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IRT-based adaptive hints to scaffold learning in
programming

Maomi Ueno, Member, IEEE, and Yoshimitsu Miyazawa

Abstract—Over the past few decades, many studies conducted in the field of learning science have described that scaffolding plays an
important role in human learning. To scaffold a learner efficiently, a teacher should predict how much support a learner must have to
complete tasks and then decide the optimal degree of assistance to support the learner’s development. Nevertheless, it is difficult to
ascertain the optimal degree of assistance for learner development. For this study, it is assumed that optimal scaffolding is based on a
probabilistic decision rule: given a teacher’s assistance to facilitate the learner development, an optimal probability exists for a learner
to solve a task. To ascertain that optimal probability, we developed a scaffolding system that provides adaptive hints to adjust the
predictive probability of the learner’s successful performance to the previously determined certain value, using a probabilistic model,
i.e., item response theory (IRT). Furthermore, using the scaffolding system, we compared learning performances by changing the
predictive probability. Results show that scaffolding to achieve 0.5 learner success probability provides the best performance.
Additionally, results demonstrate that a scaffolding system providing 0.5 probability decreases the number of hints (amount of support)
automatically as a fading function according to the learner’s growth capability.

Index Terms—Learning science, Constructivism, Scaffolding, Dynamic assessment, Cognitive apprenticeship, Item response theory
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1 INTRODUCTION

THE leading metaphor of human learning has recently
been transferred from instructionism to social construc-

tivism [1], [2] in an education society. Vygotsky (1962)
introduced the Zone of Proximal Development (ZPD) with
problem solving, where a learner cannot solve difficulties
alone, but can do so with an expert’s help, thereby promot-
ing learner development [1]. Bruner (1978), like Vygotsky,
emphasized the social nature of learning, reporting that
other people should help a child develop skills through
the process of ”scaffolding” [3]. He defined scaffolding as
steps taken to reduce the degrees of freedom in carrying
out some task so that children can concentrate on difficult
skills. The term ”scaffolding” first appeared in the literature
when Wood et al. (1976) described how tutors interacted
with preschoolers to help them solve a block reconstruction
problem [4]. Scaffolding situations were those in which
learners obtained assistance or support to perform tasks
beyond their own capability if pursued independently when
unassisted. Stone (1998) emphasized the dynamic charac-
teristics of the scaffolding process, which is dependent on
cycles of assessment and adaptive support [5].

Brown and Ferrara (1985) [6] and Campione (1989) [7]
worked on a new assessment method called ”dynamic as-
sessment,” by which a cascading sequence of hints(so-called
”graded hints” ) is provided to enable dynamic assessment
of how much support learners needed to complete various
benchmark tasks. Each hint is staged in a graded fashion
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known as a cascading sequence of hints. A learner is given
a task to solve. If the learner can not solve the task alone,
then the learner is given a series of graded hints one after
another until the achievement is successful. The graded
hints become more concrete as the sequence is followed.
Results showed that learners who needed only a minimum
number of hints to solve the tasks tended to achieve the
greatest learning gain. Subsequently, scaffolding was in-
corporated into cognitive apprenticeship theory [8]. It has
played important roles in several learning theories. Collins
et al. (1987) introduced ”fading” to scaffolding, meaning
that once learners accomplish a target skill, the teacher
reduces (or fades) learner participation, providing only
limited hints, refinements, and feedback to learners, who
practice successive approximation of smooth executions of
the whole skill [8]. Pea (1993) claimed that scaffolding with
fading is an intrinsic component that enables what he called
”distributed intelligence” [9].

Recently, a great deal of interest in the learning science
field has arisen in the use of software tools to scaffold
learners in complex tasks (e.g., [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]), but these software tools have
been unable to adapt to individual learners. However, in
the Intelligent Tutoring System (ITS) field using a different
approach from the Vygotskian, an adaptive function that
uses a student model to select unmastered problems for
a learner (e.g., [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36]) has been proposed for
adaptation to individual learners. This adaptive problem
selection is known to be effective for learning, but it cannot
adjust the degree of help for learner development. To realize
adaptive help for a learner, many ITSs have technology that
can provide a learner with adaptive assistance for problem
solving (e.g., [37], [38], [39], [40], [41] ). Although this
technology solves a learner’s impasse in problem solving,
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it cannot adjust the degree of help for learner development.
Some experiment results presented in these reports show
that the adaptive help technology tends to over-instruct
learners. It might actually obstruct effective learning [39].A
tradeoff exists between information giving and withholding
to achieve optimal learning. The tradeoff has recently been
called the ’assistance dilemma’ [31]. To resolve this dilemma,
some results of earlier studies suggest that on-demand
graded hints, with each giving progressively more specific
advice until the learners judge they accomplished the task,
might be effective for learning [39], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52].

Although previous studies have produced several im-
portant results for scaffolding, they have not clarified the
mechanisms of effective scaffolding. Earlier studies have
included two main problems.

1) Previous systems have been unable to predict a
learner’s performance given scaffolding. Therefore,
they have been unable to predict how much support
learners require for optimal scaffolding.

2) No previous study has used a reasonable strategy
of how to scaffold learners. The strategies must
provide appropriate support to increase learners’
abilities.

Wood (2001) emphasized the importance of predicting a
learner’s performance given scaffolding as future work in
computer-based tutoring studies [52].

Pea (2004) pointed out that although a fading function
is a necessary feature for scaffolding, many scaffolding
systems have no such fading function [53]. The scaffolding
system can necessarily derive a fading function if one is able
to solve the problems of earlier studies.

The first problem is how to define the individual learn-
ers’ development by learning. However, it is difficult be-
cause ”development” means not only the increase of explicit
knowledge that a learner has but the increase of more gener-
alized abilities, including meta-knowledge, which underlie
the problem solving in the field (e.g. [57]). In item response
theory (IRT), the common ability that underlies problem
solving is represented using a latent variable model [54],
[55]. The probability of a correct response to a test item is
modeled in IRT as a mathematical function of an individual
latent ability variable.

Our main idea is using this IRT to represent the individ-
ual learner’s development as the increase of the latent ability
variable and then to provide optimal help for scaffolding
learners by predicting a learner’s performance given several
hints. To predict a learner’s performance given hints, we
first propose an IRT model for dynamic assessment, by
which learners are tested when given dynamic conditions
of providing a series of graded hints. Then we estimate the
model parameters from the obtained data. Next, we propose
a scaffolding system that predicts the learner’s performance
with hints based on the learner’s estimated ability and
which presents adaptive hints to the learner. Specifically,
the system provides hints to adjust the learner’s correct an-
swer probability to the previously determined certain value.
Here, we assume that the optimal scaffolding is based on a
probabilistic decision rule. An optimal probability exists for
a learner’s successful performance. To ascertain the optimal

probability, using the scaffolding system, we compared the
learning performance by changing the predicted correct
answer probability for several programming trace problems.
Results reveal that the adaptive hint function is the most ef-
fective for learning when we determine 0.5 to be the correct
answer probability. Consequently, over-assistance and lack
of help hinder rather than support a learner’s development.

Additionally, they demonstrate that a scaffolding system
with probability 0.5 decreases the number of hints (amount
of support) automatically as a fading function according to
the learner’s growth capability.

