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Singularity Analysis of a Snake Robot and an
Articulated Mobile Robot with Unconstrained Links

Motoyasu Tanaka, Member, IEEE, and Kazuo Tanaka, Fellow, IEEE

Abstract—In this paper, we analyze the conditions related to
singular configurations with unconstrained links and present
related theorems and lemmas for a snake robot and an articulated
mobile robot. A snake robot and an articulated mobile robot have
the links which have passive or active wheels and the links are
serially connected by active joints. The singular configuration
should be avoided if the robots are automatically controlled
because they cannot execute intended motion when they are in the
singular configuration. We derive a novel necessary and sufficient
condition for the singular configurations of the snake robot; this
removes some limitations of the traditional condition for a snake
robot without unconstrained links. We also derive the necessary
and sufficient conditions for the singular configurations of the
articulated mobile robot, and the structural conditions under
which a real articulated mobile robot does not have a singular
configuration. These conditions are proved by analyzing the
elements of matrices included in kinematic model and considering
the geometrical meaning of the elements. In addition, we propose
evaluation indices representing the distance from the singular
configurations of a snake robot. We verify the effectiveness of
these indices through simulations.

Index Terms—Singular configuration, snake robot, articulated
mobile robot, unconstrained links, kinematic redundancy

I. INTRODUCTION

SNAKE robots are characterized by the open kinematic
chain structure consisting of links serially connected by

active joints. They have the mechanism involving anisotropic
friction, which means that it is hard to slip sideways, and
move by snake-like lateral undulation. One example of the
mechanism is the metal edge at the bottom of the links in [1].
The passive wheel is used to add anisotropic friction to the
links in many snake robots (e.g., [4]–[8]). Snake robots are
useful for in-pipe inspection and search and rescue in disaster
areas because they have a slender body and can locomote
through the narrow space.

There are two main models for controlling a snake robot.
The first model uses the friction of the links and allows the
links to slip sideways. This model has been used in control of
forward velocity [1], dynamic analysis of three-dimensional
motion [2], obstacle-aided locomotion [3], and path-following
control of the center of gravity [4]. The second model assumes
that the links do not slip sideways [5]–[8]. A controller based
on this model can accomplish both trajectory tracking of the
robot’s head and various tasks using redundancy, as detailed
in [6], [7]. We use this latter model in this paper.
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The snake robot has singular configurations in which the
robot cannot move if the robot is automatically controlled.
Prautsch et al. derived the necessary and sufficient condition
for singular configurations of the snake robot when all links
are wheeled [5]. They used a serpenoid curve [9] as the
trajectory of the robot’s head to avoid singularities because
the snake robot in [5] does not have kinematic redundancy.
In contrast, Matsuno et al. introduced an unconstrained link
with no wheels into the snake robot to generate kinematic
redundancy, and accomplished both trajectory tracking and
singularity avoidance using the redundancy as described in [6].
In [7], this control method was applied for a head raising snake
robot. A method for switching constrained/unconstrained links
by lifting some wheels was proposed in [8]. However, an
analysis of singular configurations of the snake robot with
unconstrained links has not yet been published. In terms of
dynamics, if the snake robot is in the singular configuration,
the joint torque for trajectory tracking diverges to infinity
as [5]. A real robot is at risk of doing unintended motion
because it cannot generate infinite torque, and needs to avoid
the unintended motion. In the case of industrial manipulator,
it stops or slows down when it is in the region of the neigh-
borhood of singularity as singular protection in ISO10218-1
[10]. The region can be defined by using threshold value and
a measure of closeness to singularity, e.g., manipulability [11]
and minimum singular value [12]. If the region of the snake
robot is appropriately designed, we can plan a safe motion,
e.g., stop and slowing down, for the snake robot when the robot
is in the neighborhood of the singular configuration. Moreover,
the motion for avoiding singularity is needed only into the
region, and the robot can use redundancy for other additional
tasks, e.g., avoiding falls [7] and an obstacle [8], without trade-
off with singularity avoidance at the out of the neighborhood
of singular configuration. Thus, it is important to clarify the
geometrical condition of singularity and the distance from the
singular configurations.

An articulated mobile robot has several segments connected
by active joints, and has a powered mechanism generating
a propulsion force in the segment (e.g., an active wheel or
a crawler). Such a robot is similar to a snake robot, but its
motion is not constrained to lateral undulation. There are two
well-known methods for controlling articulated mobile robots
[13]. The first is the “follow-the-leader” method in which the
motion of the head segment is determined and this motion
sequentially shifts to the trailing segments, as used in [14]–
[17]. The second is the “n-trailer” method in which the robot is
steered by treating the motion of the robot as a head segment
pulling connected following segments behind it, as used in
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[18], [19]. It is difficult to directly change the motion of the
other parts of the robot (besides the head) using either of the
two methods because the motion of the following segments
is determined based on the shift or kinematics that depend
on the motion of the head. We have derived the kinematic
model of the articulated mobile robot with unconstrained
links and the switch of the allocation of unconstrained links.
With this extended model, we accomplished following the
desired trajectory, avoiding a moving obstacle, and smoothing
the input, as demonstrated in [20]. However, as with snake
robots, no analysis of singular configurations of the articulated
mobile robot with unconstrained links has been published. The
geometrical conditions and specific body shapes for singular
configurations of a snake or articulated mobile robot with
unconstrained links require clarification.

In this paper, we analyze the conditions related to sin-
gular configurations with unconstrained links and present
related theorems and lemmas for both snake and articulated
mobile robots. Furthermore, we propose evaluation indices
representing the distance from the singular configuration and
conduct simulations to demonstrate their effectiveness. The
main contributions of this paper are as follows: 1) We derive
a novel necessary and sufficient condition for the singular
configurations of the snake robot; this removes some limita-
tions of the traditional condition for a snake robot without
unconstrained links as in [5]. 2) We derive the necessary
and sufficient conditions for the singular configurations of the
articulated mobile robot. 3) We derive the structural conditions
under which a real articulated mobile robot does not have a
singular configuration. 4) We propose novel evaluation indices
for singularities.

