2|E|/|V |(|V | − 1);

{density}
if dens ≤ 0.1 then
MCS(G = (V,E));

else
Th1 := 0.4; Th2 := 0.1;
{Switches}

Apply EXTENDED INITIAL
SORT-NUMBER to V ;

{Qmax can be updated.}
Reconstruct the adjacency

matrix as described in [18];
KLS(V,Q′

max);
if Qmax < Q′

max then
Qmax := Q′

max fi
NUMBER-R+(V,No);
stage := 1;

EXPAND (V,No, stage);
fi
output Qmax {Maximum clique}

end { of MCT}

Fig. 4. Procedure MCT

procedure EXPAND(R,No, stage)
begin
for i := |R| downto 1 do
p := R[i];
if (stage = 1 and |Q|+maxv∈R{No[v]} > |Qmax|)
or (stage ̸= 1 and |Q|+No[p] > |Qmax|) then
Q := Q ∪ {p};
newR := R ∩ Γ (p); {preserving the order}
if newR ̸= ∅ then
Noth := |Qmax| − |Q|;
T := |{v|No[v]>Noth}|

|newR| × dens;

if stage = 1 and Th1 ≤ T then
Apply EXTENDED INITIAL

SORT-NUMBER to R;
NUMBER-R+(newR, newNo);
{The initial value of newNo has no significance.}
newstage := 1;

else if dens > 0.95 or Th2 ≤ T then
NUMBER-R(newR, newNo);
newstage := 2;

else
NUMBER-RL(newR,No, newNo);
newstage := 3;

fi
EXPAND(newR, newNo, newstage)

else if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q− {p};
R := R− {p}; {preserving the order}

fi
od

end { of EXPAND }

Fig. 5. Procedure EXPAND
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choose simpler algorithm MCS [18] without relying on any new technique
introduced in this paper.

The resulting algorithm obtained by taking the total techniques in
Secs. 4.1–4.3 to improve MCS [18] is named MCT (The ‘T’ is for ‘Total’.)
and is shown in Fig. 4.

5 Computational experiments

In order to demonstrate the effectiveness of the techniques given in the
previous section, we carried out computational experiments. All the al-
gorithms were implemented in C language. The computer had an Intel
core i7-4790 CPU of 3.6GHz clock with 8 GB of RAM and 8 MB of cache
memory. It worked on a Linux operating system with a compiler gcc -O3.
The dfmax running time for DIMACS benchmark instances[6] for r300.5,
r400.5 and r500.5 are 0.14, 0.90 and 3.44 seconds, respectively.

5.1 Stepwise improvement
Table 1 shows stepwise improvement from MCS to MCT for selected
graphs chosen from the next Table 2.
(1) Improvement from MCS to MCS1 by an approximate solution in
Sect. 4.1: The improvement is particularly quite effective for the gen
graph family. MCS1 is faster than MCS for gen400 p0.9 75 and
gen400 p0.9 65 by more than 78,000 and 10,000 times, respectively. This
technique is effective for almost all graphs but with few exceptions as for
the MANN graph family.
(2) Improvement from MCS1 toMCS2 by EXTENDED INITIAL SORT-
NUMBER in Sect. 4.2: This technique is effective mainly for the brock
graph family by around 1.4 times. For some graphs such as the gen and
frb graph families, the effect is negative.
(3) Improvement from MCS2 to MCT by Lightened Numbering in Sect.
4.3: This technique is effective for almost all graphs in reducing com-
puting time in spite of increased numbers of branches in general. MCT is
faster than MCS2 for gen400 p0.9 55 and gen400 p0.9 65 by more than

Table 1. Comparison of MCS, MCS1, MCS2 and MCT
times[sec] branches[×10−6]

Graph MCS MCS1 MCS2 MCT MCS MCS1 MCS2 MCT
brock400 1 288 256 182 116 89 77 52 55
brock800 4 1,768 1,751 1,256 819 381 380 258 270

