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Abstract: We apply an intensity-modulation technique to dual-comb spectroscopy to improve
its detection sensitivity. The scheme is demonstrated via Doppler-free optical–optical double-
resonance spectroscopy of Rb by modulating the intensity of a pump laser with frequencies set at
rates 3 times lower and 50,000 times higher than the difference in the repetition rates of the two
frequency combs. The signal-to-noise ratios are enhanced by 3 and 6 times for slow and fast
modulations, respectively, compared to those of conventional dual-comb spectroscopy without
any intensity modulation. The technique is widely applicable to pump-probe spectroscopy with
dual-comb spectroscopy and provides high detection sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Dual-comb spectroscopy has been extensively employed as a powerful spectroscopic technique
in various fields such as precision molecular spectroscopy [1], remote sensing [2], and spectro-
imaging [3]. Because it is a type of Fourier-transform spectroscopy based on the interference of
two short optical pulses originating from frequency combs with slightly different repetition rates,
it provides a broad spectral coverage in a short data acquisition time [4,5]. Moreover, owing
to the frequency stability and narrow spectral modes of the well-controlled frequency combs,
dual-comb measurements realize high-spectral resolution and excellent accuracy in frequency
determination, which are far superior to those of conventional Fourier-transform infrared (FTIR)
spectroscopy. Until now, the high-resolution of dual-comb spectroscopy has been demonstrated
in different types of Doppler-free spectroscopy such as two-photon absorption spectroscopy
[6–8], optical–optical double-resonance (OODR) spectroscopy [9], and saturated absorption
spectroscopy [10]. These demonstrations indicate that Doppler-free dual-comb spectroscopy
has advantages, in terms of a broad spectral coverage and short data acquisition time, over
conventional Doppler-free spectroscopy using continuous-wave (cw) lasers with a comparable
high resolution. However, dual-comb spectroscopy requires an appropriate integration time to
obtain a sufficient signal-to-noise ratio (SNR) [11]; this is because the photon numbers of a comb
mode are much smaller than those of cw lasers. To extend Doppler-free dual-comb spectroscopy
to various molecules, it is important to enhance the SNR in a practical integration time. To
this end, thus far, some techniques such as cavity-enhanced spectroscopy [12,13], fluorescence
detection [6–8], multiplication of the comb repetition rates [14], and background-free detection
using an interferometer [15] have been reported.
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We propose the application of an intensity-modulation technique to OODR dual-comb spec-
troscopy. Our motivation is to introduce the sensitivity improvement in dual-comb applications
including molecular spectroscopy for various species. However, in this paper, we apply the
scheme to Doppler-free OODR dual-comb spectroscopy of Rb as the first demonstration with
simple scheme, and prove the improvement in the detection sensitivity. The intensity of the pump
laser is modulated at frequencies 1/3 and 50000 times of ∆f rep, where ∆f rep is the difference
between the repetition rates of the two combs, and a background-free OODR signal is successfully
extracted. The intensity modulation reduces the noise caused by the intensity fluctuations in
the comb spectrum, thereby increasing the SNRs. This modulation method broadly combines
pump-probe spectroscopy with dual-comb spectroscopy.

2. Principle of modulation spectroscopy in Doppler-free OODR dual-comb spec-
troscopy

Figure 1 illustrates the energy level scheme of Rb atoms associated with its OODR spectrum.
First, a pump 780-nm cw laser with a relatively narrow linewidth optically excites a part of
the atoms in the 5S1/2 F”= 2 level to the 5P3/2 F’= 3 level, an intermediate level. Then, the
transitions from the above intermediate level to some hyperfine levels in the 4D5/2 and 4D3/2
states are observed using a probe 1529-nm frequency comb (signal comb). The observed spectral
lines have a sub-Doppler width because the optical excitation caused by the pump laser selects a
specific velocity group of the atoms [16].

Fig. 1. Energy level scheme of OODR dual-comb spectroscopy of 87Rb. The pump cw
laser frequency is stabilized to the hyperfine transition between the 5S1/2 (F’= 2) and 5P3/2
(F”= 3) levels. A signal comb is used to probe some transitions from the intermediate level
to the 4D5/2 and 4D3/2 levels with a sub-Doppler resolution.