2 PREVIOUS WORKS

This section presents a review of previous studies of
computer-based scaffolding systems.

Various studies of computer-based scaffolding have been
conducted in traditional subject areas of education such as
reading (e.g., [10], [11], [12]), mathematics (e.g. [13]), and
science (e.g. [14]).

Furthermore, recently, several scaffolding systems have
been developed based on learning science theories.

Bell and Davis (2000) found that a scaffolding system
used in science classrooms helped students identify ways
to improve their understanding by helping students think
individually and collaboratively to provide alternative ex-
amples, thought experiments, and counter-evidence for con-
sideration, and by providing a place to form their own
thoughts about these ideas visibly and explicitly [15].

Davis and Linn (2000) investigated, using a technology-
based study design, the learning and design questions that
determine whether reflection prompts promotion of knowl-
edge integration for students working on science projects
[16] . Furthermore, they investigated the effects of students’
different dispositions on their reflection. They explored
which characteristics of prompts best support students in
knowledge integration. Results indicate that prompting stu-
dents to reflect significantly increases knowledge integration
in science projects. Results also showed that self-monitoring
prompts, which encourage planning for and reflection on
activities, helped students to demonstrate an integrated
understanding of the relevant science. By contrast, activity
prompts, which guided the inquiry process, were less suc-
cessful in prompting knowledge integration.

Reiser (2004) addressed the problem of specific goals
of scaffolding systems [17]. He presented two goals for
scaffolding. One of these goals, called structuring, funda-
mentally serves to simplify tasks for learners. He argued
that researchers in the learning sciences field have come to
emphasize this first mechanism for scaffolding. Yet Reiser
suggested that a second goal, called problematizing, is at
least as important. Scaffolding that problematizes student
work draws learners’ attention to issues or tasks they might
otherwise choose to ignore, in part because of their natu-
ral tendency toward the path of least cognitive resistance.
Reiser draws on the extensive literature as well as empirical
and design work in his own research to argue that by
making learning tasks more difficult in the short term,
scaffolding designed with these twin goals in mind actually
promotes students’ learning in the long term.
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Tabak (2004) distinguishes three patterns of scaffolding:
differentiated, redundant, and synergistic scaffolding [18].
She specifically examined how teachers, software, and other
agents can work together to strengthen one another’s effects,
arguing that the synergies created by multiple sources of
and types of scaffolding can provide more powerful scaf-
folding than might be expected from the sum of the parts.

Quintana et al. (2004) developed guidelines and strate-
gies for the design of software scaffolding [19]. These guide-
lines and strategies challenge learners to face engagement
in complex learning tasks, grounding this framework in im-
portant ways. According to these guidelines and strategies,
they developed software applications.

Rittle-Johnson and Koedinger (2005) presented a
methodology for designing better learning environments
[20]. First, they assessed sixth-grade students’ prior knowl-
edge using difficulty factors assessment (DFA). The assess-
ment revealed that scaffolding designed to elicit contextual,
conceptual, or procedural knowledge improved student
abilities. Next, they designed an intervention based on
scaffolding with this prior knowledge. They implemented a
computer-based scaffolding system in mathematics classes.

Yelland and Masters (2007) reported that conceptualiza-
tions of scaffolding are needed in computer contexts to gain
greater insights into teaching and learning processes [21].
They reported that traditional forms of scaffolding, based
on an ’expert’s’ view of how the problem should be solved,
needed to be modified to accommodate the child’s perspec-
tive. Moreover, they reported that scaffolding of three types
can be conceptualized, which they designated as cognitive,
technical, and affective. This study demonstrated that cog-
nitive, affective, and technical scaffolding are beneficial for
learning and that children can support mutual learning via
sharing strategies and via articulation of their underlying
reasons.

Consequently, previous studies using scaffolding sys-
tems have examined effective scaffolding methods by em-
phasizing learning strategies, collaboration, and synergies
of scaffolding methods of various kinds, and so on.

However, although these software tools serve necessary
functions for scaffolding, they have been insufficient to
adapt to learners. As described previously, adaptive func-
tions to learners have often been used in ITS fields (e.g.
[22] ). To adapt to learners, intelligent tutor systems often
track individual learners’ knowledge growth and support
adaptive problem selection [23], [24], [25]. A popular track-
ing method [23] uses the posterior probability of mastering
a knowledge component in the student model. The pos-
terior probability is updated each time a learner encoun-
ters a problem step involving the knowledge component.
The posterior probability depends on the performance of
that step, the prior probability of mastery, the likelihood
of learning from a step, and conditional probabilities that
allow for the possibility that a learner might guess the
step or slip. As an alternative method, Bayesian networks
are often used for the student model [26]. Furthermore,
recent educational data mining areas have advanced the
development of new student modeling methods (e.g., [27],
[28], [29]). In adaptive problem selection, the system uses its
student model to select problems that (for the given learner,
at the given point in time) target unmastered knowledge

components. The system continues to do so until the student
model indicates that the learner has achieved mastery of the
target knowledge components [30], [31]. Conati and Vanlehn
(2000) used the student model to ascertain what steps in a
worked example a particular learner should be prompted
to explain, which for early learners was shown to be more
helpful than a system in which the steps to be explained
were not selected on an individual basis [32]. Muldner and
Conati (2007) also used the student model to select suitable
examples for analogical comparison [33].

Although adaptive problem selection has remained pop-
ular in ITS fields, it cannot adjust the degree of help for
learner development. For this purpose, many ITSs have
employed adaptive help technology for the learner’s prob-
lem solving (e.g., [37], [38], [39], [40], [41]). This technology
can provide a learner with adaptive help at each step of
problem solving. The level of help can vary: from signaling
about a wrong step to giving a hint that states what the
learner should do at the next step. In addition, a system
with this technology can monitor the learner’s actions. Then
a student model can be constructed to provide adaptive
help [37]. Variants of this technique are used in a number
of ITS fields (e.g., [38], [39], [40], [41]). However, some ITS
researchers have pointed out that the adaptive help function
tends to provide over-assistance and that it might obstruct
effective learning [39], [42], [43], [44], [45], [46], [47]. A trade-
off exists between information giving and withholding to
achieve optimal learning, which has recently been called the
”assistance dilemma’ [31]. Anderson et al. (1989) conducted
a study that evaluated the effects of the tutor’s mastery
learning method and of explanatory content in both the
tutor’s hints and its feedback messages [42]. They compared
the regular Lisp Tutor, which provides explanatory content
in its hints and in some of its error feedback messages,
with a version that simply told students they were wrong
when they made errors, or gave them the correct answer
when they requested a hint. They found that explanatory
messages help students learn faster, but not better. They
speculated that the students in the no explanation condition,
after seeing the answers provided by the system, were able
to generate their own explanations of the answers, but that
it took extra time to do so. This result suggests that on-
demand graded hints are more effective for learning [39],
[43], [44], [45], [46], [47], [48], [49], [50], [51]. Typically,
multiple levels of hints are available, with each giving
progressively more specific advice. The hints explain which
problem-solving principle is applicable and how. The last
hint in the sequence, called the ’bottom-out hint’ often states
the correct answer and its explanation [31]. However, the
evidence related to actual use of on-demand graded hints
shows that learners are not good at seeking assistance or
information at appropriate times [31], [39].For example,
Koedinger and Aleven (2007) reported from log data that
students frequently used bottom-out hints to obtain answers
without reading prior hints that explain why the answer is
what it is [31]. They also pointed out that learners often
did not request help even after they had made multiple
errors related to a single step. To solve this problem, they
suggested redesign of the ITS so that it achieved a better bal-
ance between withholding and providing problem-solving
hints, by making it provide more information proactively
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after problem-solving errors. The other solution proposed
helping learners to create a better balance for themselves
by providing tutoring with respect to learners’ help-seeking
skills [45], [47]. The aim of such metacognitive instruction
is for students to learn to balance themselves and to judge
when to seek information and assistance versus when to
try to think independently [31]. Returning to the topic
about the original concept of scaffolding, the fundamentally
important function of scaffolding is adapting a learner’s
ZPD to support the learner. Although earlier studies have
been undertaken to ascertain the optimal balance between
information giving and withholding in the learning envi-
ronment, and although they have yielded some results, the
optimality in the studies seems somehow obscure. There-
fore, the products of such studies are not well generalized.

