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PAPER
A Universal Two-Dimensional Source Coding by Means of Subblock
Enumeration∗

Takahiro OTA†a), Member, Hiroyoshi MORITA††b), Senior Member, and Akiko MANADA†††c), Member

SUMMARY The technique of lossless compression via substring enu-
meration (CSE) is a kind of enumerative code and uses a probabilistic
model built from the circular string of an input source for encoding a
one-dimensional (1D) source. CSE is applicable to two-dimensional (2D)
sources, such as images, by dealing with a line of pixels of a 2D source
as a symbol of an extended alphabet. At the initial step of CSE encoding
process, we need to output the number of occurrences of all symbols of
the extended alphabet, so that the time complexity increases exponentially
when the size of source becomes large. To reduce computational time, we
can rearrange pixels of a 2D source into a 1D source string along a space-
filling curve like a Hilbert curve. However, information on adjacent cells in
a 2D source may be lost in the conversion. To reduce the time complexity
and compress a 2D source without converting to a 1D source, we propose a
new CSE which can encode a 2D source in a block-by-block fashion instead
of in a line-by-line fashion. The proposed algorithm uses the flat torus of
an input 2D source as a probabilistic model instead of the circular string of
the source. Moreover, we prove the asymptotic optimality of the proposed
algorithm for 2D general sources.
key words: compression via substring enumeration, enumerative code,
universal source coding, two-dimensional, general source

1. Introduction

Dubé and Beaudoin proposed an efficient off-line lossless
data compression algorithm for a binary source known as
Compression via Substring Enumeration (CSE) [1]. In [2],
Yokoo proposed a universal CSE algorithm for an ergodic
source with a binary alphabet, and various versions of CSE
for a binary source have been proposed so far [3]–[5]. Re-
portedly, the performance of compression ratios of CSE [4] is
better than that of an efficient off-line data compression algo-
rithm using the Burrows-Wheeler transformation (BWT) [6].
It was proven that encoders of CSE and the antidictionary
coding [7] are isomorphic for a binary source [8]. More-
over, an antidictionary coding algorithm [9] provided the
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first CSE for q-ary (q > 2) alphabet sources as a byproduct.
It was also shown that encoders of the antidictionary cod-
ing and CSE are isomorphic for a q-ary source (q > 2) [9].
Iwata and Arimura modified CSE and evaluated the max-
imum redundancy rate of CSE for the k-th order Markov
sources [10]. Furthermore, a universal CSE algorithm for
an ergodic source with a finite alphabet source has been
proposed [11].

CSE uses a probabilistic model built from the circular
string which is obtained by concatenating the first symbol to
the last symbol of an input source. The probabilistic model
is also useful for the BWT and antidictionary coding [8], [9].
It was shown that the antidictionary built from the circular
string is useful for genome comparison such as deoxyribonu-
cleic acid (DNA) [12]. However, for a 2D source (e.g., an
image), the computational time of CSE is exponential with
respect to the line length because CSEworks in a line-by-line
fashion. CSE deals with a line of a 2D source as a symbol
of an extended alphabet. At the initial step of CSE encoding
process, CSE needs to output frequencies including zero of
all symbols of the extended alphabet. To reduce computa-
tional time, we can convert a 2D source to a 1D source by
using space-filling curves as Hilbert curve, and the technique
is used in image compression algorithms [13]. However, in
converting, a 2D-ness has not been truly incorporated and
information on adjacent cells in a 2D source may be lost.

To reduce the computational time and compress a 2D
source without a space-filling curve, we propose a new CSE
for a 2D sourcewhich uses the flat torus of an input 2D source
as a probabilistic model instead of the circular string of the
source. In the initial step, the total number of output blocks
is constant because the new CSE works in a block-by-block
fashion. Moreover, we prove the asymptotic optimality of
the proposed algorithm for 2D general sources.

This paper is organized as follows. Section 2 gives
the basic notations and definitions. Then, in Sect. 3, we
review a conventional (1D) CSE. Section 4 proposed a 2D
CSE algorithm. Section 5 proves that the proposed coding
algorithm is asymptotically optimal for a 2D general source.
Section 6 summarizes our results.

2. Basic Notations and Definitions

2.1 Alphabet and Block

Let X be a finite source alphabet {0, 1, . . . , J − 1} and let
|X| be the cardinality of X, that is, |X| = J. Let X[m,n]

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 A 3 × 3 block p.

be the set of all m × n finite blocks p = (p(i, j))1≤i≤m,1≤ j≤n
over X, where p(i, j) ∈ X is the element of p at the (i, j)-
coordinate. The (i, j)-coordinate in a block represents the
location on the i-th row and the j-th column in the block
where the numbers of the rows that increase downwards and
the columns that does to the right and i, j ≥ 1. For example,
the (1, 2)-coordinate in a block represents the location on
the top (first) row and the second column from the left in
the block. Furthermore, let X[∗,∗] := ∪m,n≥0X

[m,n], where
X[m,n] includes the empty block λ[m,n] when m = 0 or n = 0.
For convenience, X[m,0] and X[0,n] are defined as {λ[m,0]}
and {λ[0,n]}, respectively. Let |p |r and |p |c be the numbers
of rows (the height) and columns (the width), respectively.
As an example, Fig. 1 illustrates a block p ∈ X[3,3].

2.2 Subblock, Concatenation, and Dictionary

For p ∈ X[m,n], the subblock p
(i+k−1, j+l−1)
(i, j) ∈ X[k,l] is de-

fined as

p
(i+k−1, j+l−1)
(i, j) :=




λ[0,l] (k = 0 and l ≥ 0),
λ[k,0] (k ≥ 0 and l = 0),

*..
,

p(i, j) · · · p(i, j+l−1)
...

. . .
...

p(i+k−1, j) · · · p(i+k−1, j+l−1)

+//
-

(k > 0 and l > 0)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k ≤ m − i + 1, and
0 ≤ l ≤ n − j + 1. Hereafter, without notice, we assume
that the height and the width of p are respectively given by
m (≥ 2) and n (≥ 2). For a given q ∈ X[k,l] (k, l ≥ 0),
the (k − 1) × l subblocks q(k−1,l)

(1,1) (the subblock obtained
by deleting the k-th row) and q(k,l)

(2,1) (the subblock obtained
by deleting the first row) are denoted by πr (q) and σr (q),
respectively, where both πr (q) and σr (q) are λ[0,l] when
k = 0 and 1. Similarly, the k × (l − 1) subblocks q(k,l−1)

(1,1) and
q(k,l)

(1,2) are denoted by πc (q) and σc (q), respectively, where
both πr (q) and σr (q) are λ[k,0] when l = 0 and 1. Figure 2
shows πc (p), σc (p), πr (p), and σr (p) from left to right for
p in Figure 1. The dictionary of p is defined as the set of
all subblocks of p; that is,

D (p) := {p(i+k−1, j+l−1)
(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n,

0≤ k ≤m − i+1, 0≤ l ≤ n− j+1}.

