Digital Communications and Networks(DCN)

HOSTED BY

Available online at www.sciencedirect.com

ScienceDirect

Digital
Communications
Snd Networks.

journal homepage: www.elsevier.com/locate/dcan

Dynamic load balancing with learning
model for Sudoku solving system

Nattapong Kitsuwan, Praphan Pavarangkoon, Hendro Mulyo Widiyanto,
and Eiji Oki

Department of Computer and Network Engineering, The University of Electro-Communications,

1-5-1, Chofugaoka, Chofi-shi, Tokyo 182-8585, Japan

Abstract

This paper proposes a dynamic load balancing with learning model for a Sudoku problem solving system that has multiple
workers and multiple solvers. The objective is to minimise the total processing time of problem solving. Our load balancing
with learning model distributes each Sudoku problem to an appropriate pair of worker and solver when it is received by the
system. The information of estimated solution time for a specific number of given input values, estimated finishing time of
each worker, and idle status of each worker are used to determine the worker-solver pairs. In addition, the proposed system can
estimate the waiting period for each problem. Test results show that the system has shorter processing time than conventional

alternatives.

© 2015 Published by Elsevier Ltd.

KEYWORDS: Dynamic load balancing, learning model, Sudoku

1. Introduction

Sudoku is a logic-based combinatorial number-
placement puzzle. It contains d”> x d” cells in table
form. The table consists of d> minigrids, where each
minigrid contains d X d cells none of which overlap,
as shown in Fig. 1. A popular table format is d = 3.
Solving a Sudoku puzzle demands that every cell be
filled with a number value so that three conditions are
satisfied: first, the number values in each cell on the
same row must be different: second, the number val-
ues in each cell in the same column must be different;
finally, the number values in the same minigrid must
be different.

There are basically two approaches to solving Su-
doku problems. First, we can formulate Sudoku as
an Integer Linear Programming (ILP) problem, which
can allows ILP solvers to be applied. The second is to
adopt one of the non-ILP approaches as in Refs. [1] -

*Nattapong Kitsuwan (Corresponding author)

(email:kitsuwan @uec.ac.jp).

[8]. Human strategies [1], such as naked pair and x-
wing, can be applied as non-ILP approaches. The hu-
man strategies may be faster than the ILP approach if
the pattern of the problem matches the human strategy
adopted. This approach is not very effective as several
strategies may need to be tried to solve one Sudoku
problem, and the problem cannot be solved if the pat-
tern does not match any strategy. Human strategies
need to be combined with ILP or non-ILP approaches
to ensure problem solution.

Existing Sudoku solvers consider only calculation
time in managing the queue of the load balancer, queu-
ing time on the load balancer, and time to solve the
Sudoku problem. If the load balancer and the Sudoku
server are spatially separated, the link propagation de-
lay of the network influences queuing performance.
Therefore, considering the link propagation delay can
make the load balancing system more efficient.

The basic Sudoku solver consists of an input inter-
face and a worker with a solver. Sudoku solvers were
developed in Refs. [9] - [13]. The website [9] provides
785 free Sudoku puzzles and allows users to create Su-

Nattapong Kitsuwan, et al.

24—+—= Given input

b) d=3 ¢) d=4

Fig. 1: Sudoku tables

doku problems by themselves. Limits are placed on
the number of given input values, as the website does
not yield puzzles with a small number of given input
values. Another website in Ref. [10] provides a Com-
mand Line Interface (CLI) to a Sudoku solver. The
user can use the system to generate a problem and de-
termine whether an answer is a unique solution. A sys-
tem to solve Sudoku puzzles with d = 4 was presented
in Ref. [11]. The output shows multiple solutions (if
available) and steps in the solutions. Spreadsheet soft-
ware [12] has been presented to solve d = 5 Sudoku.
That work includes a system that allows the user to
define Sudoku size [13].

All the above Sudoku solvers systems employ
pipelining to solve Sudoku problems one by one. If
there are many requests, however, parallel solving is
required to achieve practical processing time. There-
fore, Sudoku solving systems should employ multiple
workers. The performance of a solving approach is
based on the characteristics of the problem. Some ap-
proaches may find solutions rapidly when the number
of given input values is small. For reducing the solving
time, an attractive alternative is to equip each worker
with several approaches and to choose the most suit-
able approach for each request. Such systems need
load balancing to distribute requests to appropriate
worker-solver pairs. We consider user requirements
as follows: first, the user wants to obtain a solution
as quickly as possible; second, the user wants an es-
timation of time taken to obtain a solution before ob-
taining the solution; third, the user wants to define the
given input values without any restriction; fourth, the
user wants to define Sudoku size. None of the previ-
ous proposals can satisfy all requirements. The works
in Refs. [9] - [13] satisfy only the first, third and/or
fourth requirements. However, when the size of the
Sudoku problem increases, the systems take too long
to solve each problem. The user does not know when
the solution will be obtained, and so does not know
how long he/she has to wait.