II. MODEL AND CONTROLLER

This section describes the kinematic model of an articulated
mobile robot (Fig. 1 (a)). The robot and the model are as
described in [20]. The robot has n segments, each comprising
a pitch rotational joint, a yaw rotational joint, and a pair of
wheels. The pitch rotational joint and the pair of wheels are
coaxially mounted. All of the joints are active and each wheel
is either active or passive. If all of the wheels are passive, the
robot is a snake robot in [8] as Fig. 1 (b).

As indicated in Fig. 1, let l be the length of each link, n
the number of yaw joints, w = [xh, yh, θh]

T the position and
attitude of the robot’s head, ϕi the i-th yaw angle, and (xi, yi)
the position of the point of intersection of the i-th wheel axis
and the link. We set ϕ = [ϕ1, · · · , ϕn]T , θi = θh +

∑i
j=1 ϕj

and θ = [θh,ϕ
T ]T . We assume that the wheels do not slip

sideways. Then, the following equations are satisfied.

ẋi sin θi − ẏi cos θi = 0. (1)

The maximum number of active wheels attached to each
wheel axis is two. Let nw(0 ≤ nw ≤ 2n) be the total number
of active wheels, ρi the rotation angle of the i-th active wheel,
ki the index of the wheel axis where the i-th active wheel is
attached, (xwi, ywi) the position where the i-th active wheel
touches the ground, and rw the radius of each wheel. We set
ρ = [ρ1, · · · , ρnw

]T . We assume that the i-th active wheel
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Fig. 1. Articulated mobile robot [20] and snake robot.

i th active wheel

th yaw jointx

y

(        , )x ywi wi
lwi

x

y

rw

vi

vi

(k +1) th

yaw joint
i

ki

Fig. 2. Position and velocity variables for an active wheel [20].

does not slip the direction of vi. From Fig. 2 and considering
vi = rwρ̇i, the velocity constraints are obtained as

ẋwi cos θki
+ ẏwi sin θki

+ rwρ̇i = 0. (2)

Here, we set u = [ϕ̇
T
, ρ̇T ]T . Considering that (xi, yi) and

(xwi, ywi) are geometrically represented using w and ϕ, the
following equations are obtained from (1) and (2):

Aa(θ)ẇ = Ba(θ)u, (3)
Ab(θ)ẇ = Bb(θ)u, (4)

where Aa ∈ Rn×3, Ba ∈ Rn×(n+nw), Ab ∈ Rnw×3,
and Bb ∈ Rnw×(n+nw). The 1, · · · , n-th rows of (3) and
1, · · · , nw-th rows of (4) are equivalent to (1) of i = 1, · · · , n
and (2) of i = 1, · · · , nw, respectively. Let aaij and abij
be the elements in the i-th row and j-th column of Aa and
Ab, respectively, and lwi be the length corresponding to the
position of the i-th active wheel, as illustrated in Fig. 2. Then
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Fig. 3. Pitch joint angles and lifted wheels.

aaij and abij are obtained as

aai1 = sin θi, (5)
aai2 = − cos θi, (6)

aai3 = −l{1 + cos(θi − θh) + 2

i−1∑
j=1

cos(θi − θj)}, (7)

abi1 = cos θki
, (8)

abi2 = sin θki
, (9)

abi3 = −lwi+l{1 + sin(θki−θh)+2

ki−1∑
j=1

sin(θki−θj)}. (10)

When all of the wheels are grounded, the velocity constraint
of the robot is represented as

A(θ)ẇ = B(θ)u, (11)

A=

[
Aa

Ab

]
, B=

[
Ba

Bb

]
=



l 0 · · · 0

∗
. . . . . .
. . . l 0

...
... ∗ −rw

. . .
. . . . . . 0

∗ · · · ∗ −rw


,

(12)

where A ∈ R(n+nw)×3, B ∈ R(n+nw)×(n+nw), and ‘∗’
signifies nondiagonal elements; their detailed description is
omitted. B is always invertible as in (12).

A. Kinematic model with unconstrained links

The snake robot and the articulated mobile robot have
kinematic redundancy when unconstrained links are introduced
by removing wheels as in [6], [20]. The snake robot can
accomplish additional control objectives such as singularity
avoidance [6] and fall avoidance [7]. Besides removing the
wheels of some links, unconstrained links can be achieved by
lifting some wheels as in [8], [20]. The robot in this paper
also introduces them by switching the grounded/lifted status
of wheels through pitch joint rotation as shown in Fig. 3.

The pitch joints are only used for switching the status of
each wheel axis and we assume that the magnitude of the
pitch angle is very small and the motion of the pitch joints in
the xy-plane does not affect the overall motion of the robot,
similar to previous papers [8], [20].

Let σ be the discrete mode number where the i-th wheel axis
(i = n′1, · · · , n′

n̄) and j-th active wheel (j = n′w1, · · · , n′
wā)

are grounded. Thus, (11) becomes

Aσẇ = Bσu, (13)

Aσ =

[
Aaσ

Abσ

]
, Bσ =

[
Baσ

Bbσ

]
, (14)

where Aσ ∈ R(n̄+ā)×3, Bσ ∈ R(n̄+ā)×(n+nw), Aaσ ∈ Rn̄×3,
Abσ ∈ Rā×3, Baσ ∈ Rn̄×(n+nw), and Bbσ ∈ Rā×(n+nw). n̄
and ā are the number of grounded wheel axes and grounded
active wheels in the mode σ, respectively. Aaσ and Baσ

denote the matrices for which the i-th row is extracted from
Aa and Ba, respectively. Similarly, Abσ and Bbσ denote the
matrices for which the j-th row is extracted from Ab and Bb,
respectively.