Now we define a column-wise concatenation of blocks.
For two blocks s, t ∈ X[∗,∗] such that |s |r = | t |r , define s :

Fig. 2 πc (p), σc (p), πr (p), and σr (p) of p in Fig. 1.

t ∈ X[ |s |r , |s |c+ |t |c ] to be the block obtained by concatenating
t at the end of s in columns. Similarly, for two blocks u, v ∈
X[∗,∗] such that |u |c = |v |c , define u/v ∈ X[ |u |r+ |v |r , |u |c ] to
be the block obtained by concatenating v at the end of u in
rows.

2.3 Flat Torus, Primitive, and Frequencies of Subblocks

The flat torus of p, denoted by pT , is constructed by concate-
nating the leftmost column (resp. the top row) to the right-
most column (resp. the bottom row) of p. The flat torus can
be treated as an infinite pattern such that p(i, j) = pT(i+km, j+ln)
for non-negative integers k and l.

For q ∈ X[m,n] and the 2m × 2n subblock p̄ := (p :
p)/(p : p) of pT , we say that p and q are equivalent, denoted
by p ' q, if there exist positive integers i (1 ≤ i ≤ m) and
j (1 ≤ j ≤ n) such that q = p̄

(i+m−1, j+n−1)
(i, j) . In other words,

p ' q if and only if q ∈ D( p̄). Indeed, it satisfies the
conditions to be an equivalence relation. Let [p] be the set
of all blocks q such that q ' p; that is,

[p] := {q ∈ X[m,n] | q ∈ D( p̄)}. (1)

For a block p ∈ X[m,n], p† is defined as the smallest element
in [p] in column-wise lexicographical order. From the defi-
nition, p† is equal to q† for any block q ∈ [p]. If | [p] | = mn,
p is called primitive. Hereafter, we always assume that p is
primitive. For example, p shown in Figure 1 is primitive.
For p and u ∈ X[k,l] (0 ≤ k ≤ m and 0 ≤ l ≤ n), define

N (u | p) := | {r | u = r (k,l)
(1,1), r ∈ [p]} |, (2)

where N (λ[k,l] |p) = mn (k = 0 or l = 0). Thus, N (u | p)
represents the frequency of u in pT . For convenience, we
often adopt the notation N (u) instead of N (u |p). For 0 ≤
k ≤ m and 0 ≤ l ≤ n, observe that∑

u∈X[k, l]

N (u) = mn. (3)

Moreover, for v ∈ X[i, j] (0 ≤ i ≤ m, 0 ≤ j < n) and
v ′ ∈ X[k,l] (0 ≤ k < m, 0 ≤ l ≤ n), we have

N (v) =
∑

c∈X[i,1]

N (c : v) =
∑

c∈X[i,1]

N (v : c), (4)

N (v ′) =
∑

r ∈X[1, l]

N (r/v ′) =
∑

r ∈X[1, l]

N (v ′/r ). (5)

2.4 Classifications of Flat Tori and Core

For a block p ∈ X[m,n] and integers k (0 ≤ k ≤ m) and
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l (0 ≤ l ≤ n), define

T (p, k, l) :={q† | N (w |q) = N (w |p),
∀w ∈ X[k,l], q ∈ X[m,n], q is primitive}.

(6)

For convenience, we write T (k, l) instead of T (p, k, l).
For example, T (m, n) = {p†}, that is |T (m, n) | = 1.

The cardinality |T (k, l) | represents the number of the small-
est (primitive) m × n blocks q† such that N (w |q) = N (w |p)
for any w ∈ X[k,l]. For 0 ≤ k < n and fixed 0 ≤ l ≤ n,
T (k, l) satisfies the subset relation in descending order of k;
that is, T (k+1, l) ⊆ T (k, l). Similarly, for fixed 0 ≤ k ′ ≤ n
and 0 ≤ l ′ < n, T (k ′, l ′ + 1) ⊆ T (k ′, l ′) holds.

We define B(p), which is used to encode p, to be

B(p) := {b ∈ X[k,l] | πr (b) ∈ D( p̄), σr (b) ∈ D( p̄),
πc (b) ∈ D( p̄), σc (b) ∈ D( p̄),

1 ≤ k ≤ m, 1 ≤ l ≤ n} ∪ {λ[0,0]}.
(7)

We assume that the elements of B(p) are ordered in as-
cending order of their heights (if the heights of the elements
are equal, then the elements are ordered with respect to their
widths; if the widths of the elements are also equal, then the
elements are ordered in column-wise lexicographical order),
where bi is the i-th element of B(p).

For an integer i (1 ≤ i ≤ |B(p) |), define

T (B(p), p, i) :={q† | N (b j | q) = N (b j | p),

1≤ ∀ j ≤ i, q ∈X[m,n], q is primitive}.
(8)

For convenience, we write T (i) instead of T (B(p), p, i).
For example, T (|B(p) |) = {p†}, that is |T (|B(p) |) | = 1.
The cardinality |T (i) | represents the number of represen-
tative (primitive) m × n blocks at encoding step i. For
1 ≤ i < |B(p) |, T (i) satisfies the subset relation in de-
scending order of i; that is, T (i + 1) ⊆ T (i). For a block
u ∈ B(p), the block σc (πc (u)) is called c-core (column-
core) if a : u, b : u, u : c, u : d ∈ D ( p̄), where
a, b(, a), c, d(, c) ∈ X[ |u |r ,1]. Similarly, for a block
v ∈ B(p), the block σr (πr (v)) is called r-core (row-core)
if e/v, f /v, v/g, v/h ∈ D( p̄), where e, f (, e), g, h(, g) ∈
X[1, |v |c ]. C-cores and r-cores are used to determine whether
an element ofB(p) is encoded. The details will be described
in Sects. 3 and 4.

3. Review of Conventional CSE

The conventional CSE is a lossless compression algorithm
for a 1D source. We can regard p ∈ X[m,n] as a 1D source
x ∈ X̂[1,n] over an extended alphabet X̂(= X[m,1]), so that
CSE can encode p as a 1D source x. For x in [x], let
rank(x) be the number assigned for x when elements in [x]

are arranged in lexicographical order, and ε(rank(x)) be the
encoding of rank(x) in binary (in dlog2 ne bits). CSE outputs

(E(n), e(b2, b3, . . . , b |B(x) |), ε (rank(x))), (9)

where E(n) denotes the encoding of n by means of the Elias
code for integers [14], and e(b2, b3, . . . , b |B(x) |) represents
the sequence of N (bi)(= N (bi |x)), 2 ≤ i ≤ |B(x) |, which
are encoded by an entropy coding. In encoding, an index i
for bi ∈ B(x) is chosen between 2 and |B(x) | because when
i = 1, N (b1) = N (λ[0,0]) = n and n is encoded as E(n). Let
b
| X̂ |+1 be the element of X̂ having the largest index in B(x).