This paper proposes a dynamic load balancing with
learning model for a Sudoku solving system that sat-
isfies all four requirements detailed above. It is an
extended version of our previous work in Ref. [14]

in which the system combined multiple solvers with
just a single worker. The extended version has an ar-
chitecture that combines multiple workers with multi-
ple solvers to simultaneously solve requests of mul-
tiple users. In addition, its load balancing man-
ager distributes the requests to appropriate worker-
solver pairs. The processing time includes calculation
time and queuing time in the load balancing manager,
round trip time between the load balancing manager
and the selected worker, and time spent by the selected
worker to solve the puzzle. The specifications of the
load balancing manager, such as CPU and memory,
influence the calculation time and the queuing time,
while those of each worker affect the time spent by
each worker. The proposed dynamic load balancing
with learning model can reduce the processing time
if the system receives multiple requests. The model
takes into account the performance of each solver as
a function of the number of input values, estimated
completion time, and idle status of each worker. The
estimated completion time is the sum of the current
time and the estimated waiting period. Since the com-
pletion time is estimated by the learning model, it can
be shown to the user before solving the problem. The
proposed system also supports every Sudoku solv-
ing approach. Note that modification of conventional
solving approaches is not required. Finally, we imple-
ment and demonstrate a SudokuWeb system.

The rest of the paper is organised as follows: sec-
tion 2 reviews existing Sudoku solving approaches:
section 3 illustrates the architecture of the Sudoku
system used in this work: section 4 describes con-
ventional load balancing models: section 5 presents
the proposed load balancing with learning model:
section 6 evaluates the performance of the proposed
model. Finally, Section 7 concludes this paper.

2. Sudoku solving approaches

A Sudoku problem contains blank cells and filled
cells. The values in the filled cells are called the given
values. The goal is to fill in all of the blank cells with-
out contravening any of the rules. The general rules of
the Sudoku are described as follows:

e Only one value can be entered into each blank
cell.

e Every cell must be filled.
e Each row must contain each value exactly once.

e Each column must contain each value exactly
once.

e Each minigrid must contain each value exactly
once.

There are two main approaches to solving a Sudoku
puzzle. The first approach is based on Integer Linear
Programming (ILP). The second approach is based on
algorithms.

Dynamic load balancing with learning model for Sudoku solving system 3

2.1. ILP approach

This approach formulates the Sudoku problem as a
mathematical model [15]. The n X n Sudoku puzzle
contains d X d minigrids, where n = d*>. The input
number from 1 to n is validated in all cells.

The notations are as follows: let i and j be row and
column indices, respectively; let k be a value for cell
(i, j); let n be the number of rows or columns of the
Sudoku puzzle; and let m be the number of rows or
columns of a minigrid. The decision variable, x;j, is
defined by:

1 if cell (i, j) contains integer k
ik = (1)

0 otherwise,

where i, j,k € D. D is a set of values 1 through n, and
D = {1,...,n}. Let G be a set of (i, j, k), where k is a
given value for cell (i, j). Let P be a set of a, where
a=1+(dxb)and 0 < b < d - 1. For example, P
of 9 X 9 and 16 x 16 Sudoku puzzles are {1,4,7} and
{1,5,9, 13}, respectively.

Constraints are as follows:

xip=1LV0 k) eG 2)
> xip=1Vi,jeD 3)
k=1
D xip=1YjkeD @)
i=1

Xijk = 1,Yi,ke D ®))
j=1

I+(d-1) J+(d-1)
Z xj=1,YkeD,IePJeP (6)
i=1 i=1

Xijk € {0, 1}, Vi,],k e D. @)

Eq. (2) gives the condition that specifies the Sudoku
problem. x; = 1 for (i, j, k) € G is set. Eq. (3) spec-
ifies that element (i, j) has only one number from 1 to
n. Eqgs. (4) and (5) specify that number k € D appears
once in each column and row, respectively. Eq. (6)
specifies that number k € D appears once in each d X d
minigrid. Eq. (7) limits the value of x; j; to be either 0
or 1. It should be noted that the Sudoku problem finds
a feasible solution that satisfies all the constraints, and
we do not intend to maximise or minimise any value.
Therefore, no objective function must be defined [15].

The generalised Sudoku problem is NP-Complete
[16]. The goal is to find at least one feasible solution
that satisfies all of the constraints. If the size of Su-
doku is large, the complexity of the ILP computations
increases, and it becomes virtually impossible to solve
it in a practical time. Some algorithmic approaches
were introduced to overcome this weakness.

