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Abstract

Multiple-input multiple-output (MIMO) technology has attracted at-

tention in wireless communications, since it provides significant in-

creases in data throughput and the high spectral efficiency. MIMO

systems employ multiple antennas at both ends of the wireless link,

and hence can increase the data rate by transmitting multiple data

streams. To exploit the potential gains offered by MIMO, signal pro-

cessing involved in a MIMO receiver requires a large computational

complexity in order to achieve the optimal performance. In MIMO

systems, it is usually required to detect signals jointly as multiple

signals are transmitted through multiple signal paths between the

transmitter and the receiver. This joint detection becomes the MIMO

detection.

The maximum likelihood (ML) detection (MLD) is known as the

optimal detector in terms of minimizing bit error rate (BER). How-

ever, the complexity of MLD obstructs its practical implementation.

The common linear detection such as zero-forcing (ZF) or minimum

mean squared error (MMSE) offers a remarkable complexity reduction

with performance loss. The non-linear detection, e.g. the successive

interference cancellation (SIC), detects each symbol sequentially with

the aid of cancellation operations which remove the interferences from

the received signal. The BER performance is improved by using the

SIC, but is still inferior to that of the ML detector with low complex-

ity. Numerous suboptimal detection techniques have been proposed

to approximately approach the ML performance with relatively lower

complexity, such as sphere detection (SD) and QRM-MLD. To look for



suboptimal detection algorithm with near optimal performance and

affordable complexity costs for MIMO gains faces a major challenge.

Lattice-reduction (LR) is a promising technique to improve the

performance of MIMO detection. The LR makes the column vectors

of the channel state information (CSI) matrix close to mutually or-

thogonal. The following signal estimation of the transmitted signal

applies the reduced lattice basis instead of the original lattice basis.

The most popular LR algorithm is the well-known LLL algorithm, in-

troduced by Lenstra, Lenstra, and Lovász. Using this algorithm, the

LR aided (LRA) detector achieves more reliable signal estimation and

hence good BER performance. Combining the LLL algorithm with

the conventional linear detection of ZF or MMSE can further improve

the BER performance in MIMO systems, especially the LR-MMSE

detection. The non-linear detection i.e. SIC based on LR (LR-SIC) is

selected from many detection methods since it features the good BER

performance. And ordering SIC based on LR (LR-OSIC) can further

improve the BER performance with the costs of the implementation

of the ordering but requires high computational complexity. In ad-

dition, list detection can also obtain much better performance but

with a little high computational cost in terms of the list of candi-

dates. However, the expected performance of the several detections is

not satisfied directly like the ML detector, in particular for the high

modulation order or the large size MIMO system.

This thesis presents our studies about lattice reduction aided de-

tection and its application in MIMO system. Our studies focus on

the evaluation of BER performance and the computational complex-

ity. On the hand, we improve the detection algorithms to achieve the

near-ML BER performance. On the other hand, we reduce the com-

plexity of the useless computation, such as the exhaustive tree search.

We mainly solve three problems existed in the conventional detection

methods as



• The MLD based on QR decomposition and M-algorithm (QRM-

MLD) is one solution to relatively reduce the complexity while

retaining the ML performance. The number of M in the con-

ventional QRM-MLD is defined as the number of the survived

branches in each detection layer of the tree search, which is a

tradeoff between complexity and performance. Furthermore, the

value of M should be large enough to ensure that the correct

symbols exist in the survived branches under the ill-conditioned

channel, in particular for the large size MIMO system and the

high modulation order. Hence the conventional QRM-MLD still

has the problem of high complexity in the better-conditioned

channel.

• For the LRA MIMO detection, the detection errors are mainly

generated from the channel noise and the quantization errors in

the signal estimation stage. The quantization step applies the

simple rounding operation, which often leads to the quantiza-

tion error. If this error occurs in a row of the transmit signal,

it has to propagate to many symbols in the subsequent signal

estimation and result in degrading the BER performance. The

conventional LRA MIMO detection has the quantization prob-

lem, which obtains less reliable signal estimation and leads to

the BER performance loss.

• Ordering the column vectors of the LR-reduced channel matrix

brings large improvement on the BER performance of the LR-

SIC due to decreasing the error propagation. However, the im-

provement of the LR-OSIC is not sufficient to approach the ML

performance in the large size MIMO system, such as 8×8 MIMO

system. Hence, the LR-OSIC detection cannot achieve the near-

ML BER performance in the large size of MIMO system.

The aim of our researches focuses on the detection algorithm,

which provides near-ML BER performance with very low additional

complexity. Therefore, we have produced various new results on low



complexity MIMO detection with the ideas of lattice reduction aided

detection and its application even for large size MIMO system and

high modulation order. Our works are to solve the problems in the

conventional MIMO detections and to improve the detection algo-

rithms in the signal estimation. As for the future research, these

detection schemes combined with the encoding technique lead to in-

teresting and useful applications in the practical MIMO system or

massive MIMO.
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MIMO: 64QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 The example of list tree in 2× 2 MIMO. . . . . . . . . . . . . . . 115

6.8 The δ vs. BER characteristics in the 4× 4 MIMO system: QPSK. 119

6.9 The δ vs. BER characteristics in the 8× 8 MIMO system: QPSK. 119

6.10 The δ vs. BER characteristics in the 4× 4 MIMO system: 16QAM.120

6.11 The δ vs. BER characteristics in the 8× 8 MIMO system: 16QAM.120

6.12 The δ vs. BER characteristics in the 4× 4 MIMO system: 64QAM.120

6.13 The δ vs. BER characteristics in the 8× 8 MIMO system: 64QAM.120

xi



LIST OF FIGURES

6.14 The Eb/N0 vs. BER characteristics in the 4×4 MIMO: QPSK. . . 122

6.15 The Eb/N0 vs. BER characteristics in the 8×8 MIMO: QPSK. . . 122

6.16 The Eb/N0 vs. BER characteristics in the 4×4 MIMO: 16QAM. . 122

6.17 The Eb/N0 vs. BER characteristics in the 8×8 MIMO: 16QAM. . 122

6.18 The Eb/N0 vs. BER characteristics in the 4×4 MIMO: 64QAM. . 123

6.19 The Eb/N0 vs. BER characteristics in the 8×8 MIMO: 64QAM. . 123

6.20 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 4× 4 MIMO: QPSK. . . . . . . . . . . . . . . . . . . . . . 125

6.21 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 8× 8 MIMO: QPSK. . . . . . . . . . . . . . . . . . . . . . 125

6.22 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 4× 4 MIMO: 16QAM. . . . . . . . . . . . . . . . . . . . . 125

6.23 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 8× 8 MIMO: 16QAM. . . . . . . . . . . . . . . . . . . . . 125

6.24 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 4× 4 MIMO: 64QAM. . . . . . . . . . . . . . . . . . . . . 126

6.25 The Eb/N0 vs. Probability of εv ≤ εTH for the proposed detection

in the 8× 8 MIMO: 64QAM. . . . . . . . . . . . . . . . . . . . . 126

7.1 The comparison of BER characteristics using the three proposed

detections in the 4×4 MIMO: 16QAM. . . . . . . . . . . . . . . . 130

7.2 The comparison of BER characteristics using the three proposed

detections in the 8×8 MIMO: 16QAM. . . . . . . . . . . . . . . . 130

xii



List of Tables

2.1 Possible candidates for the combination in 2× 2 MIMO with QPSK 15

2.2 The computational complexity for QRM-MLD [flops] . . . . . . . 24

3.1 Complex Gram-Schmidt orthogonalization algorithm . . . . . . . 30

3.2 Complex LLL algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Complex LLL algorithm based on QR decomposition . . . . . . . 46

4.1 Real Gram-Schmidt orthogonalization algorithm . . . . . . . . . . 59

5.1 Real LLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Real Gram-Schmidt orthogonalization algorithm . . . . . . . . . . 83

5.3 Proposed quantization scheme . . . . . . . . . . . . . . . . . . . . 91

5.4 The suitable values of factor δ and Nmax for the proposed detection 96

5.5 The computational complexity of the proposed detection . . . . . 103

6.1 LR-OSIC with conditional list detection . . . . . . . . . . . . . . 117

6.2 The suitable values of factor δ and εTH for the proposed detection 119

7.1 Comparison of three proposed detections . . . . . . . . . . . . . . 131

7.2 Suitable applications of three proposed detections . . . . . . . . . 132

xiii



LIST OF TABLES

xiv



Acronyms

AWGN Additive white Gaussian noise

BER Bit error rate

CDF Cumulative distribution function

CSI Channel state information

ED Euclidean distance

flops Floating point operations

GS Gram-Schmidt

GSM-MLD ML detection based on GS orthogonalization and M-algorithm

GSO Gram-Schmidt orthogonalation

i.i.d. Independent and identically distributed

LR Lattice reduction

LRA Lattice reduction aided

LRAD Lattice reduction aided detection

LTE Long Term Evolution

MGS Modified Gram-Schmidt

MIMO Multiple-input multiple-output

ML Maximum likelihood

MLD Maximum likelihood detection

i



ACRONYMS

MMSE Minimum mean square error

OSIC Ordering successive interference cancellation

PED Partial Euclidean distance

PEP Pairwise error probability

QAM Quadrature amplitude modulation

QRM-MLD ML detection based on QR decomposition and M-algorithm

RE Reliability evaluation

SC Surviving candidates

SD Sphere detection

SIC Successive interference cancellation

SISO Single-input single-output

SNR Signal-to-noise ratio

ZF Zero-forcing

ii



Chapter 1

Introduction

This thesis represents our studies about lattice reduction (LR) aided detections

in multiple-input multiple-output (MIMO) systems. This chapter introduces the

research background first. Then, based on MIMO system, we give the research

motivation and objective. Finally, the organization of the thesis is concluded in

the last section of chapter.

1.1 Background

Digital wireless communications using MIMO has emerged as one of the most

remarkable scientific revolutions in modern communications [1]−[11]. Among

the recent developments to relieve the bottleneck of wireless data transmission,

MIMO techniques show tremendous potential. MIMO technology has attracted

attention in wireless communications, because it offers significant increases in data

throughput and link range without additional bandwidth or increased transmit

power. It achieves this goal by spreading the same total transmit power over

the antennas to achieve an array gain that improves the spectral efficiency (more

bits per second per Hz of bandwidth) and/or to achieve a diversity gain that

improves the link reliability (reduced fading). Because of these properties, MIMO

is an important part of modern wireless communication standards such as IEEE

802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution (LTE), WiMAX and HSPA+.

The idea behind MIMO is that these spatial subchannels can be combined

in such a way as to improve the quality (bit error rate or BER) or data rate

1



1. INTRODUCTION

(bits/sec/Hz) of communication. As the radio waves are transmitted over the

air, these virtual spatial subchannels suffer from interference or leakage between

themselves. Therefore, space-time processing is required to decouple these spa-

tial subchannels. MIMO systems can be viewed as an extension of smart antenna

systems, a popular technique, dating back several decades, for improving link

reliability through the use of antenna array beamforming. Multipath propaga-

tion has long been a pitfall for wireless communications. The goal of wireless

design has been to combat the multipath fading, by dynamic modulation and

channel coding schemes, using Rayleigh fading as a worst-case scenario for design

purposes. MIMO wireless systems, on the other hand, exploit this multipath to

enhance the transmission over wireless links. MIMO systems provide a large in-

crease in capacity without the cost of additional frequency bands, just requiring

more complexity and hardware.

MIMO communication systems achieve higher data rates than single antenna

systems by using multiple antennas to transmit and to receive multiple inde-

pendent data streams simultaneously over a communication channel as seen in

Fig. 1.1. Each receiving antenna acquires a superposition of these transmitted

streams. The process of separating out each independent data stream is called

MIMO detection. Although the optimal solution to the MIMO symbol detection

problem, maximum likelihood (ML) detection, is known, a brute-force ML de-

tector implementation involves an exhaustive search over all possible transmitted

symbol vectors [11]. This approach is infeasible for hardware implementation

when either a large signal constellation or large number of antennas is employed.

Transmitter Receiver

MIMO
s

H

ŝ
y

Figure 1.1: MIMO system

2



1.2 MIMO system

In many practical MIMO communication systems, detection is enabled by

periodically characterizing the relative contribution of each signal transmitted

on each antenna to the signal received on each antenna [9]. This process is re-

ferred to as the channel estimation and is accomplished by transmitting known

training signals at the start of each packet. A variety of low complexity meth-

ods such as zero-forcing (ZF) and mean minimum square error (MMSE) and

successive interference cancellation (SIC) detections involve a preprocessing step

that transforms knowledge about the channel behavior into a form suitable for

symbol detection [10]. However, the low complexity detection methods bring the

worse performance. Hence, a good MIMO detection method is a tradeoff between

the performance and the complexity, which could determine the performance of

MIMO system.

1.2 MIMO system

There is ever growing demand of wireless services of higher data rates. Un-

fortunately, a conventional single-input single-output (SISO) system where the

transmitter and the receiver are equipped with single antenna can have the limi-

tations to support higher data services. The capacity grows logarithmically with

the signal-to-noise ratio (SNR), in order to have a high transmission rate, it re-

quires either high SNR or wide bandwidth. In wireless communications, since

there are the limitation to increase SNR due to propagation loss, the bandwidth

should be wide enough to support high data rate services. However, the scarce

wireless spectrum has a big challenge on wireless communication systems with

increasing data rate demands. To improve the spectral efficiency in wireless com-

munications, multiple antennas are employed at both transmitter and receiver,

where this system is called MIMO system. Thus, the channel matrix in MIMO

system with Nt transmit and Nr receive antennas can be expressed as

Hc =


hc11 hc12 . . . hc1,Nt

hc21 hc22 . . . hc2,Nt

...
...

. . .
...

hcNr,1
hcNr,2

. . . hcNr,Nt

 (1.1)

3



1. INTRODUCTION

The receive signal yc can be expressed as

yc = Hcsc + zc (1.2)

where Hc, sc and zc denote the channel matrix, the transmit signal vector and

the noise vector, respectively. Note that the superscript c denotes the complex

value. The channel capacity can be formulated as

Cchannel = E

[
log2

(
1 +

∑Nt

i=1 |hi|
2Es

N0

)]

≤ log2

(
1 +

∑Nt

i=1 |hi|
2Es

N0

) (1.3)

where Es = E[||sc||2]
Nt

and N0 = E[||zc||2].

It is well-known that the capacity of MIMO channels can linearly increase

with the minimum number of transmit and receive antennas under the condi-

tions, where the channel gains are independent complex Gaussian random vec-

tor. For a given bandwidth, the MIMO system has the more antennas, the higher

transmission rates can be achieved without increasing the transmission power. To

exploit the capacity, it requires the efficient signal modulation schemes for MIMO

systems. Quadrature amplitude modulation (QAM) has been developed as the

modulation order of digital signals in MIMO systems. In this thesis we consider

the modulation order of QPSK, 16QAM and 64QAM.

1.3 Motivation and objective

MIMO detection is to detect the transmit signal from the receive signal under the

knowledge of the channel state information (CSI). According to the performance,

we divide the MIMO detections into four parts as seen in Fig. 1.2.
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MIMO

detection

Conventional

detections

ML detection

· ZF

· MMSE

· SIC

· SD

· QRM-MLD

Suboptimal

detection

Near-ML

detections

Optimal

detection

Lattice-reduction

aided detection

Figure 1.2: MIMO detections

The ML detection achieves the optimal performance in terms of minimizing

the bit error rate (BER) among the existing detection schemes in the MIMO sys-

tems. However, the complexity of the ML detection exponentially increases with

the number of the transmit antennas and thus obstructs its practical implemen-

tation. The conventional MIMO detections are linear ZF and MMSE detections,

and non-linear SIC detection, which provide worse BER performance with low

complexity. A near-ML scheme of the sphere-detection (SD) can be used to re-

duce the complexity which is still high in the low Eb/N0 region or large size MIMO

system or high modulation order [11]−[16]. The ML detection based on QR de-

composition and M-algorithm (QRM-MLD) is one solution to relatively reduce

the complexity while retaining the ML performance. However, the conventional

QRM-MLD has the problem of high complexity in the high Eb/N0 region or large

size MIMO system or high modulation order [17]−[27]. These SD and QRM-MLD

are called as near-ML detection.

Lattice-reduction (LR) aided (LRA) detection has been introduced into the

MIMO detection to achieve the good tradeoff between the performance and the

complexity [28]−[35]. The most popular LR algorithm is the well-known LLL

algorithm, introduced by Lenstra, Lenstra and Lovász [36]. Combining the LLL

algorithm with the linear detections such as ZF or MMSE can achieve the good
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1. INTRODUCTION

BER performance, especially the LR-MMSE detection which is close to the ML

detector in the small size MIMO system. In contrast, the BER improvement in

the large size MIMO system is not sufficient. The non-linear detection, i.e. SIC,

is selected from many detection methods since it features the good BER perfor-

mance. And ordering SIC (OSIC) based on LR (LR-OSIC) can further improve

the BER performance with the costs of the implementation of the ordering but

requires high computational complexity. In addition, the list detection can also

obtain much better performance but a little high computational cost in terms of

the list of candidates.

Our researches have been investigated in order to achieve the ultimate goal

looking for a near-ML detection scheme on the performance together with low

complexity. In this thesis, the objective is to solve three problems existed in

MIMO detection methods marked with hatched boxes in Fig. 1.2 as

• The number of M in the conventional QRM-MLD is defined as the number

of the survived branches in each detection layer of the tree search, which

is a tradeoff between complexity and performance [23]. Furthermore, the

value of M should be large enough to ensure that the correct symbols exist

in the survived branches under the ill-conditioned channel, in particular for

the large size MIMO system and the high modulation order. Hence the

conventional QRM-MLD still has the problem of high complexity in the

high Eb/N0 region.

• For the LRA MIMO detection, the detection errors are mainly generated

from the channel noise and the quantization errors in the signal estima-

tion stage. The quantization step applies the simple rounding operation,

which often leads to the quantization error. If this error occurs in a row

of the transmit signal, it has to propagate to many symbols in the subse-

quent signal estimation and result in degrading the BER performance. The

conventional LRA MIMO detection has the quantization problem, which

obtains less reliable signal estimation and leads to the BER performance

loss.

• Ordering the column vectors of the LR-reduced channel matrix brings large

improvement on the BER performance of the LR-SIC due to decreasing

6



1.4 Overview of the dissertation

the error propagation. However, the improvement of the LR-OSIC is not

sufficient to approach the ML performance in the large size MIMO system,

such as 8×8 MIMO system. Hence, the LR-OSIC detection cannot achieve

the near-ML BER performance in the large size of MIMO system.

1.4 Overview of the dissertation

This thesis summarizes our research works about lattice reduction aided detection

in MIMO systems. The dissertation consists of seven chapters as follows.

Chapter 1 introduces the research background, the MIMO system, the moti-

vation and objective of our researches.

Chapter 2 presents the system model and the conventional MIMO detections,

such as zero-forcing, mean minimum square error, maximum likelihood detection,

and the QRM-MLD.

Chapter 3 explains the LR algorithm first. Then, we describe several lattice

reduction aided detection methods, which combine the LR technology with the

linear detections, SIC detection or list detection. And these detection schemes

employ some algorithms, including Gram-Schmidt orthogonalization algorithm.

Chapter 4 proposes a novel adaptive tree search detection with variable path

expansion based on GSM-MLD. The adaptive tree search detection scheme retains

the same breadth of the tree search as the GSM-MLD to achieve the near-ML

performance, and however the number of the possible branches is adaptively con-

trolled. The adaptive scheme avoids a large amount of the path metric evaluations

and sorting to reduce the computational complexity.

Chapter 5 describes an improved quantization scheme based on LR-GS de-

tection. The improved quantization scheme applies a simple tree search in order

to obtain an optimum quantization results. We introduce a threshold function in

order to survive the candidates for each entry of the signal vectors according to

the path metric. This improved quantization scheme based on LR-GS detection

can achieve near-ML performance and offer significant reduction in computational

complexity compared to the QRM-MLD.

Chapter 6 introduces the conditional list detection based on the LR-OSIC

detection. According to the mean squared error of the signal vector in the LR

7



1. INTRODUCTION

domain, we use the conditional list generation to update the soft estimate of

the LR-OSIC. Using this property, we decrease the complexity for computing the

useless list candidates in the better-conditioned channel. This proposed detection

can achieve the near-ML performance in the 8×8 MIMO system and require

almost the same complexity of the LR-OSIC in the high Eb/N0 region.

