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Abstract—This paper deals with a sum-of-squares (SOS) based
control Lyapunov function (CLF) design for polynomial fuzzy
control of nonlinear systems. The design starts with exactly
replacing (smooth) nonlinear systems dynamics with polynomial
fuzzy models which are known as universal approximators. Next,
global stabilization conditions represented in terms of SOS are
provided in the framework of the CLF design, i.e., a stabilizing
controller with non parallel distributed compensation form is
explicitly designed by applying Sontag’s control law once a CLF
for a given nonlinear system is constructed. Furthermore, semi-
global stabilization conditions on operation domains are derived
in the same fashion as in the global stabilization conditions. Both
global and semi-global stabilization problems are formulated as
SOS optimization problems which reduce to numerical feasibility
problems. Five design examples are given to show the effective-
ness of our proposed approach over the existing linear matrix
inequality (LMI) and SOS approaches.

Index Terms—Control Lyapunov function, global stabilization,
polynomial fuzzy system, operation domain, semi-global stabiliza-
tion, sum-of-squares (SOS).

I. INTRODUCTION

NONLINEAR systems analysis and design using the
Takagi-Sugeno (T-S) fuzzy model [1] based control

methodology [2], [3] have received much attention as a power-
ful tool to deal with complex nonlinear control systems in the
last two decades. The T-S fuzzy model provides a convenient
platform that can represent any smooth nonlinear systems
by fuzzily blending linear sub-systems and its stabilization
conditions based on Lyapunov stability theory [4] can be
represented in terms of linear matrix inequalities (LMIs) [2],
[5]. Thus, the designs have been carried out using LMI
optimization techniques [6]. In the T-S fuzzy model based
control, the parallel distributed compensation (PDC) concept
[2], [5] based on a common quadratic Lyapunov function has
been mainly employed to design a fuzzy controller for the
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system. Nowadays there are a large number of researches [7]–
[21] conducted to obtain more relaxed stability (stabilization)
conditions of nonlinear systems expressed as the T-S fuzzy
model.

A more general version of the T-S fuzzy model called
the polynomial fuzzy model was introduced recently in [22].
Unlike the T-S fuzzy model which only deals with constants in
the system matrices, the polynomial fuzzy model allows us to
deal also with polynomials in the system matrices. Therefore,
the nonlinear system representation can be conducted more
efficiently, especially when there are a number of polynomial
terms contained in the system. However, when we handle
the polynomial fuzzy model, LMI optimization techniques
cannot be utilized to solve stability analysis and control
design problems directly. Hence, the paper [22] introduced
a sum-of-squares (SOS) optimization technique to perform
stability analysis and control design for the polynomial fuzzy
model. The problems represented in terms of SOS can be
numerically solved by free third-party MATLAB toolboxes
such as SOSTOOLS [23] and SOSOPT [24], etc. In recent
years, there exist some extended works on relaxing stability
(stabilization) conditions presented in [22] such as [25]–[30],
and so on.

As another methodology to nonlinear systems control, con-
trol Lyapunov function (CLF) approaches [31], [32] have been
discussed in the literature. In general, the CLF concept is
similar to the Lyapunov stability concept, but the main CLF
idea is that the derivative of a candidate Lyapunov function can
be made negative pointwise by selecting control values [33].
It is known that if a system is continuous and there exists a
continuous feedback law that stabilizes the system, then there
must exist a CLF for the system. Once a CLF is found, a
stabilizing controller is designed using the Sontag’s formula
[32]. Although the CLF method is straight-forward, the con-
struction of CLF itself is still a tough problem. The paper [34]
presents a method to construct a CLF for polynomial nonlinear
systems using an SOS optimization technique. However, the
approach in the paper [34] does not work for other types of
nonlinear systems with non-polynomial nonlinear terms, e.g.,
trigonometric functions such as sinx, cosx, etc. Thus, a CLF
construction for a general nonlinear system is still an open
problem.

This paper deals with an SOS based CLF design for
polynomial fuzzy control of nonlinear systems. By using the
so-called sector nonlinearity concept [2], a nonlinear system
even with non-polynomial nonlinear terms is exactly replaced
with a polynomial fuzzy model which is known as an universal
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approximator. It should be noted in the polynomial fuzzy
model construction that all the non-polynomial nonlinear terms
can be captured by membership functions [2], [22]. Next,
global stabilization conditions represented in terms of SOS are
provided in the framework of the CLF design. In other words, a
stabilizing controller with non-PDC form is explicitly designed
by applying the Sontag’s control law [32] once a CLF for a
given nonlinear system is constructed. It has been reported
in the previous SOS approaches that polynomial Lyapunov
function constructions in the fuzzy controller designs are
restrictive on the input matrices. The SOS design conditions
derived in this paper provide a better way that no longer
requires the restriction. Furthermore, for complicated systems
that are not globally stabilizable, semi-global stabilization
conditions on considered operation domains are derived in the
same fashion as in the global stabilization conditions. Both
global and semi-global stabilization problems are formulated
as SOS optimization problems which reduce to numerical
feasibility problems. Five design examples are given to show
the effectiveness of our proposed approach over the existing
LMI and SOS approaches. There is a work [37] on applying
the CLF framework to the polynomial fuzzy model. However,
the design method in [37] deals only with single input cases
and cannot be applied to multiple input cases. The design
approaches proposed in this paper are available even for
multiple input cases. In addition, this paper newly derives
semi-global stabilization condition (Section IV) for the domain
of attraction.