2.2. Non-ILP approach

The non-ILP approach is to use a suite of algorithms
to determine a suitable solution in reasonable time.
Several algorithms are usually employed as at least
one of them is expected to output a solution, if the
problem is solvable. In some conditions, the non-ILP
approach can solve Sudoku problems faster than the
ILP approach. Examples of the non-ILP approach are
the brute-force algorithm and the backtracking algo-
rithm [2].

The brute-force algorithm visits the empty cells
from left to right, and from top to bottom by assigning
possible values that comply with the rules. At first, the
brute-force finds the first empty cell to fill. It fills the
empty cell with the lowest possible value. It repeats
the same process in the next empty cell. If the value
conflicts the rules, it resets all values and refills the
first empty cell by increasing the value. The algorithm
is iterated until all empty cells are filled.

The backtracking algorithm incrementally builds
candidates to the solutions. Its difference from the
brute-force algorithm is that the assigned values are
not reset when a rule conflict occurs. The backtrack-
ing algorithm traces back to the previous step and in-
creases the value by one. The process is repeated un-
til all cells are filled. The backtracking algorithm can
yield solutions more rapidly than the brute-force algo-
rithm.

The efficiency of the backtracking algorithm has
been investigated in Ref. [2]. The backtracking al-
gorithm has been improved by using minigrid-based
backtracking in Ref. [3]. It considers 3 X 3 mini-
grids (instead of blank cells in isolation), and uses
pre-processing to calculate all valid permutations for
each minigrid based on the clues in a given Sudoku
puzzle. Instead of considering the individual (blank)
cells, it uses minigrids to find only the valid solutions
of a given Sudoku puzzle. It can reduce the time taken
to find solutions. In general, both the brute-force and
the backtracking algorithms are not guaranteed to ter-
minate within polynomial time. The time taken de-
pends on the number of trace-back steps. If the num-
ber of trace-back steps becomes large, the time taken
increases. In other words, if the same number of given
input values are distributed differently across the Su-
doku puzzle, the time taken is not guaranteed to be the
same. As aresult, it is difficult to predict or understand
the puzzle difficulties based on the solution time.

Both ILP and non-ILP approaches have advantages
and disadvantages. The ILP solver, which is an opti-
mization software package, achieves shorter solution
time than the non-ILP approach when the number of
given values is large. In contrast, the non-ILP ap-
proach is faster when the number of given values is
small.

Nattapong Kitsuwan, et al.

Solving module
i
! Load balancing manager AM -
e ~ el _Sol\rer s
User] = Worker 1
- y
AP i
T R +
User2 F Worker 2 -
H a .
3 i
Usern Queuing i
time Worker w
Round trip time kSl—)
olving
time

Processing time

Fig. 2: Proposed SudokuWeb system architecture

3. Sudoku solving system architecture

The Sudoku solving system is a web-based system
that satisfies the four user requirements of obtaining
solutions quickly, getting estimates of the waiting pe-
riod, and freedom in defining given input values and
Sudoku size. It consists of an interface and a solving
module. The interface may be implemented using a
Graphic User Interface (GUI) or a CLI. Functions of
the interface are collecting requests from users, sub-
mitting the requests to the solving module, returning
estimates of waiting period, and displaying the results
to the users. The solving module consists of a load
balancing manager and w workers, as shown in Fig. 2.
The load balancing manager uses distributed load bal-
ancing with learning model. Each worker employs s
solvers, and each solver adopts a different approach.
The process of the system is as follows.

e Step 1: A Sudoku problem request is sent by a
user from the interface to the solving module.

e Step 2: The load balancing manager in the solv-
ing module receives the request and selects the
worker-solver pair that has the earliest estimated
finishing time by using information held in the
database.

o Step 3: The load balancing manager informs the
user of the estimated finishing time, and forwards
the problems to the selected worker-solver pair.

o Step 4: The selected worker-solver pair processes
the request, and sends the result back to the user
interface.

3.1. Interface module

The user interface of the system shows the esti-
mated waiting period to the user before returning the
solution. It allows users to interact with the load bal-
ancing manager. Developed as a web page, it mainly
consists of user inputs and result fields to show the so-
lution or error messages. The time taken depends on
the Sudoku size and the number of given input values.
The result page presents the estimated waiting period
to the user. This provides better user experience in

terms of awareness, because the user knows when the
solution is expected to be returned.

3.2. Solving module

The solving module consists of workers, solvers,
and a load balancing manager. The optimal worker-
solver pair is selected by the load balancing manager
to solve the Sudoku problem. The load balancing
manager works as a centralised controller. It receives
requests from users, and distributes them to the appro-
priate worker-solver pairs based on a load balancing
with learning model. Once it selects the worker-solver
pair, it estimates the processing time and informs the
user of this time. Upon receiving solutions from the
worker-solver pairs, the load balancing manager for-
wards them to the corresponding users.