For 2 ≤ i ≤ |B(x) |, N (bi) is encoded based on the following
conditions.

(C-i) When |bi |c = 1: Encode N (bi) if bi , b
| X̂ |+1,

(C-ii) When |bi |c ≥ 2: Encode N (bi) if (10) below holds
and a, c ∈ X̂\{b

| X̂ |+1}, where bi = a : w : c.

When we encode N (bi) based on conditions (C-i) and (C-
ii), we first assign the probability (as shown in (13), (14),
or (15)) to N (bi). We then encode the probability by using
entropy coding.

Inequality (10) was first shown in [10]. Note that im-
proved inequalities of (10) have been presented in [10] and
[15]. They are omitted here to simplify discussions because
they are complicated and only (10) is necessary for an asymp-
totic analysis. It is noteworthy that N (bi) is encoded even
though N (bi) = 0 in (C-i).

In (C-i), N (b
| X̂ |+1) can be inferred by using (3) and

b j ( j < |X̂ | + 1) which has been encoded. Similarly, in (C-
ii), N (bi) such that the first column of bi is b

| X̂ |+1 or the
last column of bi is b | X̂ |+1 can be inferred by using (4) and
bk (k < i). Therefore, N (bi) is not needed to be encoded.

min(N (a : w), N (w : c), N (w) − N (a : w),
N (w) − N (w : c)) ≥ 1. (10)

As for bi (= a : w : c) in (C-ii), satisfying (10) is equivalent
to satisfying the three conditions, w is a c-core, a : w ∈
D ( x̄), and w : c ∈ D( x̄).

In (C-i), N (bi) satisfies the following inequality

0 ≤ N (bi) ≤ n − 1. (11)

In (C-ii), N (bi) satisfies the following inequality [9]

max{0, N (a : w) −
∑

d∈X̂\{c }

N (w : d), N (w : c) −
∑

b∈X̂\{a }

N (b : w)}

≤ N (a : w : c) ≤ min{N (a : w), N (w : c)}. (12)

The left-hand side of (10) is given by the difference between
the upper bound and the lower bound of N (a : w : c)
obtained in (12). Therefore, if (10) does not hold, then the
upper bound and the lower bound turn out to be equal. In
other words, N (bi) = min{N (a : w), N (w : c)} holds, so
that N (bi) can be inferred. Hence, N (bi) is not encoded if
(10) does not hold. We define that I (a : w : c) for a given
a : w : c is the left-hand side of (10) plus one; that is,
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I (a : w : c) :=
min(N (a : w), N (w : c),

N (w) − N (a : w), N (w) − N (w : c)) + 1.

For encoding N (bi) by an entropy coding, the probability
is assigned to N (bi) [2], as

1
n

( |bi |c = 1), (13)

1
I (bi)

(2 ≤ |bi |c ≤
⌊
log2 log2 n

⌋
), (14)

|T (i) |
|T (i − 1) |

(|bi |c ≥
⌊
log2 log2 n

⌋
+ 1). (15)

The assigned probabilities are encoded by an entropy coding
such as an arithmetic coder or something like that [16].

The computational time results in a serious issue when
encoding a 2D source p by the conventional CSE. In (C-i),
the number of encoded N (bi) (2 ≤ i ≤ |X̂|) is exponential
with respect to m because |X̂ | = |X|m. In practice, m is
greater than 1000 for an image p ∈ X[m,n], so that the number
turns out to be greater than 21000 even though |X| = 2. It is
noteworthy that the number of encoded N (bi) is polynomial
with respect to m and n in (C-ii), for the following reasons.
Since w is a c-core, from (3) and (4), the total number of
c-cores is polynomial with respect to m and n. Moreover, as
N (a : w) ≥ 1 and N (w : c) ≥ 1 in (10), a, c ∈ D( x̄) ∩ X̂
also holds. From (3) and (4), |D ( x̄) ∩ X̂| never exceeds
mn. Hence, the total number of candidates bi (= a : w : c)
for encoding in (C-ii) is polynomial with respect to m and
n. The set of all the candidates can be used to encode x
instead of B(x) in (C-ii) for reducing the computational
time. Furthermore, only the relation on columns is used as
shown in (10) and a relation on rows is not used in encoding
of the conventional CSE.

4. Proposed Algorithm

Assume that m ≤ n, and let K =
⌊√

log |X | log |X | m
⌋
and

L =
⌊√

log |X | log |X | n
⌋
. We select K and L described above

for the following reasons. We use the number of occurrences
of K × L blocks q ∈ B(p) (that is the empirical distribution
of q ∈ X[K,L]) to analyze remarkable properties of p that
appear when the size of p goes to infinity. Therefore, it is
desirable to choose K and L such that K and L grow with m
and n, respectively. On the other hand, we need to store the
K × L blocks for encoding the number of their occurrences.
Since we want to make the cost of storing the K × L blocks
smaller with respect to data compression, we select K and L
such that the cost over the size of p converges to zero when
the size of p goes to infinity. Hence, K and L are set to be
small values compared with m and n, respectively. Observe
that K and L above satisfy those two requirements.

We divide B(p) into four disjoint subsets, with respect
to the size of elements, as

B0(p) := {λ[0,0]},

B1(p) := X,
B2(p) := {b ∈ B(p) | 1 ≤ |b |r ≤ K, 1 ≤ |b |c ≤ L, b < X},
B3(p) := {b ∈ B(p) | K < |b |r or L < |b |c, b < X}.

The elements ofBi (p) (i = 0, 1, 2, 3) are arranged in ascend-
ing order of their heights (if the heights of the elements are
equal, then the elements are arranged in ascending order of
their widths; if the widths of the elements are also equal, then
the elements are arranged in column-wise lexicographical or-
der.) The elements of B(p) are further reordered based on
the ascending order of indexes for Bi (p); that is, elements of
Bi (p) are lined up beforeBi′ (p) when i < i′. For simplicity,
we represent the fact as (B0(p),B1(p),B2(p),B3(p)).

For a given integer k, x(k, 1) (resp. x(1, k)) is defined to
be the last element (in ascending order) amongst all elements
of X[k,1] ∩ B(p) (resp. X[1,k] ∩ B(p)). For 2 ≤ i ≤ |B(p) |,
N (bi) is encoded based on the following conditions.