To observe the transitions from the intermediate level, we perform dual-comb spectroscopy
instead of conventional spectroscopy with a single-frequency cw source [17,18]. Dual-comb
spectroscopy is a type of direct comb spectroscopy [19], in which one comb is used as the
source for absorption spectroscopy, and the individual comb modes are separated using various
devices such as a Fourier-transform spectrometer (FTS) [20], combination of a grating and
virtually imaged phase array (VIPA) [21], and second comb (local comb). FTS and VIPA
spectroscopy have been combined by some modulation techniques to improve the detection
sensitivity, e.g., lock-in detection [22], noise-immune cavity-enhanced spectroscopy [23] and
velocity modulation spectroscopy [24]. However, in dual-comb spectroscopy, the data acquisition
is based on multi-heterodyne detection with a sampling frequency synchronized with the local
comb repetition frequency; hence, it is not possible to apply a simple demodulation or lock-in
detection with an arbitrary modulation frequency. Therefore, to apply a modulation technique in
dual-comb spectroscopy, we set the intensity modulation frequency as ∆f rep/m or n∆f rep, where
m and n are positive integers and ∆f rep is the acquisition rate of the interferograms. A similar
modulation frequency has been used in polarization-sensitive dual-comb spectroscopy [25].
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Figure 2 illustrates the principle of OODR dual-comb spectroscopy with intensity modulation.
We use two types of modulation: slow and fast modulations relative to ∆f rep, as shown in Fig.
2(a) and 2(b), respectively. The upper schematic traces in Fig. 2 are the temporal interferogram
between the signal and local comb waves, presented in blue, and the modulated intensity of
the pump laser, shown in red, in the time domain. In addition, the lower traces in Fig. 2 show
the resulting dual-comb spectra in the radio-frequency (RF) domain. Note that the time and
frequency are not scaled to the actual values.

Fig. 2. Principle of intensity-modulated OODR dual-comb spectroscopy with slow modula-
tion (a) and fast modulation (b). The upper traces are the temporal interferograms of the
signal and local combs (blue) and pump laser intensity (red), and the lower traces are the RF
comb spectra (black) and sideband spectra generated by the intensity modulation (red). (a)
The intensity-modulation frequency is ∆f rep/m, where m= 3. The modulated signals appear
at a frequency of ±∆f rep/m away from the RF comb modes. (b) The intensity-modulation
frequency is n∆f rep. In the lower trace, the modulated signals (red) appear at frequencies
of± n∆f rep, far away from the OODR absorptions in the comb spectrum (black).

For slow modulation, Fig. 2(a) shows the case with a modulation frequency (fmod) of ∆f rep/m,
where m= 3, and three temporal interferograms are recorded for the period of the intensity
modulation in the time domain. In the RF domain, the RF comb modes, shown in black, are
equally spaced by ∆f rep. When the signal comb modes are tuned to an absorption frequency of
a specific velocity group of atoms excited by the pump laser, then in the three interferograms,
the intensity modulations of the pump laser induces intensity modulations of the comb modes.
These modulations occur with the same period as the intensity modulation, i.e., 3/∆f rep, in the
time domain. In the RF domain, therefore, the modulations generate sidebands, as shown in red,
separated by steps of ±∆f rep/3 around a part of the RF comb modes associated with the probe
transition. Because the generated sidebands, as shown in red, appear in the gap between the RF
comb modes, as denoted in black, the extracted sidebands generate a background-free OODR
spectrum.
We also apply a high-frequency modulation to OODR dual-comb spectroscopy with fmod of

n∆f rep, as shown in Fig. 2(b). In general, a high frequency is preferred to remove the ubiquitous
1/f noise [26]. In the RF domain, the black trace shows an envelope of the comb spectrum with
sharp absorptions of OODR transitions. The sidebands generated by the intensity modulation,
shown in red, appear at n∆f rep, far from the OODR absorption. If n∆f rep is sufficiently far,
avoiding the comb spectral range, then a background-free OODR signal is obtained. In this
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scheme, because we can separate the main body of the comb spectrum using an RF filter,
saturation of the RF system is suppressed.