Chapter 7 summarizes the research contribution of the thesis and explores the

future works. We compare the BER performance and complexity among three

proposed detections and recommend the suitable applications according to the

size of MIMO system, the modulation order and the type of fading channel.

Appendices are described after chapter 7. Weigh matrices of MMSE in chapter

2 is derived in appendix A. Appendix B shows the MMSE estimation of new signal

vector using the LR technology in chapter 3.
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Chapter 2

Background of MIMO Detection

In this chapter, we introduce a system model for MIMO detection. Then, we

present several well-known MIMO detection methods, including the ML, linear

detections.

2.1 System model

Consider a multiple antenna system with Nt transmit and Nr (Nr > Nt) receive

antennas in Fig. 2.1.
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Figure 2.1: The model of MIMO system.

We assume that the signals are transmitted over a quasi-static flat Rayleigh

fading channel such that the channel is non-time variant in the packet dura-

tion. In this thesis, we assume that the receiver has perfect knowledge of the
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2. BACKGROUND OF MIMO DETECTION

CSI. Let Hc = [hc1,h
c
2, ...,h

c
Nt

] denote the Nr × Nt channel matrix. The en-

tries of Hc are of the independent and identically distributed (i.i.d.) complex

Gaussian process with zero mean and unity variance. The receive signal vector

yc = [yc1, y
c
2, ..., y

c
Nr

]T ∈ CNr×1 is expressed as

yc = Hcsc + zc (2.1)

where ycq is the receive signal at the q-th receive antenna. The transmit signal

vector is denoted as sc = [sc1, s
c
2, ..., s

c
Nt

]T ∈ SNt×1, where each symbol scp at

the p-th transmit antenna is chosen from a finite subset of the complex-valued

integer set S. The noise vector zc = [zc1, z
c
2, ..., z

c
Nr

]T ∈ CNr×1 is the additive white

Gaussian noise (AWGN) vector, of which each entry is assumed to be zero mean

and variance of N0, the one-sided noise power spectral density.

According to [1], the MIMO channel capacity grows linearly with min(Nt, Nr).

Note that there is a fundamental trade-off between receive diversity gain and

multiplexing gain [6]. Thus, we prefer that Nt = Nr which results in the square

channel matrix.

2.2 Symbol mapping and definition of Eb/N0

In this thesis, we explain the symbol mapping, the definition of the average energy

per one symbol Es, the energy per one bit Eb, and Eb/N0 for the mappings of

QPSK, 16QAM and 64QAM. Let scp be the complex amplitude of the mapped

symbol transmitted from the p-th transmitter. One symbol consists of two bits for

QPSK, of four bits for 16QAM, and of six bits for 64QAM. Let Es be the average

energy per one symbol, and Eb be the energy per one bit. We have Es = 2Eb for

QPSK, Es = 4Eb for 16QAM, and Es = 6Eb for 64QAM, respectively.

2.2.1 QPSK

The complex symbol amplitude and the set of QPSK in the symbol constellation

in Fig. 2.2 are defined, respectively, as

scp = a+ jb : {a|b} ∈ {±1}, and C(scp) ∈ {(00), (01), (11), (10)} (2.2)

10
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(0)

(0)

(1)

(1)

+1-1

+j

-j

(00)(10)

(01)(11)

a

b

Figure 2.2: Constellation of QPSK

The average energy per one symbol for QPSK is expressed as

Es = E
[
|scp|2

]
=
|1 + j|2 + |1− j|2 + | − 1 + j|2 + | − 1− j|2

4

=
2 + 2 + 2 + 2

4
= 2

(2.3)

Since Es = 2Eb for QPSK, the energy per one bit Eb, Eb/N0 and Es/N0(= γ)

are expressed, respectively, as

Eb =
Es
2

=
2

2
= 1 (2.4)

Eb
N0

=
1

N0

: i.e., N0 =
1

(Eb/N0)
= E

[
|zcq|2

]
(2.5)

The noise amplitude zcq should be generated so that (2.5) is satisfied. Then,

Eb/N0 for QPSK is defined as

γ =
Es
N0

=
2Eb
N0

(2.6)

where γ will be used for the weight matrix of MMSE detection in the following

subsection. Note that QPSK signal is a two-dimensional bi-orthogonal signal.
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Figure 2.3: Constellation of 16QAM

2.2.2 16QAM

The complex symbol amplitude and the set of 16QAM in the symbol constellation

in Fig. 2.3 are defined, respectively, as

scp = a+jb : (2.7)

{a|b} ∈ {±1, ±3}, and C(scp) ∈


(0000), (0001), (0011), (0010)
(0100), (0101), (0111), (0110)
(1100), (1101), (1111), (1110)
(1000), (1001), (1011), (1010)

 (2.8)

The average energy per one symbol for 16QAM is expressed as

Es = E
[
|scp|2

]
=
|1 + j|2 + |3 + j|2 + |1 + j3|2 + |3 + j3|2

4

=
2 + 10 + 10 + 18

4
=

40

4
= 10

(2.9)

Since Es = 4Eb for 16QAM, the energy per one bit Eb, Eb/N0 and Es/N0(= γ)

12
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are expressed, respectively, as

Eb =
Es
4

=
5

2
(2.10)

Eb
N0

=
5
2

N0

=
5

2N0

: i.e., N0 =
5

2(Eb/N0)
= E

[
|zcq|2

]
(2.11)

The noise amplitude zcq should be generated so that (2.11) is satisfied. Then,

Eb/N0 for 16QAM is defined as

γ =
Es
N0

=
4Eb
N0

(2.12)

2.2.3 64QAM

The complex symbol amplitude and the set of 64QAM in the symbol constellation

in Fig. 2.4 are defined, respectively, as

scp = a+ jb : {a|b} ∈ {±1, ±3 ± 5, ±7}, (2.13)

and C(scp) ∈


(000000), (000001), ..., (000100)
(001001), (001001), ..., (001100)

...
...

. . .
...

(100000), (100001), ..., (100100)

 (2.14)

The average energy per one symbol for 64QAM is expressed as

Es = E
[
|scp|2

]
=
|1 + j|2 + |3 + j3|2 + |5 + j5|2 + |7 + j7|2

16

+ 2
|1 + j3|2 + |1 + j5|2 + |1 + j7|2 + |3 + j5|2 + |3 + j7|2 + |5 + j7|2

16

=
2 + 18 + 50 + 98

16
+ 2

10 + 26 + 50 + 34 + 58 + 74

16
=

672

16
= 42

(2.15)

Since Es = 6Eb for 64QAM, the energy per one bit Eb, Eb/N0 and Es/N0(= γ)

13
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(010)

a

(011)

+j

-j

+j3

-j3

-j5

-j7

+j5

+j7

+1-1 +3-3 +5 +7-5-7

(001)

(000)

(100)

(101)

(111)

(110)

b

(000)(001)(011)(010)(110)(111)(101)(100)

(000000)(001000)(011000)(010000)

(000001)(001001)(011001)(010001)

(000011)(001011)(011011)(010011)

(000010)(001010)(011010)(010010)

(000110)(001110)(011110)(010110)

(000111)(001111)(011111)(010111)

(000101)(001101)(011101)(010101)

(000100)(001100)(011100)(010100)

(110000)(111000)(101000)(100000)

(110001)(111001)(101001)(100001)

(110011)(111011)(101011)(100011)

(110010)(111010)(101010)(100010)

(110110)(111110)(101110)(100110)

(110111)(111111)(101111)(100111)

(110101)(111101)(101101)(100101)

(110100)(111100)(101100)(100100)

Figure 2.4: Constellation of 64QAM

are expressed, respectively, as

Eb =
Es
6

=
42

6
= 7 (2.16)

Eb
N0

=
7

N0

: i.e., N0 =
7

(Eb/N0)
= E

[
|zcq|2

]
(2.17)

The noise amplitude zcq should be generated so that (2.17) is satisfied. Then,

14



2.3 Conventional MIMO detections

Eb/N0 for 64QAM is defined as

γ =
Es
N0

=
6Eb
N0

(2.18)

2.3 Conventional MIMO detections

2.3.1 Maximum likelihood detection

MIMO detection is to estimate the unknown transmit signal vector sc, using the

given receive signal vector yc, and the channel matrix Hc. Although we cannot

predict the noise vector zc, we have the knowledge of all the possible combinations

of sc. For Nt transmit antennas, with the signal alphabet S, the number of

candidate vectors is given by SNt , where S denotes the constellation points and

SNt denotes the Nt-dimensional product of S. Hence, using a certain modulation

order, we can show that the number of candidate vectors grows exponentially

with Nt.

For example, when the modulation order of QPSK is employing for signaling

over 2×2 MIMO system, we have 42 = 16 possible candidates for the combination

of sc as following

Table 2.1: Possible candidates for the combination in 2× 2 MIMO with QPSK

sc sc1 sc2 sc sc1 sc2
1 1 + j 1 + j 2 1 + j 1− j
3 1 + j −1 + j 4 1 + j −1− j
5 1− j 1 + j 6 1− j 1− j
7 1− j −1 + j 8 1− j −1− j
9 −1 + j 1 + j 10 −1 + j 1− j
11 −1 + j −1 + j 12 −1 + j −1− j
13 −1− j 1 + j 14 −1− j 1− j
15 −1− j −1 + j 16 −1− j −1− j

The ML detection can be carried out by exhaustively searching for all the

candidate vectors and select the most likely one with the smallest error probability

15



2. BACKGROUND OF MIMO DETECTION

[11]. Let f(yc|sc) denote the likelihood function of sc for a given signal vector yc.

Then, the best symbol vector under the ML detection is given by

ŝc(ML) = arg min
sc∈SNt

f(yc|sc)

= arg min
sc∈SNt

‖yc −Hcsc‖2
(2.19)

Since the exhaustive search is carried out to find the ML vector and the number

of candidate vectors for sc is SNt , the complexity grows exponentially with the

number of the transmit antenna, Nt.

2.3.2 Zero-forcing detection

The ZF estimator and the estimated symbol vector are given by

WZF = Hc(HcHHc)−1 (2.20)

and

s̃c(ZF ) = WH
ZFyc

= (HcHHc)−1HcHyc

= sc + (HcHHc)−1HcHzc

(2.21)

It is shown that when Hc is near singular, the term of noise, i.e., (HcHHc)HcHz

in (2.21), is enhanced. In this case, good performance cannot be guaranteed with

an enhanced noise vector.

With s̃c(ZF ) =
[
s̃
c(ZF )
1 , s̃

c(ZF )
2 , . . . , s̃

c(ZF )
Nt

]T

and S for K2-ary QAM, the hard

decision of sc is carried out to the nearest constellation points as

ŝc = arg min
s
c(k)
i ∈S

Nt∑
i=1

∣∣∣sc(k)
i − s̃c(ZF )

i

∣∣∣2 , i ∈ [1, Nt] and k ∈ [1, K2] (2.22)

Note that the final decision ŝc is forced to the nearest constellation points if they

are lying outside the original signal constellation, defined as ŝc := C
[
s̃c(ZF )

]
,

where the symbol C denotes this operation.
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2.3 Conventional MIMO detections

2.3.3 Minimum mean square error detection

To reduce the impact from the background noise, the MMSE detection employs a

linear filter that can take into account the noise. The MMSE filter can be found

by minimizing the mean square error (MSE) using (A.1) and (A.10) described in

Appendix A as

WMMSE = arg min
W

E

[∥∥∥sc −WH
MMSEyc

∥∥∥2
]

=
(
E
[
ycycH

])−1
E
[
ycscH

]
= Hc

(
HcHHc + γ−1INt

)−1

(2.23)

where Es denotes the symbol energy and γ = Es

N0
. After some derivation, the

resulting estimated symbol vector of the MMSE detection is given by

s̃c(MMSE) = WH
MMSEyc

=
(
HcHHc + γ−1INt

)−1
HcHyc

(2.24)

and it follows that

A = E
[(

sc −WH
MMSEyc

) (
sc −WH

MMSEyc
)H
]

= Es
(
EsH

cHcH +N0INt

)−1
Hc

=
(
HcHcH + γ−1INt

)−1
Hc

(2.25)

The MSE for each symbol estimate of the MMSE detection can be obtained

from the corresponding diagonal element of A as described in Appendix A. Us-

ing the method in (2.22), the MMSE hard decision of ŝc can be obtained from

s̃c(MMSE) as ŝc := C
[
s̃c(MMSE)

]
.

2.3.4 Performance analysis

We have shown that the output of a linear detector becomes

s̃c = WHyc (2.26)

17



2. BACKGROUND OF MIMO DETECTION

where W = Hc(HcHHc)−1 is used for the ZF detection and W = Hc(HcHHc +

γ−1INt)
−1 is used for the MMSE detection. With a high SNR, we have γ−1 → 0

and the MMSE detection becomes the ZF detection. Denote sci and s̃ci to be the

i-th element of sc and s̃c, respectively, for i = 1, 2, . . . , Nt. Let

s̃ci = wH
i yc

= wH
i hcis

c
i + wH

i

(
Nt∑

j=1,j 6=i

hcjs
c
j + zc

)
(2.27)

where wi denotes the linear filter for sci that needs be clarified.

In the case of ZF detection, the interferences are completely suppressed:

wH
i

∑Nt

j=1,j 6=i h
c
js
c
j = 0, wi has to be orthogonal to the subspace of

Hc
i = [hc1, . . . ,h

c
i ,h

c
i+1, . . . ,h

c
Nt

].

To this end, we have

wi = Hcgi (2.28)

where gi denotes the i-th column vector of G = (HcHHc)−1 is used for the ZF

detection. Thus, Eq. (2.27) becomes

s̃ci = wH
i hcis

c
i + wH

i zc (2.29)

It is not difficult to verify that the given Hc, zc is complex Gaussian distribution

with zero mean and covariance matrix as

E
[
zczcH

]
= N0H

c† (Hc†)H

= N0

(
HcHHc

)−1

= N0G

(2.30)

Supposing sc is transmitted, while ŝc is erroneously detected as ŝc 6= sc, the

pairwise error probability (PEP) of the linear detection is given by

P (sci → ŝci) = Pr
(
|s̃ci − ŝci |2 < |s̃ci − sci |2

)
(2.31)
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2.4 QRM-MLD

If we define that ei = sci − ŝci , then the PEP can be further simplified as

P (sci → ŝci) = Pr
(
|s̃ci − ŝci |2 < |s̃ci − sci |2

)
= Pr

(
|ei + zci |2 < |zci |2

)
= Pr

(
−eizc∗i − e∗i zci > |ei|2

) (2.32)

where we define a variable ni = (−eizc∗i − e∗i zci ) and ni is complex Gaussian

distributed with zero mean and variance 2|ei|2E[|ni|2] = 2|ei|2N0gi,i, where gi,i is

the (i, i)th element of G. Thus, the PEP in (2.32) can be rewritten as

P (sci → ŝci) = Q

(√
|ei|2

2N0gi,i

)
(2.33)

2.4 QRM-MLD

2.4.1 QR decomposition

Here we first introduce the QR decomposition, giving an example for 2×2 MIMO

system. Consider a 2×2 channel matrix of Hc = [hc1 hc2], where hci is the i-th

column vector of Hc. To find two orthogonal vectors that generates the same

lattice as Hc does, we define

rc1 = hc1

rc2 = hc2 − µp,qhc1
(2.34)

where

µp,q =
< hc2, r

c
1 >

‖rc1‖
2

=
< hc2,h

c
1 >

‖hc1‖
2

(2.35)

in order to lead < rc1, r
c
2 >= rcH1 rc2 = 0.

With the linear relationship provided in (2.34), we can show that (hc1,h
c
2) and

(rc1, r
c
2) can span the same subspace. Under the condition that rci is a nonzero
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2. BACKGROUND OF MIMO DETECTION

vector for i ∈ {1, 2}, it is derived as

[hc1 hc2] = [rc1 rc2]

[
1 µp,q
0 1

]
= [qc1 qc2]

[
‖rc1‖ 0

0 ‖rc2‖

] [
1 µp,q
0 1

]
= [qc1 qc2]

[
‖rc1‖ µp,q ‖rc1‖

0 ‖rc2‖

] (2.36)

where qci =
rci

‖rci‖
. From (2.36) the QR decomposition is given by letting the

orthogonal matrix Qc = [qc1 qc2] and the upper triangular matrix

Rc =

[
‖rc1‖ µp,q ‖rc1‖

0 ‖rc2‖

]
. Note that with rc2 = hc2 and rc1 = hc1−µp,qhc2, the other

QR decomposition of Hc can be obtained.

2.4.2 Scheme description

Since the expansion nodes in the QRM-MLD are the constellation points, the

system model is modified using the real vectors. Eq. (2.1) can be rewritten using

the real representation as

y = Hs + z (2.37)

where the equivalent real-valued channel matrix and vectors letting n = 2Nr and

m = 2Nt are defined as

H ,

[
Re[Hc] −Im[Hc]
Im[Hc] Re[Hc]

]
∈Rn×m, s ,

[
Re[sc]
Im[sc]

]
∈ Zm×1,

y ,

[
Re[yc]
Im[yc]

]
∈ Rn×1, and z ,

[
Re[zc]
Im[zc]

]
∈ Rn×1 (2.38)

We define the dimension of the real-valued channel matrix H to be n × m.

The dimensions of the vectors in (2.38) are given as y ∈ Rn×1, z ∈ Rn×1 and

s ∈ Zm×1, where Z denotes the finite set of the real-valued transmit signals. The

set of the real-valued signals is given by Z = {±1,±3, . . . ,±(K − 1)} for K2-

QAM. Since the data is binary in the digital telecommunication, the value of K

in the constellation is usually a power of 2.

The channel matrix H applies the QR decomposition as H=QR, where Q is a
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2.4 QRM-MLD

unitary matrix: i.e., QTQ = Im, and R is an m×m upper triangular matrix. The

QR decomposition is executed by the modified GS algorithm (MGS) in [56]. The

matrix R retains the property of the channel matrix H. Then, we pre-multiply

both the hand sides of (2.37) by QT as

y′ , QTy

= QT(QRs + z)

= Rs + z′

(2.39)

with expressing R as

R =


r11 r12 . . . r1,m

r22 . . . r2,m

. . .
...

0 rm,m

 (2.40)

where z′ , QTz. The ML detector searches over the whole set of transmit signals

s ∈ Zm, and decides the transmit signal s(ML) in terms of the minimum Euclidean

distance (ED) to the receive vector y. The ML detection can be formulated as

ŝ(ML) = arg min
s∈Zm

∥∥∥y −Hs
∥∥∥2

= arg min
s∈Zm

∥∥∥y′ −Rs
∥∥∥2

= arg min
s∈Zm

[
m∑
i=1

∣∣∣y′i − m∑
j=i

ri,jsj

∣∣∣2]
(2.41)

where λi , |y′i −
∑m

j=i r
c
i,jsj|2 denotes the branch metric in the i-th layer. The

accumulated branch metric Λi ,
∑m

j=i λi is defined as the path metric from the

m-th layer down to the i-th layer.

The concept of the QRM-MLD is to apply a tree search to detect the symbols

in a sequential manner [17]−[20], which is one solution to reduce the complexity

of the ML detection retaining the ML performance. As seen in Fig. 2.5, we

give an example of tree search of the QRM-MLD in 2×2 MIMO system with

M = 2, where M denotes the number of survived branch in each detection layer.

21
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Root

Figure 2.5: Example of tree search of the QRM-MLD in 2×2 MIMO system with
M = 2.

The QRM-MLD is breadth-first algorithm that in each detection layer the same

number of branches is survived. In order to retain the correct path, the value

of M should be large enough to achieve the near-ML performance, especially in

large size MIMO system or high modulation order.

For each detection layer of the tree search in the QRM-MLD, there are three

major operations:

• Candidate Expansion: Expand the children nodes from each survived branch.

The candidates for the children nodes consist of all the constellation points.

• Path metric evaluations: There are MK possible branches for K2-QAM in

each layer. Calculate the path metric for all the possible branches.

• Sorting and retaining: Sort the path metric and retain M branches with

the smallest path metric from MK possible branches. The rest of branches

are discarded.

Let Λ
(l)
i denote the l-th smallest path metric of the survived path Π

(l)
i after

the operations of sorting and retaining, where l ∈ [1,M ] and Λ
(1)
i ≤ Λ

(2)
i ≤ · · · ≤
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2.4 QRM-MLD

Λ
(M)
i . Correspondingly, the partial transmit signal ŝ

(l)
i based Λ

(l)
i is expressed as

ŝ
(l)
i = [ŝ

(l)
i , ŝ

(l)
i+1, · · · , ŝ

(l)
m ]T. The same operations are executed until the first layer.