This paper is organized as follows: Section II presents
the definitions and lemmas as preliminaries for our proposed
approach. In Section III, construction of global CLFs for poly-
nomial fuzzy systems with the design examples are provided.
Section IV shows a CLF construction method in semi-global
stabilization and its examples. Finally, a conclusion is drawn
in Section V. We will assume throughout the paper that all
the matrices and vectors have appropriate dimensions.

II. PRELIMINARIES

A. Notation and Definitions

Throughout this paper, the following standard notations and
definitions are used as defined in some literature, e.g., [34],
[35].

Definition 1. A monomial in x = [x1 x2 · · · xn] is a function
of the form xd1

1 xd2
2 · · · xdn

n , where d1, d2, · · · , dn are non-
negative integers. The degree of a monomial is defined as d =∑n

i=1 di.

Definition 2. Define P as the universe of polynomials. A
polynomial ω(x) is defined as a finite linear combination
of monomials with real coefficients. ω(x) ∈ P is positive
semi-definite if ω(x) ≥ 0. The set of positive semi-definite
polynomials is denoted as P0+. (qi(x))i=1,··· ,r ∈ P denotes
q1(x), q2(x), · · · , qr(x) are polynomials.

Definition 3. Define S as the space of SOS polynomials, where
S ⊂ P . A polynomial ω(x) is an SOS if it can be written
ω(x) =

∑n
i=1 f

2
i (x), where (fi(x))i=1,··· ,n ∈ P . Obviously,

if ω(x) ∈ S , then ω(x) ∈ P0+. An SOS polynomial ω(x) is

positive definite if ω(x) > 0 when x �= 0. The set of positive
definite SOS polynomials is denoted as S+.

Definition 4. Given (gj(x))j=1,··· ,c ∈ P , the multiplicative
monoid M(g1(x), · · · , gv(x)) is the set of all finite products
of gj(x)’s including 1 (i.e. the empty product).

Definition 5. Given (fi(x))i=1,··· ,ι ∈ P , the cone is defined
as

C(f1(x), · · · , fι(x)) := s0(x) +
∑w

l=1 sl(x)el(x),
where w is a positive integer, sl(x) ∈ S , and el(x) ∈ M
(f1(x),· · · ,fι(x)).

Definition 6. Given (hς(x))ς=1,··· ,� ∈ P , using the hς(x)’s,
the Ideal is defined as I(h1(x),· · · ,h�(x)) :=

∑�
k=1 hk(x)

pς(x) where pς(x) ∈ P and � is a positive integer.

B. Polynomial Fuzzy Model

Consider a nonlinear control system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) = [x1(t) x2(t) · · · xn(t)]
T is the state vector

and u(t) = [u1(t) u2(t) · · · uq(t)]
T is the input vector.

The system (1) considered in this paper belongs to a class
of nonlinear systems affine in u(t). f(x(t)) and g(x(t)) are
smooth nonlinear functions, where f(0) = 0. According to
the sector nonlinearity concept [2], the nonlinear system (1)
can be exactly represented by the polynomial fuzzy model as
in [22]:

Model Rule i:

IF z1(t) is Mi1 and · · · and zo(t) is Mio,

THEN ẋ(t) = Ai(x(t))x̂(x(t)) +Bi(x(t))u(t),

i = 1, 2, · · · , r, (2)

where r is the number of fuzzy rules, zj(t) (j = 1, 2, · · · , o)
is the known premise variable, and Mij is the fuzzy set that
is associated with ith model rule and jth premise variable
component. Ai(x(t)) ∈ R

n×N and Bi(x(t)) ∈ R
n×q are

the known polynomial system and input matrices in x(t)
respectively. x̂(x(t)) ∈ R

N denotes a monomial vector in x(t)
with assumption that x̂(x(t)) = 0 if and only if x(t) = 0. The
system dynamics of (2) is described as follows:

ẋ(t) =
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t)) +Bi(x(t))u(t)}, (3)

where z(t) = [z1(t) z2(t) · · · zo(t)]
T ∈ R

o,

hi(z(t)) =

∏o
j=1 Mij(zj(t))∑r

k=1

∏o
j=1 Mkj(zj(t))

,

hi(z(t)) ≥ 0, ∀i,
r∑

i=1

hi(z(t)) = 1.

For the sake of saving the space, the t notations are omitted
for the rest of the paper, i.e., x is used instead of x(t).
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C. Control Lyapunov Function

The feedback stabilizability of a nonlinear system is guar-
anteed if there exists a CLF for the system [31]. The most
popular control design method using the CLF of a system is
the Sontag’s formula [32].

A smooth, radially unbounded, positive definite function
V (x) is a CLF for system (1) when it satisfies

inf
ui∈R

{∂V (x)

∂x
f(x)

+
∂V (x)

∂x

q∑
i=1

gi(x)ui

}
< 0, ∀x �= 0, (4)

where gi(x) and ui denote the ith column of g(x) and u,
respectively.

When V (x) that satisfies (4) is found, the closed loop
system for (1) is globally asymptotically stabilizable at the
origin, i.e., there exists a feedback controller to stabilize the
system (1). There are several ways to design the feedback
controller, one of them is proposed by [32] (the Sontag’s
formula):

u = [u1 · · · uq], (5)

where

ui =

⎧⎪⎨
⎪⎩

−uf (x)+
√

u2
f (x)+u2

G(x)

uG(x) ugi(x) , uG(x) �= 0,

0 , uG(x) = 0,

for i = 1, 2, · · · , q, and

uf (x) =
∂V (x)

∂x
f(x), ugi(x) =

∂V (x)

∂x
gi(x),

uG(x) =

q∑
κ=1

u2
gκ(x).

