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Group optimization to maximize peer
assessment accuracy using item response

theory and integer programming
Masaki Uto, Duc-Thien Nguyen, and Maomi Ueno, Member, IEEE

Abstract—With the wide spread of large-scale e-learning environments such as MOOCs, peer assessment has been popularly used
to measure learner ability. When the number of learners increases, peer assessment is often conducted by dividing learners into
multiple groups to reduce the learner’s assessment workload. However, in such cases, the peer assessment accuracy depends on the
method of forming groups. To resolve that difficulty, this study proposes a group formation method to maximize peer assessment
accuracy using item response theory and integer programming. Experimental results, however, have demonstrated that the method
does not present sufficiently higher accuracy than a random group formation method does. Therefore, this study further proposes an
external rater assignment method that assigns a few outside-group raters to each learner after groups are formed using the proposed
group formation method. Through results of simulation and actual data experiments, this study demonstrates that the proposed
external rater assignment can substantially improve peer assessment accuracy.

Index Terms—Peer assessment, item response theory, group formation, e-learning, MOOCs, collaborative learning

F

1 INTRODUCTION

As an assessment method based on a social constructivist
approach, peer assessment, which is mutual assessment
among learners, has become popular in recent years [1], [2],
[3]. Peer assessment has been adopted in various learning
and assessment situations (e.g., [3], [4], [5], [6], [7], [8], [9])
because it provides many important benefits [1], [2], [3], [10],
[11], [12], [13], [14] such as 1) Learners take responsibility for
their learning and become autonomous. 2) Assigning rater
roles to learners raises their motivation. 3) Transferable skills
such as evaluation skills and discussion skills are practiced.
4) By evaluating others, raters can learn from others’ work,
which induces self-reflection. 5) Learners can receive useful
feedback even when they have no instructor.

One common use of peer assessment in higher education
is for summative assessment [15], [16], [17]. Peer assessment
is justified as an appropriate assessment method because the
abilities of learners are definable naturally in the learning
community as a social agreement [2], [18]. The importance of
this usage has been increasing concomitantly with the wider
use of large-scale e-learning environments such as MOOCs
[13], [14], [15]. In such environments, evaluation by a single
instructor becomes difficult because the number of learn-
ers is extremely large. Peer assessment can be conducted
without burdening an instructor’s or a learner’s workload
if learners are divided into small groups within which the
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members assess each other, or if only a few peer-raters are
assigned to each learner [14], [16], [17].

Peer assessment, however, entails the difficulty that the
assessment accuracy of learner ability depends on rater
characteristics such as rating severity and consistency [1],
[2], [13], [14], [19], [20], [21], [22], [23]. To resolve that
difficulty, item response theory (IRT) [24] models incorpo-
rating rater parameters have been proposed (e.g., [1], [2],
[23], [25], [26], [27], [28]). The IRT models are known to
provide more accurate ability assessment than average or
total scores do because they can estimate the ability along
with consideration of rater characteristics [2].

In learning contexts, peer assessment has often been
adopted for group learning situations such as collaborative
learning, active learning, and project-based learning (e.g.,
[13], [15], [16], [19], [29], [30], [31]). Specifically, learners are
divided into multiple groups in which they work together.
Peer assessment is conducted within the groups. However,
in such peer assessment, the ability assessment accuracy
depends also on a way to form groups. For example, when
a group consists of learners who can do accurate mutual
assessment, their abilities can be estimated accurately from
the obtained assessment data. By contrast, if a group consists
of learners who tend to assess others randomly, then accu-
rate ability assessment is expected to be difficult. Therefore,
group optimization is important to improve the assessment
accuracy when peer assessment is conducted within groups.

Only one report of the relevant literature describes a
study [31] that proposed a group formation method partic-
ularly addressing peer assessment accuracy. However, the
purpose of this method is to form groups while providing
equivalent assessment accuracy to all learners to the greatest
degree possible. Although the method can reduce differ-
ences in accuracy among learners, it does not maximize the
accuracy.
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To resolve that shortcoming, this study proposes and
evaluates a new group formation method that maximizes
peer assessment accuracy based on IRT. Specifically, the
method is formulated as an integer programming problem,
a class of mathematical optimization problems for which
variables are restricted to integers, that maximizes the lower
bound of the Fisher information measure: a widely used
index of ability assessment accuracy in IRT. The method
is expected to improve the ability assessment accuracy be-
cause groups are formed so that the learners in the same
group can assess one another accurately. However, exper-
imentally obtained results demonstrated that the method
did not present sufficiently higher accuracy than that of a
random group formation method. The result suggests that
it is generally difficult to assign raters with high Fisher in-
formation to all learners when peer assessment is conducted
only within groups.

To alleviate that shortcoming, this study further pro-
poses an external rater assignment method that assigns a
few optimal outside-group raters to each learner after form-
ing groups using the method presented above. We formulate
the method as an integer programming problem that max-
imizes the lower bound of the Fisher information for each
learner given by assigned outside-group raters. Simulations
and actual data experiments demonstrate that assigning a
few optimal external raters using the proposed method can
improve the peer assessment accuracy considerably.

It is noteworthy that many group formation methods
have been proposed for improving the effectiveness of
collaborative learning (e.g., [31], [32], [33], [34], [35], [36],
[37], [38]). This study does not specifically examine learning
effectiveness. However, groups that are formed to maximize
the assessment accuracy are expected to be effective to
improve learning because receiving accurate assessments
generally promotes effective learning [19]. For that reason,
group formation for improving peer assessment accuracy
can be regarded as an important research effort in the field
of educational technology.

2 PEER ASSESSMENT DATA

This study uses a learning management system (LMS) called
SamurAI [39] as a peer assessment platform.

The LMS SamurAI stores huge numbers of e-learning
courses, where each course comprises 15 content sessions
tailored for 90-min classes. Each class comprises instruc-
tional text screens, images, videos, practice tests, and report-
writing tasks. To submit reports and conduct peer assess-
ment, this system offers a discussion board system. Fig. 1
portrays a system interface by which a learner submits a
report. The lower half of Fig. 1 presents a hyperlink for
other learners’ comments. By clicking a hyperlink, detailed
comments are displayed in the upper right of Fig. 1. The
five star buttons shown at the upper left are used to as-
sign ratings. The buttons represent -2 (Bad), -1 (Poor), 0
(Fair), 1 (Good), and 2 (Excellent). The system calculates
the averaged rating score of each report and uses it to
recommend excellent reports to other learners [40]. Other
studies have used such scores for various purposes such
as grading learners [41], [42], evaluating rater reliability
[43], predicting learners’ future performance [44], [45], and

Fig. 1. Peer assessment system implemented in LMS SamurAI.

assigning weights to formative comments [13]. This article
describes our attempts at improving the score accuracy.

The rating data U obtained from the peer assessment
system consist of rating categories k ∈ K = {1, · · · ,K}
given by each peer-rater r ∈ J = {1, · · · , J} to each
learning outcome of learner j ∈ J for each task t ∈ T =
{1, · · · , T}. Letting utjr be a response of rater r to learner
j’s outcome for task t, the data U are described as

U = {utjr | utjr ∈ K ∪ {-1}, t ∈ T , j ∈ J , r ∈ J }, (1)

where utjr = −1 denotes missing data. This study uses five
categories {1, 2, 3, 4, 5} transformed from the rating buttons
{−2,−1, 0, 1, 2} in the peer assessment platform above.