The output of the QRM-MLD is ŝ = [ŝ
(1)
1 , ŝ

(1)
2 , · · · , ŝ(1)

m ]T as the final estimate of

transmit signal.

Although the exhaustive tree search of the QRM-MLD should visit MK nodes

in each detection layer instead of Km−i+1 nodes in the i-th layer for the full MLD.

The conventional QRM-MLD reduces the exponentially growing complexity to a

linear growing complexity while retaining the ML performance. However, the

conventional QRM-MLD still requires high complexity in the high Eb/N0 region.

Comparing to the ML detection that requires a number of Zm matrix mul-

tiplications to detect one symbol vector, the linear detectors perform the hard

decision with the matrix multiplication, which is once for detecting a vector.

Hence, a significant complexity reduction is achieved. However, due to the im-

pact of interference, the linear detection cannot provide good performance with

a full receive diversity gain, which will be illustrated in next section.

Considering the complexity of the QRM-MLD [19], the exhaustive tree search

of the QRM-MLD should visit 2M , 4M and 8M nodes in each layer for QPSK,

16QAM and 64QAM, respectively. Next, we derive the complexity of QRM-

MLD in the real-valued system model. Before the tree search of the QRM-

MLD, the channel matrix is also QR-decomposed, which requires (2mn−n) flops

for computing of y′. We calculate the path metric using ‖y′ −Rs‖2 instead of

‖y −Hs‖2, expressed as

‖y′ −Rs‖2
=

m−1∑
i=1

(
y′i − ri,isi −

m∑
j=i+1

ri,jsj

)2

+ (y′m − rm,msm)2 (2.42)

There are K real-valued expansion candidates for K2-QAM. Thus, it requires

3K flops for computing the path metric in the m-th entry. From the (m− 1)-th

entry down to the 1st entry, we survive M branches in each detection layer. The

complexity of a surviving path for computing the path metric are
∑m−1

i=1 (2m −
2i + 4K)(= m2 − m + 4Km − 4K) flops. Hence, the total complexity for the

QRM-MLD is expressed as (2mn−m + 3K + M(m2 −m + 4Km− 4K)) flops.

The computational complexity for QRM-MLD is shown in Table 2.2.
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2. BACKGROUND OF MIMO DETECTION

Table 2.2: The computational complexity for QRM-MLD [flops]

Modulation order Nt = Nr = 4 Nt = Nr = 8
QPSK (M = 8) 1022 (M = 16) 6262

16QAM (M = 16) 2820 (M = 64) 31228
64QAM (M = 64) 18064 (M = 128) 92680

From Table 2.2, the complexity significantly increases as the size of MIMO

system and the modulation order. Hence, a low complexity MIMO detection

scheme for large size MIMO has been attractive in our research.

2.5 Simulation results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in

the 4 × 4 and 8 × 8 MIMO systems, respectively. Each channel was assumed to

be non-frequency selective slow-varying fading channel. In the simulations, the

channel gains were generated using the i.i.d. Gaussian random variables with

zero mean and variance of 1/2 for each dimension. Additive noise at each receive

antenna was generated using the i.i.d. Gaussian random variables with zero mean

and variance of N0/2 for each dimension.

The BER characteristics vs. Eb/N0 are shown in Figs. 2.6 - 2.11. The near-

ML performance can be achieved by the QRM-MLD with M=8, 16, and 64 for

QPSK, 16QAM and 64QAM in the 4× 4 MIMO system, M=16, 64, and 128 for

QPSK, 16QAM and 64QAM in the 8× 8 MIMO system, respectively.

The MMSE detection has the better BER performance than the ZF detection.

As the modulation order increases, the BER curve of the ZF detection approaches

that of the MMSE detection, such as 64QAM. The simulation results show that

the BER performance of the MMSE is about 28dB, 30dB and 30dB worse than

that of the ML at a BER of 10−5 for QPSK, 16QAM and 64QAM in the 4 × 4

MIMO system as seen in Figs. 2.6, 2.8 and 2.10, respectively, and about 32dB,

36dB and 36dB worse than that of the ML at a BER of 10−5 for QPSK, 16QAM

and 64QAM in the 8 × 8 MIMO system in Figs. 2.7, 2.9 and 2.11, respectively.
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2.5 Simulation results

Unfortunately, the expected performance for the linear detections is not satisfied

directly like the ML detector.

Figure 2.6: The BER vs. Eb/N0 for
the conventional detections over 4 × 4
MIMO: QPSK

Figure 2.7: The BER vs. Eb/N0 for
the conventional detections over 8 × 8
MIMO: QPSK

Figure 2.8: The BER vs. Eb/N0 for
the conventional detections over 4 × 4
MIMO: 16QAM

Figure 2.9: The BER vs. Eb/N0 for
the conventional detections over 8 × 8
MIMO: 16QAM
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Figure 2.10: The BER vs. Eb/N0 for
the conventional detections over 4 × 4
MIMO: 64QAM

Figure 2.11: The BER vs. Eb/N0 for
the conventional detections over 8 × 8
MIMO: 64QAM

2.6 Chapter summary

In this chapter, we presented three well-known approaches for MIMO detections.

While exhaustive search can be used for optimal performance of the ML de-

tection, the prohibitively high complexity makes it unrealistic to be employed.

We described the QRM-MLD with low complexity compared to the ML detec-

tion, which can provide the near-ML performance. However, the complexity of

QRM-MLD is fixed and determined by the value of survived branches in each

detection layer even in the better-conditioned channel. Hence, the QRM-MLD

still has the problem of complexity. There are some linear detections with low

complexity, such as ZF and MMSE detections. However, these performances are

not comparable with that of the ML detection, in particular, in the high Eb/N0

region. Therefore, it is necessary to find additional techniques for conventional

approaches to improve the performance of these conventional methods. In the

following chapter, we explain the other detection methods based on lattice reduc-

tion.
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Chapter 3

Lattice Reduction Aided MIMO

Detection Methods

3.1 Introduction

Lattice-reduction aided detection has been introduced into the MIMO detec-

tion to achieve the good tradeoff between the performance and the complexity

[28]−[44]. The most popular LR algorithm is the well-known LLL algorithm, in-

troduced by Lenstra, Lenstra, and Lovász. Combining the LR algorithm with the

linear detections such as ZF or MMSE can achieve good BER performance, espe-

cially the LR-MMSE detection which is close to the ML detector in the small size

MIMO system [30]. In contrast, the BER improvement in the large size MIMO

system is not sufficient. The non-linear detection, i.e. SIC, is selected from many

detection methods since it features the good BER performance. However, SIC

has the property of error propagation, which degrades the system performance.

Ordering SIC (OSIC) based on LR (LR-OSIC) can further improve the BER

performance at the cost of the implementation of the ordering but requires high

computational complexity [45]. In addition, the list detection can also obtain

much better performance but with a little high computational cost in terms of

the list of candidates [47]−[49].
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METHODS

3.2 Lattice reduction algorithm

The LR algorithm makes the column vectors of the channel state information

matrix to be nearly orthogonal. The following estimation of the transmit signal

applies the reduced lattice basis instead of the original lattice basis based on the

Gram-Schmidt (GS) orthogonalization (GSO). In this chapter, we first introduce

the GSO algorithm.

3.2.1 Gram-Schmidt orthgonalization algorithm

Let hc1,h
c
2, . . . ,h

c
Nt

be the spatial vectors which are not mutually orthogonal. We

first reduce the vector hc2 to create the new vector ĥc2, which is orthogonal to the

vector hc1.

Let ic1 denote the unit vector of hc1 as

ic1 =
hc1
‖hc1‖

(3.1)

Denote the inner product of two vectors a and b as a · b ≡< a,b >= aHb.

The length of the ic1-component of hc2, i.e., the projection of hc2 on ic1, is given by

the inner product of ic1 and hc2 as

ic1 · hc2 =
< hc1,h

c
2 >

‖hc1‖
=

hcH1 hc2
‖hc1‖

(3.2)

Then, the ic1-component of hc2 is expressed as

(
ic1 · hc2

)
ic1 =

(
hcH1 hc2
‖hc1‖

)
ic1 =

(
hcH1 hc2
‖hc1‖

)
hc1
‖hc1‖

=

(
hcH1 hc2
‖hc1‖

2

)
hc1

= µ21h
c
1

(3.3)

with

µ21 ,
hcH1 hc2
‖hc1‖

2 (3.4)

Subtracting µ21h
c
1 from hc2, we obtain the new vector ĥc2, which is orthogonal

to hc1 as

ĥc2 = hc2 − µ21h
c
1 (3.5)
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3.2 Lattice reduction algorithm

Note that it is clear that
∥∥∥ĥc2∥∥∥ ≤ ‖hc2‖.

Next, we reduce the vector hc3 to create the new vector ĥc3, which is orthogonal

to the vectors hc1 and ĥc2. Let ic2 denote the unit vector of hc2 as

ic2 =
hc2
‖hc2‖

(3.6)

Since ic1 and ic2 are mutually orthogonal, their inner product is zero, i.e., <

ic1, i
c
2 >= 0. The ic1-component of hc3 and ic2-component of hc3 are expressed,

respectively, as(
ic1 · hc3

)
ic1 =

(
hcH1 hc3
‖hc1‖

)
ic1 =

(
hcH1 hc3
‖hc1‖

)
hc1
‖hc1‖

=

(
hcH1 hc3
‖hc1‖

2

)
hc1

= µ31h
c
1

(3.7)

(
ic2 · hc3

)
ic2 =

(
hcH2 hc3
‖hc2‖

)
ic2 =

(
hcH2 hc3
‖hc2‖

)
hc2
‖hc2‖

=

(
hcH2 hc3
‖hc2‖

2

)
hc2

= µ32h
c
2

(3.8)

with

µ31 ,
hcH1 hc3
‖hc1‖

2 and µ32 ,
hcH2 hc3
‖hc2‖

2 (3.9)

Subtracting µ31h
c
1 and µ32h

c
2 from hc3, we obtain the new vector ĥc3, which is

orthogonal to hc1 and to ĥc2 as

ĥc3 = hc3 −
(
µ31h

c
1 + µ32ĥ

c
2

)
= hc3 −

3−1∑
q=1

µ3,qĥ
c
q, ĥc1 = hc1 (3.10)

It is clear that
∥∥∥ĥc3∥∥∥ ≤ ‖hc3‖.

In the similar manner, we reduce the vector hcp : p ∈ [2, Nt], to create the new

vector ĥcp which is orthogonal to the vectors hcq : q ∈ [1, p− 1] as

ĥcp = hcp −
p−1∑
q=1

µp,qĥ
c
q, p ∈ [2, Nt] (3.11)
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where ĥc1 = hc1,
∥∥∥ĥcp∥∥∥ ≤ ∥∥hcp∥∥ and

µp,q ,
hcHq hcp∥∥hcq∥∥2 (3.12)

The new vector ĥcp is created by subtracting the ĥcq-components of hcq, q ∈
[1, p − 1], from hcp, p ∈ [2, Nt]. Thus, ĥcp with the larger p is the shorter than ĥcp

with the smaller p such that

E
[∥∥ĥcNt

∥∥] ≤ E
[∥∥ĥcNt−1

∥∥] ≤ · · · ≤ E
[∥∥ĥc2∥∥] ≤ E

[∥∥ĥc1∥∥] (3.13)

where E[·] denotes the ensemble average operator.

Therefore, if
∥∥hc1∥∥ ≥ ∥∥hc2∥∥ ≥ · · · ≥ ∥∥hcNt

∥∥, it might hold with high probability

that all of the new vectors ĥcp’s, p ∈ [1, Nt], are almost of the equal length. It is

remarkable that the coefficients of µp,q are important scalar factors for the LRA

detection. Thus, we summarize the GSO algorithm as seen in Table 3.1. This

algorithm is to transform the lattice basis of Hc into the purely orthogonal lattice

basis of Ĥc and create the transformation matrix T̂c with det{T̂c}=1. The upper

triangular matrix T̂c with unity diagonal entries and the non-diagonal entries is

invertible.

Table 3.1: Complex Gram-Schmidt orthogonalization algorithm

(1) Begin Input Hc = [hc1, ...,h
c
Nt

], T̂c = [t̂c1, ..., t̂
c
Nt

]

set ĥcp = hcp, t̂cp = tcp : p ∈ [1, Nt]
(2) for p := 2, ..., Nt

(3) for q := p− 1, ..., 1

(4) µp,q =
ĥcHq ĥcp

‖ĥcq‖2

(5) ĥcp := ĥcp − µp,qĥcq
(6) t̂cp := t̂cp − µp,qt̂cq
(7) end
(8) end

(9) Ĥc = [ĥc1, ..., ĥ
c
Nt

], T̂c = [t̂c1, ..., t̂
c
Nt

]
(10) End
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3.2 Lattice reduction algorithm

3.2.2 LLL algorithm

The set of column vectors Hc = [hc1,h
c
2, . . . ,h

c
Nt

] is called a basis of the lattice L.

A lattice has infinitely many bases but some are more useful than others. The

goal of the LR algorithm is to find an optimal basis among many possible lattice

bases such as the basis consisting of the reasonably short and nearly orthogonal

vectors. Thus, it is called lattice reduction. The popular algorithm for LR is the

LLL algorithm in Table 3.2. The main concept of the LR algorithm is similar

to the GSO algorithm. First, we shall reduce the column hcp, p ∈ [1, Nt], to be

mutually orthogonal using the GSO. After that, we extend the GS be the lattice

reduction.

Table 3.2: Complex LLL algorithm

(1) Begin Input Hc = [hc1, ...,h
c
Nt

], Tc = [tc1, ..., t
c
Nt

], set δ = 3/4
(2) for p := 2, ..., Nt

(3) for q := p− 1, ..., 1

(4) µp,q =
ĥcHq hcp
‖hcq‖2

(5) hcp := hcp − dµp,qchcq
(6) tcp := tcp − dµp,qctcq
(7) end

(8) let ĥcp = hcp
(9) for q := p− 1, ..., 1

(10) µp,q =
ĥcHq hcp
||hcq||2

(11) ĥcp := ĥcp − µp,qĥcq
(13) end

(14) if δ‖ĥcp−1‖2 > ‖ĥcp + µp,p−1ĥ
c
p−1‖2

(15) swap the (p− 1)-th and p-th columns in Hc and Tc

(16) p := max{p− 1, 2}
(17) else p := p+ 1
(18) end
(19) end
(20) Hc′ = [hc1, ...,h

c
Nt

],Tc = [tc1, ..., t
c
Nt

]
(21) End
Note that d·c denotes the rounding operation.
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A complex lattice is discrete subgroup in CNr which consists of all integer

linear combinations of the set of the linearly independent basis column vectors hci

(1 ≤ i ≤ Nt) of the basis matrix Hc ∈ CNr×Nt , Nt ≤ Nr. Any basis Hc′ = HcTc

forms the same lattice L(Hc′) = L(Hc), when the transmation matrix Tc is

unimodular with integral elements, i.e., det{Tc} = ±1. Lattice reduction is based

on the concept of transforming a given basis of a lattice into another basis of the

same lattice whose characteristics are appropriate for certain defined purposes

such as having shorter basis vectors or getting nearer towards orthogonal basis

vectors, where two vectors are orthogonal if the inner product equals to zero.

There are two conditions to be satisfied as∣∣∣Re[hcq,p]
∣∣∣ ≤ 1

2

∣∣∣Re[hcq,q]
∣∣∣ and

∣∣∣Im[hcq,p]
∣∣∣ ≤ 1

2

∣∣∣Im[hcq,q]
∣∣∣ (3.14)

for all 1 ≤ q < p ≤ Nt and

δ‖ĥcp−1‖2 > ‖ĥcp + µp,p−1ĥ
c
p−1‖2 (3.15)

for all 2 ≤ p ≤ Nt.

As seen in Table 3.2, a basis fulfilling (3.14) is said to be size-reduction. The

parameter δ(1
4
< δ < 1) trades off the quality of the lattice reduction for large δ,

and a faster termination for small δ. We set δ = 3
4

as a common choice.

The LLL algorithm successively performs a size reduction steps (3) - (7),

and then possibly performs a column exchange steps (14) - (18) to swap two

basis vectors in order to fulfill (3.15). In the case of an exchange, the altered

columns are size-reduced again. All the changes operations are tracked by the

transformation matrix Tc.

3.3 Lattice reduction aided detection

Since a lattice can be generated by different bases or channel matrices, in order

to mitigate the noise and the interferences between the multiple signals, we can

find a matrix whose column vectors are nearly orthogonal to generate the same

lattice. LR can be applied to MIMO systems to improve the BER performance of
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suboptimal MIMO detection, where the resulting detection methods are regarded

as the LR-based detection. In this chapter, we present the LR aided detection

for MIMO systems.

3.3.1 LR-ZF detection

In the ZF detector, the interference is completely suppressed by multiplying the

receive signal vector yc with the pseudo-inverse of the channel matrix Hc† =

(HcHHc)−1HcH. For an orthogonal channel matrix, ZF detection is identical to

ML. However, the general ZF detection leads to the noise enhancement. First,

recall the system model in (2.1) and the estimation of ZF detection in (2.21),

respectively, as

yc = Hcsc + zc

and

s̃c(ZF ) = (HcHHc)−1HcHyc

As above mentioned, linear detection is optimal for an orthogonal channel

matrix. The LLL algorithm is to transform a given lattice basis Hc into a new

reduced basis Hc′, of which column vectors are nearly orthogonal as Hc′ = HcTc.

Due to a finite QAM constellation S with odd lattice points, it results in the

boundary problem. Hence we assume that sc is drawn from ANt , of which A is

a shifted and scaled set of the signals as A = 1
2
S + K−1

2
(1 + j)1Nt . First, scale

yc as yc

2
= Hc sc

2
+ zc

2
. Then, shift the above as ycS , yc

2
+ K−1

2
(1 + j)Hc1Nt =

Hc
(
sc

2
+ K−1

2
(1 + j)1Nt

)
+ zc

2
. Using Hc′ and Tc, the system model in (2.1) can

be rewritten as

ycS = Hc

(
sc

2
+
K − 1

2
(1 + j)1Nt

)
+

zc

2

= (HcTc)

(
Tc−1

(
sc

2
+
K − 1

2
(1 + j)1Nt

))
+

zc

2

= Hc′
(

Tc−1

(
sc

2
+
K − 1

2
(1 + j)1Nt

))
+

zc

2

= Hc′vc +
zc

2

(3.16)
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where Hc′ , HcTc, and 1Nt denotes the Nt × 1 vector with all the unity entries.

The new signal vector vc is defined as vc , Tc−1
(
sc

2
+ K−1

2
(1 + j)1Nt

)
. The

scaled and shifted vector of sc is defined as scS = S[sc] , sc

2
+ K−1

2
(1 + j)1Nt with

S[sc] denoting the scaling and shifting operator of sc.

The idea behind LR-ZF detection is to consider the system model in (2.1) as

the equivalent system model in (3.16). The soft estimate ṽc using the LR-ZF

detection in [30] can be derived by

ṽc(LR−ZF ) = Hc′†ycS

=
(
Hc′HHc′

)−1

Hc′HycS
(3.17)

Since all the elements of Tc are integers, we perform the simple rounding

quantization operations as v̂ci = Q{ṽci}, i ∈ [1, Nt]. The new transmit signal

vector v̂c is transformed back as ŝcS = Tcv̂c. Then, ŝcS is shifted back and scaled

back, expressing as ŝc = S−1[ŝcS] = 2ŝcS − (K − 1)(1 + j)1Nt . Note that the

distance of the adjacent symbols of ŝcS and that of vc are both 1. The final

decision ŝc is forced to the nearest constellation points if they are lying outside

the original signal constellation as ŝc := C[ŝc].