B. Control input

Similarly to previous papers [8], [20], the joint input is
represented as

u(t) = ûσ + ūσ, (15)

ûσ = B†
σAσ{ẇd −K(w −wd)}, (16)

ūσ = κ(I −B†
σBσ)η, (17)

where wd is a desired vector of w, K > 0 is a feedback gain
for the main task, B†

σ is a pseudo-inverse matrix of Bσ , κ
is a gain for the sub-task (e.g., singularity avoidance [6] and
obstacle avoidance [8]), and η ∈ Rn+nw is an arbitrary vector
and can be designed to accomplish the sub-task as [6], [8],
[20]. In (15), ûσ is an element for the main task and ūσ is
an element representing kinematic redundancy.

By substituting (15) into (13), the closed-loop system is
expressed as

Aσ{ẇ − ẇd +K(w −wd)} = 0. (18)

Thus, if Aσ is of full column rank, w → wd is achieved as
t→ ∞. If Aσ is not of full column rank, the convergence of
w is not guaranteed because ẇ− ẇd+K(w−wd) = 0 does
not necessarily hold. This implies that the robot is in a singular
configuration, which we shall analyze in the next section. From
(18), the size of Aσ is also related to whether the controlled
variable can be controlled. If n̄ + ā < 3, implying that the
length of the row is larger than the length of the column in Aσ ,
w cannot converge to wd because Aσ is not of full column
rank. Thus, it is necessary to satisfy the inequality

(n̄+ ā) ≥ 3. (19)

This means that the number of rows of Aσ is larger than
or equal to that of columns of Aσ . Physically, the left term
of (19) is a sum of the number of grounded wheel axes and
grounded active wheels.

III. SINGULARITY ANALYSIS

In this section, we analyze the full column rankness of
Aσ in the closed-loop system (18) and develop a geometrical
condition under which the robot is in a singular configuration.
In the case of a snake robot in which all wheels touch the
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ground, the robot is in the singular configuration if the body
shape is a straight-line or circular arc as [5]. If the body
shape of the robot is a straight-line and a circular arc, the
robot cannot move to the direction which is parallel to the
wheels and the direction of the arc. Thus, it is considered
that the robot physically cannot track the arbitrary trajectory
in the singular configuration. The robot must avoid such
singular configurations. An analytically derived condition for
the singular configuration is thus important for control and
motion planning.

A. Snake robot when all wheels are grounded (n̄ = n, ā = 0)

Some lemmas related to the singular configuration of a
snake robot were derived in [5]. However, they do not apply
for the robot in this study because of mechanical and control
variable differences, the head link has passive wheels and the
control variable does not include θh in [5]. Nevertheless, by
analyzing Aa, the following theorem can be obtained.

Theorem 1: When n ≥ 3 and |ϕi| < π (i = 1, · · · , n),
matrix Aa is rank deficient if and only if

ϕ2 = ϕ3 = · · · = ϕn. (20)

Proof: The nonsingular matrix G is defined as

G ≡

 cos θ1 sin θ1 0
sin θ1 − cos θ1 0
0 0 1

 . (21)

The rank of a matrix does not change when multiplied by any
nonsingular matrices. Multiplying Aa by G from the right
yields
A′

a= AaG

=



0 1 −l(cosϕ1 + 1)
sinϕ2 cosϕ2 −l{cos(ϕ1 + ϕ2) + 2 cosϕ2 + 1}

...
...

...

sin

n∑
i=2

ϕi cos

n∑
i=2

ϕi −l

cos n∑
i=1

ϕi+2

n∑
i=2

cos

n∑
j=i

ϕj+1




. (22)

We determine the rank of A′
a instead of Aa.

(Necessity) If the rank of A′
a changes, the determinant of

a submatrix composed of three certain rows of A′
a becomes

zero. Let A′
ak be the matrix comprising the k, k + 1, and

k+2-th rows of A′
a (1 ≤ k ≤ n−2). The following equation

is obtained:

det(A′
ak) = l{sin(ϕk+1 − ϕk+2) + sinϕk+1 − sinϕk+2}.

(23)

If k = 1, ϕ2 = ϕ3 is obtained as a solution when (23) is set to
zero. Similarly, by finding the zeros of (23) for k = 2, · · · , n−
2, we obtain the necessary condition for det(A′

ak) = 0 for all
k, that is (20).

(Sufficiency) Sufficiency is demonstrated by substituting
(20) into (22). We set ϕ2 = ϕ3 = · · · = ϕn = α. If α = 0,
then A′

a becomes

A′
a =

 0 1 −l(cosϕ1 + 1)
...

...
...

0 1 −l(cosϕ1 + 2n− 1)

 . (24)

Lifted parts

(a) Configuration I: All axes of
the grounded wheels are parallel.

Lifted parts

(b) Configuration II
: All extended lines
of the axes with
grounded wheels in-
tersect at a point.

Fig. 4. Examples of singular configurations for a snake robot.

Hence A′
a is rank deficient because all of the elements of the

first column are zero.
If α ̸= 0, A′

a becomes

A′
a=



0 1 −l(cosϕ1 + 1)
sinα cosα −l(cos(α+ ϕ1) + 2 cosα+ 1)

...
...

...

sin{(n−1)α} cos{(n−1)α} −l

(
cos{(n−1)α+ϕ1}+2

n−1∑
i=1

cos(iα)+1

)
.

(25)

Let c′ ∈ R3 be defined as follows.

c′ ≡
[
l(cosα− sinα sinϕ1 + 1)

sinα
, l(cosϕ1 + 1), 1

]T
.

(26)

Then, the column vectors of A′
a are linearly dependent be-

cause A′
ac

′ = 0. Hence, A′
a is also rank deficient if α ̸= 0.