As described in Section 1, peer assessment is often con-
ducted by dividing learners into multiple groups. This study
assumes that peer assessment groups are created for each
task t ∈ T . Here, let xtgjr be a dummy variable that takes
the value of 1 if learner j and peer r are included in the same
group g ∈ G = {1, · · · , G} for assessment of task t, and
which takes the value of 0 otherwise. Then, peer assessment
groups for task t can be described as shown below.

Xt = {xtgjr | xtgjr ∈ {0, 1}, g ∈ G, j ∈ J , r ∈ J } (2)

Consequently, when peer assessment is conducted among
group members, the rating data utjr become missing data if
learners j and r are not in the same group (

∑G
g=1 xtgjr = 0).

This study is intended to assess the learner ability from
the peer assessment data U accurately by optimizing the
group formation X = {X1, · · · ,XT }. For that purpose,
we use item response theory.

3 ITEM RESPONSE THEORY

Item response theory (IRT) [24], a test theory based on math-
ematical models, has been used widely for educational test-
ing. Actually, IRT represents the probability that a learner
responds to a test item as a function of the latent ability
of the learner and item characteristics such as difficulty
and discrimination. The use of IRT provides the following
benefits. 1) A learner’s responses to different test items
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can be assessed on the same scale. 2) Missing data can be
handled easily.

Many IRT models are applicable to ordered-categorical
data such as peer assessment data. The representatives are
the Rating Scale Model (RSM) [46], Partial Credit Model
(PCM) [47], Generalized Partial Credit Model (GPCM) [48],
and Graded Response Model (GRM) [49]. Although those
traditional IRT models are applicable to two-way data con-
sisting of learners × test items, they are inapplicable to the
peer assessment data directly because they are three-way
data comprising learners × raters × tasks, as defined in
Section 2.

To resolve that difficulty, IRT models that incorporate
rater parameters have been proposed (e.g., [1], [2], [23],
[25], [26], [27], [28]). These models treat item parameters
in traditional IRT models as task parameters. For example,
an item difficulty parameter is regarded as a task difficulty
parameter.

The following subsection introduces an IRT model for
peer assessment [2], which is known to realize the highest
ability assessment accuracy in the related models when the
number of raters (= learners) increases.

3.1 Item response theory for peer assessment

The IRT model for peer assessment [2] has been formulated
as a GRM that incorporates rater parameters. The model
defines the probability that rater r responds in category k to
learner j’s outcome for task t as

Ptjrk = P ∗
tjrk−1 − P ∗

tjrk (3)
P ∗
tjr0 = 1,

P ∗
tjrk = 1

1+exp(−αtγr(θj−βtk−εr))
, 1 < k < K − 1

P ∗
tjrK = 0.

The following are used in those equations: γr reflects the
consistency of rater r; εr represents the severity of rater r;
αt is a discrimination parameter of task t; and βtk denotes
the difficulty in obtaining category k for task t (with βt1 <
· · · < βtK−1).

Fig. 2 presents examples of item response curves (IRCs)
for three raters (designated as Rater 1, 2 and 3) having
different characteristics. We can draw the IRCs for a rater
r by plotting the probability Ptjrk with changing ability
θj given parameter values of the rater and task t. In this
example, the parameters for Rater 1 were γr = 1.2 and
ϵr = 1.5, those for Rater 2 were γr = 1.2 and ϵr = −1.5, and
those for Rater 3 were γr = 0.8 and ϵr = −1.5, respectively.
The task parameters were set as αt = 1.0, βt1 = −1.5,
βt2 = −0.5, βt3 = 0.5, and βt4 = 1.5. The left panel of
Fig. 2 portrays the IRCs of Rater 1. The central panel shows
the IRCs of Rater 2. The right panel shows the IRCs of
Rater 3. The horizontal axis shows the learner ability. The
first vertical axis shows the response probability for each
category.

This IRT model presents the severity of each rater as
ϵr . As the parameter value increases, the IRCs shift to the
right. For instance, Fig. 2 shows that the IRCs of Rater 1,
who has high severity, shifted rightward compared to those
of Rater 2. That tendency reflects that raters with higher
severity tend to assign low scores consistently.
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Fig. 2. Item response curves of the IRT model with rater parameters for
three raters.

Furthermore, the model presents the consistency of each
rater as γr . The lower the parameter value becomes, the
smaller the differences in the response probabilities among
the categories, as in the IRCs of Rater 3. Therefore, a rater
with a lower consistency parameter has a stronger tendency
to assign different scores to learners with the same ability
level. Those raters generally engender low ability assess-
ment accuracy because their scores do not necessarily reflect
the true ability of a learner.

The interpretation of the task parameters is the same as
that of the item parameters in GRM.

The IRT models with rater parameters are known to
provide higher ability assessment accuracy than average or
total rating scores do because they can estimate the ability
considering the rater characteristics [50], [51], [52], [53].
Additionally, the IRT model introduced into this subsection
is known to achieve the highest peer assessment accuracy in
the related models when the number of raters increases [2].
This study assumes that group formation becomes increas-
ingly necessary as the number of learners (=raters) increases.
For that reason, this study uses this model.

The authors have examined the effectiveness of those
IRT models by their application to actual peer assessment
data collected using LMS SamurAI [1], [2]. However, the
influence of the means of forming groups has been ignored.
As described in Section 1, the assessment accuracy depends
on a group formation when the peer assessment is con-
ducted only among group members. This study improves
the assessment accuracy by optimizing the group formation
based on the IRT model.

3.2 Model identifiability
The IRT model above entails a non-identifiability problem,
meaning that the parameter values cannot be determined
uniquely because different sets of them provide the same
response probability [54], [55]. Although the GRM parame-
ters are identifiable by fixing the distribution of the ability
[56], [57], this model still has indeterminacy of the scale for
αtγr and that of the location for βtk + ϵr , even if the ability
distribution is fixed. Specifically, the response probability
Ptjrk with αt and γr engenders the same value of Ptjrk

with α′
t = αtc and γ′

r = γr

c for any constant c because
α′
tγ

′
r = (αtc)

γr

c = αtγr . Similarly, the response probability
with βtk and ϵr engenders the same value of Ptjrk with
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β′
tk = βtk + c and ϵ′r = ϵr − c for any constant c because

β′
tk + ϵ′r = (βtk + c) + (ϵr − c) = βtk + ϵr. The scale

indeterminacy, as in the αtγr case, is known to be removed
by fixing one parameter or restricting the product of some
parameters [56]. Furthermore, the location indeterminacy, as
in the βtk + ϵr case, is solvable by fixing one parameter or
restricting the mean of some parameters [48], [55], [56]. This
study uses the restrictions

∏R
r=1 γr = 1 and

∑R
r=1 εr = 0

for model identification.
It is noteworthy that, because no identification problem

exists, restrictions on the rater parameters are not required
when the task parameters are known and the distribution of
the ability is fixed.