(P-i) If bi ∈ B1(p): Encode N (bi) if bi , J − 1,
(P-ii) If bi ∈ B2(p) ∪ B3(p):
1) If |bi |c = 1: Encode N (bi) if (10) holds and a, c ∈
X\{J − 1}, where bi = a : w : c,

2) If |bi |r = 1: Encode N (bi) if (16) holds and e, g ∈
X\{J − 1}, where bi = e/v/g,

3) If |bi |c ≥ 2 and |bi |r ≥ 2: Encode N (bi) if both (10)
and (16) hold, where a, c ∈ X[ |bi |r ,1]\{x(|bi |r, 1)} and
e, g ∈ X[1, |bi |c ]\{x(1, |bi |c)}.

When we encode N (bi) based on conditions (P-i) and (P-ii),
we first assign the probability (as shown in (18), (19), or
(20)) to N (bi). We then encode the probability by using
entropy coding.

min(N (e/v), N (v/g), N (v) − N (e/v),
N (v) − N (v/g)) ≥ 1. (16)

As for bi (= e/v/g) in 2) and 3) of (P-ii), satisfying (16)
is equivalent to satisfying the three conditions that v is an
r-core, e/v ∈ D( p̄), and v/g ∈ D( p̄).

The conventional CSE uses only condition (10) with
respect to columns, while the proposed algorithm uses con-
ditions (10) and (16) with respect to columns and rows,
respectively. In 1) and 2) of (P-ii), bi has one row and one
column, so that (10) and (16) are used, respectively. In (P-i),
N (bi) satisfies 0 ≤ N (bi) ≤ mn − 1. In (P-ii), N (bi) such
that |bi |c ≥ 2 satisfies a modified inequality (12) obtained
by replacing X̂ by X[ |a |r ,1], and N (bi) such that |bi |r ≥ 2
satisfies the following inequality

max{0, N (e/v) −
∑

h∈X[1, |e |c ]\{g }

N (v/h), N (v/g) −
∑

f ∈X[1, |e |c ]\{e }

N ( f /v)}

≤ N (e/v/g) ≤ min{N (e/v), N (v/g)}. (17)

Similarly, the left-hand side of (16) is given by the difference
between the upper bound and the lower bound of N (e/v/g)
obtained in (17). Therefore, if (16) does not hold, then the
upper bound and the lower bound turn to be equal. In other
words, N (bi) = min{N (e/v), N (v/g)} holds, so that N (bi)
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can be inferred. Hence, N (bi) is not encoded if (16) does
not hold. Therefore, in 3), N (bi) is encoded if both (10) and
(16) hold. Moreover, I ′(e/v/g) for a given e/v/g is defined
as the left-hand side of (16) plus one; that is,

I ′(e/v/g) :=
min(N (e/v), N (v/g),

N (v) − N (e/v), N (v) − N (v/g)) + 1.

For encoding N (bi) by an entropy coding, the probability
is assigned to N (bi), as

1
mn

(bi ∈ B1(p)), (18)

max
(

1
I (bi)

,
1

I ′(bi)

)
(bi ∈ B2(p)), (19)

|T (i) |
|T (i − 1) |

(bi ∈ B3(p)). (20)

The assigned probabilities are encoded by an entropy coding
such as an arithmetic coder or something like that. The
proposed algorithm outputs the following quadruple

(E(m), E(n), e(b2, b3, . . . , b |B(p) |), ε (rank(p))). (21)

In (21), E(m) and E(n) represent encoded m and n by means
of the Elias code for integers, respectively. In addition,
rank(p) represents an index for identifying p in [p] such
as the rank of p in [p] with lexicographical order column-
wisely. Then, ε(rank(p)) is the encoding of rank(p) in binary
(in dlog2 mne bits), and e(b2, b3, . . . , b |B(p) |) represents the
sequence of N (bi) (2 ≤ i ≤ |B(p) |) which is encoded by
an entropy coding.

In the proposed algorithm, the number of encoded
N (bi) in (P-i) is |X| − 1 (a constant), while that in (C-i)
is |X|m − 1, which is exponential with respect to m. As for
(P-ii), the number of candidates N (bi) for encoding is poly-
nomial with respect to m and n, for the following reasons.
As for 1), it is the same as (C-ii). As for 2) and 3), since v
is an r-core, from the discussions on a c-core described in
Sect. 3, the total number of candidates N (bi) for encoding
is also polynomial with respect to m and n. The set of all
the candidates can be used to encode p instead of B(p) in
(P-ii) for reducing the computational time. Hence, for a 2D
source p, the total number of output blocks of the proposed
algorithm is polynomial with respect to m and n, while that
of the conventional CSE is exponential with respect to m.

5. Evaluation of the Proposed Algorithm

A general source X is defined as

X :=
{X [m,n] = (X<m,n>

(1,1) , X<m,n>
(1,2) , . . . , X<m,n>

(m,n) )}∞,∞
m=1,n=1,

where a random variable X [m,n] takes a value in the m × n
Cartesian product X[m,n] of X [17]. The probability distri-
bution of a random variable X [m,n] is denoted by PX[m,n] .

The sup-entropy rate of X is defined as

Ĥ (X) := lim sup
m,n→∞

1
mn

H (X [m,n]). (22)

For p, let `(p) be the codeword length of the pro-
posed algorithm. Let `0(p) be the total codeword lengths
of E(m), E(n), and ε(rank(p)) in (21). The codeword
length of e(b2, b3, . . . , b |B(p) |) consists of three parts `1(p),
`2(p), and `3(p), where `1(p), `2(p), and `3(p) are
the total codeword lengths of N (bi) for bi ∈ B1(p),
bi ∈ B2(p), and bi ∈ B3(p), respectively. Observe that
`(p) = `0(p) + `1(p) + `2(p) + `3(p).

Theorem 1 is one of our main results.

Theorem 1. For a general source X,

lim sup
m,n→∞

E
[
`(X [m,n])

mn

]
= Ĥ (X).

To prove Theorem 1, we show four lemmas: Lemma 1,
Lemma 2, Lemma 3, and Lemma A. Lemmas 1 and 2 are
2D versions of Lemma 6 in [11] and Lemma 3 in [2], respec-
tively. LemmaA is stated without proof since it is equivalent
to Corollary 2 in [11]. Note that we assign alphabetic letters
to the lemma.

Lemma 1. If bi+1 ∈ B(p) such that |bi+1 |c ≥ 2 does not
satisfy (10), then T (i+1) = T (i). Similarly, if bi+1 ∈ B(p)
such that |bi+1 |r ≥ 2 does not satisfy (16), then T (i + 1) =
T (i).

Proof. T (i + 1) ⊆ T (i) holds from the monotonicity on
the cardinalities, so we focus on showing T (i + 1) ⊇ T (i).
Also, we only argue the first case since the latter case is
obtained by swapping column and row.