This proves sufficiency.
The rank of Aa only depends on the relative position of

the wheel axes and does not depend on θh and ϕ1. Suppose
ϕ2 = ϕ3 = · · · = ϕn = α. If α = 0, the body shape of the
robot is a straight line; if α ̸= 0, the body shape of the robot
is a circular arc.

B. Snake robot involving axes with lifted wheels (n̄ < n, ā =
0)

We set θ̄j = θn′
j
− θn′

1
(j = 2, · · · , n̄). We consider

two configurations for a snake robot involving axes with
lifted wheels. Configuration I represents a scenario where all
grounded wheel axes are parallel, as shown in Fig. 4(a), that
is,

sin θ̄2 = sin θ̄3 = · · · = sin θ̄n̄ = 0. (27)

The body shape of the robot in this configuration is more ex-
tensive than the previously mentioned straight-line body shape.
Configuration II represents a scenario where all extended lines
of the axes with grounded wheels intersect at a point, as shown
in Fig. 4(b). For configuration II, the body shape of the robot
is more extensive than that for the circular arc. Then, the
following theorem is obtained.

Theorem 2: When n̄ ≥ 3, matrix Aaσ is rank deficient if
and only if the robot is in configuration I or II.
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Proof: The nonsingular matrix G′ is defined as

G′ ≡

 cos θn′
1

sin θn′
1

0
sin θn′

1
− cos θn′

1
0

0 0 1

 . (28)

Multiplying Aaσ by G′ from the right results in A′
aσ as

follows:

A′
aσ=AaσG

′

=
[

a′
aσ1 a′

aσ2 a′
aσ3

]

=



0 1 −l

1+cos(θn′
1
−θh)+2

n′
1−1∑
k=1

cos(θn′
1
−θk)


sin θ̄2 cos θ̄2 −l

1+cos(θn′
2
−θh)+2

n′
2−1∑
k=1

cos(θn′
2
−θk)


...

...
...

sin θ̄n̄ cos θ̄n̄ −l

1+cos(θn′
n̄
−θh)+2

n′
n̄−1∑
k=1

cos(θn′
n̄
−θk)




.

(29)

(Necessity) If A′
aσ is rank deficient, any one of the follow-

ing cases is satisfied from (29).
Case 1: a′

aσ1 = 0.
Case 2: a′

aσ2 = 0.
Case 3: a′

aσ3 = 0.
Case 4: a′

aσ1 ̸= 0, a′
aσ2 ̸= 0, a′

aσ3 ̸= 0, and there exists
c ̸= 0, which satisfies A′

aσc = 0.
(i). If case 1 is satisfied, the robot must satisfy (27) which

means configuration I.
(ii). Case 2 cannot be satisfied from the first element of

second column of (29).
(iii). We consider case 3. We set the new frame based on the

n′j-th wheel axis as Σn′
j

in Fig. 5. With respect to Σn′
j
,

let (n
′
jxh,

n′
jyh) be the position of the robot’s head and

(n
′
jxn′

j
, n

′
jyn′

j
) be the position of the intersection point

of the n′j-th wheel axis and the link. From Fig. 5(b), the
following relationships are obtained:

n′
jxn′

j
= n′

jxh + l{1 + cos(θh − θn′
j
)

+ 2
∑n′

j−1

k=1 cos(θk − θn′
j
)} = 0 (30)

n′
jyn′

j
= n′

jyh + l{sin(θh − θn′
j
)

+ 2
∑n′

j−1

k=1 sin(θk − θn′
j
)} = 0 (31)

From (30), a′
aσ3 in (29) is represented as

a′
aσ3 =


n′
1xh
...

n′
n̄xh

 . (32)

From (32), if a′
aσ3 = 0 is satisfied, it is necessary to

satisfy n′
1xh = · · · = n′

n̄xh = 0. This means that the
robot’s head is located on all of the extended lines of
the grounded wheel axes. Thus, if case 3 is satisfied, it
is necessary to satisfy configuration II, or all axes with
grounded wheels must be located on the same line. The
latter geometrical condition is included in configuration
I.

(iv). We consider case 4. Let αai be the i-th row vector of
A′

aσ . We focus on the n′1-th and n′j-th wheel axes. The
rows of A′

aσ corresponding to these axes are αa1 and
αaj . From (29) and (32), Ã = [αT

a1, α
T
aj ]

T is expressed
as

Ã =

[
αa1

αaj

]
=

[
0 1 n′

1xh
sin θ̄j cos θ̄j

n′
jxh

]
. (33)

(iv-a). We consider the case of sin θ̄j = 0. Then, Ã is

Ã =

[
0 1 n′

1xh
0 1 n′

jxh

]
. (34)

Thus, it is necessary to satisfy n′
1xh = n′

jxh if case 4
is satisfied. This means that the n′1-th and n′j-th wheel
axes are located on the same line. We do not need to
consider the case where sin θ̄j = 0 is satisfied for all j
because this is equivalent to case 1.
(iv-b). We consider the case of sin θ̄j ̸= 0. Then, the
n′1-th and n′j-th wheel axes intersect. Let point O be the
point where these wheel axes intersect, and rj be the
distance between (xn′

1
, yn′

1
) and point O, as shown in

Fig. 5. From Fig. 5, rj can be expressed as

rj =
l{1+cos(θn′

1
− θn′

j
)+2

∑n′
j−1

k=n′
1+1cos(θk−θn′

j
)}

sin θ̄j
.