4. Conventional load balancing models

Load balancing models can be divided into two
categories based on the decision making approach
adopted: static or dynamic. In static load balancing
models, the work load distribution is pre-determined
and remains the same. Several static load balancing
models have been introduced in Refs. [24] - [27].
Round robin is an example of static load balancing
model. Each worker is indexed at the beginning. The
requests are distributed among the workers in the as-
cending order of index number. If the workers are het-
erogeneous in terms of performance, a worker with
higher performance may be idle for some time until
it is selected. The worker has to wait until the other
worker in the previous turn finishes processing the re-
quest. As a result, the waiting period may be long if
the idle time is large.

Dynamic load balancing models use current infor-
mation of the workers, e.g., CPU performance and
latency, in deciding request distributions. The load
balancing manager may dynamically change the order
when distributing requests. Hwang and Jung [20] have
discussed how to define the load of each worker, and
how to determine load limits. In their model, the load
balancer has a weight table that is updated according
to changes in the loads, and the distribution of service
requests is controlled according to the table. Two hier-
archical dynamic models were presented by Barazan-
deh and Mortazavi [22]. The first method, namely the
biasing process, is used to allocate weights. Biases
are determined based on the current load state of the
groups. The second method improves the round-robin
algorithm so that the group with the minimum load
state takes priority over others in being assigned tasks
by the load balancing manager in the specific time.
The third method, throttled load balancing, was intro-
duced by James and Verma [21]. In this method, avail-
ability and processing speed are considered as per-
formance attributes of the worker. At each timeslot,
the load balancing system distributes a request to the

Dynamic load balancing with learning model for Sudoku solving system 5

Start time of
previous request

worker that has the best performance. The idle time of
workers is taken in account, so the queuing time can

Estimated finishing time
of previous request

be reduced. /\. SEEe s > Solver 1
Load balancing for a web-server system was in- Worker 1 --B€ 5 Solver2

troduced to distribute incoming user requests among ~~ \ p---{-- s - > Solver 1

several workers in Ref. [23]. This model consists Worker 2 L[_ldsee 5 Solver2

of load balancing and a set of workers and supports Worker 3 \ -3 olver 1

Local Area Network (LAN) and Wide Area Network T Sse {D\smer 5

(WAN) operations. The processing time includes cal-
culation time and queuing time at the load balancing
manager, round trip time between the load balancing
manager and the worker, and time taken by the worker. ~ ----- > Estimated processing time of incoming request
Distributing workloads by considering the processing
time is a popular approach. The processing time may
be reduced by using these load balancing models. In
fact, only the queuing time is reduced. The time taken
can be reduced only by upgrading the workers.

Earliest estimated finishing

Current timestamp] . .
time of incoming request

———> Estimated processing time of previous request

Fig. 3: Example of worker and solver pairing

(3,2) to solve the incoming request, for it has the ear-
liest finishing time.

Size | No. ‘Worker | Approach | Start time Processing
given |ID D time Average
5. Proposed load balancing with learning model @O 4 1 2 1468563334.4062 | 0212893 025157
@ 9 4 1 2 1468563334.8221 | 0.290248
. . . ©IE 4 1 2 1468563335.2268 | 0.244278 0.2491396
Our load balancing with learning model selects the
worker-solver pair that is estimated to be the fastest in @b [+« [E [1468564248.0516 \

solving the input Sudoku puzzle. The processing time
of each worker-solver pair differs with the number of
given input values. The model learns from previous
Sudoku puzzles the processing time of each worker-
solver for each number of given input values. Then
it calculates the estimated finishing time, which is the
summation of the current time and estimated process-
ing time, for a given Sudoku puzzle for each worker-
solver pair. The combination that has the earliest fin-
ishing time is selected.

The average processing time is estimated by aver-
aging the processing time of worker-solver pairs for a
specific number of given input values in the database.
Let (i, j) be the pairing of worker i and solver j. Let
A{, be the average processing time of (i, /) for d* x d*
table.

The finishing time of each (i, j) is also estimated.
Let S; ; be the start timestamp of (i, j). The estimated
finishing time is §; ; + A;{ ; if the status of (i, j) is busy.
It is the summation of the current timestamp and A;{j
if the status of (i, j) is idle. (i, j) with the earliest es-
timated finishing time is selected to solve the Sudoku
puzzle. The estimated finishing time is passed to the
user. It should be noted that the estimated finishing
time may be expressed in terms of duration.