3.3.2 LR-MMSE detection

Similarly to LR-ZF detection, the LR-MMSE detection gets an estimate for noise

vector. Recall the estimation of MMSE detection in (2.24):

s̃c(MMSE) =
(
HcHHc + γ−1INt

)−1
HcHyc

Thus, based on the system model in (3.16), the soft estimate ṽc using the LR-

MMSE detection in [30] can be derived by

ṽc(LR−MMSE) = Tc−1s̃c(MMSE)

=
(
Hc′HHc′ + γ−1TcHTc

)−1
Hc′HycS

(3.18)

In [34], Hassibi proposed an MMSE detector with the extended matrix form
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as

ȳc ,

[
yc

0Nt

]
, H̄c ,

[
Hc√
γ−1INt

]
, z̄c ,

[
zc

−
√
γ−1sc

]
(3.19)

where γ = Es/N0 with Es = E[‖sc‖2]/Nt. Then it holds instead of (2.1) that

ȳc = H̄csc + z̄c (3.20)

The LLL algorithm in Table 3.2 is to transform a given lattice basis H̄c into

a new reduced basis H̄c′, of which column vectors are nearly orthogonal. The

scaled and shifted receive signal ȳcS is given as

ȳcS ,
ȳc

2
+
K − 1

2
(1 + j)H̄c1Nt

= H̄c

(
sc

2
+
K − 1

2
(1 + j)1Nt

)
+

z̄c

2

(3.21)

Using H̄c′ and Tc, the system model in (3.21) is rewritten as

ȳcS = H̄c

(
sc

2
+
K − 1

2
(1 + j)1Nt

)
+

z̄c

2

=
(
H̄Tc

)(
Tc−1

(
sc

2
+
K − 1

2
(1 + j)1Nt

))
+

z̄c

2

≡ H̄c′vc +
z̄c

2

(3.22)

where H̄c′ = H̄Tc, and the new signal vector in the LR domain vc is defined as

vc , Tc−1
(
sc

2
+ K−1

2
(1 + j)1Nt

)
. The scaled and shifted vector of sc is defined as

scS = S[sc] ,
sc

2
+
K − 1

2
(1 + j)1Nt (3.23)

The soft estimate ṽc using the LR-MMSE detection instead of (3.18) can be

derived by

ṽc(LR−MMSE) = H̄c′†ȳcS

≡
(
H̄c′HH̄c′)−1

H̄c′HȳcS

=
(
Hc′HHc′ + γ−1TcHTc

)−1
Hc′HycS

(3.24)
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where ycS denotes the shifting and scaling of the original receive signal. The

detailed derivation is described in Appendix B.

After that, the following estimation of the LR-MMSE detection is derived as

v̂ci = Q
{
ṽ
c(LR−MMSE)
i

}
, i ∈ [1, Nt]

ŝcS = Tcv̂c

ŝc = S−1[ŝcS] = 2ŝcS − (K − 1)(1 + j)1Nt

(3.25)

In the same method, the final decision ŝc is forced to the nearest constellation

points if they are lying outside the original signal constellation as ŝc := C[ŝc].

3.3.3 Performance and simulation results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in the

4×4 and the 8×8 MIMO systems, respectively. We compare the LR-ZF detection

and the LR-MMSE detection with the conventional detection methods, such as

the ZF detection and the MMSE detection and the ML detection described in

Chapter 2.

The BER characteristics vs. Eb/N0 are shown in Figs. 3.1 - 3.6. The LR aided

MIMO detection has large improvement of the BER performance compared to

the ZF or MMSE detection. The LR-MMSE detection is also better BER per-

formance than that of the LR-ZF detection. For the 4 × 4 MIMO system, the

LR-MMSE detection is about 27dB, 28dB and 28dB improvement of BER per-

formance at a BER of 10−5 over the MMSE detection for QPSK, 16QAM and

64QAM, respectively. And the curve of the LR-MMSE detection approaches that

of the ML detection. On the contrary, for the 8×8 MIMO system, the LR-MMSE

detection is about 24dB, 28dB and 28dB improvement of BER performance at a

BER of 10−5 over the MMSE detection for QPSK, 16QAM and 64QAM, respec-

tively. And the curve of the LR-MMSE detection is still far to that of the ML

detection.

Therefore, the LR aided detection achieves the suboptimal BER performance

for the 4×4 MIMO system. However, the LR aided detection in the 8×8 MIMO

system cannot achieve so good BER as that in the 4× 4 MIMO does, compared

to the BER of the ML detection.
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Figure 3.1: The BER vs. Eb/N0 for
the LRA detection over 4 × 4 MIMO:
QPSK

Figure 3.2: The BER vs. Eb/N0 for
the LRA detection over 8 × 8 MIMO:
QPSK

Figure 3.3: The BER vs. Eb/N0 for
the LRA detection over 4 × 4 MIMO:
16QAM

Figure 3.4: The BER vs. Eb/N0 for
the LRA detection over 8 × 8 MIMO:
16QAM
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Figure 3.5: The BER vs. Eb/N0 for
the LRA detection over 4 × 4 MIMO:
64QAM

Figure 3.6: The BER vs. Eb/N0 for
the LRA detection over 8 × 8 MIMO:
64QAM

3.4 Gram-Schmidt based lattice reduction aided

detection

After the LLL algorithm, the column vectors of the LLL-reduced channel matrix

are nearly orthogonal, but not purely orthogonal. Then, we input the LLL-

reduced channel matrix into the GSO algorithm in Table 3.1, and hence the

decision boundary becomes purely orthogonal in order to achieve the better BER

performance.

3.4.1 LR-GS detection

The LR-GS detection is based on the LR-MMSE detection [39]−[41]. The GSO

algorithm is to transform the nearly orthogonal lattice basis of H̄c′ into the purely

orthogonal lattice basis of ˆ̄Hc and create the transformation matrix T̂c with

det{T̂c}=1. The upper triangular matrix T̂c with unity diagonal entries and

the non-diagonal entries is invertible. The column vectors of the channel matrix
ˆ̄Hc = H̄c′T̂c are mutually orthogonal and span the same subspace as that of
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the original channel matrix H̄c. Using ˆ̄Hc called the GS-orthogonalized channel

matrix and T̂c, Eq. (3.22) can be expressed as

ȳcS = H̄c′vc +
z̄c

2

=
(
H̄c′T̂c

)(
T̂c−1vc

)
+

z̄c

2

≡ ˆ̄Hcuc +
z̄c

2

(3.26)

where ˆ̄Hc , H̄c′T̂c and uc , T̂c−1vc ≡ (T̂c−1Tc−1)scS = (TcT̂c)−1scS with ex-

pressing T̂c−1 as

T̂c−1 =


1 τ12 . . . τ1,Nt−1 τ1,Nt

1 . . . τ2,Nt−1 τ2,Nt

. . .
...

...
1 τNt−1,Nt

0 1

 (3.27)

where the transformation matrix T̂c is upper triangular matrix with unity of di-

agonal elements and non-integers of other elements. Note that the property of the

noise vector still obeys Gaussian distribution if the channel matrix is performed

by using LR and GSO operations. These operations are just to look for a better

lattice basis in the following signal estimation.

We first assume that the receiver has perfect knowledge of the transmit signal

sc. Here we call sc as the pilot signal. The scaled and shifted transmit signal

is obtained as scS = S[sc] , sc

2
+ K−1

2
(1 + j)1Nt . From (3.26), the signal sc is

transformed to the u-domain as

uc =
[
uc1, . . . , u

c
p, . . . , u

c
Nt

]T

= (TcT̂c)−1scS
(3.28)

Since the entries of uc are not integers, we cannot use the rounding operations

as the conventional LR-MMSE. Then we first measure the distance between uc
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and the original 0 as

∆uc =
[
∆uc1, . . . ,∆u

c
p, . . . ,∆u

c
Nt

]T

= 0− uc

=
[
− uc1, . . . ,−ucp, . . . ,−ucNt

]T

= −(TcT̂c)−1scS

(3.29)

The p-th entry ∆ucp of ∆uc is expressed as

∆ucp = −ucp (3.30)

The soft estimate of uc is derived using (3.26) as

ũc =
(

ˆ̄HcH ˆ̄Hc
)−1 ˆ̄HcHȳcS

= uc +
(

ˆ̄HcH ˆ̄Hc
)−1 ˆ̄HcH z̄c

2

(3.31)

where

ˆ̄HcH ˆ̄Hc =



ˆ̄hcH1
...

ˆ̄hcHp
...

ˆ̄hcHNt


[

ˆ̄hc1 . . . ˆ̄hcp . . . ˆ̄hcNt

]

=



∥∥∥ˆ̄hc1

∥∥∥2

. . . ˆ̄hcH1
ˆ̄hcp . . . ˆ̄hcH1

ˆ̄hcNt

...
. . .

...
. . .

...

ˆ̄hcHp
ˆ̄hc1 . . .

∥∥∥ˆ̄hcp

∥∥∥2

. . . ˆ̄hcHp
ˆ̄hcNt

...
. . .

...
. . .

...

ˆ̄hcHNt

ˆ̄hc1 . . . ˆ̄hcHNt

ˆ̄hcp . . .
∥∥∥ˆ̄hcNt

∥∥∥2



(3.32)
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Since ˆ̄hcHp
ˆ̄hcp′ = 0 for p 6= p′, we have

(
ˆ̄HcH ˆ̄Hc

)−1

=



1∥∥∥ˆ̄hc
1

∥∥∥2 0

. . .
1∥∥∥ˆ̄hc
p

∥∥∥2
. . .

0 1∥∥∥ˆ̄hc
Nt

∥∥∥2


(3.33)

Therefore, the p-th entry of ũc in (3.31) is expressed as

ũcp = ucp +
ˆ̄hcHp zc

2
∥∥∥ˆ̄hcp

∥∥∥2 , p ∈ [1, Nt] (3.34)

Note that the LR-GS has less noise enhancement.

We have obtained the correct point of ucp: p ∈ [1, Nt], in (3.28) and its soft

estimate ũcp in (3.31) for LR-MMSE. Next, shift ucp and ũcp by ∆ucp such that ucp

should be shifted to the origin (or some integer point). Then, the shifted ucp and

ũcp are expressed, respectively, as

uc′p , ucp + ∆ucp = ucp − ucp = 0 (3.35)

ũc′p , ũcp + ∆ucp = ũcp − ucp = 0 (3.36)

where ∆ucp = −ucp.
Figure 3.7 (a) illustrates the shifting ucp and ũcp by ∆ucp. Since ũc′p is integer

(zero), ũc′p (ũc′p , ũcp + ∆ucp) can be quantized such that

ûc′p = Q
[
ũc′p
]

= Q
[
ũcp + ∆ucp

]
= Q

[
ũcp − ucp

]
.

After that, ûc′p is shifted back by −∆ucp to obtain the quantized ûcp as

ûcp = ûc′p −∆ucp = Q
[
ũc′p
]
−∆ucp

= Q
[
ũcp + ∆ucp

]
−∆ucp = Q

[
ũcp − ucp

]
+ ucp

(3.37)

As seen in Fig. 3.7 (b), this is the quantization of ũc′p (, ũcp + ∆ucp) to create

ûc′p (= Q
[
ũcp + ∆ucp

]
), and shifting back of ũc′p by −∆ucp(= ucp) to create ûcp =
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ûc′p −∆ucp = Q
[
ũcp + ∆ucp

]
−∆ucp = Q

[
ũcp − ucp

]
+ucp, which is the quantized signal

of ũp. Figure 3.7 (c) shows an example that ûc′p is the erroneously quantized to be

−1 and not the origin. To avoid the errors quantization, the quantization method

described in Chapter 5 is very important and useful.

Figure 3.7: Quantization flow of the soft estimate ũc.

The following estimation of the LR-GS detection is derived as

v̂ci = Q
{
ṽ
c(LR−MMSE)
i

}
, i ∈ [1, Nt]

ûc = Q
{

ũc − T̂c−1v̂c
}

+ T̂c−1v̂c

ŝcS = Q
{

TcT̂cûc
}

ŝc = S−1[ŝcS] = 2ŝcS − (K − 1)(1 + j)1Nt

(3.38)

In the same method, the final decision ŝc is forced to the nearest constellation

points if they are lying outside the original signal constellation as ŝc := C[ŝc].
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3.4.2 Performance and simulation results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in

the 4× 4 and the 8× 8 MIMO systems, respectively. We compare the LR-GS de-

tection with the LR-ZF detection, the LR-MMSE detection and the conventional

detection methods, such as the ZF detection and the MMSE detection and the

ML detection described in Chapter 2.

The BER characteristics vs. Eb/N0 are shown in Figs. 3.8 - 3.13. The LR-

GS detection has large improvement of the BER performance compared to the

LR-MMSE detection due to the less noise enhancement. For the 4 × 4 MIMO

system, the LR-GS detection is about 1dB, 0.8dB and 0.7dB improvement of BER

performance at a BER of 10−5 over the LR-MMSE detection for QPSK, 16QAM

and 64QAM, respectively. And the curves of the LR-GS detection approach that

of the ML detection at a BER of 10−5, in particular for QPSK. On the contrary,

for the 8×8 MIMO system, the LR-GS detection is about 2dB, 1.8dB and 1.7dB

improvement of BER performance at a BER of 10−5 over the MMSE detection

for QPSK, 16QAM and 64QAM, respectively. And the curves of the LR-GS

detection are still far to that of the ML detection.

Therefore, compared to the LR aided detection, the LR-GS detection achieves

the better BER performance and approaches the BER of the ML detection in the

4× 4 MIMO system. However, the LR-GS detection in the 8× 8 MIMO system

cannot achieve so good BER as that in the 4 × 4 MIMO does, compared to the

BER of the ML detection. The LR-GS detection is more suitable in the small

size MIMO system and low modulation order.
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Figure 3.8: The BER vs. Eb/N0 for
the LR-GS over 4× 4 MIMO: QPSK

Figure 3.9: The BER vs. Eb/N0 for
the LR-GS over 8× 8 MIMO: QPSK

Figure 3.10: The BER vs. Eb/N0 for
the LR-GS over 4× 4 MIMO: 16QAM

Figure 3.11: The BER vs. Eb/N0 for
the LR-GS over 8× 8 MIMO: 16QAM
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Figure 3.12: The BER vs. Eb/N0 for
the LR-GS over 4× 4 MIMO: 64QAM

Figure 3.13: The BER vs. Eb/N0 for
the LR-GS over 8× 8 MIMO: 64QAM

3.5 Lattice reduction based SIC detection

3.5.1 LR-SIC detection

The SIC detection estimates the symbols layer by layer. The channel matrix is

usually QR-decomposed [56]. Therefore, the QR decomposition plays a key role

in the SIC detection. Based on the QR decomposition of the channel matrix H̄c,

the channel matrix H̄c is QR-decomposed as

H̄c = QcRc

=


qc11 qc12 · · · qc1,Nt

qc21 qc22 · · · qc1,Nt

...
...

. . .
...

qcNt+Nr,1
qcNt+Nr,2

· · · rcNt+Nr,Nt



rc11 rc12 · · · rc1,Nt

0 rc22 · · · rc1,Nt

...
...

. . .
...

0 0 · · · rcNr,Nt

 (3.39)

where Qc of size (Nr + Nt) × Nt is a unitary matrix with QcHQc = IcNt×Nt
and

Rc of size Nt × Nt is an upper triangular matrix. Here rci,j denotes the (i, j)th

entry of Rc. Then the matrix R is LLL-reduced as R̃ in Table 3.3, while creating

the transformation matrix Tc, which is the complex LLL algorithm based on QR
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decomposition.

The LLL algorithm successively performs a size reduction at steps (4) - (10)

in Table 3.3, which ensures that step (11) is fulfilled, and then possibly performs

a column exchange steps (12) - (17) to swap two basis vectors in order to fulfill

(3.15). Here we apply Givens rotation matrix Θ to keep R̃c to be upper triangular

matrix. The matrix Q̃c is also updated by multiplying ΘH. The output of the

LLL algorithm is Q̃c, R̃c, and Tc.

Table 3.3: Complex LLL algorithm based on QR decomposition

Input: Qc, Rc, and Tc := IcNt
, set δ; Output: Q̃c, R̃c, Tc

(1) Initialization: Q̃c := Qc and R̃c := Rc.
(2) p = 2
(3) while p ≤ Nt

(4) for q := p− 1 down to 1
(5) µq,p = dr̃cq,p/r̃cq,qc
(6) if µq,p 6= 0

(7) R̃c
1:q,p := R̃c

1:q,p − µq,pR̃c
1:q,q

(8) Tc
:,p := Tc

:,p − µq,pTc
:,q

(9) end
(10) end

(11) if δ
∥∥r̃cp−1,p−1

∥∥2
>
∥∥r̃cp,p∥∥2

+
∥∥r̃cp−1,p

∥∥2

(12) Swap columns p− 1 and p in R̃c and Tc

(13) Θ =

[
α β
−β α

]
with α =

r̃cp−1,p−1

‖R̃c
p−1:p,p−1‖2

β =
R̃c
p,p−1

‖R̃c
p−1:p,p−1‖2

(14) R̃c
p−1:p,p−1:Nt

:= ΘR̃c
p−1:p,p−1:Nt

(15) Q̃c
:,p−1:p := Q̃c

:,p−1:pΘ
H

(16) p := max{p− 1, 2}
(17) else p := p+ 1
(18) End
Note that Ac

a:b,c denotes the entries from rows a to b in the c-th column.
Ac
a:b,: is the submatrix of Ac from rows a to b across the whole columns.
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The LLL-reduced matrix R̃c is expressed as

R̃c =


r̃c11 r̃c12 · · · r̃c1,Nt

0 r̃c22 · · · r̃c1,Nt

...
...

. . .
...

0 0 · · · r̃cNr,Nt

 (3.40)

By pre-multiplying Q̃cH, the model system in (3.22) is rewritten as

yc′ = Q̃cHȳcS

= R̃cvc + QcH z̄c

2

= R̃cvc + zc′

(3.41)

where zc′ , Q̃cH z̄c

2
is a zero-mean Gaussian random vector.

Since zc′ and z̄c have the same statistical properties, zc′ can be used to denote

z̄c. We have

yc′ = R̃cvc + zc′ (3.42)


yc′1
yc′2
...
yc′Nt

 =


r̃11 r̃12 · · · r̃1,Nt

0 r̃22 · · · r̃1,Nt

...
...

. . .
...

0 0 · · · r̃Nt,Nt




vc1
vc2
...
vcNt

+


zc′1
zc′2
...
zc′Nt

 (3.43)

where the vectors of yc′k and zc′k denote the k-th element of yc′ and zc′, respectively.

Thus, we have

yc′Nt
= r̃cNt,Nt

vcNt
+ zc′Nt

yc′Nt−1 = r̃cNt−1,Nt−1v
c
Nt−1 + r̃cNt−1,Nt

vcNt
+ zc′Nt−1

...

yc′1 = r̃c1,1v
c
1 + r̃c1,2v

c
2 + · · ·+ r̃c1,Nt−1v

c
Nt−1 + r̃c1,Nt

vcNt
+ zc′1

(3.44)

Thus, in the LR-SIC detection, the last entry of signal vcNt
is first derived

as v̂cNt
= Q{yc′Nt

/r̃cNt,Nt
}. Assuming that the previous decisions are correct, the

interferences can be cancelled in each step. The rest of the transmit signals are

47



3. LATTICE REDUCTION AIDED MIMO DETECTION
METHODS

derived in the following recursion as

v̂ci = Q

{
yc′i −

∑Nt

j=i+1 r̃
c
i,j v̂

c
j

r̃ci,i

}
, i = Nt − 1, . . . , 1. (3.45)

As the same method as the LR-MMSE detection, the signal vector in the LR

domain should be transformed back into the s-domain as

ŝcS = Tcv̂c

ŝc = S−1[ŝcS] = 2ŝcS − (K − 1)(1 + j)1Nt

(3.46)

Using the same method, the final decision ŝc is forced to the nearest constella-

tion points if they are lying outside the original signal constellation as ŝc := C[ŝc].

3.5.2 Performance and simulation results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in

the 4×4 and the 8×8 MIMO systems, respectively. We compare the LR-SIC de-

tection with the LR-ZF detection, the LR-MMSE detection and the conventional

detection methods, such as the ZF detection and the MMSE detection and the

ML detection described in Chapter 2.

The BER characteristics vs. Eb/N0 are shown in Figs. 3.14 - 3.19. The LR-

SIC detection has large improvement of the BER performance compared to the

LR-MMSE detection due to the less noise enhancement. For the 4 × 4 MIMO

system, the LR-SIC detection is about 1.2dB, 1.1dB and 0.9dB improvement of

BER performance at a BER of 10−5 over the LR-MMSE detection for QPSK,

16QAM and 64QAM, respectively. And the curve of the LR-OSIC detection

almost agrees with that of the LR-SIC detection and closely approaches that

of the ML detection at a BER of 10−5. On the contrary, for the 8 × 8 MIMO

system, the LR-SIC detection is about 4.0dB, 3.7dB and 3.5dB improvement of

BER performance at a BER of 10−5 over the MMSE detection for QPSK, 16QAM

and 64QAM, respectively.

Therefore, compared to the LR aided detection, the LR-SIC detection achieves

the better BER performance in the 4× 4 MIMO system and closely approaches

the BER of the ML detection only for QPSK. However, the LR-SIC detection
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in the 8 × 8 MIMO system is still about 5dB worse than the BER of the ML

detection at a BER of 10−5.