(35)

Here, cj ∈ R3 is defined as

cj ≡

 rj − n′
1yh

−n′
1xh
1

 . (36)

From (30), (31), and (35), we can confirm that αa1cj =
0 and αajcj = 0 are satisfied. By focusing on the first
element of the first and second columns of (33), we find
that rank(Ã) ≥ 2 is satisfied. Then, rank(Ker(Ã)) ≤ 1
holds. Thus, cj in (36) is the only basis vector of Ã.
If c2 = · · · = cn̄ is satisfied, the following equation
must be satisfied.

r2 = · · · = rn̄. (37)

Geometrically, (37) means that all of the extended lines
of the axes with grounded wheels intersect at a point.
From (iv-a) and (iv-b), it is confirmed that all of the
extended lines of the axes with grounded wheels must
intersect at a point to satisfy case 4.

(i)–(iv) prove necessity.
(Sufficiency) Next, we confirm the sufficiency of the the-

orem. If configuration I is satisfied, A′
aσ is rank deficient

because aaσ1 = 0 from (27).
Next, we consider the case when configuration II is satisfied.

We use cj in (36). For configuration II, rj is constant and
does not depend on the j-th wheel axis, which is used in its
calculation, as shown in Fig. 5. Thus,

c2 = · · · = cn̄ = c̄, (38)

where c̄ ∈ R3. Using (35), αjcj = 0 holds for any j-th wheel
axis. Thus, A′

aσ is rank deficient because A′
aσc̄ = 0.

This proves sufficiency.
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Fig. 5. The model of a snake robot with respect to a fixed frame and Σn′
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C. Articulated mobile robot when all wheels are grounded
(n̄ = n, ā > 0)

In the kinematic model, if axes with ungrounded wheels are
considered, the condition describing singular configurations
changes because Aσ is derived from matrix A with some of
its rows removed. With respect to A, which refers to active
wheels, the following lemma and theorem are obtained.

Lemma 1: When nw ≥ 1 and n+ nw ≥ 3, matrix A is of
full column rank if ϕ2 = ϕ3 = · · · = ϕn = 0.
Proof of this lemma is provided in Appendix A.

Theorem 3: When n ≥ 3, nw ≥ 1, and |ϕi| < π (i =
2, · · · , n), matrix A is rank deficient if and only if all wheel
axes intersect at point O and all active wheels touch the ground
at point O.

Proof: Given A and G, A′ = AG expands as

A′ = [a′
1 a′

2 a′
3],

a′
1 =



0
sinϕ2

...

sin
n∑

i=2

ϕi

cos(θk1
− θ1)

...
cos(θknw

− θ1)


, a′

2 =



1
cosϕ2

...

cos
n∑

i=2

ϕi

− sin(θk1
− θ1)

...
− sin(θknw

− θ1)


,

a′
3 =



−l(cosϕ1 + 1)
−l{cos(ϕ1 + ϕ2) + 2 cosϕ2 + 1}

...

−l

cos

n∑
i=1

ϕi + 2

n∑
i=2

cos

n∑
j=i

ϕj + 1


−lw1 + l{sin(θk1

− θh) + 2

k1−1∑
j=1

sin(θk1
− θj)}

...

−lwnw + l{sin(θknw
−θh)+2

knw−1∑
j=1

sin(θknw
−θj)}



. (39)

(Necessity) Aa is formed by the 1, · · · , n-th row elements
of A. From n ≥ 3 and nw ≥ 1, Aa is rank deficient if
A is rank deficient. Thus, (20) is satisfied from theorem 1.
However, from lemma 1, A has full rank if ϕ2 = · · · = ϕn =
0. Therefore, if A is rank deficient, it is necessary to satisfy
the following equation.

ϕ2 = · · · = ϕn = α ̸= 0 (40)

By substituting (40) into (39), the following equations are
obtained.

a′
1=



0
sinα

...
sin{(n−1)α}
cos{(k1 −1)α}

...
cos{(knw−1)α}


, a′

2=



1
cosα

...
cos{(n−1)α}

− sin{(k1 −1)α}
...

− sin{(knw−1)α}


,

a′
3=



−l(cosϕ1 + 1)
−l(cos(α+ ϕ1) + 2 cosα+ 1)

...
−l(cos{(n−1)α+ϕ1}+ 2

∑n−1
i=1 cos(iα) + 1)

l(sin{(k1 −1)α+ϕ1}+ 2
∑k1−1

i=1 sin(iα))−lw1

...
l(sin{(knw

−1)α+ϕ1}+2
∑knw−1

i=1 sin(iα))−lwnw


.

(41)

From α ̸= 0, |α| < π, and (41), the following equation is
satisfied.

rank([a′
1 a′

2]) = 2. (42)

Thus, if A′ is rank deficient, one of following two cases is
satisfied.

Case 1: a′
3 = 0.

Case 2: a′
3 ̸= 0 and there exists a c′ ̸= 0 that satisfies

A′c′ = 0.
(i). If the first element of a′

3 is zero, ϕ1 = π + 2πi (i
is an integer), and then the second element of a′

3 is
cosα+1 ̸= 0 because of |α| < π from (40). Thus, case
1 cannot be satisfied.

(ii). We consider case 2. From (42), we determine that
rank(A′) ≥ 2. Hence, the following inequalities hold:

rank(Ker(A′)) ≤ 1, rank(Ker(A)) ≤ 1, (43)

where Ker(A) is the null space of A. If A is not of full
column rank, there exists a c′ ∈ R3 (c′ ̸= 0) satisfying
A′c′ = 0. Hence, c′ is the only basis vector of the null
space of A′ from (43). Considering the first and second
rows of (41), c′ is expressed as

c′=

[
l(cosα−sinα sinϕ1+1)

sinα
, l(cosϕ1+1), 1

]T
.

(44)
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Head

x

y

Active

wheel

Point O

Fig. 6. Point O and r if ϕ2 = ϕ3 = · · · = ϕn = α ̸= 0.