3. Experimental setup

Figure 3 shows the experimental setup for the Doppler-free OODR dual-comb spectroscopy
with pump-intensity modulation. We use as the pump laser, an extended-cavity diode laser
(ECDL) with a linewidth of less than 1 MHz at 780 nm. The absolute frequency of the ECDL is
stabilized to the 5S1/2 (F”= 2) - 5P3/2 (F’= 3) hyperfine transition of 87Rb by using saturated
absorption spectroscopy with a frequency modulation technique and lock-in detection. The
dual-comb system consists of a signal comb and local comb, which are two homemade mode-
locked Er-doped fiber lasers with center wavelengths of 1.5 µm and slightly different repetition
frequencies of approximately 56.6 MHz. The repetition frequency of the signal comb (f rep,S)
and offset frequencies of both the combs are phase-locked to the RF signals referencing a global
positioning system (GPS)-disciplined clock with an uncertainty of 3×10−12 in 1 s. Because
the local comb mode is phase-locked to the signal comb mode by employing a high-bandwidth
electric feedback via the cw laser, we achieve a narrow relative linewidth of the two combs that
was sufficient to realize coherent averaging [27]. Details of the dual-comb setup are described in
our previous paper [9]. Sub-Doppler resolution atomic spectroscopy have been performed using
electro-optic phase modulator-based combs that have narrow spectral coverage and dense comb
mode [28–30]. On the other hand, our fiber laser-based dual-comb system provides broadband
spectral coverage and relatively small f rep values, which has advantages in the application to
high-resolution molecular spectroscopy and also wide applicability to other fields. The output
of the signal comb is overlapped with that of the pump laser using a polarization beam splitter
(PBS), and the beams are incident on the sample cell from the same direction. The sample cell
is a 5-cm-long Rb gas cell heated to 70 °C and filled with 85Rb and 87Rb isotopes, which are
mixed according to their natural abundances. The signal comb output is coupled with the local
comb output by a fiber coupler and filtered by a band-pass filter (BPF) with a full-width at half
maximum (FWHM) of 1.1 nm at approximately 1.53 nm. In general, balanced detectors improve
the SNR of measurements suppressing the detector saturation. But the improvement is not
remarkable because of narrow spectral band width in our case. Thus, we employ a single photo
detector (PD, New focus 1611). The signal from the photodetector is digitized synchronously at
the repetition frequency of the local comb by a 14-bit digitizer.

Fig. 3. Experimental setup for Doppler-free OODR dual-comb spectroscopy with intensity
modulation. The frequency of the pump cw laser is related to the hyperfine transition
between 5S1/2(F”= 2) - 5P3/2(F’= 3) of 87Rb using the same Rb cell as that for OODR
spectroscopy. For slow modulation, the intensity modulator is an AOM, whereas an EOAM
and a polarizer are used for fast modulation. PD: photodetector, BPF: optical band-pass
filter.

The pump laser power is modulated by intensity modulators. When we adopt slow modulation,
an acousto-optic modulator (AOM) is employed as the modulator. The zeroth order beam is used,
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and the modulation depth is 0.81. In general, the response of AOM is fast enough also to drive
several MHz modulation. However, an RF amplifier used as AOM driver has slow response in
our setup; thus an electro-optic amplitude modulator (EOAM) and a polarizer are used for fast
modulation. To modulate the population in the intermediate level, the EOAM is driven by a
frequency of approximately 5 MHz, which is slower than the lifetime of the intermediate state
[31]. The intensity-modulation depth after polarizer is 0.52. Higher modulation frequency than 5
MHz is applicable for other molecules with shorter life times. Taking the modulation frequency
of f rep/4 avoids the overlap with sidebands and comb spectrum, and it maximizes the acquisition
spectral range.
In both the cases, the peak intensity of the modulated pump laser light is set as that as

averaging power of 1.0 mW. A function generator is used for driving the intensity modulators
referencing the GPS–disciplined clock to provide accurate frequencies of ∆f rep/m and n∆f rep. A
systematic uncertainty attributed to the uncertainty of modulation frequency (δfmod) is derived
as δfmod×f rep/∆f rep. This is negligible comparing to other uncertainties in absolute frequency
determination in OODR dual-comb spectroscopy [9].