Figure 3 shows an example of selecting a worker-
solver pair based on the load balancing model. There
are three workers. Each worker employs two solvers.
The model estimates the processing time for Af{j. A‘l”l
is 12 sec, A‘fy2 is 5 sec, A‘zl,l is 21 sec, A‘zl,z is 14 sec,
AL31,1 is 13 sec, and Ag,z is 8 sec. Although A(1i,2 has the
lowest processing time, (1,2) is not selected because
the estimated finishing time is not the earliest. Worker
2 is idle but the finishing time is also not the earliest,
so (2,1) and (2, 2) are not selected. The model selects

Fig. 4: Database structure and example of data

The load balancing manager is provided with a
database. The database keeps the information of Su-
doku size, the number of given input values, worker
ID, approach ID, the starting timestamp, and process-
ing time, as shown in Fig. 4. It should be noted that
the start timestamp is the current Unix timestamp with
units of microseconds. At first, the information in the
database is prepared as follows: first, Sudoku prob-
lems with several given input values (1,2,3,---, n* —
1) are generated. The pattern of the given input val-
ues is random. Second, the problems are solved using
every worker-solver pair. The starting timestamp, the
processing time of each combination with given size
and the number of given input values are entered in
the database.

Figure 4 shows an example of the data when the
Sudoku size is nine and the number of given val-
ues is four for worker ID 1 with approach ID 2. In
this example, the data in the first two records are ini-
tially prepared by running two different Sudoku prob-
lems. When a user submits a Sudoku puzzle and the
load balancing manager determines that the request
should be solved by worker ID 1 with approach ID
2, the request is sent to worker ID 1. At that time,
a new record, which is the third record, is added to
the database with the information of Sudoku size, the
number of given input values, worker ID, approach ID,
and the starting timestamp. The load balancing man-
ager estimates the time taken by averaging the pro-
cessing time of the first and second records. This time
is sent back to the user interface without being entered
into the database. After the load balancing manager
receives the result of the problem from the worker, the

(o)}

Nattapong Kitsuwan, et al.

1.E+00
—Worker 1 ILP

---Worker 1 Backtracking
—Worker 2 ILP
--- Worker 2 Backtracking

I
]

LE-02 V\\M,_ATN“v

Average processing time (s)

Worker 1 Worker 2
Processing time of: Processing time of
BT <ILP ILP <BT

1.E-03
0 10 20 30 40 50 60 70 80

Number of given input values

Fig. 5: Comparison of processing time of both workers with both
approaches (d = 3).

processing time is written into the third record, and
the result is forwarded to the user interface. If the
load balancing manager determines that another new
request with the same size and number of given val-
ues should be solved by worker ID 1 with approach
ID 2, the fourth record is added to the database using
the same process. For this request, the time taken is
estimated by averaging the processing time from the
first to the third record. Therefore, the time taken will
dynamically change every time there is a request.

6. Performance Evaluation

We used the processing time of our testbed to eval-
uate the performance of the proposed system. The
testbed currently has two workers, each with two
solvers: the ILP approach and the backtracking algo-
rithm. The results of the proposed system are com-
pared with those of multiple workers with a single
solver, using ILP or backtracking. Round robin or
throttled [21] are taken as the conventional load bal-
ancing model. A computer with Intel Xeon CPU E5-
2603 v3 @ 1.60GHz is used as the load balancing
manager. A computer with Intel CoreTM 17-2600K
CPU@3.40 GHz is used as worker 1. A computer
with AMD PhenonTM IIx4 955 Processor is used as
worker 2. Both workers ran the ILP approach and
the backtracking algorithm. Sudoku with d = 3 and
d = 4 are used in the evaluation. It is assumed that
one worker cannot solve multiple Sudoku puzzles si-
multaneously. No other job is running on the worker,
so that the CPU is used only for the solvers. It should
be noted that all computers in the experiment had dif-
ferent specifications, because we wanted to investigate
the performance of the proposed model in a realistic
scenario.

At the initial stage, 80 and 255 given input values
were created for d = 3 and d = 4, respectively. For
each given input value, 1,000 different patterns were
randomly generated. Therefore, 80,000 and 255,000
Sudoku puzzles were created for d = 3 and d = 4,

1.LE+03

—Worker 1 ILP
---Worker 1 Backtracking
—Worker 2 ILP
LT Worker 2 Backtracking

L.LE+02

1.LE+01

1.E+00

1.E-01
Worker 1 \\ Worker 2

Processing time of Processing time of
BT <ILP ILP <BT

Average processing time (s)

1.E-02

0 20 40 60 80 100 120 140 160 180 200 220 240
Number of given input values

Fig. 6: Comparison of processing time of both workers with both
approaches (d = 4).