Pea (2004) emphasized the importance of a fading func-
tion of scaffolding as described previously [53]. The scaf-
folding system necessarily has a fading function if it has an
adaptive assistance function that adjusts the degree of help
to a learner’s development. This study addresses the fun-
damentally important elements of scaffolding, ”adaptivity,”
and ”fading”.

3 ITEM RESPONSE THEORY

Effective scaffolding requires estimation of how much sup-
port a learner must have to complete tasks and decision of
the optimal degree of assistance for learner development.

The main idea of this study is to use Item Response
Theory (IRT) [54], [55] to predict a learner’s performance
given several hints and then to select the optimal hint for
the learner. This section briefly introduces IRT, a recent
test theory based on mathematical models, which is be-
ing used widely in areas such as human-resource assess-
ment, entrance examinations, and certification tests with
the widespread use of computer testing. It has three main
benefits:

1) It can assess ability while minimizing the effects of
heterogeneous or aberrant items, which have low
estimation accuracy.

2) The learners’ responses to different items can be
assessed on the same scale.

3) It predicts the individual probability of correct re-
sponse to a problem based on past response data.

This section introduces the two-parameter logistic model
[54], which is an extremely popular IRT model. For the
two-parameter logistic model, uj denotes the response of
a learner to item j(1, · · · , n) as

uj =

{
1 : learner answers correctly to item j

0 : else other.

In the two-parameter logistic model, the probability of a
correct answer given to item j by learner i with ability θi ∈
(−∞,∞) is assumed as

p(uj = 1 | θi) =
1

1 + exp(−1.7aj(θi − bj)
, (1)

where aj ∈ (0,∞) is the j-th item’s discrimination pa-
rameter expressing the discriminatory power for learners’
abilities of item j, and bj ∈ (−∞,∞) is the j-th item’s

Fig. 1. Probabilistic graphical model representation of IRT.

difficulty parameter expressing the degree of difficulty of
item j. Parameters aj and bj must be estimated previously
from data using some numerical estimation method [55].

Actually, IRT assumes conditional independence among
items given the ability variable, which is known as ”local in-
dependence.” Fig. 1 depicts a probabilistic graphical model
representation of IRT. Fig. 1 shows that all items in the same
domain depend on a common ability, which is represented
by a latent variable θ. In other words, the random variable
of the learner’s response to each item is conditionally inde-
pendent when the common ability variable is given.

To specify the scaffolding mechanism, we must de-
fine the learner’s individual development. However, it is
difficult because ”development” does not mean only the
increase of explicit knowledge that a learner has but the
increase of more generalized abilities including the meta-
knowledge which underlies the problem solving in the
field (e.g. [57]). The first idea of this study is to represent
the individual learners’ development as the increase of the
latent ability variable of IRT to represent the common ability
which underlies the problem solving in the target domain.

4 ITEM RESPONSE THEORY FOR DYNAMIC AS-
SESSMENT

4.1 Dynamic assessment
The scaffolding process requires dynamic assessment to
predict learner performance when a teacher’s help is pre-
sented to them, as explained previously. Brown and her
team compared the performance of children’s responses
to IQ test items under two conditions [6]. The first was
”static assessment,” which involved children trying to solve
problems under conventional test conditions, for which they
received no help or guidance. The same children were
also tested on the same items under dynamic conditions
of providing a series of graded hints. The results demon-
strated that dynamic assessment provided a stronger basis
for predicting learning outcomes than static measures did.
The most important result was that the greatest learning
gain tended to be achieved by children who only needed
the minimum number of hints. The magnitude of the ’gap’
between assisted and unassisted performance indicated by
the amount of help needed was therefore prognostic of
individual differences in learning outcomes. Assessing how
much help a learner needed to succeed provided more
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Fig. 2. Dynamic assessment system.

decisive information about readiness for learning than de-
termining how often they failed when doing the same, un-
tutored tasks. Consequently, dynamic assessment integrated
the assessment of learners’ prior knowledge with the task of
helping them to learn [52].

An important difficulty associated with previous studies
is that the number of hints needed was not a reliable mea-
sure of dynamic assessment because it depended strongly
on the task difficulty. In addition, earlier studies were unable
to predict how much support a learner needed for solving a
task that had not been presented to the learner. In the next
section, to resolve these problems, we propose an IRT model
for dynamic assessment.

4.2 Data from dynamic assessment system
We developed the dynamic assessment system depicted in
Fig. 2 to obtain learners’ response data from tasks using a
series of graded hints to apply IRT to dynamic assessment
data.

We consider a series of graded hints {k},(k =
1, 2, . . . ,K − 1) for task j. For that series, k = 0 when
the task is presented without a hint. First, the dynamic
assessment system in a computer presents task j without
a hint to learner i.

If the learner responds incorrectly, then the system
presents hint k = 1. Otherwise, the system stores the
learner’s response and presents the next task: j + 1. If the
learner responds incorrectly to task j with hint k = 1, then
the system presents hint k = 2. Alternatively, the system
stores the learner’s response and presents the next task:
j+2. Consequently, the system presents hints from k = 1 to

k = K−1 until the learner answers correctly. This procedure
is repeated until j = n. Taking this procedure for N learners,
one obtains dynamic assessment data

X = {xijk}, (i = 1, · · · , N, j = 1, · · · , n, k = 0, · · ·K),

where

xijk =


1 : learner i answered correctly to task j when

hint k or the previous hint before k was
presented

0 : else other,

and xijK denotes the response data when learner i cannot
answer correctly with hint K − 1.