4. Results and discussion

Figure 4(a) shows the Doppler-free OODR spectra of the 5P3/2(F’= 3) - 4D5/2 and 4D3/2
transitions of 87Rb observed by the conventional dual-comb scheme without pump-intensity
modulation. The ∆f rep was approximately 600 Hz, and the observed interferograms were
coherently averaged over 1 min. To obtain a higher resolution than f rep, the signal comb modes
were scanned by varying f rep,S in 1-Hz increments. The equivalent scan step of the comb modes
at 1530 nm was approximately 3.5 MHz. Following the measurement of the interleaved OODR
dual-comb spectrum, reference spectra without the pump beam were recorded with the same
averaging time and employed to obtain baselines for the normalization. In this measurement, the
total measurement time including the reference measurement was 34 min. Figure 4(a) part (i)
displays a wide range including the 5P3/2-4D5/2 and 4D3/2 transitions of the normalized spectra,
and Fig. 4(a) part (ii) and (iii) show the magnified views of the 5P3/2-4D5/2 and 5P3/2-4D3/2
transitions, respectively. The vertical blue lines and circles along the tops of the graphs denote
the absolute frequencies of the hyperfine transitions [17]. In our OODR dual-comb spectroscopy,
absolute transition frequencies are precisely determined with sub-MHz uncertainty as reported in
our previous paper [9]. The hyperfine components of F= 4 and 3 of the 4D5/2 state and F= 3 of
the 4D3/2 state are stronger than the other components. Because hyperfine transition intensities
depend on the polarizations of the pump and probe beams [18], the observed hyperfine transition
intensities with the orthogonally polarized pump and probe beams are different from those in
our previous work [9], where we used parallel polarizations. The SNR of the spectrum is 56,
where the SNR was calculated from the ratio of the absorption peak of the 5P3/2-4D5/2 transition
and standard deviation of the background. The SNR was improved according to square route
of the averaging time that was practically limited by robustness of frequency stabilization of
the dual-comb system and pump cw laser. The dominant noise in this measurement is relative
intensity noise (RIN) of dual-comb source [11,14]. Although the OODR spectra were normalized
by the reference spectra, the intensity fluctuation of the dual-comb source degraded the SNR
during the interleaving. The SNR in the range including the single transition with a few hyperfine
splitting (Fig. 4(a) part (ii) and (iii)) is worse than cw laser measurements [32]. This is because
the number of photons per spectral element are much smaller than cw laser due to the broadband
spectral acquisition in dual-comb spectroscopy.
Figure 4(b) shows the obtained spectrum under application of the slow-intensity modulation.

The ∆f rep was 600 Hz, and the modulation frequency, ∆f rep/m, was set as 200 Hz. We scanned
the f rep,S similar to case of the conventional OODR dual-comb measurement. The averaging
time for each f rep,s value was 2 min; thus, the total acquisition time was 34 min, which was the
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Fig. 4. Observed Doppler-free OODR dual-comb spectra of the 5P3/2-4D5/2 and 4D3/2
transitions employing (a) the conventional dual-comb setup, (b) slow-intensity modulation,
and (c) fast-intensity modulation. In (a)–(c), each (i) shows a wide span including the range
of 196.02–196.04 THz, and (ii) and (iii) show the magnified views around the transitions of
5P3/2-4D5/2 and 4D3/2, respectively.