3.3 Model assumption
This model requires several assumptions. One important
assumption is local independence, which is a common
assumption in IRT (e.g., [55], [58], [59]). This assumption
implies that ratings for a learner become locally indepen-
dent among all raters and tasks given the ability of the
learner. An earlier report described that local independence
among raters is not satisfied when inter-rater agreement is
high (e.g., [25], [60], [61]). When dependence among raters
is assumed to be strong, IRT models that can consider
their effects, such as the rater bundle model [61] and the
hierarchical rater models [25], [62], might be appropriate.

Another assumption of this model is that no interaction
occurs between raters and tasks. For example, if rater sever-
ity differs across tasks, then the assumption is not satis-
fied. In such a case, incorporating different rater severity
parameters for tasks, such as introduced into [26], might be
desirable.

Those assumptions are evaluated in the actual data ex-
periment section.

3.4 Fisher information
In IRT, the standard error estimate of ability assessment is
defined as the inverse square root of the Fisher information
(FI). More information implies less error of the assessment.
Therefore, FI can be regarded as an index of the ability
assessment accuracy under the assumptions that the model
is correct and that the ratings are a valid reflection of the
targeted learning outcome.

In the IRT model for peer assessment [2], FI of rater r in
task t for a learner with ability θj is calculable as

Itr(θj) = α2
tγ

2
r

K∑
k=1

(
P ∗
tjrk−1Q

∗
tjrk−1 − P ∗

tjrkQ
∗
tjrk

)2

P ∗
tjrk−1 − P ∗

tjrk

, (4)

where Q∗
tjrk = 1− P ∗

tjrk.
Fig. 2 depicts the FI function for the three example

raters introduced into 3.1. The dotted lines and the right
vertical axis show FI values. A comparison between Rater
1 and Rater 2, who have different severities with the same
consistency, shows that the severe (or lenient) rater tends to
give higher FI values for high (or low) ability levels. That
tendency reflects the fact that severe (or lenient) raters do
not distinguish low (or high) ability learners because their
ratings for such learners are biased to the lowest (or highest)
score. Fig. 2 also shows that FI of Rater 3, who has low

consistency, is extremely low overall. That result reflects the
fact that inconsistent raters engender low ability assessment
accuracy because their ratings do not necessarily reflect the
true ability, as described in 3.1.

The FI of multiple raters for learner j in task t is definable
by the sum of the information of each rater under the local
independence assumption. Therefore, when peer assess-
ment is conducted within group members, the information
for learner j in task t is calculable as shown below.

It(θj) =
J∑

r=1
r ̸=j

G∑
g=1

Itr(θj)xtgjr (5)

A high value of FI It(θj) signifies that the group mem-
bers can assess learner j accurately. Therefore, if we form
groups to provide great amounts of FI for each learner,
then the ability assessment accuracy can be maximized.
Based on this idea, the next section presents a proposal of a
group formation method to maximize the peer assessment
accuracy.

4 GROUP FORMATION USING ITEM RESPONSE
THEORY AND INTEGER PROGRAMMING

4.1 Group formation method
We formulate the group formation optimization method as
an integer programming problem that maximizes the lower
bound of FI for each learner. Hereinafter, this method is des-
ignated as PropG. Specifically, PropG for task t is formulated
as the following integer programming problem.

maximize yt (6)

subject to
J∑

r=1
r ̸=j

G∑
g=1

Itr(θj)xtgjr ≥ yt, ∀j, (7)

G∑
g=1

xtgjj = 1, ∀j, (8)

nl ≤
J∑

j=1

xtgjj ≤ nu, ∀g, (9)

xtgjr = xtgrj , ∀g, j, r, (10)
xtgjr ∈ {0, 1}, ∀g, j, r. (11)

The first constraint requires that FI for each learner j
be larger than a lower bound yt. The second constraint
restricts each learner as belonging to one group. The third
constraint controls the number of learners in a group. Here,
nl and nu represent the lower and upper bounds of the
number of learners in group g. In this study, nl = ⌊J/G⌋
and nu = ⌈J/G⌉ are used so that the numbers of learners in
respective groups become as equal as possible. Here, ⌊ ⌋
and ⌈ ⌉ respectively denote floor and ceiling functions.
If the remainder of J/G equals to zero, then the numbers
of group members become equal for all groups; otherwise,
they differ among groups. In the latter case, the difference in
numbers between groups is equal to or less than one. This
integer programming maximizes the lower bound of FI for
learners. Therefore, by solving the problem, one can obtain
groups that provide as much FI as possible to each learner.
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TABLE 1
Prior distributions for IRT model parameters

logαt, log γr ∼ N(0.0, 0.4)
ϵr , θj ∼ N(0.0, 1.0)

βtk ∼ MN(µ,Σ)



µ = {−2.0,−0.75, 0.75, 2.0}

Σ =

∣∣∣∣∣∣∣∣∣
0.16 0.10 0.04 0.04

0.10 0.16 0.10 0.04

0.04 0.10 0.16 0.10

0.04 0.04 0.10 0.16

∣∣∣∣∣∣∣∣∣

As another approach, it might be possible to make the
peer assessment completely adaptive so that raters with the
highest FI are sequentially assigned to each learner. How-
ever, just as the traditional adaptive testing with an insuffi-
ciently large or diverse item bank does (e.g., [63], [64], [65],
[66]), this approach increases the assessment errors as the
process proceeds because the number of learners assignable
to each rater is limited. Consequently, this approach tends
to pose biased assessment accuracies for learners. However,
PropG resolves this difficulty because the assignment is
optimized to maximize the lower bound of FI for learners.

PropG is inspired by automated uniform test assembly
methods using integer programming and IRT, which have
been studied extensively in educational testing fields (e.g.,
[67], [68], [69], [70], [71]).

4.2 Evaluation of group formation methods

The ability assessment accuracy is expected to be improved
considerably if PropG can form groups to give sufficiently
high FI to each learner. To evaluate this point, we conducted
the following simulation experiment.

1) For J ∈ {15, 30} and T = 5, the true IRT model
parameters were generated randomly from the dis-
tributions presented in Table 1. The values of J
and T were chosen to match the conditions of
two actual e-learning courses offered by one author
from 2007 to 2013 using LMS SamurAI. Specifically,
J = 15 and 30 were used because the average num-
bers of learners in each course were 12.9 (standard
deviation=4.2) and 32.9 (standard deviation=14.6),
respectively. Also, T = 5 was used because the
maximum number of tasks was 5. Furthermore, the
parameter distributions in Table 1 assume correla-
tion of βtk among categories because an increase of
βtk tends to increase βt,k+1 as a result of the order
restriction βt,k+1 > βtk.

2) For the first task t = 1, learners were divided
into G ∈ {3, 4, 5} groups using PropG and a ran-
dom group formation method (designated as RndG).
For PropG, the FI values were calculated using the
true parameter values. The number of groups is
usually determined so that each group comprises
3–14 members while maintaining the number as
equal as possible for all groups [32], [72], [73], [74].
This experiment used G = 3, 4, and 5 because the
number of group members falls within this range
when J ∈ {15, 30}. Here, PropG was solved using
IBM ILOG CPLEX Optimization Studio [75]. We used
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Fig. 3. RMSE and FI values of group formation methods in the simulation
experiment.

a feasible solution when the optimal solution was
not obtained within 10 min.