From the assumption on bi+1, bi+1 can be written as
a : w : c for a, c ∈ X[ |bi+1 |r ,1] and w ∈ X[∗,∗]. Suppose that
bi+1 does not satisfy (10). When (10) does not hold, a case
among the four following ones has to hold

N (a : w) = 0 or, (23)
N (w : c) = 0 or, (24)
N (w) − N (a : w) = 0 or, (25)
N (w) − N (w : c) = 0. (26)

If (23) holds, then N (a : w : d) = 0 for any column d ∈
X[ |bi+1 |r ,1]. Therefore, if y is an element of

T (i) = {q† | N (b j | q) = N (b j | p), 1 ≤ ∀ j ≤ i,
N (a : w | q) = N (a : w | p) = 0,
q ∈ X[m,n], q is primitive}

then y is also an element of

T (i + 1) = {s† | N (b j | s) = N (b j | p), 1 ≤ ∀ j ≤ i,
N (a : w | s) = N (a : w | p) = 0,
N (a : w : c | s) = N (a : w : c | p) = 0,
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s ∈ X[m,n], s is primitive}.

Hence, T (i+ 1) ⊇ T (i) holds. Similarly, if (24) holds, then
T (i + 1) ⊇ T (i) holds.

If (25) holds, then N (d : w) = 0 for any column d ∈(
X[ |bi+1 |r ,1]\{a}

)
because N (w) = N (a : w). Hence, we

have N (w : c) = N (a : w : c) because N (d : w) = 0 for
any column d ∈

(
X[ |bi+1 |r ,1]\{a}

)
. Let N (w : c) = N (a :

w : c) = C ≥ 0. If y is an element of

T (i) = {q† | N (b j | q) = N (b j | p), 1 ≤ ∀ j ≤ i,
N (w | q) = N (w | p) = N (a : w | q) = N (a : w | p),
N (w : c | q) = N (w : c | p) = C,

q ∈ X[m,n], q is primitive}

then y is also an element of

T (i + 1) = {s† | N (b j | s) = N (b j | p), 1 ≤ ∀ j ≤ i,
N (w | s) = N (w | p) = N (a : w | s) = N (a : w | p),
N (w : c | s) = N (w : c | p) = C,
N (a : w : c | s) = N (a : w : c | p) = C,

s ∈ X[m,n], s is primitive}.

Therefore, T (i + 1) ⊇ T (i) holds. Similarly, if (26) holds,
then T (i + 1) ⊇ T (i) holds.

Hence, in any case, we have T (i + 1) ⊇ T (i), which
completes the proof. �

Remark 1. Lemma 1 holds when the rearranged order of
elements of B(p) is used, that is (B0(p), B1(p), B2(p),
B3(p)). When bi+1 (= a : w : c) such that |bi+1 |c ≥ 2
(resp. bi+1 (= e/v/g) such that |bi+1 |r ≥ 2) is encoded
based on the rearranged order, N (a : w), N (w : c), and
N (w) (resp. N (e/v), N (v/g), and N (v)) have been already
encoded or can be inferred.

We give the reasons why Remark 1 holds. Since
|bi+1 |c ≥ 2 (resp. |bi+1 |c ≥ 2) from the assumption,
bi+1 ∈ (B2(p) ∪ B3(p)). For bi+1 ∈ (B2(p) ∪ B3(p)),
any block x ∈ {a : w, w : c, w} (resp. {e/v, v/g, v}) is the
empty block or an element of B(p) because x is a proper
subblock of bi+1 and any proper subblock of bi+1 is inD ( p̄)
from the definition of B(p). When x is the empty block,
N (x) = mn from the definition, so N (x) can be inferred.

In case that bi+1 ∈ B2(p), any block x ∈ {a : w, w :
c, w} (resp. {e/v, v/g, v}) is the empty block or an element
of (B1(p) ∪ B2(p)). For x ∈ (B1(p) ∪ B2(p)), x comes
before bi+1 in the rearranged order because |x |r < |bi+1 |r or
|x |r = |bi+1 |r and |x |c < |bi+1 |r .

In case that bi+1 ∈ B3(p), any block x ∈ {a : w, w :
c, w} (resp. {e/v, v/g, v}) is the empty block or an element of
(B1(p)∪B2(p)∪B3(p)). For x ∈ (B1(p)∪B2(p)∪B3(p)),
x comes before bi+1 in the rearranged order because |x |r <
|bi+1 |r or |x |r = |bi+1 |r and |x |c < |bi+1 |r .

Therefore, N (x) has been already encoded or can be
inferred when N (bi+1) is encoded based on the rearranged

order, where x ∈ {a : w, w : c, w} (resp. {e/v, v/g, v}).

Lemma A (Corollary 2 [11]). For a positive integer n such
that n = a1 + a2 + · · · + ad and non-negative integers
a1, a2, . . . , ad ,

n!
Πd
i=1ai!

≤
nn

Πd
i=1aai

i

,

where 0! = 1 and 00 = 1.

Lemma 2. For 1 ≤ k ≤ m and 1 ≤ l ≤ n, we have

log2 |T (k, l) | ≤ −
mn
kl

∑
w∈X[k, l]

N (w)
mn

log2
N (w)
mn

.

Proof. When |T (k, l) | is calculated, |T (k − 1, l) | and
|T (k, l − 1) | are known. Therefore, N (u) and N (v) for
u ∈ X[k−1,l] and v ∈ X[k,l−1] are also known.

We show the statement based on the following claim.
Claim: For any 1 ≤ k ≤ m and 1 ≤ l ≤ n,

|T (k, l)) |kl ≤
(mn)!∏

w∈X[k, l]

N (w)!
. (27)

Once the claim is shown, then we have from (27) that

kl log2 |T (k, l)) | ≤ log2
(mn)!∏

w∈X[k, l]

N (w)!
(28)

Hence, from Lemma A,

log2 |T (k, l) | ≤ −
mn
kl

∑
w∈X[k, l]

N (w)
mn

log2
N (w)
mn

(29)

as desired. Thus, we focus on showing the claim in accor-
dance with the following steps.

Step 1: For k = 1 and 1 ≤ l ≤ n or for 1 ≤ k ≤ m and
l = 1, show

|T (k, l) | ≤ *.
,

∏
y∈X[k, l−1]

(
N (y)

N (y : c0), . . . , N (y : c |X |k−1)

)
+/
-

1
k

(30)

|T (k, l) | ≤ *.
,

∏
z∈X[k−1, l]

(
N (z)

N (z/r0), . . . , N (z/r |X |l−1)

)
+/
-

1
l

(31)

whereX[k,1] = {c0, . . . c |X |k−1} andX[1,l] = {r0, . . . r |X |l−1}.
Step 2: Fix m and n. For any 1 ≤ k ≤ m, show

|T (k, 1) |k ≤
(mn)!∏

w∈X[k,1]

N (w)!
. (32)
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Step 3: For any 1 ≤ k ≤ m and 1 ≤ l ≤ n, show (30)
and (31) hold.