Then, A′c′ expands as

A′c′ =



0
...
0

r − lw1

...
r − lwnw


. (45)

Here, r is the distance between point O and the position
of the intersection point for each wheel axis and the link,
as shown in Fig. 6. This is expressed as

r =
l(1 + cosα)

sinα
. (46)

Thus, if A′c′ = 0, then

lwi = r (∀i = 1, · · · , nw), (47)

holds. The geometrical meaning of (47) is that all of the
contact points of the active wheels are located at point
O in Fig. 6.

(i) and (ii) prove necessity.
(Sufficiency) If |ϕi| < π (i = 2, · · · , n) and all wheel axes

intersect at a point O, the robot satisfies (40). If all active
wheels touch the ground at point O, (47) is satisfied from
Fig. 6. By substituting (40) and (47) into (39), A′c′ can be
obtained as

A′c′ = 0. (48)

Thus, A′ is rank deficient and sufficiency is proved.
Moreover, the following lemma for a real robot is satisfied.
Lemma 2: When n ≥ 3 and |ϕi| < π (i = 2, · · · , n), matrix

A of a real robot is of full column rank if nw ≥ 2.
Proof: From theorem 3, it is necessary to satisfy (47) if

A is rank deficient. However, if nw ≥ 2, the robot cannot
satisfy (47) because the active wheels collide with each other.
Thus, A is of full column rank.

D. Articulated mobile robot involving axes with lifted wheels
(n̄ < n, ā > 0)

We consider two additional configurations. Configuration III
represents the case where all of the axes with grounded wheels
are on the same line and all active wheels touch the ground
at the same point. Configuration IV represents the case where
all of the extended lines of the axes with grounded wheels

intersect at a point and all active wheels touch the ground at
the intersection point.

Let p1, · · · , pā be the indices of the axes to which the
n′w1, · · · , n′

wā-th active wheels are attached. Then, the fol-
lowing theorem is obtained.

Theorem 4: Matrix Aσ is rank deficient if and only if the
robot is in configuration III or IV.

Proof: We set θ̃j = θpj−θn′
1
, (j = 1, · · · , ā). Multiplying

Aσ by G′ in (28) from the right, A′
σ is obtained as

A′
σ = AσG

′

=
[

a′
σ1 a′

σ2 a′
σ3

]
,

a′
σ1 =



0
sin θ̄2

...
sin θ̄n̄
cos θ̃1

...
cos θ̃ā


, a′

σ2 =



1
cos θ̄2

...
cos θ̄n̄
sin θ̃1

...
sin θ̃ā


,

a′
σ3 =



−l{1 + cos(θn′
1
− θh) + 2

∑n′
1−1

k=1 cos(θn′
1
− θk)}

−l{1 + cos(θn′
2
− θh) + 2

∑n′
2−1

k=1 cos(θn′
2
− θk)}

...

−l{1 + cos(θn′
n̄
− θh) + 2

∑n′
n̄−1

k=1 cos(θn′
n̄
− θk)}

l{sin(θp1 − θh) + 2
∑p1−1

k=1 sin(θp1 − θk)} − lwn′
w1

...
l{sin(θpā − θh) + 2

∑pā−1
k=1 sin(θpā − θk)} − lwn′

wā


.

(49)

(Necessity) {θ̃1, · · · , θ̃ā} ∈ {0, θ̄2, · · · , θ̄n̄} is satisfied
because of {p1, · · · , pā} ∈ {n′1, · · · , n′

n̄}. Then, the following
equation is satisfied from the first and second column of (49).

rank([a′
σ1 a′

σ2]) = 2. (50)

Thus, if A′
σ is rank deficient, one of following two cases is

satisfied.
Case 1: a′

σ3 = 0.
Case 2: a′

σ3 ̸= 0 and there exists a c ̸= 0 that satisfies
A′

σc = 0.
(i). We consider case 1. From (30) and (31), a′

σ3 can be
represented as

a′
σ3 =



n′
1xh
...

n′
n̄xh

p1yh − lwn′
w1

...
pāyh − lwn′

wā


. (51)

From a geometrical consideration of (51), n′
1xh = · · · =

n′
n̄xh = 0 means that all of the axes with grounded

wheels and the robot’s head must be on the same line.
Moreover, p1yh − lwn′

w1
= · · · = pāyh − lwn′

wā
= 0

means that all of the active wheels have to touch the
ground at the position of the robot’s head. Thus, if case 1
is satisfied, all of the axes with grounded wheels and the
robot’s head are on the same line and all active wheels
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touch the ground at the position of the robot’s head. This
geometrical condition is included in configuration III.

(ii). We consider case 2. From theorem 2, the robot is in
configuration I or II if n̄ ≥ 3 and Aσ is rank deficient.
(ii-a). If the robot is in configuration I, (27) and the
following equation are satisfied:

sin θ̃1 = · · · = sin θ̃ā = 0. (52)

Substituting (27) and (52) into (49), the following equa-
tion is obtained.

A′
σ =



0 1 n′
1xh

...
...

...
0 1 n′

n̄xh
1 0 p1yh − lwn′

w1

...
...

...
1 0 pāyh − lwn′

wā


. (53)

Let a′
k be the k-th row vector of (53). The c ∈ R3

satisfying a′
1c = 0 and a′

n̄+1c = 0 can be calculated as

c =
[
p1yh − lwn′

w1
, n′

1xh, − 1
]T
. (54)

If a′
kc = 0 is satisfied, the following two equations must

be satisfied.

n′
1xh = · · · = n′

n̄xh, (55)
p1yh − lwn′

w1
= · · · = p1yh − lwn′

wā
. (56)

The geometrical meaning of (55) is that all of the
axes with grounded wheels are on the same line, and
(56) means that all of the active wheels touch the
ground at the same point. Thus, it is necessary to satisfy
configuration III if A′

σ is rank deficient in this case.
(ii-b). If the robot is in configuration II, c̄ in (38) satisfies
A′

aσc̄ = 0 as seen in the proof of theorem 2. If A′
σ is

rank deficient, it is necessary to satisfy Abσc̄ = 0.
We set the new frame based on the pk-th wheel
axis as Σpk