3) Given the created groups and the true model param-
eters, peer assessment data were sampled randomly
for the current task t based on the IRT model.

4) Given the true rater and task parameters, the learner
ability was estimated from the data generated to
date. Here, the expected a posteriori (EAP) estima-
tion using Gaussian quadrature [76] was used for
the estimation.

5) The root mean square error (RMSE), and average
bias between the estimated ability and the true
ability were calculated. We also calculated the FI
given to each learner.

6) Procedures 2) – 5) were repeated for the remaining
tasks.

7) After 10 repetitions of the procedures described
above, the average values of RMSE, average bias,
and FI obtained from Procedure 5) were calculated.
In this experiment, PropG provided the optimal
solutions within 10 min for 98% of the group for-
mations when J = 15, and for 78% of them when
J = 30.

Fig. 3 presents RMSE and FI results. The horizontal axis
shows the task index; the vertical axis shows the RMSE
(upper panels) and FI (lower panels). The lines represent
the results of PropG and RndG for each number of learners.
Results demonstrate that FI increases and RMSE decreases
with the decreasing number of groups G or with increasing
numbers of tasks or learners because the number of data
for each learner increases. Generally, the increase of data
per learner is known to engender improvement of the
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TABLE 2
Distributions of rater parameters for each ability level in group formation

methods

RndG
log γr ϵr

θ ≤ −0.4 (−0.4, 0] (0, 0.4] > 0.4 ≤ −1 (−1, 0] (0, 1] > 1
≤ −1 0.17 0.31 0.32 0.20 0.14 0.33 0.38 0.14
(−1, 0] 0.15 0.32 0.34 0.18 0.16 0.33 0.36 0.15
(0, 1] 0.16 0.33 0.33 0.18 0.16 0.30 0.38 0.16
> 1 0.14 0.32 0.34 0.19 0.15 0.35 0.36 0.14

PropG
log γr ϵr

θ ≤ −0.4 (−0.4, 0] (0, 0.4] > 0.4 ≤ −1 (−1, 0] (0, 1] > 1
≤ −1 0.19 0.34 0.29 0.18 0.30 0.39 0.26 0.05
(−1, 0] 0.14 0.31 0.34 0.21 0.16 0.34 0.39 0.11
(0, 1] 0.13 0.32 0.37 0.17 0.11 0.33 0.37 0.20
> 1 0.19 0.33 0.30 0.17 0.04 0.23 0.48 0.25

ability assessment accuracy [2]. Furthermore, we confirmed
that the average biases were extremely close to zero in all
cases. Specifically, the minimum value was −0.08 and the
maximum value was 0.02, which indicates that there was
no overestimation or underestimation of the ability.

Comparing the group formation methods, PropG
presents higher FI than RndG in all cases. To examine the
reason, we analyzed the relation between learner ability
and the assigned rater parameters. For this analysis, we
divided the values of the ability and the rater parameters
into four levels ≤ −σ, (−σ, 0], (0, σ], and > σ, where
σ = 0.4 for log γr and σ = 1 for θj and ϵr . Subsequently, we
calculated the proportion that raters with each parameter
level were assigned to learners with each ability level. Table
2 presents the results. Results show that the distributions
of the rater severity parameter differ between the group
formation methods, although those of the rater consistency
parameter are mutually similar. Specifically, PropG tends
to assign severe raters to high-ability learners and lenient
raters to low-ability learners. As explained in 3.4, severe (or
lenient) raters tend to provide higher FI to high (or lower)
ability level. For these reasons, PropG presents higher FI
than RndG does.

Fig. 3, however, shows that PropG does not decrease
RMSE sufficiently because it does not improve FI much. To
improve FI dynamically, the proportion of high consistent
raters for each learner should be increased because those
raters tend to give high FI overall. However, the experi-
mentally obtained results indicate that it is difficult to form
groups to increase the proportion.

As described in the experimental procedure 7), we re-
peated the simulation procedures 10 times for each setting.
To examine effects of the number of repetitions, we con-
ducted the same experiment for 5 and 20 repetitions given
G = 5. Fig. 4 shows the RMSE for each repetition. According
to Fig. 4, when the repetition count is 5, RndG for J = 30
provides the higher RMSE than RndG for J = 15 in t = 1
although the amount of rating data for J = 30 is larger than
that for J = 15, which suggests that few repetitions, such as
5 times, might produce unstable results. In addition, 10 and
20 repetitions presented the same tendencies discussed in
this subsection. Because the experiments conducted in this
study require high computational cost and time, we set the
number of repetitions to 10.

task t

R
M

S
E

0.4

0.6

0.8

1 2 3 4 5

5 Repetitions

1 2 3 4 5

10 Repetitions

1 2 3 4 5

20 Repetitions

PropG(J15)
PropG(J30)

RndG(J15)
RndG(J30)

Fig. 4. RMSE values of group formation methods for each number of
repetitions.

Although this experiment used the true IRT parameter
values to calculate FI in PropG, these values are practically
unknown. Use of PropG when the parameters are unknown
is proposed in Section 6.

5 EXTERNAL RATER ASSIGNMENT

The preceding section explained the difficulty of assigning
raters with high FI to all learners when peer assessment is
conducted only within groups. To overcome this shortcom-
ing, this study further proposes the assignment of outside-
group raters to each learner, given the groups created using
PropG.

The proposed external rater assignment method is for-
mulated as an integer programming problem that maxi-
mizes the lower bound of information for learners given
by the assigned outside-group raters. Specifically, given a
group formation Xt, the proposed method for task t is
defined as shown below.

maximize : y′t (12)

subject to :
∑

r∈Ctj

Itr(θj)ztjr ≥ y′t, ∀j (13)

∑
r∈Ctj

ztjr = ne, ∀j (14)

J∑
j=1

ztjr ≤ nJ , ∀r (15)

ztjj = 0, ∀j (16)
ztjr ∈ {0, 1}, ∀j, r (17)

Here, Ctj = {r |
∑G

g=1 xtgjr = 0} is the set of outside-
group raters for learner j in task t given a group formation
Xt. In addition, ztjr is a variable that takes 1 if external rater
r is assigned to learner j in task t; it takes 0 otherwise. Fur-
thermore, ne denotes the number of external raters assigned
to each learner; nJ is the upper limit number of outside-
group learners assignable to each rater. Here, ne and nJ

must satisfy nJ ≥ ne. The increase of nJ makes it easier to
assign optimal raters to each learner, although differences in
the assessment workload among the learners increases.
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Fig. 5. RMSE and FI values of external rater assignment methods for
each G and t in the simulation experiment.
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Fig. 6. RMSE and FI values of external rater assignment methods for
each nJ and ne in the simulation experiment.