respectively. The puzzles were solved using all com-
binations of worker and solver. The processing time of
each combination was captured in the database. Note
that this information is used for subsequent estima-
tion. Figures 5 and 6 compare the average process-
ing time of each combination of worker and solver
for each given input value for d = 3 and d = 4, re-
spectively. Worker 1 solved the Sudoku puzzles faster
than worker 2 for both approaches. When d = 3, the
ILP approach solved the Sudoku puzzle faster than the
backtracking algorithm when the number of given in-
put values was more than 20 and 23 with worker 1 and
worker 2, respectively. When d = 4, the ILP approach
solved the Sudoku puzzle faster than the backtracking
approach if the number of given input values exceeded
98 and 101 with worker 1 and worker 2, respectively.
Figure 7 shows the processing time of worker 1 for
both used and unused human strategies, in combina-
tion with ILP and the backtracking approaches. Naked
single [29] and naked pair [30] algorithms were ap-
plied as the human strategy. As the first step, in the
used human-strategy case, the human strategy is used
to partly solve the given Sudoku problem as much as
possible. The result by the human strategy increases
the number of given input values. Second, the result of
the first step becomes a given input for ILP and back-
tracking approaches. The results with and without the
human strategy for the backtracking approach, which
are indicated by dashed lines, are close for all given
input values. This is because the processing time of
the backtracking approach with and without the hu-
man strategy is not affected by the number of given
input values. The results with and without the human
strategy for the ILP approach, which are indicated by
solid lines, are close when the number of given in-
put values is less than 25. This is because the given
input does not match any pattern in the human strat-
egy when the number of given input values is low.
The processing time of the human strategy with ILP
is higher than that of only the ILP approach when the
number of given input values is more than 25, where

Dynamic load balancing with learning model for Sudoku solving system 7

1.E+00
Only ILP
Only Backtracking
—Human strategy + ILP
—~ .
) --- Human strategy + Backtracking
O 1.E-01
£
on
=]
E)
[72]
3
S 1.E-02
-
=W
1.E-03
0 10 20 30 40 50 60 70 80

Number of given input values

Fig. 7: Comparison of processing time of worker 1 for ILP and
Backtracking approaches, and human strategy together with ILP and
Backtracking approaches (d = 3).

25

—_ —_)
(=) w (=}

Number of appearances

W

0 10 20 30 40 50 60 70
Number of given input values

Fig. 8: Number of appearances of each given input value (d = 3).

the human strategy can be usefully applied. The num-
ber of given input values does not affect the processing
time when it is higher than 25. If the number of input
values exceeds 25, the processing time of the ILP ap-
proach with the human strategy does not change even
if the number of given input values increases. In this
region, the ILP approach with and without the human
strategy is not affected by the number of given input
values. As a result, the processing time of the com-
bination of the human strategy and the ILP approach
becomes the summation of the processing time of just
the ILP approach and the human strategy.

We randomly generated 1,000 Sudoku puzzles for
d =3 and d = 4. Figures 8 and 9 show the number of
appearances of each given input value in the cases of
d = 3 and d = 4, respectively. Figures 10 and 11 show
the total processing time of the proposed system, com-
pared with conventional equivalents. The total pro-
cessing time starts when the system receives the first
Sudoku puzzle, and stops when the 1,000th Sudoku
puzzle is solved. The proposed system achieves the
lowest total processing time. The system with round
robin distribution and the ILP approach is the slowest
of all systems. The proposed system reduces the to-
tal processing time by 61% (d = 3) and 98% (d = 4)
compared with the system with round robin using the

e
(=2 S A

Number of appearances

(=TI

0 20 40 60 80 100 120 140 160 180 200 220 240
Number of given input values

Fig. 9: Number of appearances of each given input value (d = 4).

=
=)

61.27795 59.00556

=N
=)

(%
S

&
S

w
S

[
S

16.62541

10.18935 8.920597

Roundrobin ~ Throttle with Roundrobin Throttle with Proposed
with ILP ILP with backtracking system
backtracking

Total processing time (s)

S

S

Fig. 10: Comparison of load balancing models when d = 3.

ILP approach, and by 10% (d = 3) and 59% (d = 4)
compared with the system with throttle using the back-
tracking algorithm.

Figure 12 shows the probability density function of
the waiting period when d = 3 and the number of
given input values is four. The estimated waiting pe-
riod is 50%, which is 0.02973 seconds in this example.
The time will be shown to the user as a waiting period.

Figure 13 demonstrates an example of the Su-
dokuWeb. The user inputs numbers in the Sudoku ta-
ble as his/her requirement. The SudokuWeb shows the
estimated period of waiting period, which is the esti-
mated processing time from the load balancing with
learning model to the user. When the Sudoku puzzle
is solved, the solution is displayed.