(see Fig. 7(b)). With respect to Σpk
, let

(pkxn′
1
, pkyn′

1
) be the position of intersection point of

the n′1-th wheel axis and the link, and (pkxo,
pkyo) be

the position of point O. From Fig. 7(b), the following
relationships are obtained:

pkxpk
=pkxn′

1
+ l{1 + cos(θn′

1
− θpk

)

+ 2
∑pk−1

m=n′
1+1 cos(θm − θpk

)} = 0, (57)

pkypk
=pkyn′

1
+ l{sin(θn′

1
− θpk

)

+ 2
∑pk−1

m=n′
1+1 sin(θm − θpk

)} = 0, (58)

pkxo =pkxn′
1
− r1 sin(θn′

1
− θpk

) = 0,

⇒pkxn′
1
= −r1 sin θ̃k, (59)

pkyo =pkyn′
1
+ r1 cos θ̃k = rpk

,

⇒rpk
= r1 cos θ̃k − l{sin(θn′

1
− θpk

)

+ 2
∑pk−1

m=n′
1+1 sin(θm − θpk

)}. (60)

Head

x

y

Point O

th wheel axis

th wheel axis

th active wheel

(a) With respect to a fixed
frame.

Head

Point O

th wheel axis

x

y

(b) With respect to Σpk .

Fig. 7. Schematic of the model for configuration II.

We focus on a′
n̄+k, which is formed by the n̄+ k (1 ≤

k ≤ ā)-th row vectors of A′
σ . Corresponding to the

n̄+ k-th row of A′
σ , a′

n̄+k is obtained as

a′
n̄+k =

 cos θ̃k
− sin θ̃k

pkyh − lwn′
wk

T

. (61)

Considering (60), a′
n̄+kc̄ is obtained as

a′
n̄+kc̄ = r′pk

− lwn′
wk
. (62)

Thus, to satisfy A′
σc̄ = 0, it is necessary to satisfy the

following equation:

lwn′
wk

= rpk
(∀k = 1, · · · , ā). (63)

The geometrical meaning of (63) is that all of the active
wheels touch the ground at point O. Thus, if A′

σ is rank
deficient in this case, the robot must be in configuration
IV.

From (i) and (ii), when n̄ ≥ 3, the robot is in configuration
III or IV. When n̄ = 1, 2, the robot is also in configuration III
or IV but the detail is omitted. This proves necessity.

(Sufficiency) If the robot is in configuration III, (55) and
(56) are satisfied. By substituting them into (49) and using c
of (54), we can confirm A′

σc = 0.
If the robot is in configuration IV, (60) and (63) are satisfied.

By substituting them into (49) and using c̄ of (38), we can
confirm A′

σc̄ = 0.
This proves sufficiency.
Lemma 3: Matrix Aσ of a real robot is of full column rank

if ā ≥ 2.
Proof: For a real robot where ā ≥ 2, the situations of (56)

and (63) do not arise because the active wheels of different
wheel axes collide with each other. Thus, (56) and (63) cannot
be satisfied. This fact contradicts the assumption that Aσ is
not of full column rank. That is, Aσ of a real robot is of full
column rank.

From lemma 3, the robot is not in a singular configuration
if at least two active wheels touch the ground. This means that
the use of redundancy for singularity avoidance is not needed



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, DECEMBER 20XX 9

in this case. However, note that the robot is in a singular
configuration corresponding to I or II (see theorem 2) if all of
the active wheels are lifted (ā = 0), even if nw > 0. Moreover,
if ā = 1, the robot is in a singular configuration corresponding
to IV without self-collision.

IV. EVALUATION INDICES OF THE SINGULAR
CONFIGURATIONS FOR A SNAKE ROBOT

A snake robot with unconstrained links has two singular
configurations, configuration I and II (see theorem 2). The fol-
lowing conventional index is used in [6]–[8] as an evaluation
index of the singularities of the snake robot.

d0 ≡ det(AT
aσAaσ). (64)

If the robot is in a singular configuration, d0 becomes 0.
Thus, the robot can avoid singularities by increasing d0.
However, the singular configuration that the current body
shape approaches if d0 ≃ 0 are not clear from this index.
Moreover, the distance between the current body shape and
each singular configuration is not evident using this index.
This section presents novel indices representing the distance
between the current body shape and configuration I or II.

A. Distance from configuration I

We focus on the orientation of the link attached to the k-th
wheel axes. Let ψk (k = n′1, · · · , n′

n̄) be the orientation of
the link with respect to Σn′

1
rounding on [−π/2, π/2]. Then,

ψn′
1
= 0. If the robot is in configuration I, ψn′

2
= · · · =

ψn′
n̄
= 0 from (27). Thus, if ψn′

1
= · · · = ψn′

n̄
= 0, the robot

is in configuration I. Then, we define the distance dI from
configuration I as

dI ≡

√√√√√ 1

n̄− 1

n′
n̄∑

k=n′
1

(ψk − ψ̄)2, (65)

where ψ̄ is the mean of ψk. (65) is the sample standard
deviation of ψk and its meaning with respect to distance is
straightforward because it is measured in radians. If the robot
is in configuration I, dI becomes zero.

