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We demonstrate rapid characterization of complex 
optical properties of solids via dual-comb spectroscopy 
(DCS) in the near-infrared region. The fine spectral 
structures in the complex refractive index of an Er:YAG 
are successfully deduced using the developed system and 
Fourier analysis. Moreover, simultaneous determination 
of the refractive index and the thickness is demonstrated 
for a silicon semiconductor wafer through the use of 
multi-reflected echo signals. The results indicate the 
potential of DCS as a powerful measurement tool for the 
rapid and full-characterization of solid materials. 

OCIS codes: (300.6250) Spectroscopy, Fourier transforms; (120.3940) 
Metrology; (300.6300) Spectroscopy, condensed matter; (160.4760) 
Optical properties; (000.0000) Optical frequency comb.  
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Continued development of fast and superior techniques characterizing the optical properties of materials, such as refractive index and absorption, with precise spectral information is essential. In general, the amplitude of the reflectance and transmittance has been commonly employed to investigate materials. When complex properties with phase information are required, they can be deduced using the Kramers-Kronig relations. However, in principle, since the relations need wide spectral information to elicit an accurate spectrum, direct observation of the phase is preferable. There are several methods to directly observe phase information, such as ellipsometry, interferometric Fourier measurement, and spatially dispersive comb spectroscopy [1].  Dual-comb spectroscopy (DCS) is an attractive direct comb spectroscopy using dual, slightly asynchronized optical-frequency-combs [2, 3]. DCS is a phase-sensitive interferometric method; the first comb (the signal comb) stores the information of the sample properties, and the second comb (the local comb) retrieves it as an interference signal in the time-domain, enabling direct detection of 