Figure 3.14: The BER vs. Eb/N0 for
the LR-SIC over 4× 4 MIMO: QPSK

Figure 3.15: The BER vs. Eb/N0 for
the LR-SIC over 8× 8 MIMO: QPSK

Figure 3.16: The BER vs. Eb/N0 for
the LR-SIC over 4× 4 MIMO: 16QAM

Figure 3.17: The BER vs. Eb/N0 for
the LR-SIC over 8× 8 MIMO: 16QAM
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Figure 3.18: The BER vs. Eb/N0 for
the LR-SIC over 4× 4 MIMO: 64QAM

Figure 3.19: The BER vs. Eb/N0 for
the LR-SIC over 8× 8 MIMO: 64QAM

3.6 Lattice reduction based List detection

In the MIMO detection, the signals transmitted from multiple antennas can be

detected jointly using the ML metric for the optimal performance. However, the

complexity is prohibitively high for a large number of the candidate vectors for the

transmit signal and a higher order modulation method. Therefore, it is desirable

to find some new detection methods that can provide near ML performance with

low complexity, which is comparable to that of linear detection.

3.6.1 LR-List detection

Since the sequential decision and cancellation are carried out, the SIC detec-

tion suffers from the error propagation. List-based approaches [47]−[49] can be

employed to mitigate error propagation by selection of an optimal signal vector

from multiple candidate vectors for the hard decision. For the LR-MMSE detec-

tion, the simplest quantization in (3.25) is the rounding operation. However, the

good BER is not achieved by quantizing of ṽci , i ∈ [1, Nt]. Hence we present two

list scheme methods based on LR-MMSE detection, which are referred to as the
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3.6 Lattice reduction based List detection

linear-list detection. First, recall the signal estimation using LR-MMSE:

ṽc(LR−MMSE) = H̄c′†ȳcS

≡
(
H̄c′HH̄c′)−1

H̄c′HȳcS

=
(
Hc′HHc′ + γ−1TcHTc

)−1
Hc′HycS

(3.47)

After that, the following estimation of the LR-MMSE detection is derived as

v̂ci = Q
{
ṽ
c(LR−MMSE)
i

}
, i ∈ [1, Nt]

ŝcS = Tcv̂c

ŝc = S−1[ŝcS] = 2ŝcS − (K − 1)(1 + j)1Nt

(3.48)

The final decision ŝc is forced to the nearest constellation points if they are

lying outside the original signal constellation as ŝc := C[ŝc].

The performance strongly depends on the accuracy of the estimation and

quantization of ṽc, which is obtained by LR-MMSE detection. However, since

the entries of vc are not independent, the simple rounding quantization of ṽc is

only a suboptimal process and sometimes may cause erroneously decided entries,

compared to the optimal one. In the high Eb/N0 region, the reduced channel H̄c′

has nearly orthogonal column vectors, and thus the quantization error trends to

become the main reason for the detection error.

Considering the high Eb/N0 region, we aim at correcting the quantization

errors in a limited case that the rounded v̂c contains at most one erroneously

decided entry, such as v̂ci , which entry is some complex integers away from the

optimally decided entry. Since the estimation with the reduced channel matrix is

very accurate in the high Eb/N0 region, the limited case seems to be the major

case of quantization errors. Based on this limitation, we attempt to achieve the

near-optimal quantization by generating a list of v̂c from the estimated one and

search for the best estimate using the ML metric. The list quantization method

called Method 1 is explained below.

Method 1

For each entry v̂ci , i ∈ [1, Nt], we create the list of the quantization candidates

based on ṽc. There are (Nt + 1) candidates of v̂c with Nt transmit antenna,

including the rounded estimate v̂c.
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Step 1):

(1) Input ṽc = [ṽc1, . . . , ṽ
c
Nt

]T, Hc and Tc.

(2) Let v̂
c(0)
i = dṽci c, i ∈ [1, Nt], and create v̂c(0) = [ṽ

c(0)
1 , . . . , ṽ

c(0)
Nt

]T.

(3) Calculate ŝc(0)S = Tcv̂c(0) and ŝc(0) = S−1[ŝc(0)S] = 2ŝc(0)S − (K − 1)1cNt
.

(4) The final decision ŝc(0) is forced to the nearest constellation points if they

are lying outside the original signal constellation as ŝc(0) := C[ŝc(0)].

Step 2):

(1) for l := 1 to Nt

(2) If
∣∣Re
[
ṽ
c(0)
l −v̂

c(0)
l

]∣∣ > ∣∣Im[ṽc(0)
l −v̂

c(0)
l

]∣∣, then v̂
c(1)
l , v̂

c(0)
l +jsgn

{
Re
[
ṽ
c(0)
l −

v̂
c(0)
l

]}
.

(3) Else, v̂
c(1)
l , v̂

c(0)
l + jsgn

{
Im
[
ṽ
c(0)
l − v̂c(0)

l

]}
.

(4) Create v̂c(l) =
[
v̂
c(0)
1 , . . . , v̂

c(0)
l−1 , v̂

c(1)
l , v̂

c(0)
l+1 , . . . , v̂

c(0)
Nt

]T
.

(5) As (4) in Step 1), we also obtain the candidates of ŝc(l), l ∈ [1, Nt].

(6) end

(7) The ML metric is employed as ŝc = arg minl∈[0,Nt]

∥∥yc −Hcŝc(l)
∥∥2

.

There are (Nt + 1) candidates in the list of the transmit signal vectors as

v̂c(0) = [v̂
c(0)
1 , v̂

c(0)
2 , . . . , v̂

c(0)
Nt

]T

v̂c(1) = [v̂
c(1)
1 , v̂

c(0)
2 , . . . , v̂

c(0)
Nt

]T

v̂c(2) = [v̂
c(0)
1 , v̂

c(1)
2 , v̂

c(0)
3 , . . . , v̂

c(0)
Nt

]T

...

v̂c(l) = [v̂
c(0)
1 , . . . , v̂

c(0)
l−1 , v̂

c(1)
l , v̂

c(0)
l+1 , . . . , v̂

c(0)
Nt

]T

...

v̂c(Nt) = [v̂
c(0)
1 , . . . , v̂

c(1)
Nt

]T

(3.49)

Based on the difference between the estimated symbol and the rounded inte-

ger, we also introduce another list scheme method which requires the half size of

list candidates in the Method 1. This list quantization method called Method 2

is explained below.

Method 2

For each entry v̂ci , i ∈ [1, Nt], we create the list of the quantization candidates

based on ṽc. There are (Nt

2
+ 1) candidates of v̂c with Nt transmit antenna,
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including the rounded estimate v̂c.

Step 1):

(1) Input ṽc = [ṽc1, . . . , ṽ
c
Nt

]T, Hc and Tc.

(2) Let v̂
c(0)
i = dṽci c, i ∈ [1, Nt], and create v̂c(0) = [ṽ

c(0)
1 , . . . , ṽ

c(0)
Nt

]T.

(3) Calculate ŝc(0)S = Tcv̂c(0) and ŝc(0) = S−1[ŝc(0)S] = 2ŝc(0)S − (K − 1)1cNt
.

(4) The final decision ŝc(0) is forced to the nearest constellation points if they

are lying outside the original signal constellation as ŝc(0) := C[ŝc(0)].

Step 2):

(1) Define δṽcj , max
{
|Re[ṽ

c(0)
l − v̂c(0)

l ]|, |Im[ṽ
c(0)
l − v̂c(0)

l ]|
}
, j ∈ [1, Nt].

(2) Define ∆ṽcjp , ṽcjp − v̂
c(0)
jp

.

(3) Let δṽcjp ≡ max
{
|Re[∆ṽcjp |, |Im[∆ṽcjp |

}
be the p-th longest among all δṽcj ’s,

j ∈ [1, Nt].

(4) Let ṽcjp be the jp-th entry of ṽc and ṽ
c(0)
jp

be the jp-th entry of ṽc(0), where

the entry number jp is from 1 to Nt.

(5) for p := 1 to Nt

2

(6) If |Re[∆ṽcjp ]| > |Im[∆ṽcjp ]|, then v̂
c(1)
jp

, v̂
c(0)
jp

+ jsgn{Re[∆ṽcjp ]}.
(7) Else, v̂

c(1)
jp

, v̂
c(0)
jp

+ jsgn{Im[∆ṽcjp ]}.
(8) Create v̂c(p) = [v̂

c(0)
1 , . . . , v̂

c(0)
jp−1, v̂

c(1)
jp

, v̂
c(0)
jp+1, . . . , v̂

c(0)
Nt

]T.

(9) As (4) in Step 1), we also obtain the candidates of ŝc(p), p ∈ [1, Nt

2
].

(10) end

(11) The ML metric is employed as ŝc = arg min
p∈[0,

Nt
2

]

∥∥yc −Hcŝc(p)
∥∥2

.

Based on Method 1 , we choose the most reliable (Nt

2
+ 1) candidates in the

list of the transmit signal vectors. We order the difference between the estimated

symbol and the rounded integer, separating the real part and imaginary part,

respectively. Thus, the complexity of Method 2 for the list candidates should

be reduced half compared to Method 1, and the final soft estimation of transmit

signal becomes reliable.

3.6.2 Performance and simulation results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in

the 4×4 and the 8×8 MIMO systems, respectively. We compare the LR-List de-

tections (Method 1 and Method 2) with the LR-ZF detection, the LR-MMSE
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detection and the conventional detection methods, such as the ZF detection and

the MMSE detection and the ML detection described in Chapter 2.

The BER characteristics vs. Eb/N0 are shown in Figs. 3.20 - 3.25. The

LR-List detection has large improvement of the BER performance compared to

the LR-MMSE detection due to reducing the quantization error. For the 4 × 4

MIMO system, the curve of the LR-List detections of Method 1 and Method 2

closely approaches that of the ML detection at a BER of 10−5. On the contrary,

for the 8× 8 MIMO system, the LR-List of Method 2 has a little improvement

of BER compared to that of Method 1 with nearly half complexity. The BER

performance of the LR-List detection for the Method 2 is about 5.5dB, 6.0dB

and 6.0dB worst than that of the ML detection at a BER of 10−5 for QPSK,

16QAM and 64QAM, respectively.

Compared to the LR aided detection, the LR-SIC detection achieves the better

BER performance in the 4× 4 MIMO system and closely approaches the BER of

the ML detection. However, the LR-List detection in the 8× 8 MIMO system is

still about 4dB worse than the BER of the ML detection at a BER of 10−5.

Figure 3.20: The BER vs. Eb/N0 for
the LR-List over 4× 4 MIMO: QPSK

Figure 3.21: The BER vs. Eb/N0 for
the LR-List over 8× 8 MIMO: QPSK
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Figure 3.22: The BER vs. Eb/N0 for
the LR-List over 4× 4 MIMO: 16QAM

Figure 3.23: The BER vs. Eb/N0 for
the LR-List over 8× 8 MIMO: 16QAM

Figure 3.24: The BER vs. Eb/N0 for
the LR-List over 4× 4 MIMO: 64QAM

Figure 3.25: The BER vs. Eb/N0 for
the LR-List over 8× 8 MIMO: 64QAM

3.7 Chapter summary

In this chapter, we first introduced the LR algorithm, i.e., the GSO algorithm and

the LLL algorithm. The LR algorithm is applied into the MIMO detection, which
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results in better decision boundary and obtains more reliable estimation. For the

conventional LR-ZF or LR-MMSE detections, they have low complexity but worse

BER performance, especially in the 8 × 8 MIMO system. Hence we combined

the LR algorithm with the conventional linear detections, the SIC detection and

the list detection. These detection schemes brought good improvement of BER

performance, and achieved suboptimal BER performance for the 4 × 4 MIMO

system. For the 8 × 8 MIMO system, the BER curves of these detections were

still far to that of ML detection.

To further improve the performance with low complexity, different schemes

and components are adopted, which will be introduced in the following chapters.
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Chapter 4

Adaptive Tree Search Detection

with Variable Path Expansion

Based on Gram-Schmidt

Orthogonalization

4.1 Introduction

In this chapter, we first present a detection scheme combined the Gram-Schmidt

orthogonalization reduction with the M-algorithm, which we call the GSM-MLD.

This scheme has such features that it achieves near-ML BER performance like the

QRM-MLD with relatively low computational complexity. The channel matrix is

reduced using the GSO procedure, and meanwhile a transform matrix is created.

In contrast to the QR decomposition of the channel matrix in the QRM-MLD,

the column vectors of the GS-reduced channel matrix are purely orthogonal for

the GSM-MLD. The GS-reduced channel matrix spans the same subspace as

the columns of the original channel matrix. The transform matrix is an upper

triangular matrix with unity diagonal entries.

Based on the GSM-MLD, we propose novel adaptive tree search detection with

variable path expansion based on GSO in the MIMO systems. The proposed

algorithm in this chapter retains the same breadth of the tree search as the

GSM-MLD to achieve the near-ML performance, and however the number of the
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possible branches is adaptively controlled. The adaptive scheme avoids a large

amount of the path metric evaluations and sorting to reduce the computational

complexity. We also analyze the complexity of the proposed detection. The

proposed detection in this chapter can considerably decrease the complexity in

the high Eb/N0 region.

4.2 Model system

In this thesis, we describe some MIMO detection schemes based on lattice reduc-

tion. These detection schemes estimate the transmit signals by the real-valued

channel matrix and vectors. Hence, Eq. (2.1) can be rewritten using the real

representation as

y = Hs + z (4.1)

where the equivalent real-valued channel matrix and vectors letting n = 2Nr and

m = 2Nt are defined as

H ,

[
Re[Hc] −Im[Hc]
Im[Hc] Re[Hc]

]
∈Rn×m, s ,

[
Re[sc]
Im[sc]

]
∈ Zm×1,

y ,

[
Re[yc]
Im[yc]

]
∈ Rn×1, and z ,

[
Re[zc]
Im[zc]

]
∈ Rn×1 (4.2)

We define the dimension of the real-valued channel matrix H to be n × m.

The dimensions of the vectors in (4.2) are given as y ∈ Rn×1, z ∈ Rn×1 and

s ∈ Zm×1, where Z denotes the finite set of the real-valued transmit signals.

The set of the real-valued signals is given by Z = {±1,±3, . . . ,±(K − 1)} for

K2-QAM (Quadrature Amplitude Modulation). Since the data is binary in the

digital telecommunication, the value of K in the constellation is usually a power

of 2.

Given y and the channel matrix H, the ZF soft estimate of the transmit

signals is expressed as

s̃(ZF) = H†y

≡
(
HTH

)−1
HTy

(4.3)
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4.3 GSM-MLD

We first introduce the GSM-MLD algorithm. The column vectors of channel ma-

trix H are first sorted in the ascending order in length. Then, they are weakly

reduced using the GSO procedure shown in Table 4.1. This algorithm trans-

forms the channel matrix H to create the GS-reduced channel matrix Ĥ and the

transform matrix T̂. The column vectors of Ĥ are mutually orthogonal, and the

transform matrix T̂ is an upper triangular matrix with unity diagonal entries

and det{T̂} = 1. Note that this algorithm in Table 4.1 is computationally-simple

since it weakly reduces the column vectors of H without the size reduction in the

LLL algorithm [39].

Table 4.1: Real Gram-Schmidt orthogonalization algorithm

(1) Begin Input: H = [h1, · · · ,hm], and T̂ := Im = [t1, · · · , tm].

Set ĥp = hp, p ∈ [1,m].
(2) for p:=2 to m
(3) for q := p− 1 down to 1

(4) µp,q =
ĥT
q ĥp

||ĥq ||2

(5) ĥp := ĥp − µp,qĥq
(6) t̂p := t̂p − µp,qt̂q
(7) end
(8) end
(9) End

The upper triangular matrix T̂ with unity diagonal entries is invertible. The

column vectors of the matrix Ĥ = HT̂ are orthogonal and span the same subspace

as the columns of the original matrix H. Using the GS-reduced channel matrix

Ĥ and T̂, we have

y = Hs + z

=
(
HT̂

)
(T̂−1s) + z

= Ĥv + z

(4.4)
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where Ĥ , HT̂ and v , T̂−1s with expressing T̂−1 as

T̂−1 =


1 τ12 . . . τ1,m−1 τ1,m

1 . . . τ2,m−1 τ2,m

. . .
...

...
1 τm−1,m

0 1

 (4.5)

The soft estimate of v is derived as

ṽ = T̂−1s̃
ṽ1

ṽ2
...

ṽm−1

ṽm

 =


1 τ12 . . . τ1,m−1 τ1,m

1 . . . τ2,m−1 τ2,m

. . .
...

...
1 τm−1,m

0 1




s̃1

s̃2
...

s̃m−1

s̃m


(4.6)

where

ṽm =s̃m

ṽm−1 =s̃m−1 + τm−1,ms̃m
...

ṽ2 =s̃2 + τ2,3s̃3 + · · ·+ τ2,m−1s̃m−1 + τ2,ms̃m

ṽ1 =s̃1 + τ1,2s̃2 + · · ·+ τ1,m−1s̃m−1 + τ1,ms̃m

(4.7)

The soft estimate of ŝ is obtained by performing the following recursion as

ŝi =

{
Q {s̃i} = Q {ṽi} , i = m

Q {s̃i} = Q
{
ṽi −

∑m
j=i+1 τi,j ŝj

}
, i = m− 1, · · · , 1

(4.8)

where s̃i , ṽi, i = m and s̃i , ṽi −
∑m

j=i+1 τi,j ŝj, i = m− 1, · · · , 1.

4.3.1 Definition of metric in GSM-MLD

The GSM-MLD applies a fixed number of M in each detection layer as the QRM-

MLD, starting from the last entry of s. Since T̂−1 is a upper triangular matrix,
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the entry si depends on the decided estimates ŝj’s where j ∈ [i+1,m]. We define

the branch metric λi: i ∈ [1,m] in GSM-MLD as

λi =

{∣∣ĥi∣∣2∣∣ṽi − ŝi∣∣2, i = m∣∣ĥi∣∣2∣∣ṽi − ŝi −∑m
j=i+1 τi,j ŝj

∣∣2 =
∣∣ĥi∣∣2∣∣s̃i − ŝi∣∣2, i = m− 1, · · · , 1

(4.9)

where s̃m , ṽm and s̃i ,
∑m

j=i+1 τi,j ŝj for i = m − 1, · · · , 1. The path metric

Λi : i ∈ [1,m] is the accumulated branch metric, which is defined as

Λi =
m∑
j=i

λj

=
m∑
j=i

∣∣ĥj∣∣2∣∣s̃j − ŝj∣∣2
=

{
λi, i = m

λi + Λi+1, i = m− 1, · · · , 1

(4.10)

where the path metric denotes the partial Euclidean distance (PED). In the GSM-

MLD, Λ
(l)
i denotes the l-th smallest path metric. Correspondingly, the partial

transmit signal ŝ
(l)
i based on Λ

(l)
i should be expressed as ŝ

(l)
i =

[
ŝ

(l)
i , ŝ

(l)
i+1, · · · , ŝ

(l)
m

]T

.

Three major operations are the same as the conventional QRM-MLD. The out-

put of the GSM-MLD is ŝ(1) = [ŝ
(1)
1 , ŝ

(1)
2 , · · · , ŝ(1)

m ]T as the final estimate of the

transmit signal.

4.3.2 Computational complexity

We here use the floating point operations (flops) for the measure of the com-

plexity, which defines one addition, one subtraction, one multiplication, and one

division for real-valued number to take one flop. For the m-th layer, expand-

ing K branches, λm in (4.9) requires two multiplications and one subtraction,

and it consumes 3 flops expressed by N(λm) = 3. For the (m − 1)-th layer

down to the first layer, M branches are retained from MK possible branches in

the i-th layer, where i ∈ [1,m − 1]. For a survived branch, s̃i in (4.8) requires

(m− i) multiplications and (m− i) subtractions. Hence, the complexity for the

computing of s̃i is expressed as N(s̃i) = 2(m − i). For a possible branch, Λi
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in (4.10) requires one addition, which we express the complexity as N(Λi) = 1.

N(λi,Λi) = N(λi)+N(Λi) = 4 denotes the total complexity for the computations

of the branch metric λi in (4.9) and the path metric Λi in (4.10).