In the integer programming problem, the first constraint
restricts that the FI for each learner given by the assigned
outside-group raters must exceed a lower bound y′t. The
second constraint requires that ne number of outside-group
raters must be assigned to each learner. The third constraint
restricts that each learner can assess at most nJ number of
outside-group learners. The objective function is defined as
the maximization of the lower bound of the information
for learners given by assigned external raters. Therefore, by
solving the proposed method, an external rater assignment
ztjr is obtainable so that ne outside-group raters with high
FI are assigned to each learner.

5.1 Simulation experiment of external rater assignment
method
Using the proposed method, each learner can be assessed
not only by the group members but also by optimal outside-
group raters. Therefore, ability assessment accuracy is ex-
pected to be improved considerably. To confirm that capa-
bility, we conducted the following simulation experiment,
which is similar to that conducted in 4.2.

1) For J ∈ {15, 30} and T = 5, the true model
parameters were generated randomly from the dis-
tributions in Table 1.

2) For the first task t = 1, learners were divided into
G ∈ {3, 4, 5} groups using PropG. Then, given the
created groups, ne ∈ {1, 2, 3} outside-group raters
were assigned to each learner using the proposed
external rater assignment method (designated as
PropE) and a random assignment method (desig-
nated as RndE). Here, we changed the value of nJ

for {3, 6, 12} to evaluate its effects. In PropG and
PropE, FI was calculated using the true parameter
values. In PropG, we used a feasible solution when
the optimal solution was not obtained within 10
min. PropE provided the optimal solutions within
10 min for all settings.

3) Peer assessment data were sampled randomly for
current task t following the IRT model, given the
true model parameters, the formed groups and the
rater assignment.

4) The following procedures were identical to proce-
dures 4) – 7) of the previous experiment.

We first examine the respective effects of the numbers of
tasks, groups and learners on performance of the external
rater assignment methods. Fig. 5 shows the RMSE and FI
for each t, G and J when nJ = 12 and ne = 3. Results show
that the accuracy of the external rater assignment methods
tends to increase concomitantly with decreasing number of
groups and increasing number of tasks or learners because
the number of rating data for each learner increases. This
tendency is consistent with that of the group formation
methods, as explained in 4.2.

Additionally, to analyze effects of ne and nJ , Fig. 6
shows the RMSE and FI for each ne and nJ when G = 5
and t = 5. The horizontal axis shows the values of ne: the
vertical axis and each line are the same as in Fig. 5. Here,
the results for ne = 0 indicate those of PropG. According to
the results, both external rater assignment methods reveal
higher FI and the lower RMSE than PropG in all cases, which
suggests that the addition of the external raters is effective to
improve the ability assessment accuracy. Furthermore, Fig.
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TABLE 3
Distributions of rater parameters for each ability level in external rater

assignment methods.

RndE
log γr ϵr

θ ≤ −0.4 (−0.4, 0] (0, 0.4] > 0.4 ≤ −1 (−1, 0] (0, 1] > 1
≤ −1 0.19 0.34 0.29 0.18 0.30 0.39 0.26 0.05
(−1, 0] 0.14 0.31 0.34 0.21 0.16 0.34 0.39 0.11
(0, 1] 0.13 0.32 0.37 0.17 0.11 0.33 0.37 0.20
> 1 0.19 0.33 0.30 0.17 0.04 0.23 0.48 0.25

PropE
log γr ϵr

θ ≤ −0.4 (−0.4, 0] (0, 0.4] > 0.4 ≤ −1 (−1, 0] (0, 1] > 1
≤ −1 0.12 0.21 0.30 0.37 0.29 0.40 0.28 0.03
(−1, 0] 0.08 0.19 0.30 0.42 0.17 0.32 0.42 0.09
(0, 1] 0.08 0.20 0.33 0.39 0.11 0.33 0.39 0.17
> 1 0.12 0.21 0.31 0.36 0.03 0.21 0.50 0.26

6 shows that FI of the external rater assignment methods
increase monotonically with increasing number of assigned
external raters ne. Also, RMSE tends to decrease as ne

increases.
The average biases were close to zero for all settings.

Concretely, the minimum value was −0.07; the maximum
value was 0.06, which means that there was no systematic
overestimation or underestimation of ability.

Comparison of the external rater assignment methods
reveals that the proposed method presented higher FI than
the random assignment method in all cases. To examine the
reason, we analyzed the relation between learner ability and
the assigned rater parameters using the same procedures
in 4.2. Table 3 presents results for ne = 3 and nJ = 12.
Results show that PropE reveals a higher proportion of
consistent raters than RndE does. Because consistent raters

generally give substantially high FI, PropE can improve FI
dynamically. Consequently, the RMSEs of PropE are lower
than those of RndE in all cases. Furthermore, Fig. 6 shows
that the performance of PropE tends to become better as
increasing nJ . It reflects the fact that the increase of nJ

facilitates better rater assignment.
The differences in FI between PropE and RndE are small

when nJ = 3 and ne = 3. As nJ decreases and/or ne

increases, assigning optimal raters becomes difficult even
if the proposed method is used because the number of
assignable raters for each learner decreases. Particularly,
nJ = ne is the most difficult situation to assign optimal
raters because all learners must be assigned to ne number of
outside-group learners even if some of them have extremely
low FI. For that reason, the proposed method does not
improve FI much when nJ = 3 and ne = 3.

From those results, we infer that the proposed external
rater assignment method can improve the peer assessment
accuracy efficiently when a large value of nJ and a small
value of ne are given.

It is noteworthy that, from Table 3 and the discussion
presented above, assigning external raters with high con-
sistency might provide higher performance. The proposed
method can be changed easily to assign the N most consis-
tent raters for all learners by replacing FI function Itr(θj)
in Eq. (13) to the consistency parameter γr . To compare the
performance of this method with the proposed method, we
conducted the same experiment as that conducted in this
subsection using the N most consistent raters assignment
method for J = 30. Fig. 7 and 8 show the results. In the
figures, the plots of HighConsistency portray the results of
the N most consistent raters assignment method; the other
plots are the same as those in Fig. 5 and 6. The N most
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Fig. 9. RMSE and FI values of PropExRm.

consistent raters assignment method shows higher FI and
smaller RMSE compared with RndE. However, comparing
the N most consistent raters assignment method with PropE,
it reveals lower FI and higher RMSE in all cases. The reason
is that PropE directly maximizes FI for learners; it then
achieves higher accuracy of learner ability estimations than
the N most consistent raters assignment method does.

5.2 Effectiveness of external rater introduction

In the experiment described above, we demonstrated that
the proposed external rater assignment method provided
higher ability assessment accuracy than PropG did. The ma-
jor reasons of the improvement are the increase of assigned
raters and the introduction of optimal external raters. Al-
though the experiment described earlier demonstrated the
effectiveness of increasing raters, the effects of introducing
optimal external rater were not examined directly. There-
fore, this subsection explains evaluation of those effects
using a simulation experiment.

For this evaluation, we introduce another external rater
assignment method that assigns optimal outside-group
raters without increasing the total number of raters for each
learner. Specifically, the method first assigns ne external
raters by the proposed external rater assignment method.
Then ne internal-group members with the lowest FI were re-
moved. Hereinafter, we designate the method as PropExRm.
If PropExRm outperforms PropG, then the effectiveness of
the optimal external rater introduction can be confirmed.