both the real and imaginary parts of the optical properties without making complicated assumptions. DCS has many advantages compared to conventional Fourier transform spectroscopy. By taking advantage of the accurate and coherent pulse controllability of the frequency comb, precise spectral detection with high frequency resolution can be achieved over a wide frequency range, and a high signal-to-noise ratio (SNR) and rapid data acquisition can also be achieved inherently. DCS has progressed mainly in the field of high-precision spectroscopy in the near-infrared region for molecular gas [3], as its ultra-high frequency resolution and its ultra-high accuracy of absolute frequency have attracted significant attention. Meanwhile, efforts have been made in the development of efficient data acquisition schemes, such as coherent averaging [3] and adaptive sampling [4, 5]. Recently, the available frequency range for DCS has widened from terahertz to ultraviolet with current frequency conversion techniques [6-9]. Moreover, the application of DCS has been cleverly extended to the observation of other interesting phenomena, for instance, nonlinear coherent Raman spectroscopy [10] and two-photon excitation spectroscopy [11]. Here, as a new application, we propose the use of DCS for characterization of solids, such as semiconductors, oxides, and laser media. In some previous works, the complex transmittance of metamaterials [12] and of fiber components [13], the transmittance of microresonators [14], and the absorption of Nd ion [15] have been observed. However, to our knowledge, more detailed characterization of solids has not been focused on despite their importance in the field.  In this letter, we demonstrate the characterization of complex optical properties of solids via DCS in the near-infrared region. Fine spectral structures in the complex refractive index of an Er:YAG (Yttrium Aluminum Garnet: Y3Al5O12) are successfully deduced using the developed system and a Fourier model analysis. Moreover, simultaneous determination of both the refractive index and the thickness is demonstrated for a silicon semiconductor wafer through the use of multi-reflected echo signals. DCS enables the rapid monitoring of the complex optical properties of solids. 
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both the observed amplitude and phase information, the complex properties of the sample can be deduced as follows. First, the Fourier-transformed amplitude spectra, corresponding to the multiplication of the amplitude spectra of the signal and local combs, were obtained as shown in Fig. 2(d). In the transformation process, a part of the IGM around only the center burst was cut out, resulting in a ~27-GHz frequency resolution. Higher frequency resolution can be obtained by tailoring the process if necessary. This moderate resolution is sufficient to resolve the broadened spectra typically found in the range of the experimental conditions in this study, and has the benefit of reducing the real-time calculation cost.  Some zeros were padded to the extracted waveforms to obtain smooth spectra. In the spectrum, the fine absorption structure due to the doped Er3+ ions is clearly identical. The SNR of the spectrum is evaluated to be the order of 103 after ~83 s of data acquisition (corresponding to 10,000 IGMs), and is linearly improved to the square root of the acquisition time. Next, the complex transmittance spectrum ܶ෨(߱) of the sample was calculated. In fact, if we simply normalize the Fourier-transformed spectra as ܶ෨(߱) = ℱൣIGM୵/ୱୟ୫(ݐ)൧/ℱൣIGM୵/୭ୱୟ୫(ݐ)൧, a slow spectral distortion due to the fluctuation of the system is imposed. Here, the super- and the sub-scripts denote the corresponding path and the existence of the sample, as defined in Figs. 2(a)-2(c). In order to avoid deterioration of the data, we applied the following scheme: First, without the sample in advance, we assessed the ratio of the optical transfer functions of the sample and reference paths as ෨ܴ(߱) ≡ ℱൣIGM୵/୭ୱୟ୫(ݐ)൧/ℱൣIGM୵/୭୰ୣ୤ ൧(ݐ) . Subsequently, with the sample, ෨ܶ(߱)  was calculated for each periodic IGM observed within every 1 Δ r݂ep⁄  as ෨ܶ(߱) = ℱൣIGM୵/ୱୟ୫(ݐ)൧/൛ ෨ܴ(߱) ∙ ℱൣIGM୵/୰ୣ୤(ݐ)൧ൟ , and was integrated for the total acquisition time. In this way, the slow spectral fluctuation of the comb sources can be canceled out and an accurate characterization of ܶ ෨(߱) can be achieved. Here, the fluctuation of ܴ ෨(߱) was small enough to be neglected. Figure 2(e) shows the complex transmittance spectrum ܶ ෨(߱) observed using this scheme. In the amplitude spectrum, the fine absorption lines attributed to the Stark levels of the Er3+ ion (4I15/2 → 4I13/2) were clearly resolved. The spectral structure corresponded well to that obtained by a white lamp and an optical spectrum analyzer with a resolution of ~60 GHz (0.5 nm). The unwrapped phase spectrum was roughly linear versus the frequency, and had small bumpy structures around 196 THz where the large absorption peaks were located. In general, when the complex transmittance ܶ ෨(߱) of a sample is given, its complex optical properties (refractive index ෤݊(߱), permittivity ̃ߝ(߱) , conductivity ߪ෤(߱) , etc.) can be deduced through a self-consistent analysis with an appropriate model. In this study, we applied a simple transmission model, where probe light propagates through a uniform dielectric slab. When the multi-reflected signals are neglected, ܶ ෨(߱) can be given as: ࢀ෩(࣓) = ૝࢔෥ܚܑ܉࢔(࢔෥ାܚܑ܉࢔)૛ ࢏ቀ ܘܠ܍ ࢉࢊ(ܚܑ܉࢔෥ି࢔) ࣓ቁ,    (1) where ݊ ୟ୧୰ is the refractive index of the ambient air (≈ 1.00026), d is the thickness of a sample, and c is the speed of light in a vacuum. With this model, the complex refractive-index spectrum of the Er:YAG was deduced using the successive approximation method, which has often been used in terahertz time-domain spectroscopy 

[18], and the result is shown in Fig. 3. Here, we note that the complex optical properties could be directly obtained in the near-infrared region without performing the Kramers–Kronig transformation. The real part (refractive index ݊ (߱)) closely resembled the differential of the imaginary part (extinction coefficient ߢ(߱)) as expected from the relations, which is clearly shown in the inset of Fig. 3. The value of the index, ݊  ≈ 1.83, was consistent with the literature [19]; the refractive index of non-doped YAG is estimated to be ~1.81 at 1.56 μm and the deviation can be attributed to a slight change in the index due to the dopant. In the current experiment, the uncertainty in the estimated index was mainly due to the uncertainty in the thickness (±10 μm) measured with a Vernier caliper, which could also have contributed to the difference of the ݊  value. With the addition of a scheme for precise thickness evaluation, the accuracy of index characterization will be further improved; an example will be shown later. 