The complexity of the GSM-MLD NGSM−MLD which excludes the complexity

of the GSO reduction can be derived as

NGSM−MLD = 2mn−m+KN(λm)︸ ︷︷ ︸
m-th layer

+
m−1∑
i=1

 MN(s̃i)︸ ︷︷ ︸
Survived Branches

+MKN(λi,Λi)︸ ︷︷ ︸
Path Expansion


= 2mn−m+ 3K +

m−1∑
i=1

[2M(m− i) + 4MK]

= 2mn−m+ 3K +M(m2 −m) + 4MK(m− 1)

(4.11)

4.4 Proposed adaptive tree search in GSM-MLD

In this section, we propose an adaptive tree search scheme in the GSM-MLD. The

proposed algorithm retains the same breadth of the tree search as the GSM-MLD

to achieve the near-ML performance. On the other hand, we perform adaptive

tree search scheme to reduce the complexity, and to overcome the drawback

which the fixed number of tree search algorithm requires high complexity in the

high Eb/N0 region. In the adaptive tree search scheme, we introduce a path

metric ratio without the necessity to accurately and dynamically measure SNR.

According to the reliability of each survived branch, assign a suitable candidates

expansion from a parent node. To decrease the number of lower reliable possible

branch, thereby avoid a large amount of the path metric evaluations and sorting.

4.4.1 Reliability evaluation

In this subsection, we derive the reliability evaluation (RE) for all the survived

branches in each layer. As above mentioned, the estimate of entry si depends

on the decided estimates ŝj’s where j ∈ [i + 1,m]. Hence, the wrong estimate

existing in the decided estimates may cause more erroneous estimates of the

transmit signal in the following recursion detection. According to MLD, the final
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estimate of transmit signal is determined by the path with the smallest path

metric. To a certain degree, we can apply the PED to evaluate the reliability

of all the survived paths in a detection layer of the tree search. In that sense,

we introduce a ratio function among the path metrics in the i-th layer, where

i ∈ [1,m], defined as

βi(l) =
Λ

(l)
i

Λ
(1)
i

, l ∈ [1,M ] (4.12)

where Λ
(1)
i denotes the smallest path metric after sorting the survived branch in

the i-th layer. Note that the layer number i is decreased such that i := m down to

1 successively. In general, the survived path Π
(1)
i with the high probability should

be the correct path if the channel is better-conditioned. Hence, we assume that

the survived path Π
(1)
i has the most possible to be correct path. In terms of the

path metric ratio βi(l) in (4.12), we indirectly evaluate the reliability of the l-th

branch in the i-th layer. That is, if Λ
(l)
i is much larger than Λ

(1)
i and thus βi(l)

is larger, it is unlikely that the correct path is the l-th path. The ratio function

βi(l) can be the measure of evaluating the reliability for the l-th branch.

In order to adaptively control the candidates expansion according to βi(l),

we assume that the number of the candidates should be an integer between 1

and K in the (i− 1)-th layer. That means the candidates from a parent node is

determined by the path metric ratio in the previous layer. We define the number

of the candidates as ρi−1(l) for the l-th survived branch in the (i − 1)-th layer.

In order to find a proper rule to adaptively assign the candidates for a survived

branch, we consider a decision function of the i-th layer as

α(i) =
i

m
· C, i ∈ [1,m] (4.13)

where C is a constant to be predetermined, which is the tradeoff between the

BER performance and the computational complexity.

The parameter α(i) is depended on the detection layer i. Since the tree search

starts with the last entry of s, the path metric at first in the larger numbered layer

is insufficient to reflect the whole channel condition. To retain the correct path,

the parameter α(i) is defined to be proportional to the value of the detection

layer i. Using the variable decision function, the value α(m) is maximum as
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C. Correspondingly, the value α(1) is minimum as C/m. The decision value

becomes strict as the detected layers increase. The various decision based on

the layer number significantly reduces the number of candidates in the smaller

numbered layer seen in the numerical results. For K2-QAM, the number of

the finite set for the real-valued transmit signals is K. We compare βi(l) with

{α(i), 2α(i), ..., (K − 1) · α(i)}. Then we have

ρi−1(l) =


K, for βi(l) ∈ [0, α(i)]

K − x, for βi(l) ∈ (x · α(i), (x+ 1) · α(i)]

1, for βi(l) > (K − 1) · α(i)

(4.14)

where i ∈ [2,m] and x ∈ [1, K − 2].

Let α(i) denote the basic unit to divide βi(l) into K regions. Then, according

to βi(l) in which region resolves the number of candidates ρi−1(l). Ranking the

constellation points with the nearest distance to s̃
(l)
i−1 obtained in (4.8), the can-

didates in the (i− 1)-th layer consist of the nearest constellation point up to the

ρi−1(l)-th nearest constellation point. In the case of 16QAM, if s̃
(l)
i−1 = 2.5, the

order of candidates is {3,1,−1,−3}. If ρi−1(l) = 2, the candidate selection from

the constellation points is {3, 1}.
Due to the definitions of the branch metric and the path metric in the GSM-

MLD, the ED can be expressed as

‖y −Hs‖2 =
m∑
i=1

∣∣ĥi∣∣2∣∣s̃i − ŝi∣∣2 (4.15)

The maximum likelihood detection is very simple to implement since the deci-

sion criterion depends on the ED. This detection scheme minimizes the probability

of bit error if the transmitted messages are equally likely. Since the proposed de-

tection expects to achieve the near-ML performance as GSM-MLD, we first inves-

tigate the cumulative distribution function (CDF) of the minimum path metric.

Giving examples in Figs. 4.1 and 4.2, we plot the CDF of the minimum path

metric compared the GSM-MLD with the proposed detection with C = {2, 4, 8}
for 16QAM and 64QAM, respectively. The results illustrate that the CDF curve

of the proposed detection closely approaches the that of GSM-MLD as the value
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of constant C increases. The constant C = 4 is almost optimal value between the

BER performance and the complexity.

Figure 4.1: The CDF of the minimum path metric at Eb/N0=10dB for 16QAM.

Figure 4.2: The CDF of the minimum path metric at Eb/N0=15dB for 64QAM.
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Figure 4.3: Example of the adaptive tree search scheme from the i-th layer to
the (i− 1)-th layer.

4.4.2 Proposed detection scheme

As an example, Fig. 4.3 illustrates an adaptive tree search scheme from the

i-th layer to the (i − 1)-th layer. In the (i − 1)-th layer, we first perform the

path expansion from M survived branches in the i-th layer. Since the adaptive

tree search scheme is executed, the branch metric and the path metric can be

expressed as λ
(1,1)
i−1 , . . . , λ

(1,ρi−1(1))
i−1 , λ

(2,1)
i−1 , . . . ,λ

(2,ρi−1(2))
i−1 , λ

(M,1)
i−1 , . . . , λ

(M,ρi−1(M))
i−1

and Λ
(1,1)
i−1 , . . . ,Λ

(1,ρi−1(1))
i−1 ,Λ

(2,1)
i−1 , . . . ,Λ

(2,ρi−1(2))
i−1 ,Λ

(M,1)
i−1 , . . . , Λ

(M,ρi−1(M))
i−1 ,

respectively. Note that λ
(l,k)
i−1 represents the branch metric expanded from the

l-th branch in the (i− 1)-th layer. We calculate the path metric for the possible

branches as Λ
(l,k)
i−1 = λ

(l,k)
i−1 + Λ

(l)
i . Hence,

∑M
l=1 ρi−1(l) denotes the total number of

all the children nodes in the (i−1)-th layer, which should be equal to or less than

MK. Next, sort
∑M

l=1 ρi−1(l) path metrics and select M with the smallest path

metric. Based on the sorted Λ
(l)
i−1, calculate the number of candidates expansion

ρi−2(l), l ∈ [1,M ], for the next layer. The proposed adaptive tree search scheme

is summarized as follows:

• Step 1: Set a fixed value of M . For K2-QAM, if K < M , define a layer

number q such that Km−q+1 should be equal to or more than M in order to

select M branches with the smallest path metric among all of the possible
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branches. Then, the candidates from the m-th layer down to the q-th layer

are all the constellation points.

• Step 2: Start the adaptive candidate selection scheme from the q-th layer.

According to βq(l) and α(q), the number of the candidates ρq−1(l) for the

l-th survived branch in the (q−1)-th layer is obtained in (4.14). Hence, the

number of the possible branches in the (q − 1)-th layer is from M to MK.

• Step 3: Proceed to the next stage of the (q − 1)-th layer. Rank the con-

stellation points for the l-th survived branches with the nearest distance to

s̃
(l)
q−1 in (4.8). According to ρq−1(l), we select the candidates from the con-

stellation points and calculate the path metric for the possible branches. M

branches are retained with the smallest path metric to the next layer. The

same operations are executed until the first layer.

• Step 4: Obtain the detection result of the estimate

ŝ(1) =
[
ŝ

(1)
1 , ŝ

(1)
2 , · · · , ŝ(1)

m

]T

.

4.4.3 Complexity analysis

The proposed detection reduces the complexity of the path metric evaluations

with less possible branches. The additional complexity NA is the computations

for the path metric ratio in (4.12), which require a complexity of (M − 1)(q − 1)

flops. If we fix the value of the constant C, α(i) in (4.13) is predetermined. Hence,

the computational complexity of α(i) is neglect. The complexity of the proposed

detection consists of three parts: the fixed complexity from the m-th layer down

to the q-th layer, the various complexity from the (q−1)-th layer down to the first

layer, and the above additional complexity. The fixed complexity of the proposed

detection NF including the computation of s̃ in (4.8) can be derived as

NF = 2mn−m+KN(λm) +
m−1∑
i=q

[
Km−iN(s̃i) +Km−i+1N(λi,Λi)

]
= 2mn−m+ 3K +

m−1∑
i=q

[
2(m− i)Km−i + 4Km−i+1

] (4.16)
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The various complexity of the proposed detection NV is varied with the num-

ber of the children nodes, derived as

NV =

q−1∑
i=1

{
MN(s̃i) +

[
M∑
l=1

ρi(l)

]
N(λi,Λi)

}

=

q−1∑
i=1

[
2M(m− i) + 4

M∑
l=1

ρi(l)

] (4.17)

where
∑M

l=1 ρi(l) denotes the total number of the children nodes in the i-th layer.

As a result, the complexity of the proposed detection NProp. which excludes the

complexity of the GSO reduction can be derived as

NProp. = NA + NV + NF

= (M − 1)(q − 1) +

q−1∑
i=1

[
2M(m− i) + 4

M∑
l=1

ρi(l)

]

+ 2mn−m+ 3K +
m−1∑
i=q

[
2(m− i)Km−i + 4Km−i+1

] (4.18)

4.5 Numerical results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in the

4×4 and 8×8 MIMO system, respectively. We assume the channel is the typical

flat Rayleigh fading. The performances of the different detection algorithms are

measured by the BER characteristics and the complexity. The complexity of the

tree search detection is determined by the amount of the path metric evaluations.

4.5.1 BER characteristics

Figures. 4.4 - 4.9 show the BER characteristics versus Eb/N0 using the full

MLD, the conventional QRM-MLD, the GSM-MLD and the proposed detection,

respectively. The value of M in the proposed detection is the same as that in the

QRM-MLD and the GSM-MLD, i.e. M = 8 for QPSK, M = 16 for 16QAM and

M = 64 for 64QAM in the 4×4 MIMO system, and M = 16 for QPSK, M = 64

for 16QAM and M = 128 for 64QAM in the 8×8 MIMO system, respectively. For
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the proposed detection, the constant C in the decision function is predetermined

and assigned as the suitable value to approach the near-ML performance.

As seen in Fig. 4.4, we chose M = 8, which is large enough for the QPSK

in the 4×4 MIMO system, and hence the BER curves of the GSM-MLD and the

QRM-MLD totally achieve the ML performance. For the proposed detection,

the BER curve with C = 8 is almost equivalent to the BER characteristics of

the GSM-MLD or the QRM-MLD. The proposed detection with C = 4 has less

possible branches in each layer, and hence the BER curve is about 1dB worse than

the BER of the QRM-MLD at a BER of 10−5. In Fig. 4.6, the value of M = 16 is

assigned for the 16QAM in the 4×4 MIMO system. For the proposed detection,

the BER curve with C = 8 is almost equivalent to the BER characteristics of

the GSM-MLD or the QRM-MLD. The proposed detection with C = 2 has less

possible branches in each layer, and the BER curve is about 1dB worse than

the BER of the QRM-MLD at a BER of 10−5. The BER curves of the QRM-

MLD and the GSM-MLD with M = 64 for 64QAM are equivalent to the BER

characteristics of the full MLD in Fig. 4.8. For the proposed detection, the BER

curves with C = {4, 8} achieve a near-ML performance. The proposed detection

with C = 2 remarkably reduces the possible branches in each layer, and hence

the BER curve is about 0.5dB worse than that of the QRM-MLD at a BER of

10−5.

In the 8 × 8 MIMO system, we compare the BER characteristics of the pro-

posed detection with C = {4, 8, 16} for QPSK, C = {16, 32, 64} for 16QAM

and C = {16, 32, 64} for 64QAM, respectively. The proposed detection achieves

better BER performance as the value of C increases. In order to achieve the

near-ML performance, the value of C in the proposed detection is 16 for QPSK,

32 for 16QAM and 64 for 64QAM as the suitable choice, respectively. From the

BER characteristics, the proposed scheme is more efficient in the high modulation

order. In the large size MIMO, the value of C requires a large number. The factor

of C is a tradeoff parameter between the BER performance and the complexity

described in the following subsection.
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Figure 4.4: The Eb/N0 vs. BER char-
acteristics in the 4 × 4 MIMO system:
QPSK.

Figure 4.5: The Eb/N0 vs. BER char-
acteristics in the 8 × 8 MIMO system:
QPSK.

Figure 4.6: The Eb/N0 vs. BER char-
acteristics in the 4 × 4 MIMO system:
16QAM.

Figure 4.7: The Eb/N0 vs. BER char-
acteristics in the 8 × 8 MIMO system:
16QAM.
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Figure 4.8: The Eb/N0 vs. BER char-
acteristics in the 4 × 4 MIMO system:
64QAM.

Figure 4.9: The Eb/N0 vs. BER char-
acteristics in the 8 × 8 MIMO system:
64QAM.

4.5.2 Computational complexity

We firstly evaluated the average number of possible branches in each layer for the

proposed detection with the different values of C, seen in Figs. 4.10 - 4.15. For

the QRM-MLD or GSM-MLD, the number of the possible branches in each layer

is fixed. On the contrary, the proposed detection in the adaptive stage is varied

within a certain range. We observed the average number of possible branches in

each layer in the various Eb/N0.

For the QRM-MLD or GSM-MLD, the number of the possible branches in

each layer is fixed to 16 if M = 8 for QPSK, 64 if M = 16 for 16QAM and

512 if M = 64 for 64QAM in the 4 × 4 MIMO system, respectively. In Fig.

4.10, the average number of the possible branches in the adaptive stage is varied

within a certain range from 8 to 16 for QPSK. In particular, for the curve with

C = 2 in Fig. 4.10 (a), the average number of the possible branches is 8 in any

Eb/N0. However, the BER characteristics are degraded in the high Eb/N0 region.

It should be noticed that the number of the low reliable possible branches in the

proposed detection with C = 4 in Fig. 4.10 (b) is almost halved, compared to

the fixed number of 16. Furthermore, the BER curve of the proposed detection

71



4. ADAPTIVE TREE SEARCH DETECTION WITH VARIABLE
PATH EXPANSION BASED ON GRAM-SCHMIDT
ORTHOGONALIZATION

with C = 4 is about 1dB worse than that of the full MLD at a BER of 10−5.

In addition, the BER of the proposed detection with C = 8 shown in Fig. 4.4

can retain the near-ML performance. The number of the possible branches for

QPSK is less reduced. As seen in Fig. 4.12, the average number of the possible

branches in the adaptive stage is varied within a certain range from 16 to 64 for

16QAM. In particular, for the curve with C = 2 in Fig. 4.12 (a), the average

number of the possible branches is close to 16 if the BER characteristics are less

than 10−2. Furthermore, the BER curve of the proposed detection with C = 2

is about 1dB worse than that of the full MLD at a BER of 10−5. It should be

noticed that the number of the low reliable possible branches in the proposed

detection with C = 4 in Fig. 4.12 (b) is halved or more reduced, compared to

the fixed number of 64. The BER curve of the proposed detection with C = 4

is about 0.2dB worse than that of the full MLD at a BER of 10−5. In addition,

the BER of the proposed detection with C = 8 shown in Fig. 4.6 can retain

the near-ML performance. The number of the possible branches in Fig. 4.12

(c) can remarkably reduce in the high Eb/N0 region. Figures. 4.14 shows the

average number of possible branches in each layer for the proposed detection for

64QAM. The average number of the possible branches in the adaptive stage is

varied within a certain range from 64 to 512. Similarly to 16QAM, the curves

with C = 2 in Fig. 4.14 (a) are close to 64 if the BER characteristics are less than

10−2, and correspondingly the BER curve with C = 2 as illustrated in Fig. 4.8

has about 0.5dB performance loss compared to the full MLD at a BER of 10−5.

If the channel is better-conditioned, the average numbers of the possible branches

of the proposed detection with C = {4, 8} in the adaptive stage are in the range

from 64 to 128, which is much less than the fixed number of 512 compared to the

conventional QRM-MLD. Meanwhile, the BER curves of the proposed detection

with C = {4, 8} achieve the ML performance corresponding to Fig. 4.8.
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Figure 4.10: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 4 × 4
MIMO system: QPSK.

Figure 4.11: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 8 × 8
MIMO system: QPSK.
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Figure 4.12: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 4 × 4
MIMO system: 16QAM.

Figure 4.13: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 8 × 8
MIMO system: 16QAM.
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Figure 4.14: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 4 × 4
MIMO system: 64QAM.

Figure 4.15: The average number of
possible branches in each layer of tree
search at various Eb/N0 in the 8 × 8
MIMO system: 64QAM.

For the 8 × 8 MIMO system, the number of the possible branches in each

layer is fixed to 32 if M = 16 for QPSK, 512 if M = 64 for 16QAM and 1024

if M = 128 for 64QAM, respectively. As seen in Fig. 4.11, 4.13 and 4.15, we

observe that the proposed detection with a large value of C provides the near-

ML BER performance. Hence, the number of the low reliable possible branches is

less reduced. In Fig. 4.11(c), the average number of the possible branches in the

adaptive stage is varied within a certain range from 16 to 22 for QPSK, compared

to the fixed number of 32 for the QRM-MLD or the GSM-MLD. The proposed

detection with C = 32 for 16QAM and 64QAM can achieve the near-ML BER

performance. However, corresponding to Fig. 4.13 and Fig. 4.15, the number of

the low reliable possible branches is less reduced even in the high Eb/N0. Hence,
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the complexity of the proposed detection should be less reduced.

From the simulation results of Figs. 4.10 - 4.15, the adaptive decision using

the threshold in each detection layer is determined by the constant C, which is

the tradeoff between the BER performance and the complexity.

Figure 4.16: The average complexity
comparison for three detection schemes
in the 4× 4 MIMO system: QPSK.

Figure 4.17: The average complexity
comparison for three detection schemes
in the 8× 8 MIMO system: QPSK.

Figure 4.18: The average complexity
comparison for three detection schemes
in the 4× 4 MIMO system: 16QAM.

Figure 4.19: The average complexity
comparison for three detection schemes
in the 8× 8 MIMO system: 16QAM.
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Figure 4.20: The average complexity
comparison for three detection schemes
in the 4× 4 MIMO system: 64QAM.

Figure 4.21: The average complexity
comparison for three detection schemes
in the 8× 8 MIMO system: 64QAM.

According to the average number of possible branches, we present the com-

putational complexity of the proposed detection in Figs. 4.16 - 4.21 for QPSK,

16QAM and 64QAM in the 4×4 and 8×8 MIMO systems, respectively. We com-

pare the complexity of the proposed detection with the complexity of QRM-MLD

as seen in Chapter 2.4.

In the 4 × 4 MIMO system, we set the layer number q in (4.16) - (4.18) as

q = m− 2 for QPSK. Due to M = 16 for 16QAM and M = 64 for 64QAM, the

layer number q in (4.16) - (4.18) is set as q = m− 1. From the numerical results,

the GSM-MLD has the same complexity with the conventional QRM-MLD. Since

the GSO reduction is computationally-simple and the transform matrix is with

unity diagonal entries, the soft estimate of s̃ is directly obtained in (4.8) with

no division operation. It is convenient to rank the constellation points according

to s̃ in the adaptive stage. The adaptive tree search scheme is performed using

the path metric ratio function, and thus the number of the possible branches in

each layer of adaptive stage is remarkably reduced. Hence, the computational

complexity of the proposed detection is much lower than the conventional QRM-

MLD, especially in the high Eb/N0 region. From Figs. 4.16, 4.18 and 4.20,

the complexity of the proposed detection at a BER of 10−5 is about 21%, 40%

and 64% smaller than that of the QRM-MLD for QPSK, 16QAM and 64QAM,

respectively.
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In the 8 × 8 MIMO system, we set the layer number q in (4.16) - (4.18) as

q = m− 3 for QPSK. Due to M = 64 for 16QAM and M = 128 for 64QAM, the

layer number q in (4.16) - (4.18) is set as q = m− 2. From the numerical results,

the GSM-MLD has the same complexity with the conventional QRM-MLD. From

Figs. 4.17, 4.19 and 4.21, the complexity of the proposed detection at a BER of

10−5 is about 14%, 17% and 18% smaller than that of the QRM-MLD for QPSK,

16QAM and 64QAM, respectively.