Therefore, after the CLF is found, the stabilizing controller
design is straight-forward.

The following Positivstellensatz (P-satz) lemma [35] and
S-Procedure lemma [36] play important roles in our design
approach.

D. The Positivstellensatz

The following Positivstellensatz (P-satz) lemma [35] is used
to transform empty sets conditions to SOS conditions.

Lemma 1. Given polynomials
(fi(x))i=1,··· ,ι, (gj(x))j=1,··· ,v, (hς(x))ς=1,··· ,�,

the set

{x ∈ R
n|f1(x) ≥ 0, · · · , fι(x) ≥ 0,

g1(x) �= 0, · · · , gv(x) �= 0, h1(x) = 0, · · · , h�(x) = 0} (6)

is empty if and only if there exist f ∈ C(f1(x), · · · , fι(x)),
g ∈ M(g1(x), · · · , gv(x)), h ∈ I(h1(x), · · · , h�(x)) such
that

f + g2 + h = 0. (7)

E. S-Procedure
The following S-Procedure lemma [36] is used for the semi-

global stabilization on operation domain in Section IV.

Lemma 2. Given polynomials f1(x) and f2(x), define sets
Q1 and Q2:

Q1 := {x ∈ R
n : f1(x) ≤ 0},

Q2 := {x ∈ R
n : f2(x) ≤ 0}.

If there exists a polynomial λ(x) ∈ P0+, ∀x such that
−f1(x) + λ(x)f2(x) ∈ P0+, ∀x then Q2 ⊆ Q1.

III. GLOBAL STABILIZATION

This section provides global stabilization SOS conditions
to construct a CLF for the polynomial fuzzy control system.
Once a CLF is found, the Sontag’s formula [32] is applied to
design a stabilizing controller.

A. Stabilization Condition
Theorem 1 shows a set of SOS stabilization conditions. CLF

construction is carried out by solving the SOS conditions.

Theorem 1. A nonlinear system that is represented by the
polynomial fuzzy model (3) is feedback stabilizable if there
exist a smooth and radially unbounded function V (x), SOS
polynomials sm(x) and vi(x), positive definite SOS polynomi-
als l2im(x), and polynomials p1jm(x) and p2m(x) that satisfy
(8) and (9) for a non-positive γ.

V (x)− l1(x) ∈ S, (8)

−
r∑

i=1

r∑
m=1

ĥ2
i ĥ

2
m

{
sm(x)

[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x)

]

+

q∑
j=1

p1jm(x)
∂V (x)

∂x
Bij(x) + p2m(x) + l2im(x)

}

+

r∑
m=1

ĥ2
mp2m(x) ∈ S, (9)

where Bij(x) denotes jth column of the input matrix Bi(x).
ĥ2
i is a non-negative value as will be addressed in Remark 1.

l1(x) ∈ S+ is given (not a decision variable) and is a slack
variable to keep the positivity of V (x). If we can find V (x)
that satisfies (8) and (9), based on Sontag’s formula [32], the
feedback controller u can be constructed as follows:

u = [u1 · · · uq], (10)

where

uj =

⎧⎪⎨
⎪⎩

−ua(x)+
√

u2
a(x)+u2

B(x)

uB(x) ubj(x) , uB(x) �= 0,

0 , uB(x) = 0,

for j = 1, 2, · · · , q, and

ua(x) :=
∑r

i=1 hi(z)
∂V (x)
∂x Ai(x)x̂(x),

ubj(x) :=
∑r

i=1 hi(z)
∂V (x)
∂x Bij(x),

uB(x) :=
∑q

κ=1 u
2
bκ(x).
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Proof. The CLF condition (4) can be implemented to system
(3), i.e., a smooth positive definite function V (x) is a CLF
for (3) when the function is radially unbounded and satisfies

inf
uj∈R

{∂V (x)

∂x

r∑
i=1

hi(z)Ai(x)x̂(x)

+
∂V (x)

∂x

r∑
i=1

q∑
j=1

hi(z)Bij(x)uj

}
< 0, ∀x �= 0, (11)

where Bij(x) denotes jth column of the input matrix Bi(x).
First, the condition for V (x) to be a positive definite

function can be written in an SOS form as (8), where l1(x)
is a positive definite SOS polynomial.

Next, (11) shows that for all non-zero x

∂V (x)

∂x

r∑
i=1

hi(z)Ai(x)x̂(x) < 0, ∀x ∈ R
n when

∂V (x)

∂x

r∑
i=1

hi(z)Bij(x) = 0, j = 1, 2, · · · , q. (12)

Let us introduce non-negative variables (quadratic vari-
ables) ĥ2

i instead of hi(z) in (12), under the assumption that∑r
i=1 ĥ

2
i = 1. Then, (12) is satisfied if the following condition

(13) is hold. This replacement leads to the successful result of
applying the P-satz (Lemma 1).

For ∀x �= 0,

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) < 0, ∀x ∈ R

n when

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, 2, · · · , q, (13)

where
r∑

i=1

ĥ2
i = 1.

Here, the condition (13) is rewritten as an empty set condition
to find CLF:
{
x ∈ R

n | ∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, 2, · · · , q,

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) ≥ 0,

x �= 0,

r∑
i=1

ĥ2
i = 1

}
= ∅, (14)

where V (x) is a smooth and radially unbounded positive
definite function.