To compare the accuracy, we conducted the same simu-
lation experiment as in 5.1 using PropExRm as the external
rater assignment method for J = 30. Fig. 9 presents results
for t = 5. The horizontal axis shows the number of ne; the
vertical axis shows the RMSE and FI values. Each line rep-
resents the result for each nJ . Results show that PropExRm
reveals higher FI and the lower RMSE than PropG (ne = 0)
in all cases, although the number of raters for each learner is

not increased. The results demonstrate that the introduction
of optimal external raters is effective to improve the peer
assessment accuracy.

FI does not increase monotonically with increasing ne

when nJ = 3, unlike in earlier experiments. PropExRm
can remove internal-group raters who have higher FI than
the added external raters have. Therefore, the possibility
of removing internal raters with high FI increases as ne

increases. Additionally, assigning external raters with high
FI becomes difficult as ne increases and/or nJ decreases
because assignable raters are reduced, as discussed before.
Therefore, FI of ne = 3 is less than that of ne = 2 when
nJ = 3.

6 PROPOSED METHOD WITH PARAMETER ESTIMA-
TION AND EVALUATION

6.1 Method
PropG and PropE require estimated IRT model parameter
values to calculate FI. Although the experiments described
above used the true parameter values for the calcula-
tion, they are practically unknown. Therefore, this section
presents a description of how to use PropG and PropE
when the IRT parameters are unknown in actual e-learning
situations.

We consider the following two assumptions for using
PropG and PropE in an e-learning course.

1) More than one task is offered in the course.
2) All tasks were used in past e-learning courses at

least once. Past learners’ peer assessment data cor-
responding to the tasks were collected.

Although the second assumption might not necessarily
be satisfied in practice, it is necessary to estimate the task
parameters. LMS SamurAI stores peer assessment data cor-
responding to all the tasks offered in past courses [2]. In
such cases, the task parameters can be estimated from the
data.

Given task parameter estimates, we can use PropG and
PropE through the following procedures under the first
assumption.

1) For the first task, peer assessment is conducted
using randomly formed groups.

2) The rater parameters and learner ability are esti-
mated from the obtained peer assessment data.

3) For the next task, group formation and external rater
assignment are conducted using PropG and PropE
given the parameter estimates.

4) Repeat procedures 2) and 3) for remaining tasks.

As described in 3.2, when the ability distribution is
fixed, the restrictions on the rater parameters for model
identification are not required in the parameter estimation
of Procedure 2) because the task parameters are given.

6.2 Simulation experiments
To evaluate PropG and PropE with parameter estimation, the
following simulation experiment was conducted.

1) For J ∈ {15, 30} and T = 5, true model parameters
were generated randomly following the distribu-
tions in Table 1.
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2) For the first task t = 1, G ∈ {3, 4, 5} groups were
created randomly.

3) Given the formed groups and true parameters, rat-
ing data for task t = 1 were sampled randomly.

4) From the generated data, the rater parameters and
learner abilities were estimated using the Markov
chain Monte Carlo (MCMC) algorithm [2]. In the
estimation, the true task parameters were given.

5) The RMSE between the estimated ability and the
true ability were calculated. We also calculated FI
for each learner.

6) For the next task, G ∈ {3, 4, 5} groups were formed
by PropG and RndG. Furthermore, given the groups
formed by PropG, ne ∈ {1, 2, 3} external raters were
assigned to learners by PropE and RndE under nJ ∈
{3, 6, 12}. Here, PropG and PropE used the true task
parameters obtained in Procedure 1) and the current
estimates of ability and rater parameters to calculate
FI.

7) Given the formed groups and rater assignment, peer
assessment data for the current task were sampled
randomly. Rating data were sampled from the IRT
model given the true parameter values obtained in
procedure 1).

8) Given the true task parameters, the learner ability
and rater parameters were estimated from the data
up to the current task.

9) The RMSE and FI were calculated using the same
procedure as that used for 5).

10) For the remaining tasks, Procedures 6) – 9) were
repeated.

11) After repeating the procedures described above 10
times, the average values of the RMSE and FI were
calculated.

Fig. 10 presents results obtained using the respective
group formation methods. Figs. 11 and 12 present results
obtained using the external rater assignment methods. Here,
Fig. 11 presents results for each t ≥ 2 and G when nJ = 12
and ne = 3. Also, Fig. 12 shows those for each ne and
nJ when G = 5 and t = 5. According to the results,
we can confirm a similar tendency with the results of the
previous simulation experiments in all cases. Specifically,
the following tendency can be confirmed.

1) PropG does necessarily not outperform RndG.
2) Both the external rater assignment methods present

higher accuracy than that provided by PropG.
3) PropE can improve the assessment accuracy more

efficiently than RndE when a large value of nJ and
a small value of ne are given.

Results show that PropG and PropE with parameter esti-
mation work appropriately.

7 ACTUAL DATA EXPERIMENT

This section evaluates the effectiveness of PropG and PropE
using actual peer assessment data.

7.1 Actual data
Actual data were gathered using the following procedures.
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Fig. 10. RMSE and FI values of group formation methods in simulation
experiment with parameter estimation.

1) As subjects for this study, 34 university students
were recruited. All were majoring in various sci-
ence fields such as statistics, materials, chemistry,
mechanics, robotics, and information science. They
included 19 undergraduate, 13 master course, and 2
doctor course students.

2) They were asked to complete four essay writing
tasks offered in the National Assessment of Edu-
cational Progress (NAEP) [77] and 2007 [78]. No
specific or preliminary knowledge was needed to
complete the tasks.

3) After the participants completed all tasks, they were
asked to evaluate the essays of all other participants
for all four tasks. Assessments were conducted us-
ing a rubric that we created based on the assessment
criteria for grade 12 NAEP writing [78]. The rubric
consists of five rating categories with corresponding
scoring criteria.

Furthermore, we collected additional rating data for task
parameter estimation. The data consist of ratings assigned
by 5 graduate school students to the essays gathered in the
experiment above. Hereinafter, the data are designated as
five raters’ data.

Ability estimation using the peer assessment data might
be biased because the given task parameters estimated from
the five raters’ data would not fit well if characteristics of
the peer assessment data and the five raters’ data were to
differ extremely. Therefore, it is desirable that characteristics
of the two datasets be similar. To evaluate the similarity, we
compare descriptive statistics for the two datasets. Table 4
shows the average and standard deviation of ratings and
the appearance rate of each rating category in each dataset.
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Fig. 11. RMSE and FI values of external rater assignment methods for
each G and t in simulation experiment with parameter estimation.
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Fig. 12. RMSE and FI values of external rater assignment methods for
each nJ and ne in a simulation experiment with parameter estimation.

TABLE 4
Descriptive statistics for each actual dataset

Appearance rate of each category
Data Avg. SD 1 2 3 4 5

Peer assessment 2.21 1.01 4.50 19.49 36.83 29.35 9.84
Five raters’ 2.04 1.01 5.29 25.59 36.62 24.85 7.65

Furthermore, we calculated the correlation of the average
scores for each learner using the peer assessment data
and the five raters’ data. Results show that the correlation
value was 0.69; it was significantly correlated at the 0.001
level. The results suggest that the characteristics of the two
datasets are similar.