4.6 Chapter summary

In this chapter, introducing the Gram-Schmidt Orthogonalization procedure to

reduce the channel matrix, we proposed a MIMO detection scheme using the

adaptive tree search with variable path expansion in the GSM-MLD algorithm.

The adaptive tree search scheme was to adaptively control the candidates for each

survived branch in the tree search. We adopted a path metric ratio function to

evaluate the reliability for all the survived branches. To decrease the number of

the low reliable candidates in each layer, a large amount of the computation for

the path metric was avoided. Hence, the complexity of the proposed detection

should be reduced.

Since the GSO reduction was computationally-simple, it required very low

complexity for the LR operations. In the 4 × 4 MIMO system, the proposed

adaptive scheme was very efficient, especially for the high modulation. In partic-

ular in the high Eb/N0 region, the complexity of the proposed detection in the

4× 4 MIMO system was about 79%, 60% and 36% of that of the QRM-MLD for

QPSK, 16QAM and 64QAM, respectively. The proposed detection can provide

the near-ML performance with relatively lower complexity. For the large size

MIMO system, in order to achieve the near-ML performance, the number of the

low reliable possible branches was less reduced. Hence, the proposed detection

required a little lower complexity than the complexity of the QRM-MLD.

As a result, it was worthy for applying even to the high modulation order in

the small size MIMO system.
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Chapter 5

An Improved Quantization

Scheme for Lattice-Reduction

Aided MIMO Detection Based on

Gram-Schmidt Orthogonalization

In the previous chapter, we observed that the exhaustive tree search of MIMO

detection required high complexity especially in the high modulation and the

large size MIMO system. Hence combining the LR technology, we further reduce

the complexity compared to the proposed scheme in Chapter 4. Meanwhile,

the new scheme can achieve the near-ML performance in terms of deceasing the

quantization errors, which are the problem of the conventional LRA detection.

5.1 Introduction

For the LRA MIMO detection, the detection errors are mainly generated from

the channel noise and the quantization errors in the signal estimation stage. The

quantization step applies the simple rounding operation, which often leads to the

quantization error. If this error occurs in a row of the transmit signal, it has

to propagate to many symbols in the subsequent signal estimation and result

in degrading the BER performance. Therefore, the objective of the proposed

detection pays attention on solving this problem in the quantization step.
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In this chapter, we introduce the Gram-Schmidt orthogonalization after the

LLL algorithm. Using the orthogonal column vectors of the channel matrix,

the interferences affected from other antennas are diminished. Based on the

LR and GS aided detection, we investigate that the rounding quantization errors

occasionally occur in such a case that the decimal fraction of the estimate symbols

should be close to 0.5. Therefore, the proposed quantization scheme applies a

simple tree search in order to obtain an optimum quantization results. There

are two expansion candidates from each parent branch, which are the rounding

integer and the adjacent integer. Then, we introduce a threshold function in order

to survive at most two candidates for each entry of the signal vectors according

to the path metric, in order to retain the quantization candidate with the branch

metric close to 0.25 and rarely correct the quantization error. The simulations

show that the propose detection can achieve near-ML performance and offers

significant reduction in computational complexity compared to the QRM-MLD.

5.2 System model and conventional LRA detec-

tion

5.2.1 System model

The system model is employed the real-valued channel matrix and vectors as

same as Chapter 4. Recall (4.1) as

y = Hs + z (5.1)

where the equivalent real-valued channel matrix and vectors letting n = 2Nr and

m = 2Nt are defined as

H ,

[
Re[Hc] −Im[Hc]
Im[Hc] Re[Hc]

]
∈Rn×m,

s ,

[
Re[sc]
Im[sc]

]
, y ,

[
Re[yc]
Im[yc]

]
, and z ,

[
Re[zc]
Im[zc]

]
(5.2)

We define the dimension of the real-valued channel matrix H to be n × m.
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The dimensions of the vectors in (5.2) are given as y ∈ Rn×1, z ∈ Rn×1 and

s ∈ Zm×1, where Z denotes the finite set of the real-valued transmitted signals.

Hassibi proposed a MMSE detector with the extended matrix form as

ȳ ,

[
y

0m

]
, H̄ ,

[
H√
γ−1Im

]
, z̄ ,

[
z

−
√
γ−1s

]
(5.3)

where γ = Es/N0 with Es = E[‖s‖2]/m. Then it holds instead of (5.1) that

ȳ = H̄s + z̄ (5.4)

5.2.2 Conventional LRA detection

The channel matrix can be QR-decomposed as H̄=QR, where Q is a unitary

matrix, having the orthogonal column vectors with the unit norm. The channel

matrix R=[r1, r2, . . . , rm] is an m × m upper triangular matrix, which retains

the property of the channel matrix. The real LLL algorithm in Table 5.1 is to

transform a given lattice basis R into a new reduced basis R̃, of which column

vectors are nearly orthogonal. In the same method as (3.16), the scaled and

shifted receive signal vector can be expressed as

ȳS ,
ȳ

2
+
K − 1

2
H̄1m = H̄

(
s

2
+
K − 1

2
1m

)
+

z̄

2
(5.5)

Using R̃, Q̃ and T, the system model in (5.5) is rewritten as

ȳS = H̄

(
s

2
+
K − 1

2
1m

)
+

z̄

2

= QR

(
s

2
+
K − 1

2
1m

)
+

z̄

2

= H̄′
(

T−1

(
s

2
+
K − 1

2
1m

))
+

z̄

2

= Q̃R̃

(
T−1

(
s

2
+
K − 1

2
1m

))
+

z̄

2

≡ Q̃R̃v +
z̄

2

(5.6)
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where H̄′ = Q̃R̃ = QRT and the new signal vector v is defined as v ,

T−1
(
s
2

+ K−1
2

1m
)
. The scaled and shifted vector of s is defined as sS = S[s] ,

s
2

+ K−1
2

1m. The soft estimate ṽ using the LR-MMSE detection can be derived

by

ṽ(LR−MMSE) = H̄′†ȳS ≡
(
H̄′TH̄′

)−1
H̄′TȳS

= R̃−1Q̃TȳS = R̃−1y′
(5.7)

where y′ , Q̃TȳS and H̄′† = (Q̃R̃)†.

Table 5.1: Real LLL algorithm

Input: Q, R, and T := Im, set δ; Output: Q̃, R̃, T

(1) Initialization: Q̃ := Q and R̃ := R.
(2) p = 2
(3) while p ≤ m
(4) for q := p− 1 down to 1
(5) µq,p = dr̃q,p/r̃q,qc
(6) if µq,p 6= 0

(7) R̃1:q,p := R̃1:q,p − µq,pR̃1:q,q

(8) T:,p := T:,p − µq,pT:,q

(9) end
(10) end
(11) If δr̃2

p−1,p−1 > r̃2
p,p + r̃2

p−1,p

(12) Swap columns p− 1 and p in R̃ and T

(13) Θ =

[
α β
−β α

]
with α =

R̃p−1,p−1

‖R̃p−1:p,p−1‖2

β =
R̃p,p−1

‖R̃p−1:p,p−1‖2

(14) R̃p−1:p,p−1:m := ΘR̃p−1:p,p−1:m

(15) Q̃:,p−1:p := Q̃:,p−1:pΘ
T

(16) p := max{p− 1, 2}
(17) Else p := p+ 1
(18) End
Note that Ac

a:b,c denotes the entries from rows a to b in the c-th column.
Ac
a:b,: is the submatrix of Ac from rows a to b across the whole columns.
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5.3 Gram-Schmidt procedure based LRA detection

The same method is performed as the complex-valued channel matrix and

vectors in Chapter 3. We perform the simple rounding quantization operations

as v̂i = Q{ṽ(LR−MMSE)
i }, i ∈ [1,m]. The new transmit signal vector v̂ in the

LR domain is transformed back as ŝS = Tv̂. Then, ŝ is shifted back and scaled

back, expressing as ŝ := S−1[ŝS] = 2ŝS− (K − 1)1m. The final decision ŝ is forced

to the nearest constellation points if they are lying outside the original signal

constellation as ŝ := C[ŝ].

5.3 Gram-Schmidt procedure based LRA detec-

tion

The real GS orthogonalization algorithm is performed after the real LLL algo-

rithm shown in Table 5.2. This algorithm is to transform the nearly orthogonal

lattice basis of R̃ into the purely orthogonal lattice basis of R̂ and create the

transformation matrix T̂ with det{T̂}=1. The upper triangular matrix T̂ with

unity diagonal entries and the non-diagonal entries is invertible. The column

vectors of the channel matrix R̂ = R̃T̂ are mutually orthogonal and span the

same subspace as that of the original channel matrix H̄.

Table 5.2: Real Gram-Schmidt orthogonalization algorithm

Input: R̃, and T̂ := Im; Output: R̂, T̂

(1) Initialization: R̂ := R̃
(2) for p:=2 to m
(3) for q:=p− 1 down to 1
(4) µq,p = r̂q,p/r̂q,q
(5) R̂1:q,p := R̂1:q,p − µq,pR̂1:q,q

(6) T̂:,p := T̂:,p − µq,pT̂:,q

(7) end
(8) end
(9) End
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Using R̂ called the GS-orthogonalized channel matrix and T̂, we have

y′ = R̃v + z′ = (R̃T̂)(T̂−1v) + z′ ≡ R̂u + z′ (5.8)

where z′ , Q̃Tz̄
2

and u , T̂−1v ≡ (T̂−1T−1)s = (TT̂)−1s with expressing T̂−1 as

T̂−1 =


1 τ12 . . . τ1,m−1 τ1,m

1 . . . τ2,m−1 τ2,m

. . .
...

...
1 τm−1,m

0 1

 (5.9)

The LLL algorithm does not guarantee to find out the shortest lattice vector.

Hence the LRA detection degrades the performance compared to the ML detec-

tion. The GSO procedure is performed after the LLL algorithm, which results

in R̂ to be a diagonal matrix with its orthogonal column vectors to be almost of

equal length. The highly reliable soft estimate ũ can be simply derived as

ũ = R̂−1y′ or ũi = y′i/r̂i,i, i ∈ [1,m] (5.10)

The entries of u are non-integers. Those of ũ cannot be quantized only using

the rounding operations like the LRA detection. û is obtained using the decision

method described in Chapter 3. After that, the soft estimate of ŝ is obtained as

v̂i = Q
{
ṽ

(LR−MMSE)
i

}
, i ∈ [1,m]

û = Q
{

ũ− T̂−1v̂
}

+ T̂−1v̂

ŝS = Q
{

TT̂û
}

ŝ = S−1[ŝS] = 2ŝS − (K − 1)1m

(5.11)

5.4 Proposed improved quantization scheme

5.4.1 Motivation

In the LRA detection, after the rounding operations of v̂ = dṽc, the symbols

are transformed to s-domain. In the case that the soft estimate ŝ is outside
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the original signal constellation, i.e., ŝi /∈ Z, i ∈ [1,m], we assume that the

quantization error occurs when performing v̂i = Q{ṽi}. This quantization error

in the v-domain may result in the detection error in the s-domain. If this error

occurs in the i-th row of the transmit signal, it has to propagate to as many

symbols as non-zero entries of the i-th column of T.

As a result, there are two cases for the difference of (ṽi − v̂i) as shown in Fig.

5.1. If the quantization error occurs in such a case that the difference of (ṽi− v̂i) is

close to zero as shown in Fig. 5.1 (a), the final estimate of the transmit signal may

be corrected even if the quantization error happens in the v-domain. However,

the quantization error often generates in the case that the difference of (ṽi − v̂i)
is around ±0.5 as shown in Fig. 5.1 (b). Therefore, the quantization scheme is

much important for improving the BER characteristics in the LRA detection.

In this chapter, we propose a new quantization scheme to improve the BER

characteristics for quantizing the new signal vector ṽ instead of the rounding oper-

ations in the conventional LRA detection. Hence we introduce the Gram-Schmidt

orthogonalization procedure after the LLL algorithm. Using the purely orthogo-

nal lattice basis, the proposed detection has much better decision boundary and

less noise enhancement compared to the signal estimation in the conventional

LRA detection. This property is the motivation to be applied in the proposed

quantization scheme.

iviv

îv ˆ 1iv +

iviv

ˆ 1iv - îv

ˆ(a) | | 0i iv v- »ˆ̂
i i
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Figure 5.1: The difference between the soft estimate symbol and the rounding
integer: i ∈ [1,m].
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5.4.2 Proposed quantization scheme

In this section, the quantization scheme is proposed for the new signal v in the

v-domain. Considering the decision boundary, more reliable estimate ũ is first

obtained in (5.10). Since the decision method for ũ is more complicated in (5.11)

[39], the proposed scheme has no quantization for ũ and is totally different from

the LR-GS detection with low complexity. According to the information of T̂−1,

interference-free operations are achieved if the following equation holds:

ṽ , T̂−1ũ, i.e., (5.12)


ṽ1

ṽ2
...

ṽm−1

ṽm

 =


1 τ12 . . . τ1,m−1 τ1,m

1 . . . τ2,m−1 τ2,m

. . .
...

...
1 τm−1,m

0 1




ũ1

ũ2
...

ũm−1

ũm


Due to the triangular structure of the matrix T̂−1, the equations for v̂ lead

to the following recursions as

v̂m = Q{ṽm} = Q{ũm} , ûm

v̂m−1 = Q{ṽm−1} = Q{ũm−1 − τm−1,mv̂m} , ûm−1 − τm−1,mv̂m
...

v̂i = Q{ṽi} = Q

{
ũi −

m∑
j=i+1

τi,j v̂j

}
, ûi −

m∑
j=i+1

τi,j v̂j

...

v̂1 = Q{ṽ1} = Q

{
ũ1 −

m∑
j=2

τ1,j v̂j

}
, û1 −

m∑
j=2

τ1,j v̂j

(5.13)

where ûi is defined as the decided symbol of ũi, i ∈ [1,m]. Note that ûi is a

non-integer. We introduce û in order to explain the quantization operation for

v as illustrated in Fig. 5.2. Using the GSO algorithm, v̂i is a function of ûj,

j ∈ [i + 1,m]. This ṽ in (5.13) is different from the estimate of ṽ(LR−MMSE)

obtained directly in (5.7).
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Figure 5.2: The decision flow of the soft estimate ûi: i ∈ [1,m].

As mentioned above, the quantization errors often happen in the case that

the difference between the estimate symbol and the rounding integer is around

±0.5. Hence we give another quantization candidate after rounding off the soft

estimate symbol, which candidate is usually obtained by adding or subtracting 1

based on the rounding integer as

v̂
(k)
i ,

{
v̂

(1)
i = v̂i ≡ dṽic
v̂

(2)
i , v̂i + sgn(ṽi − v̂i)

(5.14)

where i ∈ [1,m] and sgn(·) represents the signum function, which is a sign of

the real number, i.e. sgn(ṽi − v̂i > 0) = +1 and sgn(ṽi − v̂i < 0) = −1. The

superscript k is defined as the index of the quantization candidates, k ∈ {1,2}.
Following the structure of the ML detection, the tree search of v̂ consists of

m entries and 2m combination candidates, which requires high complexity for the

useless exhaustive search. The proposed detection applies a simple tree search,

which is different from the QRM-MLD with the fixed number of the surviving

candidates in each detection layer [17]−[23]. For each detection layer of the tree

search in the proposed scheme, there are three major operations:

• Candidates expansion: Expand the children candidates from each surviving

path, which are obtained in [22].

• Path metric evaluations: Calculate the path metric for all the possible

branches.
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• Sorting and surviving: Sort the path metric and survive the branches with

the smallest path metric from the possible branches. The rest of branches

should be discarded.

In the proposed quantization scheme, we define that the number of the sur-

viving candidates (SC) in the i-th layer is expressed as NSC(i), and specify the

maximum number of the surviving candidates in each layer as Nmax, where

NSC(i) ≤ Nmax and the value of Nmax is predetermined. For ṽm, there are

two quantization candidates v̂
(k)
m , k ∈ {1,2}. For the candidates expansion be-

tween the current and the previous layers, the quantization candidates for v̂i,

i = m− 1,m− 2, . . . , 1, are expressed as

v̂
(k,l′)
i =

v̂
(1,l′)
i = Q

{
ṽ

(l′)
i

}
= Q

{
ũ

(l′)
i −

∑m
j=i+1 τi,j v̂

(l′)
i

}
v̂

(2,l′)
i = v̂

(1,l′)
i + sgn

(
ṽ

(l′)
i − v̂

(1,l′)
i

) (5.15)

where the superscript k denotes the index of the candidates from the same path

Π
(l′)
i+1, k ∈ {1,2}, and the superscript l′ is the index of the surviving path from the

previous layer, l′ ∈ [1,NSC(i+1)]. The surviving candidates of the partial decided

vector in the previous layer are expressed in sequence as v̂
(l′)
i+1 =

[
v̂

(l′)
i+1, . . . , v̂

(l′)
m

]T

.

Hence there are 2NSC(i+ 1) possible candidates for the partial vectors in the i-th

layer, which can be expressed as

v̂
(k,l′)
i =

[
v̂

(k,l′)
i , v̂

(l′)
i+1, . . . , v̂

(l′)
m

]T

(5.16)

In order to obtain an optimum quantization result, we define the branch metric

in the i-th detection layer as

λ(k)
m ,

∣∣ṽm − v̂(k)
m

∣∣2
λ

(k,l′)
i ,

∣∣∣ṽ(l′)
i − v̂

(k,l′)
i

∣∣∣2, i = m− 1, . . . , 1
(5.17)
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and the accumulated branch metric called the path metric as

Λ(k)
m , λ(k)

m

Λ
(k,l′)
m−1 , λ

(k,l′)
m−1 + Λ(l′=k)

m

Let the l′-thmin
k

Λ
(k,l′)
m−1 , Λ

(l′)
m−1, then Λ

(k,l′)
m−2 ,λ(k,l′)

m−2+Λ
(l′)
m−1

...

Let the l′-thmin
k

Λ
(k,l′)
i+1 , Λ

(l′)
i+1, then Λ

(k,l′)
i , λ

(k,l′)
i + Λ

(l′)
i+1

...

Let the l′-thmin
k

Λ
(k,l′)
2 , Λ

(l′)
2 , then Λ

(k,l′)
1 , λ

(k,l′)
1 + Λ

(l′)
2

(5.18)

where Λ
(l′)
i+1 denotes the l′-th smallest path metric of the surviving path Π

(l′)
i+1

in the previous layer, corresponding to v̂
(l′)
i+1 =

[
v̂

(l′)
i+1, v̂

(l′)
i+2, . . . , v̂

(l′)
m

]T

. In the i-

th layer, we rank the path metric of the possible candidates in the ascending

order. Let Λ
(l)
i denote the l-th smallest path metric of the surviving path Π

(l)
i

after the surviving operations, where l ∈ [1,NSC(i)] and Λ
(1)
i ≤ Λ

(2)
i ≤ · · · ≤

Λ
(NSC(i))
i . Correspondingly, the partial decided signals v̂

(l)
i are expressed as v̂

(l)
i =[

v̂
(l)
i , v̂

(l)
i+1, . . . , v̂

(l)
m

]T

.

According to the ML detection, the final estimate of the transmit signal is

determined by the path with the smallest path metric. In general, we can express

the Euclidean distance as

E
[
‖y −Hs‖2] = dN0 (5.19)

where d is a fuzzy factor and N0 is one-sided noise power spectral density. To a

certain degree, we can apply the partial path metric to evaluate the reliability of

the surviving paths in each detection layer. Since R̂ is a diagonal matrix, R̂TR̂

is also a diagonal matrix, expressed as

R̂TR̂ = diag
{
|r̂11|2, |r̂22|2, . . . , |r̂m,m|2

}
(5.20)

It is obvious that the smaller eigenvalue of R̂TR̂ will cause more errors due to

noise enhancement. Hence the norm of |r̂i,i|2 can denote the channel condition
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for the i-th entry of the transmit signal. Using the property of the channel, we

set the threshold function for the i-th layer, which is a function of the minimum

partial path metric and the norm of |r̂i,i|2, defined as

oi , min Λ
(k,l′)
i

(
1 +RD/|r̂i,i|2

)
(5.21)

where i is from m down to 1 and |r̂i,i|2 is normalized as RD , (
∑m

i=1 |r̂i,i|2)/m.