In order to use the SOS optimization technique, let h =
[ĥ2

1 · · · ĥ2
r]

T , a positive definite polynomial lx(h,x) is used to
replace the constraint x �= 0 in (14) where lx(h,x) �= 0 iff
x �= 0. Let us define lx(h,x) as lx(h,x) =

∑r
i=1 ĥ

2
i lxi(x),

where lxi(x) �= 0 iff x �= 0. Moreover, with the purpose
of making the condition to be an optimization problem, a
non-positive real number γ (to be minimized) and an SOS
polynomial v(h,x) =

∑r
i=1 ĥ

2
i vi(x) are introduced for (14),

where vi(x) ∈ S . A sufficient condition for satisfying (14)
can be expressed as
{
x ∈ R

n | ∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, 2, · · · , q,

r∑
i=1

ĥ2
i − 1 = 0,

r∑
i=1

ĥ2
i

[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x))

]
≥ 0,

r∑
i=1

ĥ2
i lxi(x) �= 0

}
= ∅. (15)

An SOS condition can be derived from (15) by ap-
plying Lemma 1 to the condition, where f1(x), g1(x),
(hj(x))j=1,··· ,q, hq+1(x) of (6) in the P-satz correspond to

r∑
i=1

ĥ2
i

[∂V (x)

∂x
Ai(x)x̂(x− γvi(x))

]
,

r∑
i=1

ĥ2
i lxi(x),

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x),

r∑
i=1

ĥ2
i − 1,

in (15), respectively. Accordingly, by applying Lemma 1 to
(15), the condition can be rewritten as:

s1(h,x) + s2(h,x)
r∑

i=1

ĥ2
i

[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x)

]

+

q∑
j=1

p1j(h,x)
[∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x)

]

+ p2(h,x)
[ r∑
i=1

ĥ2
i − 1

]
+
[ r∑
i=1

lxi(x)
]2

= 0, (16)

where s1(h,x), s2(h,x), vi(x) ∈ S , p1j(h,x), p2(h,x)
∈ P , lxi(x) ∈ S+, and γ is a non-positive re-

al number. In order to simplify (16),
[∑r

i=1 lxi(x)
]2

is written as
∑r

i=1

∑r
m=1 ĥ

2
i ĥ

2
mlxi(x)lxm(x), then we

represent lxi(x)lxm(x) = l2im(x), where note that
l2im(x) ∈ S+. Moreover, we choose p1j(h,x) =∑r

m=1 ĥ
2
mp1jm(x), p2(h,x) =

∑r
m=1 ĥ

2
mp2m(x), and

s2(h,x) =
∑r

m=1 ĥ
2
msm(x), where sm(x) ∈ S , p1jm(x),

p2m(x) ∈ P . Consequently, the sufficient condition of (16) is
expressed as follows:

−
r∑

i=1

r∑
m=1

ĥ2
i ĥ

2
m

{
sm(x)

[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x)

]

+

q∑
j=1

p1jm(x)
∂V (x)

∂x
Bij(x) + p2m(x) + l2im(x)

}

+

r∑
m=1

ĥ2
mp2m(x) ∈ S. (17)

From (16), note that (17) is equivalent to s1(h,x) ∈ S , i.e.,
(17) should be an SOS.
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Therefore, if there exist a smooth radially unbounded func-
tion V (x), SOS polynomials sm(x), vi(x), positive definite
SOS polynomials l2im(x) and polynomials p1jm(x), p2m(x)
that satisfy (8) and (9) for a non-positive γ, then (11) is
satisfied, that is, the V (x) is a CLF and (3) is feedback
stabilizable.

Remark 1. A key idea in the proof of Theorem 1 is that
we guarantees (12) by ensuring (13). In other words, (12)
is satisfied if (13) is satisfied. The empty set condition (14) (to
find a CLF) derived from (13) is more suitable for applying
the P-satz framework and for deriving the SOS condition (17)
(,i.e., (9)). In the SOS design problem given in Theorem 1 (,
i.e., (9)), the non-negative variables ĥ2

i and ĥ2
m are treated as

just variables like x. If we do not utilize the replacement, the
empty set condition (to find a CLF) derived from (12) cannot
be transformed into SOS conditions by applying the P-satz
framework since the membership functions hi are not strictly
polynomials.

A control Lyapunov function construction, that is, solving
the stabilization conditions in Theorem 1, can be efficiently
carried out by using the recent-developed frameworks as in a
number of literature [13], [34], [36], [38]–[42], [44], [45], [47],
and so on. Since the algorithm itself is not a main contribution
of this paper, it will not be repeatedly presented and, for more
details, see them. The design examples in this paper utilize the
recent-developed algorithm presented in [45]. To obtain more
relaxed stability results, the co-positive relaxation technique
is utilized in [13], [38], [44], [45]. However, we note that the
co-positive relaxation technique is not useful for (17) since
(17) itself is required to be an SOS.

B. Design Example I

Subsection III-B shows the results of applying the sta-
bilization conditions to a benchmark design example. The
benchmark design example utilizes the following three-rules T-
S fuzzy model in the form of (2) with constant system matrices
and x̂(x) = x:

Model Rule i:

IF x1 is Mi1,

THEN ẋ = Aix+Biu, i = 1, 2, 3, (18)

where xT = [x1 x2],

A1 =

[
1.59 −7.29
0.01 0

]
, B1 =

[
1
0

]
,

A2 =

[
0.02 −4.64
0.35 0.21

]
, B2 =

[
8
0

]
,

A3 =

[ −a −4.33
0 0.05

]
, B3 =

[ −b+ 6
−1

]
.

The membership functions are given as

h1(x1) =
cos (10x1) + 1

4
,

h2(x1) =
sin (10x1) + 1

4
,

h3(x1) =
− cos (10x1)− sin (10x1) + 2

4
.

TABLE I: Comparison of bmax.