7.2 Evaluation of model fitting

As discussed in 3.3, the IRT model in Eq. (3) includes the
assumption of local independence. Therefore, we examined
this assumption using the Q3 statistics [79], which is a well
known method for empirically examining local dependence.
Here, let Etjr be the residual between the observed rating
utjr and the expected rating

∑K
k=1 k · Ptjrk. Then, the

Q3 statistics for two task-rater pairs, (t, r) and (t′, r′), are
defined as the Pearson correlation coefficient between the
residuals, Etr and Et′r′ (where Etr = {Et1r · · · , EtJr}). A
high correlation value signifies that the task-rater pairs are
locally dependent. Therefore, we calculated this index for all
task-rater pairs and tested the significance using Student’s
t-test with significance inferred at the 0.05 level.

Results demonstrate that 93% of the pairs had no signif-
icant correlation in both datasets. The results suggest that

the local independence assumption is satisfied in almost
all cases. Furthermore, to examine the rater dependencies,
we analyzed the results among raters in the same task.
Consequently, 97% of the rater pairs revealed no significant
correlation in both datasets. That amount indicates that the
rater dependencies are negligibly small in the datasets.

Additionally, we examined another model assumption:
that no interaction exists between tasks and raters. We
used generalizability theory [80] to test the assumption.
Generalizability theory can estimate the effects of the error
sources (such as learners, raters, and tasks) and their mutual
interactions on ratings using analysis of variance. It gives
high variance estimates to the sources and interactions
when observed ratings depend strongly on them. In the
peer assessment data, the variance estimate of the task-
rater interaction accounted only for 2% of the total variance.
Furthermore, it was 3% in the five raters’ data. The results
suggest that the effect of the interaction is negligible.

From the analysis described above, we confirmed that
the assumptions of the IRT model were approximately
satisfied. This fact validates the use of the model in this
experiment.

7.3 Experimental procedures and results
Using the actual data, we conducted the following experi-
ments, which are similar to those in 6.2.

1) The task parameters in the IRT model were esti-
mated using the five raters’ data.

2) Given the task parameter estimates, the rater pa-
rameters and learner ability were estimated using
the full peer assessment data.
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Fig. 13. RMSE and FI values of group formation
methods in the actual data experiment.
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Fig. 14. RMSE and FI values of external rater
assignment methods for each G and t in the
actual data experiment.
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Fig. 15. RMSE and FI values of external rater
assignment methods for each nJ and ne in the
actual data experiment.

3) For the first task, G ∈ {3, 4, 5} groups were created
randomly.

4) The peer assessment data u1jr were changed to
missing data if learner r and learner j were not in
the same group.

5) From the peer assessment data for the first task, the
rater parameters and learner ability were estimated
given the task parameters estimated in Procedure 1).

6) The Root Mean Square Deviation (RMSD) between
the ability estimates and that estimated from the
complete data in Procedure 2) was calculated. We
also calculated FI for each learner.

7) For the next task, G ∈ {3, 4, 5} groups were
formed by PropG and RndG. Then, given the groups
formed by PropG, ne ∈ {1, 2, 3} external raters
were assigned to learners by PropE and RndE under
nJ ∈ {3, 6, 12}. Here, PropG and PropE used the task
parameters obtained in Procedure 1) and the current
estimates of ability and rater parameters to calculate
FI.

8) Given the group formations and external rater
assignments, the peer assessment data utjr were
changed to missing data if learner j and r are not in
the same group and if learner r is not the external
rater of learner j.

9) Given the task parameter estimates, the learner abil-
ity and rater parameters were estimated from the
peer assessment data up to the current task.

10) The RMSD and FI were calculated using the same
procedure as 6).

11) For the remaining tasks, procedures 7) – 10) were
repeated.

12) After repeating the procedures described above 10
times, the average values of the RMSD and FI were
calculated.

Fig. 13 presents results of each group formation method.

Figs. 14 and 15 show those of the external rater assign-
ment methods. Fig. 14 presents results for each t ≥ 2
and G ∈ {3, 4, 5} when nJ = 12 and ne = 3. Fig. 15
shows those for each ne and nJ when G = 5 and t = 4.
Results show similar tendencies to those obtained from the
simulation experiments. Specifically, comparing the group
formation methods, PropG does not improve the accuracy
much because the improvement of FI is not significant. The
assessment accuracy is improved drastically by introducing
external raters. Furthermore, the proposed external rater
assignment method realizes the higher accuracy than the
random assignment method when nJ is large and ne is
small.

In this experiment, PropE improved the RMSD from
about 0.02 to 0.05 from RndE, and from about 0.05 to
0.10 from PropG and RndG. To examine the effects of these
improvements, we evaluate the accuracy of learner rankings
based on the ability estimates. Providing accurate learner
rankings is important because they are often used to deter-
mine the final grades of learners (e.g., [81], [82], [83]).

We evaluated the ranking accuracy given the ability
estimates as follows.

1) We calculated the learner rankings based on learner
abilities estimated from the full peer assessment
data.

2) Similarly, we calculated the learner rankings based
on the ability estimates using each method (namely,
RndG, PropG, RndE, and PropE) for G ∈ {3, 4, 5}
and t = 4. Here, ne = 3 and nJ = 12 were given for
PropE and RndE.

3) We calculated the percent correct and the mean
absolute error (MAE) between the ranking of 1) and
that of 2).

4) We calculated the average percent correct and the
MAE of 10 repetitions.
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TABLE 5
Accuracy of learner ranking for each method.

Index G PropE RndE PropG RndG
3 15.9% 14.7% 14.3% 14.1%

Percent correct 4 15.1% 12.4% 9.7% 11.5%
5 14.4% 10.3% 8.2% 9.8%
3 3.04 3.34 3.65 3.58

MAE 4 3.31 3.65 4.15 4.25
5 3.66 3.93 4.61 4.67
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Fig. 16. Item response curves of three raters in actual data experiments.

Table 5 presents the results. The results demonstrate that
PropE achieves the highest percent correct and the lowest
MAE among all methods. Especially, when G = 5, PropE
improves the percent correct by about 4 to 6% compared to
the other methods. These results suggest that improvement
of RMSD by PropE has a non-negligible effect on increasing
the accuracy of learner rankings (grading).

7.4 Example of ability estimation and rater assignment
This subsection presents an example of rater assignment
by the proposed method and the estimated IRT model pa-
rameters. Table 6 shows group members and external raters
for each learner in task 4, along with estimated parameter
values obtained through experimentation given G = 5,
nJ = 6 and ne = 3. Furthermore, the assigned count row
shows how often each learner was assigned to the others in
task 4.