Existing solvers are designed to solve specific Su-
doku sizes. In case that the solver is able to solve the
Sudoku with an expected size but has no history in-
formation of this size in the database, the load balanc-
ing with learning model is able to apply to any size
of Sudoku. It should be noted that the waiting period
cannot be determined if the system’s information does
not cover the problem submitted. Once the selected
worker-solver pair finishes the problem, the informa-
tion of this problem is added to the database so that the
learning model is able to estimate the waiting period
for the same size of Sudoku with the same number of
given input values.

The processing time increases with the value of d.
When d = 3 and d = 4, the number of patterns of the
given input values is sufficient to estimate the average

Nattapong Kitsuwan, et al.

6000

5090.536

5000

4000

3028.531

[N]
=3
S
S

Total processing time (s)
8
=3
=1

1000

194.0442 159.1301 65.66726

0 [— —

Roundrobin Throttle with Roundrobin Throttle with ~ Proposed

with ILP ILP with backtracking system
backtracking

Fig. 11: Comparison of load balancing models when d = 4.

12 2 >
AIO r 50% 50%
S
>
20
54
a2t
o - -
0.02903 0.02938 0.02973 0.03008 0.03043

Period of waiting time (s)

Fig. 12: Probability density function when d = 3, number of given
input values = 4.

processing time. The database holds no information of
processing time for each solver for larger d values. Ini-
tially, the average processing time of all solvers with
the number of given input values is set to zero. The
model selects a solver that has the lowest processing
time when there is a request. If several solvers have
the same lowest processing time, the model randomly
selects one of them. Once the problem is solved, the
result is added to the database. If there is a problem
with the same number of given input values, the model
selects the solver that has the lowest processing time.

The accuracy of the proposed model does not de-
pend on Sudoku size but on the amount of information
in the database. The model estimates the processing
time by learning from the information in the database.
If there is little information in the database, the accu-
racy rate is low.

Depending on hardware limitations, problems with
larger Sudoku sizes take longer to complete. The
amount of information in the database grows with the
increase of Sudoku size. Information for all given in-
put values cannot be prepared when the Sudoku size
is large. In this case, the load balancing manager is
not able to estimate the finishing time. Therefore, we
provide the results with d < 5 in this evaluation.

7. Conclusion

We have proposed a load balancing with learning
model for a web-based Sudoku solving system with
multiple solvers and multiple workers. Our load bal-
ancing with learning model is used to distribute re-
quests appropriately to each worker based on esti-

Show estimated waiting time @
|

Please wait .. Estimated completion time is 0.02973 sec.

Show solution

[
N
w

Ol (W IN|IN|&
N|lhjlwjJO|O (R]O|WU
Rl | NP N[O
jlwloluiInvN | O|lFRL | IN| P&
NIN|O]lRr|O[_]JW| | WU
AU |RPIN[O|lWIN OO
AN |(OJW O]l |F (N
Wl O |(hlJlO|R[(N]JU|N |
VR [NIN|R[([O]J]O|W|O

Fig. 13: SudokuWeb appearance.

mated finishing time. The model reduces the process-
ing time by selecting the earliest estimated finishing
time among all combinations of workers and solvers.
It reduces the processing time by up to 61% and 98%
for d = 3 and d = 4, respectively, compared with the
conventional load balancing system with the longest
processing time. In addition, the Sudoku solving sys-
tem has the advantage of showing the estimated wait-
ing period before the actual solution is commenced.

References

[1] Sudoku. http://www.sudokuwiki.org/, (accessed 16.11.01).

[2] M. Schottlender, The effect of guess choices on the efficiency
of a backtracking algorithm in a Sudoku solver, in Proc. IEEE
Long Island Systems, Applications and Technology Confer-
ence, New York, USA, May (2014) 1-6.

[3] A.K. Maji and R.K. Pal, Sudoku solver using minigrid based
backtracking, in Proc. IEEE Int. Advance Computing Conf.,
Gurgaon, India, Feb. (2014) 36-44.

[4] M. Asif and R. Baig, Solving NP-complete problem using
ACO algorithm, in Proc. Int. Conf. Emerging Technologies,
Islamabad, Pakistan, Oct. (2009) 13-16.

[5] I Sabuncu, Work-in-progress: Solving Sudoku puzzles using
hybrid ant colony optimization algorithm, in Proc. Int. Conf.
Industrial Networks and Intelligent Systems, Tokyo, Japan,
Mar. (2015) 181-184.

[6] S. Kamal, S. S. Chawla, and N. Goel, Detection of Sudoku
puzzle using image processing and solving by backtracking,
simulated annealing and genetic algorithms: a comparative
analysis, in Proc. Third International Conference on Image
Information Processing, Waknaghat, India, Dec. (2015) 179-
184.