C250.9 1,171 926 774 404 255 197 154 186
gen400 p0.9 55 22,536 1,651 1,970 167 2,895 181 210 61
gen400 p0.9 65 57,385 5.73 6.07 0.74 7,628 0.33 0.34 0.13
gen400 p0.9 75 108,298 1.38 1.38 0.33 17,153 0.05 0.05 0.02

p hat700-3 900 456 438 216 88 43 40 54
p hat1000-2 85 47 46 29 13 6.6 6.3 10
p hat1500-2 6,299 2,964 2,832 1,560 560 253 234 400
san400 0.7 1 0.26 0.06 0.06 0.06 22,771 200 0 0
frb-30-15-2 1,048 691 773 116 229 135 148 61
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Table 2. CPU time [sec] for benchmark graphs
Graph KLS MCS MCT MCX MaxC I&M BG14

Name n dens ω sol time [18] [13] [11] [12] [1]

brock200 1 200 0.75 21 21 0.01 0.36 0.23 0.18 0.34 4.41 2.51
brock400 1 400 0.75 27 25 0.08 288 116 150 205 188 302
brock400 2 400 0.75 29 24 0.08 124 52 68 96 94 132
brock400 3 400 0.75 31 24 0.08 195 86 120 160 145 211
brock400 4 400 0.75 33 25 0.08 103 46 68 100 72 87
brock800 1 800 0.65 23 21 0.22 4,122 1,950 2,690 4,560 4,000 4,220
brock800 2 800 0.65 24 21 0.22 3,683 1,630 2,420 4,000 3,460 3,780
brock800 3 800 0.65 25 21 0.22 2,540 1,110 1,590 2,510 2,360 2,650
brock800 4 800 0.65 26 20 0.22 1,768 819 1,100 1,850 1,680 1,870

C250.9 250 0.90 44 44 0.08 1,171 404 713 268
C2000.5 2000 0.50 16 15 0.59 33,899 21,027

gen200 p0.9 44 200 0.90 44 44 0.05 0.174 0.076 0.155 0.115 1.68
gen200 p0.9 55 200 0.90 55 55 0.06 0.458 0.068 0.312 0.142 2.43 0.917
gen400 p0.9 55 400 0.90 55 53 0.25 22,536 167 19,400 46,500 2,960
gen400 p0.9 65 400 0.90 65 65 0.26 57,385 0.74 66,100 36,700 2,130 19
gen400 p0.9 75 400 0.90 75 75 0.28108,298 0.33 47,200 9,980 83.5 7.8
MANN a27 378 0.99 126 126 0.81 0.26 1.05 0.18 0.16 1.30
MANN a45 1035 0.99 345 344 21.5 53.4 75.5 32.0 22.7 17.3 55.1
p hat300-3 300 0.74 36 36 0.06 0.99 0.28 0.66 1.16 6.72 3.62
p hat500-3 500 0.75 50 50 0.22 57.1 17.4 33.3 39.6 50.3 59.5
p hat700-3 700 0.75 62 62 0.46 900 216 680 879 552 767

p hat1000-2 1000 0.49 46 46 0.23 85 29 73 101 204 113
p hat1000-3 1000 0.74 68 68 1.00305,146 38,800
p hat1500-1 1500 0.25 12 11 0.03 1.8 1.4 2.0 10 478 422
p hat1500-2 1500 0.51 65 65 0.73 6,299 1,560 3,850 8,030 5,350 5,430

san1000 1000 0.50 15 10 0.06 1.02 0.21 0.68 0.72 449 158
san200 0.7 1 200 0.70 30 30 0.01 0.0037 0.0133 0.0115 0.0092 7.62
san200 0.9 1 200 0.90 70 70 0.07 0.0848 0.0727 0.0385 0.0131 1.35
san400 0.7 1 400 0.70 40 40 0.06 0.26 0.06 0.14 0.13 15.80 6.69
san400 0.7 2 400 0.70 30 30 0.05 0.0589 0.0519 0.0923 0.0638 19.3
san400 0.7 3 400 0.70 22 18 0.05 0.665 0.273 0.391 0.433 26.9 11.6
sanr200 0.7 200 0.70 18 18 0.01 0.15 0.11 0.079 0.17 5.05 1.03
sanr200 0.9 200 0.90 42 42 0.06 15.3 4.67 7.38 4.21 4.62 10.2
sanr400 0.5 400 0.50 13 13 0.01 0.351 0.274 0.186 0.688 34.9 17.6
sanr400 0.7 400 0.70 21 21 0.06 77.3 40.7 44.5 81.2 86.2 81.4
DSJC500.5 500 0.50 13 13 0.02 1.53 1.20 0.81 2.84