same as the acquisition time in the conventional OODR dual-comb measurement. To extract the
background-free OODR signal from the resulting spectrum, two sidebands appearing at ±∆f rep/3
from a real comb mode were averaged and divided by the comb mode intensity. The intensities
of the sidebands were 20 times smaller at the absorption peak relative to the real comb modes.
As shown in Fig. 4(b) part (i), we successfully obtained background-free OODR spectra, and the
SNR was 188, which was approximately three times better than the SNR in the conventional
OODR dual-comb measurement. The magnified views of the transitions are shown in Fig. 4(b)
part (ii) and (iii). The transition peak frequencies show good agreement with conventional OODR
dual-comb measurement. The spectral profile in the OODR spectrum is explained by the natural
width and saturation of the intermediate state caused by the pump laser [18], which are well fitted
with Lorentz functions. The full-width of half maximum of fitted Lorentz profile of the 5P3/2 -
4D5/2 (F= 4) line was 59.8 MHz in conventional dual-comb scheme modulation. However, the
spectral widths in the slow-intensity modulation spectroscopy are broadened despite the peak
intensity of the pump light being the same. Moreover, the spectral profiles are not well fitted
with Lorentz functions. This broadening is caused by the harmonic terms of the modulation
frequency. Also nonlinearity of the photodetector is considered as the origin of broadening.
Since dual-comb spectroscopy is based on Fourier-transform spectroscopy, the nonlinearity does
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not affect directly to line shapes. The nonlinearity of photodetector should be calibrated in time
domain signal, but a simple calibration does not work perfectly as shown in ref [33].

Figure 4(c) shows the OODR spectra obtained by the fast-intensity modulation. We set ∆f rep
as 100 Hz, so that it did not overlap the modulation signal with the real comb modes in the
RF domain. We used modulation frequency n∆f rep of 5 MHz, where n= 50000. As in the
slow-modulation measurement, coherent averaging was performed over 2 min for each f rep,S value.
The averaged interferogram was Fourier transformed, and we obtained a background-free OODR
signal at a 5-MHz shifted frequency from the absorption. The sidebands were 10 times smaller
than the real comb modes. The optical frequency shown in Fig. 4(c) was scaled considering the
shift of 5 MHz in the RF domain. The SNR of the spectrum was 316, which was improved by
5.6 times than that in the conventional dual-comb measurement. The ∆f rep in this measurement
was 6 times smaller than that in the conventional dual-comb measurement, i.e., the acquisition
time of an interferogram was relatively 6 times longer. Therefore, the SNR improvement in the
total averaging time was in disadvantage with a factor of square root of 6. However, despite
the disadvantage caused by the measurement parameter setting, it achieved a remarkable SNR
improvement. The magnified views in Fig. 4(c) part (ii) and (iii) show spectral profiles that are
not simple absorption shapes. When the resonance conditions of the three levels are fulfilled,
the probe signal comb has additional modes at frequencies of f s±fmod, which are attributed to a
four-wave mixing process with the modulated pump beam. Above, f s is the frequency of the
signal comb mode at the resonant frequency. This four-wave mixing process is well known and
studied for modulation transfer spectroscopy [34,35]. In this case, the line shapes observed at the
shifted frequency change dramatically owing to the interference between the components caused
by modulation of intermediate level population and Raman coherence. Additionally, as the cause
of the broadening near the baseline, the effect of the nonlinearity of the detector should be also
considered as in the case with slow modulation.

5. Conclusion

In conclusion, we demonstrated for the first time the application of intensity-modulation
spectroscopy to dual-comb spectroscopy. We successfully acquired the modulation signals
separated from the real comb mode signal by setting the modulation frequency as an integer ratio
of ∆f rep. The intensity-modulation technique removed the intensity noise of the dual-comb source
and showed a potential of sensitivity enhancement; three and six times improvements in the SNR
were achieved by the slow and fast-intensity modulation schemes, respectively. The setup for
intensity modulation scheme in dual-comb can be extend to frequency modulation spectroscopy
using the same modulation frequency setup. In addition, it is applicable to double-resonance
spectroscopy for various molecules, also to various other types of dual-comb spectroscopy
such as pump-probe spectroscopy [36], laser-induced plasma spectroscopy [37] applying the
modulation to the excitation of plasma, and velocity modulation spectroscopy [24] applying
a specified modulation frequency to the discharge modulation. The modulation spectroscopy
scheme is an excellent method to improve the sensitivity and expand the possibility of application
of dual-comb spectroscopy.
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