4.3 Item response theory for dynamic assessment
We propose application of IRT to data X obtained in
dynamic assessment, where the problems with traditional
dynamic assessment methods are solvable as a result of
the three benefits of IRT. The probability that learner i will
respond correctly to task j with the k-th hint, p(uj = k|θi),
is assumed by the following graded response model [56]

p(uj = k|θi) =
1

1 + exp(−ajθi + bj(k−1)
)
− 1

1 + exp(−ajθi + bjk)
, (2)

where aj stands for a discrimination parameter expressing
the discriminatory power for learners’ abilities of task j, bjk
is a difficulty parameter expressing the degree of difficulty
of task j when the k-th hint is presented, and θi is an ability
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parameter expressing the ability of learner i. In addition,
p(xj = 0|θi) = 1 and p(xj = K|θi) = 0. Here, we simply
assume a unidimensional ability variable, which reflects the
learner development for a domain. Fig. 3 depicts an example
of item response function (2) for a task with four hints. The
horizontal axis shows the learner’s abilities. The vertical
axis shows the probability p(uj = k|θi) that learner i will
respond correctly to task j when k-th hint is presented.

4.4 Dynamic assessment for programming trace prob-
lems

In the report in which the term ”scaffolding” first appeared
[4], Wood et al. (1976) described how teachers interacted
with learners to help them solve a problem. Recently, the
concept of ”scaffolding” has been extended to enhance
learner development in broader situations than those of
problem solving only [57]. However, in this study, we specif-
ically examine ”scaffolding” for problem-solving situations
according to Wood et al. (1976) [4].

We applied the proposed IRT for dynamic assessment
of computer programming trace problems that have been
addressed in the computer science education area (see, for
example, [58]).

We used the tasks to find the final numerical values of
the target variables in the programs. We used six tasks with
four hints and one task with three hints. Task 1 with hints
is depicted in Fig. 2. First, the system presents each task
without hints to a learner. If the learner responds incorrectly,
then the system presents Hint 1. Otherwise, the system
stores the learner’s response and presents the next task.
If the learner responds incorrectly to the task with Hint 1,
then the system presents Hint 2. The system presents Hint
1, Hint 2, Hint 3, and Hint 4 sequentially until the learner
responds correctly. It is noteworthy that Hint 4 includes the
final answers of the task.

On the right of screen in Fig. 2, Hint 1 is presented to
explain ”increment: ++” in the program. On the left of screen
in Fig. 2, Hint 2, Hint 3, and Hint 4 are presented sequen-
tially. The first hint presented the required prior knowledge
to solve the task, with subsequent successive hints with
visualized trace results from the top of the program one
after another. In these tasks, the graded hints are designed
to become closer to the final answers as the sequence is
followed.
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Fig. 3. Graded response model for hints.

We obtained response data X from 156 examinees using
the dynamic assessment system. The examinees were first-
year technical college students who had begun to study
programming.

4.5 Estimated Parameters

We estimated the parameters of the graded response model
in Eq. (2) using data X obtained in the previous section.
For this purpose, we maximized the following log-Bayesian
posterior

l(aj , bjk | X)

=

∫ N∑
i=1

n∑
j=1

K∑
k=0

[(xijk log p(uj = k | θ, aj , bjk)

(1− xijk) log(1− p(uj = k | θ, aj , bjk)))
p(θ)p(aj)p(bjk)] dθ, (3)

where p(θ) ∼ N(0, 12), p(aj) ∼ logN(1.0, 0.42), p(bjk) ∼
N(µjk, 0.4

2), µj0 = −2.5, µj1 = −1.25, µj2 = 0.0, µj3 =
1.25, µj3 = 2.5, and N(µ, σ) denote the normal distribution
with expected value µ and variance σ.

We used the Newton–Raphson method to solve

∂l(aj , bjk | X)

∂aj
= 0 (4)

∂l(aj , bjk | X)

∂bjk
= 0 (5)

with a convergence criterion of 0.001. For integration of θ in
(3), we use Gaussian quadrature integration with 20 points.

Table 1 presents the correct answer rates (CARj0 =∑N
i=1 xij0

N ) for tasks without hints, and shows the estimated
parameters of aj and bjk for each task and associated hints.
Almost all tasks were slightly difficult, as inferred from the
CARj0, because all correct answer rates were less than 0.51.
It is apparent from aj that tasks 3–7 strongly discriminated
learners’ abilities, but tasks 1 and 2 had poor discrimination.
The estimated parameters bjk for each hint were ordered
according to the order in which the hints were presented
because the hints were presented cumulatively. In the table,
NA signifies that no learner answered correctly when a hint
was presented. Therefore, hints 1, 2, and 3 are the only
options in task 7 because all the students had answered
correctly when hint 3 was presented. We then compared
the reliabilities of the ability estimators with the numbers
of hints that were used in an earlier study [7] of dynamic

TABLE 1
Estimated parameters for each task and associated hints.

CARj0 aj bj4 bj3 bj2 bj1 bj0
Task 1 0.27 0.79 -2.59 -1.05 -0.54 0.23 0.99
Task 2 0.07 0.45 -1.62 -0.16 0.65 1.13 2.54
Task 3 0.26 2.03 -0.79 -0.25 0.33 0.77 1.06
Task 4 0.13 1.08 -1.04 -0.66 0.68 1.10 1.94
Task 5 0.37 1.02 -1.34 -0.52 -0.25 0.13 0.54
Task 6 0.37 1.15 -0.99 -0.66 -0.35 -0.20 0.52
Task 7 0.51 1.09 NA -0.76 -0.57 -0.28 -0.04
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Fig. 4. Outline of the probability-based scaffolding system.

assessment. We calculated the correlation coefficients be-
tween the estimated abilities using data for tasks 1–4 and
those using data for tasks 4–7. The results revealed a high
correlation coefficient value of 0.862. We similarly calculated
correlation coefficients between the average number of hints
needed for tasks 1–4 and those for tasks 4–7. We obtained a
low value of 0.662. The main reason the number of necessary
hints was less reliable is that the variance of the numbers
of used hints tended to be small because only a few hints
were needed for learners. Then the magnitude of estimation
error tended to be large. In contrast, the proposed estimated
ability for dynamic assessment was a more reliable measure
by minimizing the effects of heterogeneous or aberrant
responses that might have affected poor accuracy in the
estimates. Consequently, the proposed method improves the
reliability of dynamic assessment.

5 PROBABILITY-BASED SCAFFOLDING SYSTEM

The main objective of this study was clarification of the
mechanism for effective scaffolding. The main difficulty
with scaffolding is that over-assistance or lack of help inter-
rupts effective learning. The difficult task for the instructor
is how to optimize the magnitude of help using dynamic
assessment. In the previous section, we proposed an IRT
for dynamic assessment and showed that it improved the
reliability of traditional dynamic assessment. However, a
more important benefit of the proposed IRT for this study
is that it enables prediction of a learner’s correct answer
probabilities to tasks which had not been presented to the
learner before. In this section, we propose a method of

presenting adaptive hints to control the learner’s predictive
correct answer probabilities in tasks using the proposed IRT.
Here, we assume that some optimal correct answer proba-
bility exists to increase learners’ abilities. That high level
of capability is achieved by scaffolding when the difficulty
of tasks is slightly beyond the learner’s abilities. The most
important problem is to ascertain how great the optimal
correct response probability is. In this study, we compare
the learning performance by changing the probability to
find the optimal probability for learning in the later section.
We designate the optimal probability as the ”scaffolding
probability” and express it as PS .