B. Distance from configuration II

On the xy plane, the equation of the line representing the
k-th wheel axis is

x cos θk + y sin θk − xk cos θk − yk sin θk = 0. (66)

The signed distance lk between the point f (xf , yf ) and the
line (66) is obtained as

lk = xf cos θk + yf sin θk − xk cos θk − yk sin θk. (67)

Let us define L = [ln′
1
, · · · , ln′

n̄
]T and wf = [xf , yf ]

T , L is
represented as

L = Cwf −D, (68)

Lifted part

Head

Fig. 8. (x∗
f , y

∗
f ) and lk if n = 4, n̄ = 3, n′

1 = 1, n′
2 = 2, and n′

3 = 4.

where

C=

 cos θn′
1

sin θn′
1

...
...

cos θn′
n̄

sin θn′
n̄

 ,D=

 xn′
1
cos θn′

1
+yn′

1
sin θn′

1

...
xn′

n̄
cos θn′

n̄
+yn′

n̄
sin θn′

n̄

.
(69)

The solution w∗
f = [x∗f , y

∗
f ]

T of (68), which minimizes ||L||
is obtained as

w∗
f = C#D (70)

where C# is a pseudo inverse matrix of C and is calculated
by singular value decomposition (SVD). Fig. 8 shows the
geometric relationship of w∗

f because it is the solution of (68)
minimizing ||L||. Then, the distance dII from configuration II
is defined as

dII ≡ ||Cw∗
f −D||. (71)

If the robot is in configuration II, dII becomes zero. The
distance from configuration II using this value is straightfor-
ward to understand because it is the norm of the distance.
If the robot is in configuration I, rank(C) = 1. Then, w∗

f

becomes the solution minimizing ||w∗
f || because the solution

is calculated by SVD.

C. Simulations

We validate the effectiveness of the proposed evaluation
indices through simulations. We use a snake robot where
n = 4, l = 0.05 [m], n̄ = 3, and the second wheel axis
is lifted. We set wh = [0, 0, 0]T , ϕ1 = 0, and ϕ2 = π/3,
and calculate d0, dI, and dII with ϕ3 and ϕ4 varying over
[−3π/4, 3π/4] with a π/240 interval. Fig. 9 shows the results.
d0 does not allow us to determine whether the shape of
the robot is close to either of the singular configurations. In
contrast, dI and dII clearly depict the distance from a particular
singular configuration.

Fig. 10 (a), (b), and (c) show the indices d0, dI, and dII in
the case of ϕ3 = −π/3, respectively. Fig. 10(c) demonstrates
that the robot cannot be in configuration II and Fig. 10(b)
shows that it is in configuration I at ϕ4 = 0. Fig. 11(a) shows
the shape of the robot in this case with the magenta link
signifying the lifted part. All of the axes with grounded wheels
are parallel in Fig. 11(a). From Fig. 10(c), dII discontinuously
changes when the robot is in configuration I (ϕ4 = 0).
When the robot is in configuration I, C is rank deficient
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Fig. 9. Evaluation indices for singularities.
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Fig. 10. Evaluation indices for singularities if ϕ3 = −π/3.

(rank(C) = 1). Then, w∗
f in (70) calculated by SVD is

the solution minimizing ||w∗
f || and this is the reason for the

discontinuous change.
Fig. 12 shows the indices in the case of ϕ3 = π/6.

Fig. 12(b)(c) shows that the robot cannot be in configuration
I and is in configuration II at ϕ4 = 0.93. Fig. 11(b) shows the
shape of the robot at ϕ4 = 0.93 and demonstrates that all of
the extended lines of the axes with grounded wheels intersect
at a point.

The simulation results confirm that the proposed indices
are effective for evaluating the distance from each singular
configuration. There is the case where the robot has to stop
or slow down to avoid an unintended motion if the robot is in

0 0.1 0.2 0.3
−0.1

−0.05

0

0.05

0.1

0.15

x [m]

y
 [

m
] (a) Configuration I (ϕ3

=−π
3

, ϕ4 =0)

0 0.1 0.2
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0.15

0.2

x [m]

y
 [

m
] (b) Configuration II (ϕ3

= π
6

, ϕ4 =0.93)

Fig. 11. Example of a singular configuration I and II.
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Fig. 12. Evaluation indices for singularity if ϕ3 = π/6.

the neighborhood of singular configurations as an industrial
manipulator. For example, in an industrial manipulator, the
region of neighborhood of singularity is defined and the robot
stops or slows down when the robot is in the region. In the
snake robot, the distance to each singular configuration is not
evident using the conventional index d0 and it is difficult to
set threshold defining the region. In contrast, two proposed
indices are straightforward to understand because they are
measured in radians and norm of distances, and it is easy to set
threshold. Moreover, thresholds for configuration I and II can
be set separately. These are the merit of using two proposed
indices.

V. CONCLUSION

In this paper, we analyze the singularity conditions for a
snake robot and an articulated mobile robot allowing lifted
wheels and present the theorems and lemmas related to the
singular configurations. We prove that the singular configura-
tions of the snake robot can correspond only to configurations
I and II and those of the articulated mobile robot correspond
only to configurations III and IV when some wheels are lifted.
Additionally, we propose evaluation indices representing the
distance from the singular configurations of a snake robot
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with unconstrained links, and simulations validate their ef-
fectiveness. This paper deals only with singularities on a flat
plane, and singularities on complicated terrain (e.g., step [21],
cylindrical surface [22]) will comprise our future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: Given A in (12) and G in (21), A′ = AG expands
as

A′ =



0 1 −l(cosϕ1 + 1)
...

...
...

0 1 −l(cosϕ1 + 2n− 1)
1 0 l sinϕ1 − lw1

...
...

...
1 0 l sinϕ1 − lwnw


. (72)

The first and second columns are linearly independent in (72).
(i) If n ≥ 2, focusing on the 1, · · · , n-th element of the third

column yields that the first and third columns and the second
and third columns are both linearly independent. Thus, A is
of full column rank if n ≥ 2.

(ii) If n = 1, then nw = 2 must hold to satisfy n+nw ≥ 3
and det(A′) is determined as

det(A′) = lw2 − lw1. (73)

lw2 ̸= lw1 is satisfied because the two active wheels are located
on the same wheel axis as n = 1. Thus, A is of full column
rank if n = 1.

From (i) and (ii), A is of full column rank.
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