Step 4: Show that the claim holds.
Proof of Step 1: For k = 1 and 1 ≤ l ≤ n, |T (k, l) |

never exceeds the product of these possible combinations
over all substrings of length l, so that (30) holds. Similarly,
for 1 ≤ k ≤ m and l = 1, (31) holds.

Proof of Step 2: When k = 1, the right-hand side of
(32) is given by

(mn)!∏
w∈X[1,1]

N (w)!

=
∏

z∈X[0,1]

(
N (z)

N (z/r0), . . . , N (z/r |X |−1)

)
. (33)

From Step 1, (32) holds for k = 1. We assume that (32)
holds when k = i ≥ 1. When k = i + 1, from Step 1,

|T (i + 1, 1) | ≤
∏

z∈X[i,1]

(
N (z)

N (z/r0), . . . , N (z/r |X |−1)

)
.

(34)

Since |T (k + 1, l) | ≤ |T (k, l) |, we have from (34) that

|T (i + 1, 1) |i+1

≤ |T (i, 1) |i
∏

z∈X[i,1]

(
N (z)

N (z/r0), . . . , N (z/r |X |−1)

)
(35)

≤
(mn)!∏

z∈X[i,1]

N (z)!

∏
z∈X[i,1]

N (z)!∏
z∈X[i,1]

N (z/r0)! · · · N (z/r |X |−1)!

(36)

=
(mn)!∏

w∈X[i+1,1]

N (w)!
. (37)

Therefore, (32) holds for any 1 ≤ k ≤ m.
Proof of Step 3: Observe that (32) is equivalent to

|T (k, 1) | ≤
*.....
,

(mn)!∏
y∈X[k,1]

N (y)!

+/////
-

1
k

=
*.
,

∏
y∈X[k,0]

(
N (y)

N (y : c0), . . . , N (y : c |X |k−1)

)
+/
-

1
k

. (38)

From (38), (30) holds for 1 ≤ k ≤ m and l = 1. We
then prove that (30) holds for any 1 ≤ k ≤ m and 1 ≤ l ≤ n
by mathematical induction on l for fixed k ≥ 1, m and n.

Assume that (30) holds when l = j ≥ 1. For l = j,
from the assumption,

|T (k, j) | ≤

*.
,

∏
y∈X[k, j−1]

(
N (y)

N (y : c0), . . . , N (y : c |X |k−1)

)
+/
-

1
k

=

*.....
,

∏
y∈X[k, j−1]

(N (y)!)

∏
y′∈X[k, j]

(N (y ′)!)

+/////
-

1
k

(39)

From (39), |T (k, j) |k never exceeds the product of pos-
sible combinations over all subblocks y ′ = y : ca (0 ≤
a ≤ |X|k − 1) for all y. Moreover, since N (y ′) = N (y ′ :
c0) + · · · + N (y ′ : c |X |k−1), |T (k, j + 1) |k never exceeds
the product of possible combinations over all subblocks
y ′ : ca (0 ≤ a ≤ |X|k − 1) for all y ′. Therefore,

|T (k, j + 1) | ≤

*.....
,

∏
y′∈X[k, j]

N (y ′)!

∏
y′∈X[k, j]

N (y ′ : c0)! · · · N (y ′ : c |X |k−1)!

+/////
-

1
k

(40)

=
*.
,

∏
y′∈X[k, j]

(
N (y ′)

N (y ′ : c0), . . . , N (y ′ : c |X |k−1)

)
+/
-

1
k

(41)

Hence, (30) holds for 1 ≤ k ≤ m and 1 ≤ l ≤ n. Similarly,
by swapping the row k and the column l, (31) holds.

Proof of Step 4: From (32), (27) holds for 1 ≤ k ≤ m
and l = 1. We next prove that (30) holds for any 1 ≤ k ≤ m
and 1 ≤ l ≤ n by induction on k for fixed l ≥ 1, m and n.

Assume that (27) holds when k = i ≥ 1. For k = i + 1,
from (31),

|T (i + 1, l) |l ≤∏
w∈X[i, l]

(
N (w)

N (w/r0), . . . , N (w/r |X |l−1)

)
. (42)

From (34),

|T (i + 1, l) |(i+1)l

≤ |T (i, l) |il
∏

w∈X[i, l]

(
N (w)

N (w/r0), . . . , N (w/r |X |l−1)

)
(43)

=
(mn)!∏

w∈X[i, l]

N (w)!

∏
w∈X[i, l]

N (w)!∏
w∈X[i, l]

N (w/r0)! · · · N (w/r |X |l−1)!

(44)

=
(mn)!∏

w′∈X[i+1, l]

N (w′)!
. (45)
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Hence, (27) holds for 1 ≤ k ≤ m and 1 ≤ l ≤ n. From (27),

kl log2 |T (k, l)) | ≤ log2
(mn)!∏

w∈X[k, l]

N (w)!
. (46)

Hence, from Lemma A,

log2 |T (k, l) | ≤ −
mn
kl

∑
w∈X[k, l]

N (w)
mn

log2
N (w)
mn

. (47)

�

Lemma 3. For K =

⌊√
log |X | log |X | m

⌋
and L =

⌊√
log |X | log |X | n

⌋
,

lim sup
m,n→∞

−
1

K L

∑
w∈X[K,L]

(
E

[
N (w | X [m,n])

mn

]

log2 E
[

N (w | X [m,n])
mn

])
= Ĥ (X).

Proof. For w ∈ X[K,L], PX[m,n] (w) can be written as

E


|{(i, j) s.t. X (i+K−1, j+L−1)
(i, j) =w, 1 ≤ i ≤ m′, 1 ≤ j ≤ n′}|

m′n′


where m′ and n′ are m − K + 1 and n − L + 1, respec-
tively, and (i, j) is the coordinate. For p, let N ′(w | p) be
|{(i, j) s.t. p(i+K−1, j+L−1)

(i, j) = w, 1 ≤ i ≤ m′, 1 ≤ j ≤ n′}|.
Moreover, N (w | p)

mn can be written as
(
N ′(w | p)+δ

m′n′

) (
m′n′

mn

)
where 0 ≤ δ ≤ (K − 1)(n − L + 1) + (L − 1)m from (2).
Because K and L are respectively

⌊√
log |X | log |X | m

⌋
and

⌊√
log |X | log |X | n

⌋
, N (w |p)

mn converges to N ′(w |p)
m′n′ as m and n

go to infinity. Since E
[
N ′(w |X[m,n])

m′n′

]
= PX[m,n] (w),

lim sup
m,n→∞

−
1

K L

∑
w∈X[K,L]

(
E

[
N (w | X [m,n])

mn

]

log2 E
[

N (w | X [m,n])
mn

])
= lim sup

m,n→∞
−

1
K L

∑
w∈X[K,L]

PX[m,n] (w) log2 PX[m,n] (w)

= lim sup
m,n→∞

H (X [K,L])
K L

= Ĥ (X).