According to this idea, we developed a scaffolding sys-
tem to solve the programming trace problem. Fig. 4 depicts
an outline of the system framework. The system consists
of the scaffolding system, the task and hints database, and
the learner response history database. The system has the
following procedures. 1. The system presents a task. 2.
The learner answers to the task. 3. If the learner responds
incorrectly to the presented task, then the system selects the
hint that is nearest to the scaffolding probability PS from
the hint database, and presents it to the learner. Procedures
2 and 3 are repeated until the learner answers correctly to
the task or the final hint is presented.

Algorithm 1 shows details of the proposed algorithm.
First, the system presents the first task without hints. If
a learner responds correctly, then the system estimates
the learner’s ability using the learner response data and
presents the next task. Here, the initial value of θi is zero,
which is the average of θi. If the learner responds incor-
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rectly, then the system shows the feedback that the learner’s
answer was wrong and then, from the remaining hints,
presents a hint by which the learner’s predicted probability
of correct answer to the task using the estimated θ is closest
to PS . Here, the system predicts the learner’s correct answer
probability to the task j with hint k by assigning the esti-
mated ability θ̂ and the estimated task and hint parameters
âj and b̂jk from the database into (2) as follows:

p(uj = k | âj , b̂jk, θ̂) = (6)
1

1 + exp(−âj θ̂i + b̂j(k−1)
)
− 1

1 + exp(−âj θ̂i + b̂jk)
.

If the learner responds incorrectly again, then the system
presents the wrong answer feedback and then provides the
next optimal hint sequentially until the learner responds
correctly or the final hint is presented. After the learner
responds correctly, the task or the final hint is presented.
The system presents the correct answer feedback and its
explanation. Next, the system estimates the learner’s ability
using the response history data. Then, the system presents
the next task. This procedure is repeated until no task
remains in the database. This algorithm was inspired by
adaptive testing that presented optimal items for measuring
learners’ abilities (For details of adaptive testing, see for
example, van der Linden and Glas (2010) [59] ).

For details, in the system, the ability parameter is esti-
mated as described below. We obtain learner i’s response
data Xil until the l-th presented task is presented, as

Xil = {xiqk}, (q = 1, · · · , l, k = 0, · · ·K),

where

xiqk =


1 : learner i answered correctly to q-th task when

hint k or the previous hint before k was
presented

0 : else other,

and xiqK denotes the response data when learner i cannot
answer q-th task correctly with hint K − 1. To estimate
learner i’s θ̂, we maximize the following log-posterior

l(θ | Xil, al, blk)

=

l∑
q=1

K∑
k=0

[(xiqk log p(uj = k | θ, aq, bqk)

(1− xiqk) log(1− p(uj = k | θ, aq, bqk)))p(θ)] . (7)

We used the Newton–Raphson method to solve

∂l(θ | Xil, al, blk)

∂θ
= 0 (8)

with a convergence criterion of 0.0001.
It is noteworthy that our study was conducted on the

assumption that the estimated ability increases, even though
the conventional IRT has assumed that the estimated ability
is invariant. For this study, we do not consider unique fea-
tures in which the estimated ability is dynamically increased
in the IRT model. However, the estimated ability using
the proposed method can reflect the dynamically increased
ability sufficiently because the tasks are not very numerous.

Fig. 5 depicts an example of adaptive hints presented
in the system according to a learner’s responses. Task 2
asks the final values of a and b after the program runs. In
this example, the estimated ability is 0.0 after the learner
incorrectly responded to task 2. In (a), the system selects hint
3 as the optimal hint for task 2 and presents it to the learner
because the learner’s predicted correct answer probability
with hint 3, 0.53, is closest to 0.5. Although the hints actually
include hint 1, which presents the necessary programming
grammars for this task, as the same as the right side of Fig.
2, Fig. 5 doesn’t show hint 1 because of limitations of space.

The learner answers the task incorrectly again. Therefore,
in (b), the system presents the next hint 4. Then the learner
completes the task correctly. The system re-estimates the
learner’s ability as 0.029. The system presents the next task
3. Task 3 asks the final values of a, b, c, and d after the
program runs. The learner completes the task incorrectly.
Then, in (c), the system presents optimal hint 3 because the
learner’s predicted correct answer probability with hint 3,
0.723, is closest to 0.5. This procedure is repeated until there
are no remaining tasks in the database.

Hints 3 and 4 of the example correspond to the second
and third iterations of the loop in the task programs. If a
loop iterates more than three times when we use the same
mode of providing hints, then it is necessary to add extra
hints corresponding to the extra loop iterations because our
current system has only four hints at most for all the tasks.

Algorithm 1 Scaffolding ()

1: Initialize θ̂ = 0
2: Input ”scaffolding probability” PS , ”the number of hints

for task i” (K − 1)i
3: for i = 1;N do
4: k = 0
5: Present task i and goto 8
6: Select unused hint k with which the learner’s pre-

dicted probability of correct answer to task i is the
closest to the scaffolding probability PS . Here, the
learner’s predicted probability of correct answer to
task i is obtained by p(uj = k | âj , b̂jk, θ̂) in (6).

7: Present task i with hint k
8: Input the learner’s response to task i
9: Automatically mark the response

10: if k < (K − 1)i and the learner’s response is wrong
then

11: Provide the wrong answer feedback to the learner
and go to 6

12: end if
13: Present the correct answer feedback and its explana-

tion
14: Estimate θ̂ from the learner’s response history
15: end for

6 EMPIRICAL EXPERIMENTS TO FIND THE OPTIMAL
SCAFFOLDING PROBABILITY

The analyses described in this section estimate the optimal
scaffolding probability from some empirical experiments.
The participants in these experiments were 93 first-year
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public class Question2_2 { 

public static void

main(String args[]){ 

int a = 0; //a<-0; 

int b = 0; //b<-0; 

while(a < 3){ //0<3:true->loop 1; 1<3:true->loop2;

a++; //a=a+1;a=0+1;a=1; a=a+1;a=1+1;a=2;

if(b > a){ //0>1:false->skip;

a++; // 

b++; // 

} 

b += 3; //b=b+3;b=0+3;b=3 

} 

System.out.println(a); 

System.out.println(b); 

} 

}

Hint2 Hint 3

No Hint Hint 1 Hint 2 Hint 3 Hint 4

Item Difficulty Parameter 2.54 1.13 0.65 -0.16 -1.62

Predicted Correct Answer Probability 0.13 0.30 0.38 0.53 0.78

Es!mated Ability 0.0

Answer the final values of a and b a"er the program runs.

(a) Task 2 Hint 3
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public class Question2_2 { 

public static void

main(String args[]){ 

int a = 0; //a<-0; 

int b = 0; //b<-0; 

while(a < 3){ //0<3:true->loop 1; 1<3:true->loop2;

a++; //a=a+1;a=0+1;a=1; a=a+1;a=1+1;a=2;

if(b > a){ //0>1:false->skip; 3>2:true->continue;

a++; // a=a+1;a=2+1;a=3; 

b++; // b=b+1;b=3+1;b=4; 

} 

b += 3; //b=b+3;b=0+3;b=3 b=b+3;b=4+3;b=7; 

} 

System.out.println(a); 

System.out.println(b); 

} 

}

Hint4Hint2 Hint 3

No Hint Hint 1 Hint 2 Hint 3 Hint 4

Item Difficulty Parameter 2.54 1.13 0.65 -0.16 -1.62

Predicted Correct Answer Probability 0.13 0.30 0.38 0.53 0.78

Es!mated Ability 0.0

Answer the final values of a and b a"er the program runs.