Method bmax

Theorem 1 (8th order CLF) 8.5
Theorem 1 (6th order CLF) 8.5
Theorem 1 (4th order CLF) 8
Theorem 1 (2nd order CLF) 6.5
Y. Chen, et al. [13] 6.5
A. Sala, et al. [14] 6.5
V. F. Montagner, et al. [18] 6.5
F. Delmotte et, al. [16] 6
C. H. Fang, et al. [11] 6
M. C. M. Teixeira, et al. [9] 6
X. Liu, et al. [10] 2.5
E. Kim, et al. [7] 1

In most of cases [7], [9]–[11], [13], [14], [16], [18], [46],
a = 2 is set to this benchmark model and bmax, i.e., the
maximum value of b such that the proposed design conditions
are feasible, is compared with other results. In this example,
we also set a = 2 and find the maximum value of b (bmax) in
the discrete range 0 ≤ b ≤ 9 with interval 0.5. As a result of
solving the stabilization conditions of Theorem 1 for 2nd, 4th,
6th, and 8th order CLF (deg [V (x)] = 2, 4, 6, 8), we obtain
bmax = 6.5 for deg [V (x)] = 2, bmax = 8 for deg [V (x)] =
4, and bmax = 8.5 for deg [V (x)] = 6, 8. The result shows
that increasing the order of CLF improves the stabilizability
range that can be guaranteed by the derived conditions. Table
I summarizes the comparison of bmax obtained by Theorem
1 with the other methods when a = 2. The results show the
utility of our approach.

Next, we investigate the feasible region for Theorem 1 and
compare our feasible region with that obtained in [14]. Fig. 1
shows the comparison result. Since the plot marks (×, +, ◦, �)
cannot be simultaneously plotted for the overlapped regions,
note that the plot mark of the smaller region is plotted in Fig.
1. Hence, the region plot in Fig. 1 means that
× (2nd order CLF) ⊂ + (4th order CLF) ⊂ ◦ (6th order

CLF) ⊂ � (8th order CLF),
where the (inclusion) symbol ⊂ in set theory is used to
intuitively compare the feasible regions, for instance, ‘× (2nd
order CLF) ⊂ + (4th order CLF)’ means that the feasible
region for the 4th order CLF includes that of the 2nd order
CLF, that is, the feasible region for the 4th order CLF is larger
than that of the 2nd order CLF.

The proposed approach (Theorem 1) with 2nd order CLF
has the same feasible region with [14], and as we increase the
order of CLF, we obtain larger feasible regions than that of
the 2nd order CLF.

For deg [V (x)] = 6, a = 2, and b = 8.5, by solving SOS
conditions in Theorem 1, we obtain

V (x) = 0.0018x6
1 − 0.013x5

1x2 + 0.084x4
1x

2
2 − 0.22x3

1x
3
2

+ 0.96x2
1x

4
2 + 1.5x1x

5
2 + 3.0x6

2

Fig. 2 shows the behavior in x1 − x2 plane with u = 0.
Note that the system is not globally and asymptotically stable.
Fig. 3 shows the behavior of the closed-loop system when
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11
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Fig. 1: Feasible region comparison (× for 2nd order CLF and
[14], + for 4th order CLF, ◦ for 6th order CLF and � for 8th
order CLF).
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0.5
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2

Fig. 2: Behavior in x1 − x2 plane (a = 2 and b = 8.5).

the obtained CLF is applied to the Sontag’s formula (10) to
design the controller. We can see that the designed controller
stabilizes the system even in a = 2 and b = 8.5 that
is an infeasible point for other methods [7], [9]–[11], [13],
[14], [16], [18], [46]. Thus, the closed-loop system (Fig. 3)
is globally and asymptotically stable although the open-loop
system (Fig. 2) is not globally and asymptotically stable.

C. Design Example II

Consider the following three-rule polynomial fuzzy model
with x̂(x) = x [26]:

Model Rule i:

IF x1 is Mi1

THEN ẋ = Ai(x)x+Bi(x)u, i = 1, 2, 3, (19)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x1

x
2

Fig. 3: Behavior in x1 − x2 plane with feedback (6th order
CLF) (a = 2 and b = 8.5).

where xT = [x1 x2],

A1(x) =

[
1.59 + x2

1 − 2x2
2 − x1x2 −7.29 + 2x1x2

0.01 −x2
1 − x2

2

]
,

A2(x) =

[
0.02 + x2

1 − 2x2
2 − x1x2 −4.64 + 2x1x2

0.35 0.21− x2
1 − x2

2

]
,

A3(x) =

[ −a+ x2
1 − 2x2

2 − x1x2 −4.33 + 2x1x2

0 0.05− x2
1 − x2

2

]
,

B1(x) =

[
1 + x1 + x2

1

0

]
,

B2(x) =

[
8 + x1 + x2

1

0

]
,

B3(x) =

[ −b+ 6 + x1 + x2
1

−1

]
,

with a and b are constant parameters, and the membership
functions are given as

h1(x1) =
1

1 + e(125x1+12)/2
,

h2(x1) =
1

1 + e−(125x1−12)/2
,

h3(x1) = 1− h1(x1)− h2(x1).

In order to compare feasible regions, we apply Theorem 1
to all points at 2 ≤ a ≤ 9 and 0 ≤ b ≤ 9, with 4th, 6th,
and 8th order CLF (deg [V (x)] = 2, 4, 6, 8). Fig. 4 shows the
comparison of feasible regions of Theorem 1 and the existing
SOS approach [26].