�

We are now in a position of proving Theorem 1.

(Proof of Theorem 1). As for `0(p), from the assumption
and m ≤ n, we have `0(p) ≤ 2(2dlog2 ne + 1) + dlog2 mne,
where (2dlog2 ne + 1) and dlog2 mne are the costs of the

Elias code for integers n and ε(rank(p)), respectively. As for
`1(p), the cost of N (bi) in Condition (P-i) is dlog2 mne bits
from (18), so that `1(p) ≤ (|X| −1)dlog2 mne. As for `2(p),
since I (bi) ≤ mn and I ′(bi) ≤ mn, the costs of I (bi) and
I ′(bi) are at most log2 mn bits. Moreover, because m ≤ n
and K ≤ L,

`2(p) ≤
K∑
h=1

L∑
w=1
|X|hw log2 mn ≤ L2 |X|L

2
log2 mn

≤ 2(log |X | log |X | n)(log |X | n)(log2 n).

Therefore,

lim
m,n→∞

(`0(p) + `1(p) + `2(p))/mn = 0. (48)

As for `3(p), the cost of N (bi) is − log2(|T (i) |/|T (i −
1) |) bits from (20). Similarly, the cost of N (bi+1) is
− log2(|T (i + 1) |/|T (i) |) where N (bi+1) is encoded subse-
quent to N (bi) which has been encoded. The denominator
|T (i) | for N (bi+1) is equal to the previous numerator |T (i) |
for N (bi), so that they are canceled. In other words,

− log2(|T (i) |/|T (i − 1) |) − log2(|T (i + 1) |/|T (i) |)
= − log2(|T (i + 1) |/|T (i − 1) |)).

On the other hand, N (bi+1) may not be encoded when
N (bi+1) does not satisfy the conditions as shown in (P-ii).
We assume that N (b j ) is encodedwhile N (bi+k ) (1 ≤ k < j)
are not encoded. The cost of N (b j ) is − log2( |T ( j) |/|T ( j−
1) |). From Lemma 1, |T ( j − 1) | = |T (i) | holds because
any N (bi+k ) (1 ≤ k < j) does not satisfy the conditions
as shown in (P-ii) from the assumption. Therefore, they are
also canceled. In other words,

− log2(|T (i) |/|T (i − 1) |) − log2(|T ( j) |/|T ( j − 1) |)
= − log2(|T ( j) |/|T (i − 1) |)).

Moreover, since |T (|B(p) |) | = 1,

`3(p) = log2 |T (S − 1) |, (49)

where S is the index of the first block bS ∈ B3(p) which is
encoded by an arithmetic coder or something like that. From
Lemma 1, |T (S − 1) | = |T (K, L) |. Therefore,

`3(p) = log2 |T (K, L) |. (50)

From (50) and Lemma 2,

`3(p) ≤ −
mn
K L

∑
w∈X[K,L]

N (w)
mn

log2
N (w)
mn

. (51)

Therefore,

E
[
`3(X [m,n])

mn

]
≤

−
1

K L

∑
w∈X[K,L]

E
[

N (w |X [m,n])
mn

log2
N (w |X [m,n])

mn

]
.
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From Jensen’s inequality,

E
[

N (w |X [m,n])
mn

]
E

[
log2

N (w |X [m,n])
mn

]
≤

E
[

N (w |X [m,n])
mn

log2
N (w |X [m,n])

mn

]
.

Therefore, from Lemma 3,

lim sup
m,n→∞

E
[
`3(X [m,n])

mn

]
≤ Ĥ (X). (52)

From (48) and (52),

lim sup
m,n→∞

E
[
`(X [m,n])

mn

]
≤ Ĥ (X). (53)

The proposed code is a prefix code, so Kraft’s inequality
holds. Therefore,

lim sup
m,n→∞

E
[
`(X [m,n])

mn

]
≥ Ĥ (X).

�

From Remark 1.7.3 [17], if X is a stationary source,
Ĥ (X) can be expressed by H (X)(:= limm,n→∞

H (X[m,n])
mn ),

which is the entropy rate of X. Therefore, if X is a sta-
tionary source, the average codeword length of the proposed
algorithm converges to H (X) as m and n go to infinity.

6. Conclusion

We proposed a new CSE for a 2D source which uses the flat
torus of the source for reducing the computational time and
compress a 2D source without converting to a 1D source.
The total number of output blocks of the new CSE is poly-
nomial, while that of the conventional CSE is exponential
with respect to the source size. The new CSE encodes the
source in a block-by-block fashion, while the conventional
CSE does in a line-by-line fashion. Moreover, we proved
that an upper bound on the average codeword length of the
proposed CSE converges to the sup-entropy rate for a 2D
general source as the size of the input source goes to infin-
ity. In other words, we proved the asymptotic optimality of
the proposed CSE for a 2D general source. Furthermore, if
a 2D general source is a stationary source, then the length
converges to the entropy rate of the source as the size goes
to infinity.

Acknowledgements

The authors truly thank the anonymous reviewers for their
valuable comments. Thisworkwas supported by JSPSKAK-
ENHI Grant Numbers JP17K00147 and JP17K00400.

References

[1] D. Dubé and V. Beaudoin, “Lossless data compression via sub-
string enumeration,” Proc. Data Compression Conference, pp.229–
238, March 2010.

[2] H.Yokoo, “Asymptotic optimal lossless compression via the cse tech-
nique,” Proc. Data Compression, Communications and Processing,
pp.11–18, June 2011.

[3] D. Dubé and H. Yokoo, “The universality and linearity of compres-
sion by substring enumeration,” Proc. IEEE International Sympo-
sium on Information Theory, pp.1619–1623, Aug. 2011.

[4] M. Béliveau and D. Dubé, “Improving compression via substring
enumeration by explicit phase awareness,” Proc. Data Compression
Conference 2014, p.399, March 2014.

[5] S. Kanai, H. Yokoo, K. Yamazaki, and H. Kaneyasu, “Efficient im-
plementation and empirical evaluation of compression by substring
enumeration,” IEICETrans. Fundamentals, vol.E99-A, no.2, pp.601–
611, Feb. 2016.

[6] M. Burrows and D.J. Wheeler, “A block-sorting lossless data com-
pression algorithm,” SRC Research Report, pp.73–93, May 1994.

[7] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi, “Data com-
pression using antidictionaries,” Proc. IEEE, vol.88, no.11, pp.1756–
1768, Nov. 2000.