DSJC1000.5 1000 0.50 15 15 0.12 141 93 102 265
keller5 776 0.75 27 27 0.34 82,421 10,000 30,300 4,980 5,780 82,500

frb30-15-1 450 0.82 30 28 0.15 740 156 1,029 560
frb30-15-2 450 0.82 30 30 0.15 1,048 116 672 758
frb30-15-3 450 0.82 30 28 0.15 670 124 350 477
frb30-15-4 450 0.82 30 28 0.15 2,248 535 1,157 955
frb30-15-5 450 0.82 30 28 0.15 972 156 801 705

r200.8 200 0.8 24-27 24-27 0.028 1.66 0.78 0.95 1.08
r200.9 200 0.9 39-43 39-43 0.060 27.0 10.7 14.8 6.2

r200.95 200 0.95 58-66 58-66 0.098 21.1 10.3 30.2 2.5
r500.6 500 0.6 17-18 16-17 0.056 18 11 10 22
r500.7 500 0.7 22-23 21-22 0.101 723 340 423 564

r1000.4 1000 0.4 12 11 0.045 5.99 5.14 4.52 14.5
r1000.5 1000 0.5 15-16 14-15 0.122 134 92 103 231
r5000.1 5000 0.1 7 5-6 0.149 1.17 1.17 1.19 68
r5000.2 5000 0.2 9-10 7-8 0.21 45 39 68 78
r5000.3 5000 0.3 12 10-11 0.52 2,283 1,875

r10000.1 10000 0.1 7 5-6 0.58 14 14 20 684
r10000.2 10000 0.2 10 8-9 0.87 1,303 1,139
r15000.1 15000 0.1 8 6 1.30 62 62 114 2,749
r20000.1 20000 0.1 8 6-7 2.31 234 234
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11 and 8 times, respectively, where their numbers of branches are also
reduced.

5.2 Overall improvement

Table 2 shows the result of the overall improvement from MCS to MCT
in computing time for the benchmark graphs where the columns sol and
time below KLS show the solution and the computing time by KLS,
respectively. The benchmark graphs include brock - DSJ graphs in DI-
MACS [6] and the frb family in BHOSLIB [2]. They also include random
graphs of r200.8 - r20000.1 where rn.p stands for a random graph with
the number of vertices=n and the edge probability=p. The averages are
taken over 10 random graphs except for r200.9 and r200.95 whose av-
erages are taken over 100 random graphs. The state-of-the-art result of
BBMCX (MCX for short) [13] by Segundo et al. is included. Here, its
computing time is calibrated on the established way in the Second DI-
MACS Implementation Challenge [6], where our computer is calculated
to be 1.30 times faster than that in [13]. The calibrated computing time
of MaxCLQ (MaxC for short) [10, 11] by Li and Quan is also included
from [13]. The calibrated computing time by ILS&MCS (I&M for short)
[12] and BG14 [1] are added on the assumption that the performance of
each MCS is the same, for reference, too. The boldface entries indicate
the fastest time in the row.

The result shows that MCT is faster than MCS for graphs
gen400 p0.9 75, gen400 p0.9 65, gen400 p0.9 55, frb-30-15-2, keller5,
p hat1000-3, gen200 p0.9 55, frb-30-15-5 and frb-30-15-3 by over 328,000,
77,000, 134, 9.0, 8.2, 7.8, 6.7, 6.2 and 5.4 times, respectively. MCT is
faster than MCS for graphs san1000, frb-30-15-1, san400 0.7 1, frb-30-15-
4, p hat700-3 and p hat1500-2 by over 4 times, and for graphs p hat300-3,
p hat500-3 and sanr200 0.9 by over 3 times. In Table 2, MCT is faster
than MCS by more than 2 times for the other 16 graphs including r200.9,
r200.8, r500.7 and r200.95. Except for few special graphs as in MANN
family and for easy graphs that can be solved in a very short time, MCT
is faster than MCS for almost all graphs in the instances tested.

MCT is faster than the other algorithms in Table 2 for many instances.
Note that MaxCLQ (MaxC) is fast for dense graphs.

In conclusion, MCT has achieved significant improvement over MCS,
that is, MCT is much faster than MCS.
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