(b) Task 2 Hint 4
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public class Question5_2 { 

public static void main(String args[]){ 

int a = 0; //a<-0 

int b = 0; //b<-0 

int c = 3; //c<-0 

int d = 0; //d<-0 

while(a < 2){ //0<2:true->loop A 1 

if(c < 5){ //0<3:true->continew 

while(d < 2){ //0<2:true->loop B 1 1<2:true->loop B 2

c++; //c=c+1;c=3+1;c=4; c=c+1;c=4+1;c=5; 

d++; //d=d+1;d=0+1;d=1; d=d+1;d=1+1;d=2; 

b++; //b=b+1;b=0+1;b=1; b=b+1;b=1+1;b=2; 

} 

b++; // b=b+1;b=2+1;b=3; 

} 

a++; // a=a+1;a=0+1;a=1;

}}}

Hint2 Hint3

No Hint Hint 1 Hint 2 Hint 3 Hint 4

Item Difficulty Parameter 1.06 0.77 0.33 -0.25 -0.79

Predicted Correct Answer Probability 0.027 0.071 0.261 0.723 0.944

Es!mated Ability 0.029

Answer the final values of a, b, c and d a"er the program runs.

(c) Task 3 Hint 3

Fig. 5. Example of adaptive hints.

university students of the faculty of engineering, who had
begun to study programming.

6.1 Method
This section presents comparison of the learning perfor-
mances by changing the scaffolding probability to obtain the
optimal probability using the system in section 5 (groups A–
C). Additionally, we compare the learning performances of
the proposed system with those of the no hint condition
(group D), the traditional dynamic assessment condition
(group E), and the condition of the task presentation with
the answer and its explanation (group F). Specifically, the
participants were divided into the following six groups for
different experiments.

A) The system in section 5 presented hints so that the
learner’s predictive correct answer probability was
close to 0.8.

B) The system in section 5 presented hints so that the
learner’s predictive correct answer probability was
close to 0.65.

C) The system in section 5 presented hints so that the
learner’s predictive correct answer probability was
close to 0.5.

D) The system presented no hints. (The learner’s pre-
dictive correct answer probability was 0.1–0.5). If the
participant answers incorrectly once, then the system
presents the correct answer and its explanation.

E) The system presents the graded hints sequentially in
the same way as the method explained in section 4.4.
The system presents the next hint if the participant
responds incorrectly to the task. This procedure was
repeated until the participant responded correctly. If
the participant responds incorrectly to the task when
the final hint is presented, then the system presents
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TABLE 2
Results from pre-tests and post-tests (Tukey–Kramer method and significant difference from group C: *5 %, **1%).

Group A B C D E F
No. of examinees 14 16 18 15 12 18

Pre-test score (The maximum score 12)
1.14

(1.59)
1.69

(2.44)
1.78

(2.44)
1.33

(1.89)
2.17

(1.40)
2.72

(2.23)

Post-test score (The maximum score 45)
35.4**
(2.94)

34.8**
(2.13)

40.0
(3.15)

36.5*
(2.22)

34.8**
(2.44)

30.9**
(4.92)

Memory holding test (The maximum score 26)
20.8

(2.73)
20.8

(2.27)
23.0

(2.18)
20.6

(1.81)
20.8

(1.81)
18.3

(5.41)
Learning time [min] 69 (26) 78 (28) 71 (22) 67 (15) 72 (24) 64 (24)

the correct answer and its explanation. Although the
systems in A)–C) skip to the hint closest to the target
probability, the system in E) presents all the hints
one-by-one until the learner answers correctly.

F) The system presents tasks with the correct answers
and an explanation. Although the participants were
not required to input their answers to the system,
they read the tasks with the correct answers and their
explanations sequentially.

We developed these six versions of the system. The ex-
periments were conducted according to five steps presented
below.

1) The participants took a pre-test using the system to
assess their prior knowledge. The pre-test consisted
of programming trace problems asking for the final
values of variables after the program began work-
ing. The examinees had to solve the problems in-
dependently without hints. The number of problem
items was 12; raw scores were used.

2) The system presented basic knowledge related to
programming trace problems to the examinees after
the pre-test had taken place. Specifically, the exam-
inees studied the programming grammar: 1. vari-
able, 2. condition branch, 3. while loop, 4. for loop,
and 5. array, to solve programming trace problems.

3) The system started the scaffolding module corre-
sponding to each group (A–F) after previous learn-
ing had taken place.

4) The examinees took a post-test after learning with
the scaffolding system. The post-test consisted
of new problems combined with the previously
learned programming grammars: 1. variable, 2. con-
dition branch, 3. while loop, 4. for loop, and 5.
array. The participants had to solve problems by
themselves without hints. The number of problem
items was 45. The raw scores were used.

5) After a week, the participants took a memory hold-
ing test that consisted of similar items to those in
the post-test. The number of problem items was 26.
The raw scores were used.

The period of the experiments was from October 15 through
October 31 in 2014. We allocated 20 participants randomly
to each group. However, only 93 participants completed the
experiments.

6.2 Results

6.2.1 Optimal Scaffolding Probability

For this study, we assumed that there is an optimal probabil-
ity with which the learner can solve the task given teacher’s
assistance for scaffolding. To ascertain that optimal proba-
bility, this section presents a comparison of the performance
of pre-test and post-test examinees groups from A to F
that were used to evaluate the proposed system. The test
results are presented in Table 2, which lists the number of
examinees who completed the experiments in each group,
the average score obtained from pre-tests, the average score
from post-tests, the average score from memory-holding
tests, and the average learning time using the system. The
values in parentheses in the table are standard errors. We
infer from the results of χ2 test with a significance level
of 5% that the results from the pre-test are equivalent to
those of the other groups. No difference was found in the
groups before the experiment. In addition, the average pre-
test scores were extremely low because the examinees were
beginners at programming.

We assessed differences between groups using one-way
analysis of variance (ANOVA) in the results from post-tests;
then we used the Tukey–Kramer method for the detected
differences. Using Tukey-Kramer tests allows for correction
because of having done multiple comparisons, as long as
the statistical results from the ANOVA are significant.

Group C outperformed the others, as shown in Table 2,
with a significance level of 5% despite the short average
learning times. Conversely, Group F, which provided the
answers and their explanations, exhibited the worst per-
formance, although the explanation included the content
for all hints. This method provided less opportunity for
learners for deep consideration of problems because the
average learning time was the shortest. In contrast, with
no hints, group D exhibited the second-best performance.
The average learning time for group D was longer than
that for group F. Presenting answers only after learners’
incorrect answers might induce deep thinking from this to
solve problems. Moreover, this result suggests that over-
instruction is ineffective for attaining learner development.