The table shows that the learners have different rater
characteristics. As examples, Fig. 16 depicts the IRCs of
Rater 16, 19, and 21 for task 4. The horizontal axis shows
a learner’s ability θj : the first vertical axis shows the re-
sponse probability of the rater for each category; the second
vertical axis shows FI. According to Table 6 and Fig. 16, the
characteristics of each rater can be interpreted as 1) Rater
16 is a lenient rater with high-valued consistency. The rater
tends to provide higher FI for low ability levels. 2) Rater 19
is more severe than Rater 16 with high-valued consistency.
The rater tends to assign higher FI for high ability levels. 3)
Rater 21 is an extremely inconsistent rater. Therefore, FI is
low overall.

Table 6 also shows that PropG and PropE assign raters in
considering their characteristics and the learner ability. For
example, PropE tends to assign lenient raters (such as Rater
16 and 17) to the low ability learners (such as Learners 6, 16
and 23) because those raters have higher FI for low ability

TABLE 6
Parameter estimates and assigned raters for each learner given t = 4,

G = 5, nJ = 6, and ne = 3

Group External Assigned
Learner γ̂r ϵ̂r θ̂j members raters count

1 0.85 -0.61 0.50 {6,11,20,25,26,31} {4,12,15} 6
2 0.75 -1.01 0.74 {7,9,12,13,21} {8,20,22} 5
3 0.80 0.39 0.27 {8,18,19,22,30,32} {5,28,33} 6
4 1.19 -0.42 0.75 {14,17,23,24,33,34} {8,9,20} 12
5 1.07 -0.53 -0.12 {10,15,16,27,28,29} {11,17,32} 12
6 1.13 0.34 -0.23 {1,11,20,25,26,31} {16,17,32} 6
7 0.49 1.42 0.76 {2,9,12,13,21} {19,20,32} 5
8 1.86 0.37 0.50 {3,18,19,22,30,32} {9,28,33} 12
9 1.06 1.27 0.20 {2,7,12,13,21} {18,23,33} 11
10 0.56 0.17 0.07 {5,15,16,27,28,29} {18,19,23} 6
11 1.31 -0.17 0.64 {1,6,20,25,26,31} {8,9,22} 12
12 0.87 -0.28 0.91 {2,7,9,13,21} {8,20,22} 11
13 0.80 0.95 0.52 {2,7,9,12,21} {18,19,23} 5
14 1.00 0.41 0.25 {4,17,23,24,33,34} {12,15,19} 6
15 1.60 -0.61 0.13 {5,10,16,27,28,29} {4,11,19} 12
16 1.62 -0.64 -0.90 {5,10,15,27,28,29} {11,17,32} 12
17 1.55 -0.77 0.67 {4,14,23,24,33,34} {5,9,22} 12
18 1.23 0.24 0.30 {3,8,19,22,30,32} {4,5,23} 12
19 1.88 0.60 0.26 {3,8,18,22,30,32} {15,16,17} 12
20 0.99 0.47 0.09 {1,6,11,25,26,31} {18,28,33} 12
21 0.74 0.00 0.50 {2,7,9,12,13} {8,20,22} 5
22 1.36 0.41 0.22 {3,8,18,19,30,32} {5,23,28} 12
23 1.35 0.27 -1.01 {4,14,17,24,33,34} {11,16,32} 12
24 1.09 0.20 -0.03 {4,14,17,23,33,34} {11,16,32} 6
25 0.75 -0.37 0.24 {1,6,11,20,26,31} {4,12,15} 6
26 0.86 -0.15 0.39 {1,6,11,20,25,31} {5,28,33} 6
27 0.88 -0.91 -0.08 {5,10,15,16,28,29} {4,12,17} 6
28 1.20 -0.13 0.03 {5,10,15,16,27,29} {18,19,23} 12
29 1.18 -0.70 0.06 {5,10,15,16,27,28} {4,11,12} 6
30 0.78 0.80 0.04 {3,8,18,19,22,32} {15,16,17} 6
31 0.91 -0.69 0.71 {1,6,11,20,25,26} {8,9,22} 6
32 1.18 -1.17 0.73 {3,8,18,19,22,30} {9,20,33} 12
33 1.01 -0.14 -0.01 {4,14,17,23,24,34} {5,18,28} 12
34 0.92 -0.23 0.22 {4,14,17,23,24,33} {12,15,16} 6

Task α̂t β̂t1 β̂t2 β̂t3 β̂t4

1 1.53 -1.75 -0.57 0.88 2.03
2 1.47 -2.63 -0.83 0.71 2.27
3 1.49 -2.45 -0.91 0.68 2.03
4 1.14 -1.98 -0.48 0.60 2.13

levels. Conversely, it tends to assign severe raters (such as
Rater 8 and 19) to high ability learners (such as Learners
2, 4, 12 and 13) because those raters provide higher FI for
high ability levels. Moreover, it does not assign inconsistent
raters (such as Rater 7 and 24) to anybody because their FI
values are low overall.

Furthermore, Table 6 shows that the proposed exter-
nal rater assignment method can engender unbalanced as-
sessment workload among learners. Specifically, consistent
raters tend to have a higher workload than inconsistent
raters do because they generally give high FI values. We can
reduce this imbalance by decreasing nJ , although the ability
assessment accuracy tends to decline, as demonstrated in
the earlier experiments. This result suggests that nJ should
be set as large as possible within the acceptable range of the
unbalanced assessment workload.

8 CONCLUSION

This study proposed methods to improve peer assessment
accuracy when the assessment is conducted by dividing
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learners into multiple groups using IRT and integer pro-
gramming. Specifically, we first proposed the group forma-
tion method, which maximizes the lower bound of FI for
each learner. The experimentally obtained results, however,
showed that the method did not improve the accuracy
sufficiently compared to a random group formation method.

To resolve that difficulty, we further proposed the exter-
nal rater assignment method, which assigns a few optimal
outside-group raters to each learner. Concretely, the method
was formulated as an integer programming problem that
maximizes the lower bound of information provided for
learners by assigned outside-group raters. The simulation
and actual data experiments demonstrate that introducing a
few optimal external raters improved the ability assessment
accuracy dynamically.

The proposed method requires estimated IRT parameter
values to calculate the Fisher information, even if they are
practically unknown. This study examined the usage of the
proposed method with parameter estimation assuming an
application to an actual e-learning situation. Through the
simulation and actual data experiments, we demonstrated
that the usage worked appropriately.

In this study, the simulation and actual data experiments
were conducted assuming small numbers of learners to
match the scale of the authors’ past e-learning courses. Our
future studies will evaluate the effectiveness of the proposed
method when applied to large-scale peer assessment data.
To use an extremely large dataset, some improvement of
computational efficiency of the proposed method might be
necessary. This represents another issue for future study.

Furthermore, as discussed in Section 1, the proposed
method is expected to be effective for learning improve-
ment, although this study examined only the peer assess-
ment accuracy. Evaluation of that assumption is left as a
task for future study.

APPENDIX

Programs for the parameter estimation of the IRT model,
the proposed group optimization method, and the proposed
external rater assignment method can be downloaded from
the Bitbucket repository https://bitbucket.org/uto/group
optimization irt.git. The programs were written in Java.
They require IBM ILOG CPLEX Optimization Studio [75].
Additionally, the numerical data associated with the ex-
periments in this study have been deposited to the same
repository.
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