[8] T. Ota and H. Morita, “On antidictionary coding based on com-
pacted substring automaton,” Proc. IEEE International Symposium
on Information Theory, pp.1754–1758, July 2013.

[9] T. Ota and H. Morita, “On a universal antidictionary coding for
stationary ergodic sources with finite alphabet,” Proc. International
Symposium on Information Theory and its Applications, pp.294–
298, Oct. 2014.

[10] K. Iwata and M. Arimura, “Lossless data compression via substring
enumeration for k-th order Markov sources with a finite alpha-
bet,” IEICE Trans. Fundamentals, vol.E99-A, no.12, pp.2130–2135,
Dec. 2016.

[11] T. Ota and H. Morita, “A compact tree representation of an antidic-
tionary,” IEICE Trans. Fundamentals, vol.E100-A, no.9, pp.1973–
1984, Sept. 2017.

[12] M. Crochemore, G. Fici, R. Marcuş, and S.P. Pissis, “Linear-
time sequence comparison using minimal absent words & applica-
tions,” Proc. LatinAmerican Symposium onTheoretical Informatics,
pp.334–346, April 2016.

[13] D. Salomon andG.Motta, Handbook ofDataCompression, Springer,
2010.

[14] P. Elias, “Universal codeword sets and representations of the inte-
gers,” IEEE Trans. Inf. Theory, vol.IT-21, no.2, pp.194–203, March
1975.

[15] T. Ota, H. Morita, and A. Manada, “Compression by substring enu-
meration with a finite alphabet using sorting,” Proc. International
Symposium on Information Theory and its Applications, pp.587–
591, Oct. 2018.

[16] A. Moffat and A. Turpin, Compression and Coding Algorithms,
Kluwer Academic Publishers, 2002.

[17] T.S. Han, Information-Spectrum Methods in Information Theory,
Springer-Verlag, 2002.

[18] T. Ota and H. Morita, “Two-dimensional source coding by means
of subblock enumeration,” Proc. IEEE International Symposium on
Information Theory, pp.311–315, June 2017.

https://ieeexplore.ieee.org/document/5453467
https://ieeexplore.ieee.org/document/5453467
https://ieeexplore.ieee.org/document/5453467
http://dx.doi.org/10.1109/ccp.2011.32
http://dx.doi.org/10.1109/ccp.2011.32
http://dx.doi.org/10.1109/ccp.2011.32
http://dx.doi.org/10.1109/isit.2011.6033796
http://dx.doi.org/10.1109/isit.2011.6033796
http://dx.doi.org/10.1109/isit.2011.6033796
http://dx.doi.org/10.1109/dcc.2014.68
http://dx.doi.org/10.1109/dcc.2014.68
http://dx.doi.org/10.1109/dcc.2014.68
http://dx.doi.org/10.1587/transfun.e99.a.601
http://dx.doi.org/10.1587/transfun.e99.a.601
http://dx.doi.org/10.1587/transfun.e99.a.601
http://dx.doi.org/10.1587/transfun.e99.a.601
http://dx.doi.org/10.1109/5.892711
http://dx.doi.org/10.1109/5.892711
http://dx.doi.org/10.1109/5.892711
http://dx.doi.org/10.1109/isit.2013.6620528
http://dx.doi.org/10.1109/isit.2013.6620528
http://dx.doi.org/10.1109/isit.2013.6620528
https://ieeexplore.ieee.org/document/6979851
https://ieeexplore.ieee.org/document/6979851
https://ieeexplore.ieee.org/document/6979851
https://ieeexplore.ieee.org/document/6979851
http://dx.doi.org/10.1587/transfun.e99.a.2130
http://dx.doi.org/10.1587/transfun.e99.a.2130
http://dx.doi.org/10.1587/transfun.e99.a.2130
http://dx.doi.org/10.1587/transfun.e99.a.2130
http://dx.doi.org/10.1587/transfun.e100.a.1973
http://dx.doi.org/10.1587/transfun.e100.a.1973
http://dx.doi.org/10.1587/transfun.e100.a.1973
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-1-84882-903-9
http://dx.doi.org/10.1007/978-1-84882-903-9
http://dx.doi.org/10.1109/tit.1975.1055349
http://dx.doi.org/10.1109/tit.1975.1055349
http://dx.doi.org/10.1109/tit.1975.1055349
http://dx.doi.org/10.1007/978-1-4615-0935-6
http://dx.doi.org/10.1007/978-1-4615-0935-6
http://dx.doi.org/10.1109/isit.2017.8006540
http://dx.doi.org/10.1109/isit.2017.8006540
http://dx.doi.org/10.1109/isit.2017.8006540


OTA et al.: A UNIVERSAL TWO-DIMENSIONAL SOURCE CODING BY MEANS OF SUBBLOCK ENUMERATION
449

Takahiro Ota received the B.E. and
Ph.D. degrees from the University of Electro-
Communications, Tokyo, Japan, in 1993 and
2007, respectively. In 1997, he joined Nagano
Prefectural Institute of Technology, Nagano,
Japan, first a Lecturer at Department of Elec-
tronic Engineering, where from 2009, he was an
Associate Professor. Since 2012, he is an Asso-
ciate Professorwith theDepartment of Computer
& Systems Engineering. His current research in-
terests are in information theory, source coding,

and bio-informatics.

Hiroyoshi Morita received the B.E., M.E.,
and D.E. degrees from Osaka University, Osaka,
Japan, in 1978, 1980 and 1983, respectively. In
1983, he joined Toyohashi University of Tech-
nology, Aichi, Japan as a Research Associate in
the School of Production System Engineering.
In 1990, he joined the University of Electro-
Communications, Tokyo, Japan, first an Assis-
tant Professor at the Department of Computer
Science and Information Mathematics, where
from 1992, he was an Associate Professor. Since

1995, he has been with the Graduate School of Information Systems, where
from 2005, he is a Professor. He was a Visiting Fellow at the Institute of
Experimental Mathematics, University of Essen, Essen, Germany during
1993–1994. His research interests are in combinatorial theory, information
theory, and coding theory, with applications to the digital communication
systems.

Akiko Manada received the M.S. degree
from Tsuda College, Tokyo, Japan, in 2004, and
the Ph.D. degree in Mathematics from Queen’s
University, Kingston, Canada, in 2009. She then
worked at Claude Shannon Institute at Univer-
sity College Dublin, Ireland, as a postdoctoral
fellow from 2009 through 2011. She was an
assistant professor at Graduate School of In-
formation Systems, the University of Electro-
Communications, Tokyo, Japan from 2012 to
2018. Since April 2018, she has been a lecturer

at Dept. of Information Science, the Shonan Institute of Technology, Kana-
gawa, Japan. Her research interests are discrete mathematics (especially in
graph theory) and its applications towards coding theory.