The system presented herein hints in groups A and B
so that a learner’s predictive correct answer probability was
near 0.8 for the former and 0.65 for the latter. In these cases,
the system tended to present more help (content of hints)
than that for group C. The average scores for groups A and
B were less than that of group D, although the averages
of learning times for groups A and B were longer than
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Fig. 6. Correct answer rates for the examinees when the first hint was
presented (except for group D) .

those for the others. This result demonstrates that setting
correct answer probabilities by scaffolding strongly affects
the learning effectiveness. We also conducted a conventional
dynamic assessment procedure for group E. The average
score for group E was less than that of group C and was
almost identical to those for groups A and B from the results.
Actually, the effectiveness of the conventional method was
almost identical to that of the other methods with slight
over-assistance. The average learning time was almost equal
to those of group C that skips the hint closest to PS . The
reason is that the number of hints (only four at most) was
small in this experiment. However, if the number of hints
for each task becomes large, group E might waste much
time reading many meaningless hints and suffer from a
heavy mental load. If this is true, then the differences of
learning performance and time between groups C and E
could become large when the number of hints becomes
large.

Group C provided the best average score in the results
for the memory holding test. In contrast, the average score
for group F was the worst. The average scores for the other
groups were almost identical. These results indicate that the
scaffolding method with a correct answer probability of 0.5
was superior.

6.2.2 Evaluation of basic functions
In previous sections, we concluded that the scaffolding to
adjust learners’ success probability to 0.5 was the most
effective for learning. As described in this section, we tested
and confirmed that the system presented adaptive hints
so that the learners’ predicted correct answer probabilities
in (6) to the tasks were close to PS . Fig. 6 depicts the
correct answer rates for groups A, B, C, and E, over all
examinees for tasks when the first hints were presented. It
is noteworthy that the first hints for groups A, B, C, and
E were presented after the learners answered incorrectly to
the tasks without hints. The correct answer rates, CARj1,
were calculated using data Xi(l=n) in section 5 as follows:

CARj1 =

∑Nj1

i=1 xij1

Nj1
, (9)

Fig. 7. Transition in estimated abilities.

Fig. 8. Average numbers of presented hints.

where Nj1 denotes the number of learners who answered
task j with hint 1. For group D, Fig. 6 shows the correct
answer rates for tasks without hints. From Fig. 6, the sys-
tems for groups A, B, and C controlled learners’ correct
answer probabilities at around PS by presenting adaptive
hints to various levels of learners. This evidence of control
demonstrates that the function of adaptive hints functioned
precisely because the correct answer rates without hints
(group D) were between 0.1 and 0.4. In addition, the correct
answer rates for group D increased greatly (more than
0.1). This might result from the learning effects from the
exercises. However, those for groups A, B, and C increased
less than those for group D. This phenomenon for groups A,
B, and C also reflects the effectiveness of the adaptive hints
function to enhance individual learners’ abilities.

From task 1 to task 4, the correct answer rates for group
E are slightly higher than those for group D because the
results for group E indicate the correct answer rates with
only the hints 1. However, after task 5, the differences
between the groups become somewhat unstable because the
learners’ abilities increased as a result of the learning from
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the exercises. Next, we tested and confirmed that the system
increased the learners’ abilities.

Fig. 7 depicts the average estimated abilities, calculated
as described in section 5, for tasks when learning with the
system. The results for groups D and E, which did not
employ the IRT model, were estimated using the learners’
responses of data to the tasks and the IRT parameters in
Table 1.

In this study, we did not add unique features in which
the estimated ability is increased dynamically in the IRT
model. However, results show that the estimated ability us-
ing the proposed method reflects the dynamically increased
ability. It is noteworthy that the true ability might increase
more than the estimated ability increases in Fig. 7 because
the increase of the ability estimates in (8) is restricted by
learner’s response data for the learner’s past learned tasks.
It is expected that this restriction works to suppress an over-
fitting and then provides more accurate ability estimation.
This result demonstrates the effectiveness of the proposed
system for learner development.

As the results of Table 2 suggest, the order of the degree
of ability increase is C, D, E, B, and A. The average ability
in group C, which shows the best performance, increases
monotonically from 0.1 in the figure when learners proceed
with learning until task 6; it converges to around 0.4. The
abilities for groups A and B might be estimated as less than
the learners’ true abilities because groups A and B automati-
cally present greater numbers of hints than the other groups
do, although a learner’s estimated ability increases as the
number of hints after which the learner correctly responded
increases. Particularly, the estimated abilities for group A are
significantly lower than those for the other groups, which
causes over-assistance. In this case, it’s almost as though the
learners are wasting their time in the system because the
system presents more hints than necessary.

Furthermore, the ability estimates of all the groups tend
to decrease in task 7. The following possible reasons exist.
One is that the hints difficulty parameter estimates of task
7 are smaller than those of tasks 2- 6, from Table 6. The
examinees’ abilities are estimated as smaller because they
answer incorrectly to tasks and hints with smaller difficulty
parameter estimates. The other is that the prior distribution
p(θ) = N(0, 12) worked to avoid extreme deviation from
θ̂ = 0.0. Therefore, the prior might have caused a ceiling
effect.

Fig. 8 depicts the transition in the average number of
hints presented to learners for groups A, B, C, and E.
The number of hints that the learner received from the
scaffolding system depends on the scaffolding probability
PS , the hint difficulty parameter estimates, and the learner’s
current ability estimate. The number of presented hints
in group C does not decrease monotonically because the
characteristics of hints differ for tasks. However, the aver-
age number of presented hints decreases dynamically after
learning task 4. The system gradually decreases the amount
of help according to the increased learner’s ability. This is
the fading function that is expected to enhance learners’
autonomous learning and their self-reliance in solving tasks.
This fading function caused the phenomenon by which the
correct answer rates for groups A, B, and C did not change
greatly as the number of provided hints decreases; then it

is expected to increase the learners’ abilities when PS is
appropriate for learning.

Groups A and B tend to receive greater numbers of hints
than group C because they adjusted their correct answer
probability to a higher value than that of group C. However,
the average number of hints for group E tends to remain at
around two for all the tasks except for task 2. Therefore,
the traditional dynamic assessment method did not work
any fading functions because it is difficult for the learners
to control the optimum number of hints by themselves. As
a result, the degree of fading in group C was greater than
those of the other groups because the average numbers of
hints for tasks 6–8 were less than one. This result might
be an important factor by which group C outperformed in
Table 2.

Moreover, this lack of the fading function might be the
reason that the ability estimates of groups D and E did not
increase monotonically in Fig. 7. As described previously,
Pea pointed out that many software features in the current
scaffolding systems did not have a fading function [53]. The
scaffolding system necessarily has a fading function if it has
the adaptive function to learners.

Consequently, the results demonstrate that the proposed
approach realizes a fading function, which the previous
scaffolding systems did not have. It might be an important
factor for effective learning.

6.2.3 Question analyses
We also posed three questions to the examinees:

1) Did you think that you achieved the correct answers
to the tasks by yourself?

2) Did you have confidence in solving similar tasks by
yourself?

3) How did you evaluate the problem solving task
difficulty?