 Fig. 3. Deduced complex refractive-index spectrum of the Er:YAG ceramic (red: refractive index ݊ , blue: extinction coefficient ߢ). The inset shows the magnification of the plot around 194 THz. In this way, the complex optical properties of an Er:YAG can be characterized with the developed DCS system and the Fourier analysis. The fine spectral structures of both the real and imaginary parts of the refractive index can be observed directly and rapidly. As for the frequency resolution, adjusted to GHz in this experiment, we note that it can be optimized according to the application. The duty cycle of the available data, ~1/482 in this case, will be improved by adopting sources with higher repetition rates in the gigahertz range, such as electrically modulated comb generators [20] or mode-filtered combs with a Fabry–Pérot cavity. Next, we demonstrate, for transparent materials with high refractive index, the index and thickness of the sample can be determined simultaneously through the use of the multi-reflected echo signals, using the following scheme. As a demonstration, we characterized a silicon semiconductor wafer. Figure 4(a) shows the observed IGMs corresponding to the sample path, with and without the Si wafer. The same experimental conditions as for the Er:YAG were applied. With the sample, the multi-reflected echo signal was clearly observed after a fundamental burst, because silicon has a high refractive index (larger than 3) in this frequency region. This data was analyzed as follows. First, we cut out the data around the fundamental burst and the first echo, defining IGM୤୳୬ୢୱୟ୫ (ݐ)  and IGMୣୡ୦୭ୱୟ୫ (ݐ) , respectively. Then, the effective complex transmittances were calculated as ෨ܶ୤୳୬ୢ(߱) =ℱሾIGM୤୳୬ୢୱୟ୫ (߱)൧ and ෨ܶୣୡ୦୭(ݐ)ሿ/ℱൣIGM୵/୭ୱୟ୫(ݐ) = ℱሾIGMୣୡ୦୭ୱୟ୫ /ሿ(ݐ)
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ℱൣIGM୵/୭ୱୟ୫(ݐ)൧. Figure 4(b) shows the calculated phase spectra, ߶୤୳୬ୢ and ߶ୣୡ୦୭, which exhibit almost linear spectra versus the frequency. When the sample is transparent to the probe light, the phase shift at the surface can be neglected, and the slope of the phase spectrum of the transmittance corresponds to the optical path length. Hence, the phase spectra can be expressed as: ࣘ܌ܖܝ܎(࣓) = ࢉࢊ࣓ ࢔) −  (2)           ,(ܚܑ܉࢔

(࣓)ܗܐ܋܍ࣘ      = ࢉࢊ࣓ (૜࢔ −  (3)                .(ܚܑ܉࢔

 Fig. 4. (a) IGMs observed for the Si wafer, with (red) and without (black) the sample. (b) Phase spectra of ߶୤୳୬ୢ and ߶ୣୡ୦୭. (c) Deduced complex refractive-index spectrum of the Si wafer. From these relations, the average refractive index in the frequency range of interest, ݊ ୟ୴ୣ, and the thickness ݀  can be simultaneously evaluated by fitting the slopes. As a result, ݊ ୟ୴ୣ and ݀ were evaluated as 3.605 and 730.4 μm, respectively. The obtained index was consistent with typically observed value in silicon, for example with a data observed from spectral interferometry [21]. Furthermore, the spectrum can be determined with ܶ ෨୤୳୬ୢ(߱) and the evaluated thickness ݀  using the successive approximation method. The resulting complex refractive index ݊෤(߱) is shown in Fig. 4(c). The refractive index ݊(߱) was deduced near ݊ ୟ୴ୣ and the extinction coefficient ߢ(߱) was almost zero as expected. In this way, the refractive index in the near-infrared region and the thickness of the Si wafer can be characterized simultaneously using the DCS system. In conclusion, we demonstrated DCS for the characterization of solids. Rapid characterization of the complex optical properties of an Er:YAG was successfully achieved using the developed DCS system. The fine real and imaginary parts of the refractive-index spectra due to the Er3+ dopant were clearly obtained with a GHz resolution in the near-infrared region without performing the Kramers-Kronig transformation. Simultaneous characterization of the refractive index and thickness of a silicon semiconductor wafer was also demonstrated using multi-reflected echo signals. Such DCS measurement with moderate (but sufficiently high for solids) resolution is useful for rapid characterization of solids, and will exhibit its unique potential especially for solids showing fine spectral components, such as excitons observed in semiconductors at low temperatures. 

The schemes demonstrated here have great potential for being extended. For example, the applicable frequency regions can be extended through the use of current frequency conversion techniques [6-9]. A reflection configuration can be applied for opaque materials. Materials with other configurations, such as thin films or mixed materials, can be applied using the corresponding models [18], such as Thinkam’s theory or effective medium theory. The rapid acquisition can enable even real-time monitoring of complex properties of solids. Polarization measurements can investigate a complex dielectric tensor, accessing birefringence, Verdet constant, etc. Moreover, by combining with a pump-probe method, coherent time-resolved comb spectroscopy will be realized. In this way, DCS has great potential as a powerful tool for rapid and complete characterization in a range of applications.   
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