As explained in Design Example I, since the plot marks
( ×, +, ◦, �, � ) cannot be simultaneously plotted for the
overlapped regions, note that the plot mark of the smaller
region is plotted in Fig. 4. Hence, the region plot in Fig. 4
means that
× [26] ⊂ + (2nd order CLF) ⊂ ◦ (4th order CLF) ⊂ �

(6th order CLF) ⊂ � (8th order CLF).
As seen in Fig. 4, the proposed approach has larger feasible

regions than the feasible region in [26], and higher order CLF
provides more relax results (, that is, larger feasible regions).
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Fig. 4: Feasible regions for Theorem 1 represented by + (2nd
order CLF), ◦ (4th order CLF), � (6th order CLF), � (8th
order CLF) and [26] represented by ×.
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Fig. 5: Control result (a = 5.5 and b = 7).

For a = 5.5 and b = 7 that is an infeasible point of the
existing SOS approach [26], by solving Theorem 1 with even
2nd order CLF, we obtain

V (x) = 0.35x2
1 + 0.42x1x2 + 2.6x2

2.

Fig. 5 shows the control result by the proposed approach,
where x(0) = [−2 1]T . The designed controller stabilizes
the system.

The stabilization condition is also feasible in the case of
8th order CLF for a=5.5 and b=9. The Lyapunov function is
obtained as

V (x) = 0.00078x8
1 − 0.0085x7

1x2 + 0.059x6
1x

2
2

− 0.27x5
1x

3
2 + 1.1x4

1x
4
2 − 1.9x3

1x
5
2 + 5.3x2

1x
6
2

+ 9.6x1x
7
2 + 17x8

2. (20)
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Fig. 6: Control result (a = 5.5 and b = 9).

Fig. 6 shows the control result by the proposed approach,
where x(0) = [−2 1]T for a = 5.5 and b = 9.

D. Design Example III

Consider the following polynomial fuzzy model [25]:

Model Rule i:

IF x1 is Mi1

THEN ẋ = Ai(x)x+Bi(x)u, i = 1, 2, 3, (21)

where xT = [x1 x2],

A1(x) =

[ −1 + x1 + x2
1 + x1x2 − x2

2 1
−a −6

]
,

A2(x) =

[ −1 + x1 + x2
1 + x1x2 − x2

2 1
0 −6

]
,

A3(x) =

[ −1 + x1 + x2
1 + x1x2 − x2

2 1
0.2172a −6

]
,

B1(x) =

[
x1

b

]
,

B2(x) =

[
x1

b

]
,

B3(x) =

[
x1

b

]
,

with a and b are constant parameters, and the membership
functions are

h1(x1) =
1

1 + e(x1+4)/2
,

h3(x1) =
1

1 + e−(x1−4)/2
,

h2(x1) = 1− h1(x1)− h3(x1).

In order to compare feasible regions with the existing SOS
approaches, the SOS stabilization conditions in [22] and [25]
are employed for 2 ≤ a ≤ 9 and 7.5 ≤ b ≤ 15. Fig. 7 shows
the feasibility regions of the proposed approach (Theorem 1)
with 2nd order CLF and the existing approaches [22] and [25].
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Fig. 7: Feasible region comparison, × for [22], + for [25], ◦
for Theorem 1.
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Fig. 8: Behavior of closed loop system (a = 9 and b = 15) .

Once again, as explained in Design Examples I and II, the
region plot in Fig. 7 means that
× [22] ⊂ + [25] ⊂ ◦ (Theorem 1).
As shown in Fig. 7, the proposed approach obtains more

relaxed result than the existing SOS approaches even though in
our approach we do not consider the shape of the membership
function as in [25].

By applying Theorem 1 to the system with a = 9 and
b = 15 that are an infeasible point for the existing SOS
approaches [22] and [25], we still obtain feasible solutions.
Fig. 8 shows the behavior of the closed loop system by
the designed controller. As shown in Fig. 8, the system is
stabilized by the designed controller.

Remark 2. It has been reported in [25]–[30] that the
polynomial SOS approaches provide more relaxed stability
results than the existing LMI approaches. Furthermore, in

the exact fuzzy model construction using the well-known
sector nonlinearity [2], if a system with polynomial terms
is represented by a T-S fuzzy model, the gradient (slope) of
at least one of the sectors in the T-S fuzzy model generally
becomes infinity. The infinity-gradient sector causes uncon-
trollability. To avoid it, in most of these cases, a T-S fuzzy
model for a system with polynomial terms is constructed for a
range of operation domains. The T-S fuzzy model can exactly
represent the nonlinear system (with polynomial terms) only
on the considered operation domain. On the other hand, the
polynomial fuzzy model can exactly and globally represent a
system with polynomial terms. This means that the polynomial
fuzzy model approach guarantees the global stability even for
a system with polynomial terms. This is an advantage of our
approach. The polynomial fuzzy model (21) given in [25] can
be regarded as being constructed from the following nonlinear
system:

[
ẋ1

ẋ2

]
=

[ −1 + x1 + x2
1 + x1x2 − x2

2 1
(−z1(x1) + 0.2172z2(x1))a −6

] [
x1

x2

]

+

[
x1

b

]
u, (22)

where

z1(x1) =
1

1 + e(x1+4)/2
, z2(x1) =

1

1 + e−(x1−4)/2
.