The examinees answered them by responding on a five-
point Likert scale for questions 1) and 2): 1. Strongly dis-
agree, 2. Weakly disagree, 3. I am not sure, 4. Weakly
agree, and 5. Strongly agree. For question 3), the following
alternatives were used: 1. very easy, 2. easy, 3. appropriate,
4. difficult, 5. very difficult.

Table 3 presents the average scores of groups A–F for
respective questions. The values in parentheses in the table
represent standard errors. From Table 3, group C shows the
highest score for question 1). However, it is noteworthy that
the examinees did not think that they reached the correct
answers by themselves because the score ”3” means ”I am
not sure”. Furthermore, the scores of the other groups are
much lower than that of group C. This result suggests that
both over-assistance and lack of assistance might decrease
the learners’ sense of accomplishment.

For question 2), group C shows the highest score, which
is higher than 4.0. However, the scores of the other groups
are less than 4.0. Therefore, no method except for the pro-
posed method increases learners’ confidence for significant
autonomous learning.

Group F with full instruction shows the worst score for
both questions 1) and 2). Therefore, over-instruction tends to
convince learners of learning well only slightly and hinders
learner independence.
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TABLE 3
Average scores and the standard deviation from five point Likert scale questions (Tukey–Kramer method and significant difference: *5%).

Group A B C D E F
Question 1: Did you think that you achieved
the correct answers to the tasks by yourself?

2.57
(0.979)

2.16
(0.601)

3.00
(0.882)

2.06
(0.680)

2.31
(0.583)

2.00
(0.577)

Question 2: Did you have confidence in
solving similar tasks by yourself?

3.79
(0.340)

3.81
(0.674)

4.05
(0.726)

3.87
(0.705)

3.75
(1.01)

3.67
(1.00)

Question 3: How did you evaluate the
problem solving task difficulty?

2.85
(0.75)

2.96
(1.03)

3.28
(0.83)

3.79
(0.96)

3.23
(0.93)

2.50
(0.84)

Group D presents poor results for question 1), but it
shows better results for question 2). The reason for question
1) results is that the tasks with no hints tend to be difficult
for learners because their correct response rates are less
than 0.4. However, the post-test result from Table 2 is good.
Learners tried to solve the tasks autonomously. This chal-
lenge might have enhanced their learning and confidence,
although they were unable to reach the correct answer.

Consequently, the results from questions 1) and 2) show
that effective learning is served better by lack of assistance
than by over-assistance.

The results for question 3) showed that group F evalu-
ated the task as easy because the average score was 2.50.
Group D produced the highest score, which means it is the
most difficult task because the correct answer rate of group
D was the worst. For the other groups, the order of the score
was close to 3.0, which means that ’appropriate’ is B, A, E,
and C. This result demonstrates that the learners tended to
prefer the tasks with the predicted correct answer probabil-
ity of 0.65, which is slightly more than 0.5. However, from
Table 2, group C provided the best learning performance.
This result suggests that the learning performance might be
superior when learners feel that solving a task is somewhat
difficult.

7 CONCLUSIONS

This article proposed a scaffolding framework that pro-
vided adaptive hints using a probabilistic model, i.e., item
response theory (IRT). We first proposed IRT for dynamic
assessment in which learners were tested under dynamic
conditions of providing a series of graded hints. Further-
more, we estimated the parameters of the IRT for dynamic
assessment from actual data. Results show that the proposed
method improves the reliability of traditional dynamic as-
sessment.

We then explained a scaffolding system we had devel-
oped that presented adaptive hints using the estimated abil-
ity using IRT from learner’s response data. It was assumed
for this study that rational scaffolding is based on a prob-
abilistic decision rule: an optimal probability to facilitate
learner development exists for a learner solving a task after
a teacher’s assistance. To ascertain the optimal probability,
we used the scaffolding system to compare the learning
performance by changing the predictive probability. Re-
sults show that scaffolding such that the learners’ success
probability is 0.5 provides the best learning performance.
Results also suggest that over-instruction, which presents
full answers of tasks without opportunities for learners

to solve the problems by themselves, presents the worst
learning performance.

Furthermore, we obtained the following results: 1) The
scaffolding system enhanced learner development to in-
crease the learner ability. 2) The system achieved scaffolding
with fading. 3) Neither over-instruction nor lack of instruc-
tion was effective for learner development.

We have six plans for future work: A) For this study, the
experiment period was about two weeks only. We intend
to conduct an experiment over a longer period to confirm
the actual effectiveness of the system. B) We intend to
expand IRT to a method with multidimensional abilities or
to a Bayesian network because the unidimensional ability
model has a limitation that it is difficult to correctly esti-
mate the model parameters when the task variables are not
conditionally independent given the unidimensional ability
variable [60], [61]. C) We did not consider unique features
in which the estimated ability was increased dynamically
in the system design. Discarding response data from earlier
presented tasks might improve the accuracy of estimating
a learner’s current ability. D) We applied ”scaffolding” to
problem-solving tasks. Recently however, the concept of
”scaffolding” has been extended to enhance learner devel-
opment in a broader situation than that of problem solving
alone [57]. We intend to extend the proposed framework to
a broader concept of the scaffolding situation. For example,
several IRT models, which incorporate the reviewers’ pa-
rameters into the model, have been proposed recently for
peer assessment [62], [63]. These IRT models can extend
the possibility of applying the proposed approach to open-
ended tasks or some activities in learning communities
with peer reviewers’ assessment. E) According to Vigotskian
scaffolding theory, learner development is promoted by an
expert’s appropriate help to a task that the learner cannot
solve alone. The learner’s correct answer probabilities for
the presented tasks without a hint is expected to be less than
0.5 if the most effective help is giving hints to increase the
learner’s correct answer probability is 0.5, as shown in this
study. However, the learner’s correct answer probability for
a task without a hint varies by the learner’s ability. To select
a task so that the learner’s correct answer probability of
tasks is close to the target probability, the problem selection
of ”adaptive testing” [59] using IRT has been known. We
intend to add the adaptive problem selection function to
the scaffolding system so that the learner’s correct answer
probabilities for the presented tasks without a hint are less
than 0.5. F) As shown in section 2, adaptive scaffolding
methods of various kinds have been proposed. We intend to
compare the proposed method with these existing methods.
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Moreover, the problem selection of the adaptive testing
and the proposed hint selection are similar because both
methods are optimized based on the predicted correct an-
swer probability. The readers might think that the proposed
hint selection is a kind of adaptive testing by modifying the
current problem with appropriate hints instead of selecting
a different problem. However, more precisely, the adaptive
testing and our scaffolding system are apparently different
because our model allows hints to depend strongly on the
problem but the adaptive testing does not allow problems to
depend on one another. Although a next selected problem in
the adaptive testing should be conditionally independent of
the current problem given the ability variable, the selected
hints in the proposed system have no restriction. For exam-
ple, the adaptive testing does not allow inclusion of a pair of
a problem and its sub-problem in the database because they
do not satisfy the conditional independence assumption.
This is an important difference between traditional adaptive
testing and the proposed adaptive hint system.

In addition, although we did not emphasize the point
in this article, recently ”smart learning technologies” in
computer science have become important [64], [65]. The
proposed system in this article might also present great pos-
sibilities as a good example of smart learning technologies.
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