[71 M. A. Al-Betar, M. A. Awadallah, A. L. Bolaji, and B.
O. Alijjla, g-Hill climbing algorithm for Sudoku game, in

Dynamic load balancing with learning model for Sudoku solving system 9

(8]

(91
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Proc. Palestinian International Conference on Information and
Communication Technology, Gaza City, Palestinian Author-
ity, May (2017), 84-88.

N. Musliu and F. Winter, A hybrid approach for the Su-
doku problem: using constraint programming in iterated lo-
cal search, IEEE Intelligent Systems, vol. 32, iss. 2, (2017),
52-62.

Sudoku solving system. http://www.sudoku-solutions.com/,
(accessed 17.12.19).

Qqwing Sudoku solving
https://qqwing.com/solve.html, (accessed 17.12.19).
Hexadoku solving system. http://www.dcode.fr/hexadoku-
sudoku-16-solver, (accessed 17.12.19).

25 X 25 Sudoku solving system.
http://www.mario.pd.it/Excel_Sudoku_Variants_Solvers-
Risolutori/Sudoku_25x25.htm, (accessed 17.12.19).

Sudoku solving system. http://www.sudokuwiki.org/sudoku.htm,
(accessed 17.12.19).

H.M. Widiyanto, P. Pavarangkoon, and E. Oki, SudokuWeb:

a web-based solver for mathematical puzzles, in Proc. IEEE
Int. Conf. Network Infrastructure and Digital Content, Bei-
jing, China, Sep. (2014) 515-519.

E. Oki, Linear programminng and algorithms for communica-
tion networks, CRC Press, 2013.

T. Yato, and T. Seta, Complexity and completeness of finding
another solution and its application to puzzles, IEICE Trans.
Funda. Elect. Commun. and Comp. Sci. E86-A (5) (2003)
1052-1060.

N. Jussien, A-Z of Sudoku, ISTE Ltd., 2007.

M. Timo, and K. Janne, Solving and rating Sudoku puzzles
with genetic algorithms, in Proc. Finnish Artificial Intelli-
gence Conf., Helsinki, Finland, Oct. (2006) 86-92.

H. Simonis, Sudoku as a constraint problem, in Proc. Int.
Work. on Modelling and Reformulating Constraint Satisfac-
tion Problem, Barcelona, Spain, Oct. (2005) 17-25.

S. Hwang, and N. Jung, Dynamic scheduling of web server
cluster, in Proc. The Ninth International Conference on Paral-
lel and Distributed Systems, Taiwan, Dec. (2002) 563-568.

J. James, B. and Verma, Efficient VM load balancing al-
gorithm for a cloud computing environtment, Int. Journal
on Computer Science and Engineering (IICSE) 4 (9) (2002)
1658-1663.

I. Barazandeh, S. and Mortazavi, Two hierarchical dynamic
load balancing algorithms in distributed systems, in Proc. Int.
Conf. on Computer and Electrical Engineering, Bangi Selan-
gor, Malaysia, Dec. (2009) 516-521.

V. Cardellini, M. Colajanni, and P.S. Yu, Dynamic load bal-
ancing on web-server system, IEEE Internet Computing 3 (3)
(1999) 28-39.

S.S. Waraich, Classification of dynamic load balancing strate-
gies in a network of workstations, in Proc. Fifth International
Conference on Information Technology: New Generations,
Las Vegas, USA, Apr. (2008) 1263-1265.

M.C. Huang, S. Hossein Hosseini, K. and Vairavan, A
receiver-initiated load balancing method in computer net-
works using fuzzy logic control, in Proc. IEEE GLOBECOM,
San Francisco, USA, Dec. (2003) 4028-4033.

H.C. Ahn, H.Y. Youn, K.Y. Jeon, and K.S. Lee, Dynamic
load balancing for large-scale distributed system with intelli-
gent fuzzy controller, in Proc. IEEE International Conference
on Information Reuse and Integration, Las Vegas, USA, Aug.
(2007) 576-581.

S.H. Lee, T.W. Kang, M.S. Ko, G.S. Chung, J.M. Gil, and
C.S. Hwang, A genetic algorithm method for sender-based
dynamic load balancing algorithm in distributed systems, in
Proc. Intemational Conference on Knowledge-Based Intelli-
gent Electronic Systems, Adelaide, Australia, May (1997)
302-307.

A. Yousofi, M. Banitaba, and S. Yazdanpanah, A novel
method for achieving load balancing in web clusters based on
congestion control and cost reduction, in Proc. IEEE Sympo-
sium on Computers & Informatics, Kuala Lumpur, Malaysia,
Mar. (2011) 347-379.

system.

[29] Naked single. http://hodoku.sourceforge.net/en/tech_singles.php,

(accessed 17.12.19).

[30] Naked pair. http://hodoku.sourceforge.net/en/tech_naked.php,

(accessed 17.12.19).