Then, by applying the sector nonlinearity to the nonlinear
system (22), we obtain the polynomial fuzzy model, where
h1(x1) = z1(x1), h3(x1) = z2(x1), and h2(x1) = 1 −
z1(x1) − z2(x1). To construct the T-S fuzzy model for the
nonlinear system (22), we need to define the operation domain
by determining their domain ranges, i.e., x1 ∈ [−d1 d1] and
x2 ∈ [−d2 d2] (d1 and d2 are positive values) like an example
in [22], etc. In this case, the obtained T-S fuzzy model is a
local model for the original nonlinear system. Thus, since it
is difficult to exactly construct a global T-S fuzzy model for a
nonlinear system with polynomial terms such as the nonlinear
system (22), the global stability of a nonlinear system with
polynomial terms cannot be generally guaranteed in T-S fuzzy
model-based control.

E. Design Example IV

Consider the following polynomial fuzzy model with three
state variables and two inputs.

Model Rule i:

IF x1 is Mi1

THEN ẋ = Ai(x)x+Bi(x)u, i = 1, 2, 3, (23)

where xT = [x1 x2 x3] and uT = [u1 u2],

A1(x) =⎡
⎣ −1 + x1 + x2

1 + x1x2 − x2
2 1 1

−a −6 x3

0 1 −1 + x3 + x2
3

⎤
⎦ ,

A2(x) =



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

⎡
⎣ −1 + x1 + x2

1 + x1x2 − x2
2 1 1

0 −6 x3

0 1 −1 + x3 + x2
3

⎤
⎦ ,

A3(x) =⎡
⎣ −1 + x1 + x2

1 + x1x2 − x2
2 1 1

0.2172a −6 x3

0 1 −1 + x3 + x2
3

⎤
⎦ ,

B1(x) =

⎡
⎣ x1 1

b 1
0 x3

⎤
⎦ ,

B2(x) =

⎡
⎣ x1 1

b 1
0 x3

⎤
⎦ ,

B3(x) =

⎡
⎣ x1 1

b 1
0 x3

⎤
⎦ ,

with a and b are constant parameters, and the membership
functions are

h1(x1) =
1

1 + e(x1+4)/2
,

h3(x1) =
1

1 + e−(x1−4)/2
,

h2(x1) = 1− h1(x1)− h3(x1).

We set a = 2 and find the maximum value of b (bmax)
in the discrete range 0 ≤ b ≤ 7 with interval 0.5. The SOS
stabilization conditions in [13], which is one of the best results
excepting our approach (see Table I), find feasible solutions for
bmax = 3.5 with 2nd order CLF when a = 2. Our approach
obtains feasible solutions for bmax = 6.5 with 2nd order CLF.
Thus, the proposed approach obtains more relaxed results than
the existing SOS approach [13].

IV. SEMI-GLOBAL STABILIZATION ON OPERATION
DOMAIN

Section III has provided global stabilization for nonlinear
systems represented by polynomial fuzzy models. In some
cases, it is still a strict requirement to globally stabilize com-
plicated nonlinear systems. Section IV presents semi-global
stabilization on operation domain. It is useful for complicated
nonlinear systems that are not globally stabilizable.

A. Semi-Global Stabilization Condition

Consider the operation domain

D = {x : xmin
ξ ≤ xξ ≤ xmax

ξ ,

ξ = 1, 2, · · · , φ, φ ≤ n}, (24)

that includes x = 0 of system (3). Theorem 2 provides
an SOS condition to obtain the CLF level set ΩV,α =
{x ∈ R

n : V (x) ≤ α} in the operation domain D.

Theorem 2. If there exist a smooth function V (x), SOS poly-
nomials s10im(x), s11m(x), Qξ(x), vi(x), positive definite
SOS polynomials l5im(x) and polynomials pjm(x) that satisfy

(8) and (25) for a non-positive γ, the outmost CLF level set
ΩV,α inside D is contractively invariant sets of (3).

r∑
m=1

r∑
i=1

ĥ2
i ĥ

2
mΛim +

r∑
m=1

ĥ2
mp2m(x) ∈ S, (25)

where ĥ2
i is a non-negative value as addressed in Remark 1.

Λim =−
{
−s10im(x)

φ∑
ξ=1

Qξ(x)(xξ − xmin
ξ )(xξ − xmax

ξ )

+ s11m(x)
[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x)

]

+

q∑
j=1

p1jm(x)
∂V (x)

∂x
Bij(x) + p2m(x) + l5im(x)

}
.

Moreover, the feedback controller can be constructed by
applying (10).

Proof. For the operation domain (24), the following inequality
holds:

φ∑
ξ=1

Qξ(x)(xξ − xmin
ξ )(xξ − xmax

ξ ) ≤ 0 (26)

where Qξ(x) ≥ 0 that is achieved by restricting Qξ(x) to be
SOS polynomials. By introducing the non-negative variables
(quadratic variables) ĥ2

i as in Theorem 1, we consider that
when (26) holds and

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, · · · , q,

we have

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) < 0,

where
∑r

i=1 ĥ
2
i = 1. The above conditions can be expressed

as
{
x ∈ R

n|
φ∑

ξ=1

Qξ(x)(xξ − xmin
ξ )(xξ − xmax

ξ ) ≤ 0,

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, · · · , q,

r∑
i=1

ĥ2
i = 1,

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) < 0,x �= 0

}
(27)

Note that (27) is a subeset of the global one, that is,
{
x ∈ R

n|∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, · · · , q,

r∑
i=1

ĥ2
i = 1,

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) < 0,x �= 0

}
.

Here, (27) can be rewritten as the following empty set condi-
tion:
{
x ∈ R

n|
φ∑

ξ=1

Qξ(x)(xξ − xmin
ξ )(xξ − xmax

ξ ) ≤ 0,



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, · · · , q,

r∑
i=1

ĥ2
i − 1 = 0,

∂V (x)

∂x

r∑
i=1

ĥ2
iAi(x)x̂(x) ≥ 0,x �= 0

}
= ∅. (28)

In order to apply the SOS optimization technique, as in the
derivation of the global conditions, we introduce lx(h,x) to
replace x �= 0 where lx(h,x) �= 0 iff x �= 0. In addition,
we also introduce a non-positive real number γ and an SOS
polynomial vi(h,x) to the condition for the sake of applying
the SOS optimization technique. The condition is now

{
x ∈ R

n|
φ∑

ξ=1

Qξ(x)(xξ − xmin
ξ )(xξ − xmax

ξ ) ≤ 0,

∂V (x)

∂x

r∑
i=1

ĥ2
iBij(x) = 0, j = 1, · · · , q,

r∑
i=1

ĥ2
i − 1 = 0

r∑
i=1

ĥ2
i

[∂V (x)

∂x
Ai(x)x̂(x)− γvi(x)

]
≥ 0,

lx(h,x) �= 0
}
= ∅. (29)

Here, we apply the Positivstellensatz (Lemma 1) to (29)
in the same fashion as in the proof of Theorem 1. Thus,
we can construct a semi-global CLF by solving the sufficient
conditions below.

Find V (x) such that (8) and (25)

for a non-positive γ, where s10im(x), s11m(x), vi(x), Qξ(x)
∈ S , V (x), l1(x), l5im(x) ∈ S+ and p1jm(x), p2m(x) ∈ P .

Therefore, if there exist V (x), s10im(x), s11m(x), vi(x),
Qξ(x), l5im(x), p1jm(x), and p2m(x) that satisfy (8) and (25)
for a non-positive γ, then (27) is satisfied, that is the outmost
CLF V (x) level set contained in D is contractively invariant
sets of (3).

Furthermore, the largest domain of attraction (ΩV,α), inside
the considered operation domain can be determined by solving
the following optimization problem using the obtained semi-
global CLF (V (x))

max
Φ

α subject to

Φ(V (x)− α)− (xξ − xmin
ξ )(xξ − xmax

ξ ) ∈ S,
ξ = 1, 2, · · · , φ, φ ≤ n. (30)

where Φ > 0. This condition can be obtained by applying the
S-procedure (Lemma 2).

B. Design Example V

Consider the following operation domain for the fuzzy
model of Section III-C:

D = {x : −d ≤ x1 ≤ d}, (31)

where xmax
ξ = d, xmin

ξ = −d and d = 0.2.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x1

x
2

ΩV,0.0014

Fig. 9: States behavior (a = 6 and b = 8) within the domain
of attraction inside D (Lyapunov function level set ΩV,0.0014).

1) Second order CLF: First, we consider 2nd order CLF
for Theorem 2. We focus on an infeasible point (a = 6 and
b = 8) for the global stabilization condition (Theorem 1).

By applying Theorem 2 to the fuzzy model with a = 6 and
b = 8 that are an infeasible point for the global stabilization
condition (Theorem 1), we get

V (x) = 0.039x2
1 + 0.063x1x2 + 0.55x2

2. (32)

Thus, Theorem 2 provides more relaxed results compared to
Theorem 1.

Furthermore, to obtain the largest domain of attraction
inside D, we solve (30) and obtain

α =0.0015,

Φ =27.

Fig. 9 shows that all points within the level set ΩV,α is
stabilized to the equilibrium point.

2) High order CLF: Next, we consider 4th, 6th, and 8th
order CLF for a = 5 and b = 9 that are an infeasible point
even for the 2nd order semi-global CLF (32). For 4th, 6th and
8th order CLFs, we serach the maximum values of d satisfying
Theorem 2 by solving (30). The maximum d is obtained as
d4 = 0.3 d6 = d8 = 0.5 for 4th, 6th and 8th order CLFs,
respectively.

Fig. 10 shows the largest domain of attractions (inside D)
of 4th, 6th 8th order CLFs for a = 5 and b = 9 that are an
infeasible point even for the 2nd order semi-global CLF (32),
where the following CLFs are obtained.

[4th order CLF (d4 = 0.3)]

V (x) = 0.00088x4
1 − 0.0047x3

1x2 + 0.027x2
1x

2
2

+ 0.039x1x
3
2 + 0.24x4

2

[6th order CLF (d6 = 0.5)]

V (x) = 0.00071x6
1 − 0.0057x5

1x2 + 0.037x4
1x

2
2

− 0.12x3
1x

3
2 + 0.46x2

1x
4
2 + 0.76x1x

5
2 + 1.9x6

2
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Fig. 10: CLF level set comparison at a = 5 and b = 9.

[8th order CLF (d8 = 0.5)]

V (x) = 0.0023x8
1 − 0.025x7

1x2 + 0.20x6
1x

2
2 − 0.83x5

1x
3
2

+ 3.3x4
1x

4
2 − 6.7x3

1x
5
2 + 22x2

1x
6
2 + 37x1x

7
2

+ 57x8
2

It can be seen from Fig. 10 that increasing the order of CLF
enlarges the domain of attraction.

V. CONCLUSION

This paper has dealt with an SOS-based CLF design for
polynomial fuzzy control of nonlinear systems. Next, global
stabilization conditions represented in terms of SOS have been
provided in the framework of the CLF design. Furthermore,
semi-global stabilization conditions on operation domains have
been derived in the same fashion as in the global stabilization
conditions. Both global and semi-global stabilization problems
have been formulated as SOS optimization problems which
reduce to numerical feasibility problems. Five design examples
have been given to show the effectiveness of our proposed
approach over the existing linear matrix inequality (LMI) and
SOS approaches.
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