RD is used to measure the relative channel power gain with respect to the channel

power gain across all the detection layers. Note that RD/|r̂i,i|2 is fluctuated up

and down centering around 1.

According to (5.19), the partial path metric Λ
(k,l′)
i is instead of N0 and the

factor d is replaced by (1 +RD/|r̂i,i|2). Hence the threshold oi denotes the search

radius in each detection layer. Combined with the property of the channel gain,

the threshold function is updated by the minimum partial path metric in each

detection layer in order to retain the quantization candidate with the branch

metric close to 0.25.
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Table 5.3: Proposed quantization scheme

Input: T̂−1, and ũ; Output: NSC(1), and v̂(l), l ∈ [1,NSC(1)]
(1) Initialization: set NSC(i) = 0, i ∈ [1,m], Nmax, andRD = (

∑m
i=1 |r̂i,i|2)/m

(2) i = m
(3) ṽm = ũm

Obtain v̂
(k)
m and Λ

(k)
m ;

Survive the candidates: NSC(m).
(4) i = m− 1
(5) while i ≥ 1

(6) Obtain v̂
(k,l′)
i in (5.15) and Λ

(k,l′)
i in (5.18);

(7) Sort Λ
(k,l′)
i in the ascending order: Λ

(l′′)
i , l′′ ∈ [1, 2NSC(i+ 1)];

(8) oi , Λ
(1)
i (1 +RD/|r̂i,i|2);

(9) Compare the path metric and the threshold:
for l′′ = 1 to 2NSC(i+ 1)

if Λ
(l′′)
i ≤ oi, NSC(i) := NSC(i) + 1;

else break;
end for

(10) Survive the paths: NSC(i) := min {NSC(i),Nmax} and

v̂
(l)
i =

[
v̂

(l)
i , . . . , v̂

(l)
m

]T

, l ∈ [1,NSC(i)];

(11) i := i− 1;
(12) end while
(13)End

The proposed quantization scheme is summarized in Table 5.3. The super-

script l′′ in step (7) of Table 5.3 denotes the index of the sorted path metric in

the ascending order among all the possible candidates, l′′ ∈ [1, 2NSC(i+ 1)]. And

through l′′-loop in step (9), we survive the candidates with the path metric un-

der the threshold in this layer. The iteration operation from steps (5) to (12) is

illustrated in Fig. 5.3. At last, it is the key parameter for the output of NSC(1).

• If NSC(1) = 1 , then let ŝS = Tv̂ and ŝ := C[S−1[ŝS]].

• Else, let NSC(1) 6= 1. There are two candidates: v̂(l), l ∈ [1,Nmax]. Then

let ŝS(l) = Tv̂(l) and ŝ(l) := C[S−1[ŝS(l)]]. After that, perform the ML metric:
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î
v

(2,1)
î
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î
v

(1,1)
î
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Figure 5.3: The iteration operation of the proposed quantization scheme in the
i-th entry, i ∈ [1,m− 1]: steps (5) - (12) in Table 5.3.

ŝ = arg min
l∈[1,Nmax]

∥∥y −Hŝ(l)
∥∥2

(5.22)

According to the value of NSC(1), we search over at most Nmax candidates of

ŝ to decide the final estimate of the transmit signal. However, the ML metric

should be performed only if NSC(1) 6= 1. The proposed detection is to use a

function of path metric ratio. The magnification factor of the minimum path

metric is determined by the norm of the diagonal element of R̂, which tightens

the threshold with the less noise enhancement or looses the threshold due to the

rounding integer with less reliability. It illustrates that the quantization errors

may rarely happen if the threshold approaches the minimum partial path metric.

Although the additional computational complexity is required in order to correct

the quantization error, the improvement of the BER performance is expected as
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shown in numerical results.

5.4.3 Effort for quantization error reduction

To evaluate the effort for the quantization error reduction, we observe the per-

centage of the decided estimate of ŝi lying out the original signal constellation

points, i.e. ŝi /∈ Z, any i ∈ [1,m], which is defined as the probability of the

quantization error.

In this section, we investigate the probability of the quantization error in

minus logarithmic scale for the quantization schemes of the proposed detection,

the conventional LR-MMSE detection and the LR-GS detection, respectively.

The probability of the quantization errors in minus logarithmic scale is higher,

then the quantization errors are fewer.

Figures 5.4 - 5.9 show Eb/N0 versus the probability of the quantization er-

ror in minus logarithmic scale for QPSK,16QAM and 64QAM in the 4 × 4 and

8 × 8 MIMO systems, respectively. Compared to the LR-MMSE detection, the

quantization error of the LR-GS detection is reduced due to using the GSO algo-

rithm. For the proposed detection, the effort for the quantization error reduction

is valid. The quantized error remarkably reduced as the value of Nmax increased

in particular in the high Eb/N0 region in the 8× 8 MIMO system.
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Figure 5.4: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 4× 4 MIMO: QPSK.

Figure 5.5: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 8× 8 MIMO: QPSK.

Figure 5.6: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 4× 4 MIMO: 16QAM.

Figure 5.7: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 8× 8 MIMO: 16QAM.
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Figure 5.8: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 4× 4 MIMO: 64QAM.

Figure 5.9: The Eb/N0 vs. the proba-
bility of the quantization error in minus
log-scale in 8× 8 MIMO: 64QAM.

5.5 Numerical results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in the

4×4 and 8×8 MIMO systems, respectively. In the simulations, the channel gains

were generated using the i.i.d. Gaussian random variables with zero mean and

variance of 1/2 for each dimension. Additive noise at each receive antenna was

generated using the i.i.d. Gaussian random variables with zero mean and variance

of N0/2 for each dimension. The performances of the different detections were

measured by the BER performance and the complexity.

5.5.1 Suitable values of factor δ and Nmax

In the LLL algorithm, δ is chosen as δ ∈ (0.25,1]. The value of δ close to 1 is

preferred for approximating the shortest lattice vector at the cost of the high

complexity for the swapping condition. The value of δ is the tradeoff between the

BER performance and the complexity. Hence we observe that the various value

of δ has a great influence on the BER performance, and look for a suitable value

of δ for the LR-MMSE, LR-GS and the proposed detection with Nmax = {2, 3, 4},
respectively.
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The various value of δ vs. the BER characteristics for QPSK, 16QAM and

64QAM in the 4 × 4 MIMO system are shown in Figs. 5.10, 5.12 and 5.14,

respectively. In Fig. 5.10, the BER curves for QPSK are compared at the fixed

Eb/N0 of 16dB. The BER characteristics of the proposed detection with Nmax =

{2, 3, 4} have a little variation as δ is more than 0.5, in particular at a BER

between 10−4 and 10−5. For the conventional detections, the BER characteristics

achieve the great performance with δ more than 0.75. Figure 5.12 shows the

BER curves for 16QAM at the fixed Eb/N0 of 21dB. The proposed detections

with Nmax = {2, 3, 4} have almost same BER performance and provide the great

BER performance at δ ≥ 0.75. As seen in Fig. 5.12, the BER curves for 64QAM

are compared at the fixed Eb/N0 of 26dB. The trends of the proposed detections

are as same as that of the BER curves for 16QAM in Fig. 5.12. The proposed

detections with Nmax = {2, 3, 4} provide the great BER performance at δ ≥ 0.75.

Figures 5.11, 5.13 and 5.15 shows the various value of δ vs. the BER charac-

teristics for QPSK, 16QAM and 64QAM in the 8×8 MIMO system, respectively.

We observe the BER characteristics for the proposed detection at the fixed Eb/N0

of 13dB, 18dB and 23dB for QPSK, 16QAM and 64QAM, respectively. For the

conventional detections, the value of δ is assigned as 0.75 for the LR-MMSE and

LR-GS as the suitable choice. For the proposed detections with Nmax = {2, 3, 4}
regardless of the modulation order achieve better BER performance as the value

of δ or Nmax increases. Hence, the values of δ and Nmax are the tradeoff factors

between the complexity and the BER performance. We summarize the suitable

values of both factors for the proposed detection in Table 5.4. Note that the value

of δ is assigned as 0.75 for the LR-MMSE and LR-GS as the common choice.

Table 5.4: The suitable values of factor δ and Nmax for the proposed detection

Modulation order Nt = Nr = 4 Nt = Nr = 8
QPSK δ = 0.55, Nmax = 2 δ = 0.95, Nmax = 3

16QAM δ = 0.75, Nmax = 2 δ = 0.95, Nmax = 3
64QAM δ = 0.75, Nmax = 2 δ = 0.95, Nmax = 3
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Figure 5.10: The δ vs. BER char-
acteristics in the 4 × 4 MIMO system:
QPSK.

Figure 5.11: The δ vs. BER char-
acteristics in the 8 × 8 MIMO system:
QPSK.

Figure 5.12: The δ vs. BER char-
acteristics in the 4 × 4 MIMO system:
16QAM.

Figure 5.13: The δ vs. BER char-
acteristics in the 8 × 8 MIMO system:
16QAM.
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Figure 5.14: The δ vs. BER char-
acteristics in the 4 × 4 MIMO system:
64QAM.

Figure 5.15: The δ vs. BER char-
acteristics in the 8 × 8 MIMO system:
64QAM.

5.5.2 BER characteristics

We made computer simulations of the BER characteristics versus Eb/N0 us-

ing the conventional LR-MMSE, the LR-GS, the proposed detection, and the

QRM-MLD, respectively. The QRM-MLD based on QR decomposition and M-

algorithm is one solution to relatively reduce the complexity of the ML detection

while retaining the ML performance described in [17]−[23]. M is defined as the

number of the surviving branches in each detection layer of the tree search, which

is a tradeoff between the complexity and the BER performance. The QRM-MLD

totally achieves the ML performance with M=8, 16, and 64 for QPSK, 16QAM

and 64QAM in the 4× 4 MIMO system, M=16, 64, and 128 for QPSK, 16QAM

and 64QAM in the 8 × 8 MIMO system, respectively. The proposed detection

applies the suitable values of factors as seen in Table 5.4.

Figure 5.16 shows the BER characteristics versus Eb/N0 for QPSK in the

4× 4 MIMO system. The BER performance of LR-GS further improves about 1

dB at a BER of 10−5 compared to that of the LR-MMSE detection. The BER

curve of the proposed detection almost agrees with that of the ML performance.

In Fig. 5.18, the BER curve of the LR-MMSE for 16QAM achieves the sub-

optimal performance with about 2dB worse than that of the ML detection at
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a BER of 10−5. Furthermore, the LR-GS can further gain 1dB over the LR-

MMSE. However, the BER curve of the proposed detection totally approaches

the ML curve at a BER below 10−4. This fact also verified that the effort for

the quantization error reduction as shown in Fig. 5.6 was corresponding to the

BER improvement in Fig. 5.18 for 16QAM. As seen in Fig. 5.20, the gain of the

proposed detection for 64QAM is almost the same as that for 16QAM over the

LR-MMSE. The BER curve of the proposed detection is also equivalent to that

of the ML detection at a BER below 10−4. Thus, the proposed quantization error

reduction scheme is effective even for the high modulation order.

Figures 5.17, 5.19 and 5.21 show the BER characteristics versus Eb/N0 for

QPSK, 16QAM and 64QAM in the 8 × 8 MIMO system, respectively. For the

conventional detection methods, the BER performances of LR-MMSE and LR-

GS are still far away to that of the ML detection. The proposed detection for

QPSK approaches the ML curve at a BER of 10−5. And the BER curve of the

proposed detection is more steeper than that of the ML curve. Therefore, they

may coincide below the BER of 10−5. The BER performance of the proposed

detection for 16QAM further improves 5dB compared to the LR-GS detection

and is still 1dB worse than that of the ML detection at a BER of 10−5. As the

same trend for 64QAM, the BER performance of the proposed detection further

improves 5.5dB compared to the LR-GS detection and is still 1dB worse than

that of the ML detection at a BER of 10−5.

Therefore, the proposed detection can provide the near-ML performance in

the 4 × 4 MIMO system even for the high modulation order such as 64QAM.

However, the proposed detection has the great improvement of BER performance

and achieves the suboptimal BER performance in the 8× 8 MIMO system.
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Figure 5.16: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
QPSK.

Figure 5.17: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
QPSK.

Figure 5.18: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
16QAM.

Figure 5.19: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
16QAM.
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Figure 5.20: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
64QAM.

Figure 5.21: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
64QAM.

5.5.3 Computational complexity

The flat fading channel is assumed that the data packet length is much shorter

than the coherence time of the channel. Hence we can treat the channel to be

non-time varying during the packet duration. If the LLL reduction and GSO

procedure are performed at the beginning of the packet, we can apply them all

over the packet. Therefore, the above complexity can be negligible. In this

chapter, we focus on the analysis of the computational complexity in the signal

estimation stage.

We evaluated the number of the surviving candidates in the i-th layer as

NSC(i) in Figs. 5.22 - 5.27 for QPSK, 16QAM and 64QAM in the 4 × 4 and

8 × 8 MIMO systems, respectively. In this chapter, we assigned NSC(8) = 2 in

the 4 × 4 MIMO system. From the 7th entry down to the 2nd entry, the same

iteration operations were done six times. Therefore, we counted up the average

number of the surviving candidates. It was important for the value of NSC(1) to

determine whether or not to perform the ML metric in (5.22). As similar in the

8×8 MIMO system, we assigned NSC(16) = 2 for QPSK, NSC(16) = 3 for 16QAM

and 64QAM, respectively. From the 15th entry down to the 2nd entry, the same

iteration operations were done fourteen times. Therefore, we also counted up
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the average number of the surviving candidates. The value of NSC(1) is also to

determine whether or not to perform the ML metric.

Figure 5.22: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 4×4 MIMO: QPSK.

Figure 5.23: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 8×8 MIMO: QPSK.

Figure 5.24: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 4×4 MIMO: 16QAM.

Figure 5.25: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 8×8 MIMO: 16QAM.
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Figure 5.26: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 4×4 MIMO: 64QAM.

Figure 5.27: The Eb/N0 vs. the aver-
age number of surviving candidates for
each layer in the 8×8 MIMO: 64QAM.

Table 5.5: The computational complexity of the proposed detection

The real operations The computational complexity (flops)
Scaled and shifted receive signal: ȳS 2m+ 2n

y′ , Q̃TȳS 2m2 + 2mn− 2m
Signal vector ũ in (5.10) m

Expansion candidates for v̂ in (5.15) 2 +
∑m−1

i=1 NSC(i+ 1)(2m− 2i+ 2)

Path metric in (5.17) and (5.18) 4 +
∑m−1

i=1 6NSC(i+ 1)
Threshold in (5.21) m
Estimate of transmit signal: ŝS = Tv̂ (2m2 −m)NSC(1)
Scaled back and shifted back signal: ŝ 2mNSC(1)
ML metric in (5.22): only if NSC(1) 6= 1 (2mn+ 2n)NSC(1)
Note that i ∈ [1,m] and NSC(i) ≤ Nmax.

In the 4 × 4 MIMO system, NSC(1) is around 1 at Eb/N0 of 10dB, 15dB

and 20dB with the BER of 10−2 for QPSK, 16QAM and 64QAM, respectively.

Hence the complexity of the proposed detection may neglect the computing for

performing the ML metric in (5.22). The trends of the average number of the

surviving candidates from the 7th layer down to the 2nd layer for QPSK, 16QAM

and 64QAM are almost equivalent to 1 in the high Eb/N0 region, respectively.
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As a result, the iteration operations for the quantization candidates require much

lower complexity.

A similar observation for the 8×8 MIMO system, NSC(1) is around 1 at Eb/N0

of 11dB, 15dB and 19dB with the BER of 10−3 for QPSK, 16QAM and 64QAM,

respectively. The average number of the surviving candidates from the 15th layer

down to the 2nd layer for QPSK, 16QAM and 64QAM are almost equivalent to

1 in the high Eb/N0 region, respectively. Hence, the iteration operations for the

quantization candidates require a little additional complexity.

According to the average number of the surviving candidates, we presented

the complexity of the proposed detection in the signal estimation stage in Ta-

ble 5.5. In the proposed quantization scheme, a simple tree search requires the

computing for expanding candidates in (5.15), the evaluations of path metric in

(5.17) and (5.18), and updating the threshold in (5.21). From a surviving path

Π
(l′)
i+1, l

′ ∈ [1,NSC(i + 1)], ṽ
(l′)
i is first derived, which requires (2m − 2i) flops.

Then, there are 2 flops for computing the rounding operation and generating the

quantization candidate. Hence the total complexity in (5.15) is counted up as

(2 +
∑m−1

i=1 NSC(i + 1)(2m − 2i + 2)) flops. For the computing of oi, the value

(1 +RD/|r̂i,i|2) is predetermined at the beginning of the packet. Hence only one

multiplication is required in each detection layer in (5.21).

In the high Eb/N0 region, the simulation results exhibited that NSC(i) ≈ 1.

The proposed detection in the signal estimation requires (5m2 + 2mn + 11m +

2n− 2) flops. The complexity is about 550 flops and 1998 flops in the 4× 4 and

8 × 8 MIMO system, regardless of the modulation order, respectively. However,

if we estimate the transmit signal using the conventional LR-MMSE detection,

the complexity for computing y′ and ṽ in (5.6) and (5.7) is counted up as (3m2 +

2mn−m) flops. Then the new transmit signal is transformed back to s-domain,

which requires (2m2−m) flops. The total complexity of the LR-MMSE including

the scaling and shifting operations is (5m2 +2mn+2m+2n) flops, which requires

about 480 flops for m = n = 8. Therefore, the extra complexity for the proposed

detection is (9m− 2) flops compared to the conventional LR-MMSE.

Considering the complexity of the QRM-MLD described in Chapter 2, the

QRM-MLD requires 574, 2820 and 18064 flops for QPSK, 16QAM and 64QAM
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in the 4 × 4 MIMO system, respectively. Meanwhile, the complexity of the pro-

posed detection at the BER below 10−2 only requires 550 flops regardless of the

modulation order. As a consequence, the proposed detection scheme can achieve

the near-ML performance with only a little additional complexity, which is about

96%, 20% and 3% of the complexity of the QRM-MLD for QPSK, 16QAM and

64QAM, respectively. In the 8× 8 MIMO system, the QRM-MLD requires 6262,

31228 and 92680 flops for QPSK, 16QAM and 64QAM, respectively. Then, the

complexity of the proposed detection at the BER below 10−3 only requires 1998

flops regardless of the modulation order. As a consequence, the proposed detec-

tion scheme can achieve the near-ML performance with only a little additional

complexity, which is about 32%, 6% and 2% of the complexity of the QRM-MLD

for QPSK, 16QAM and 64QAM, respectively.

5.6 Chapter summary

In this chapter, we proposed an improved quantization scheme for LRA MIMO

detection using the GSO procedure. The new signal ũ in the u-domain was first

detected, which was obtained by the receive signal and the GS-orthogonalized

channel matrix. Then we led it to the new signal estimate of v̂ in the v-domain

accompanying with the information of T̂−1. By applying the signals in the u- and

the v-domains, we successfully extracted much reliable estimate of the transmit

signal in the s-domain.

In order to decrease the quantization errors in the quantization step in the

v-domain, we gave another quantization candidate according to the rounding in-

teger. We used a simple tree search in order to rarely correct some quantization

errors. The threshold function was defined using the orthogonal lattice basis of

the channel matrix and updated by the minimum partial path metric for each

entry of the signal vectors. Hence the BER performance of the proposed detec-

tion was improved by decreasing the quantization errors. The numerical results

exhibited that the proposed detection achieved the near-ML performance only

with a little additional complexity compared to the LR-MMSE. The complexity

of the proposed detection at the BER in the high Eb/N0 region was about 20%

and 3% of that of the QRM-MLD in the 4 × 4 MIMO system, and about 6%
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and 2% of that of the QRM-MLD in the 8 × 8 MIMO system, for 16QAM and

64QAM, respectively. In addition, the proposed quantization scheme was efficient

even for the high modulation order.
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Chapter 6

Ordering SIC with Conditional

List Generation for

Lattice-Reduction Aided MIMO

Detection

From the previous chapter, the proposed detection achieves the optimal BER

performance with very low complexity in the small size MIMO system. The BER

performance is remarkably improved in the large size MIMO system with high

costs in the LLL algorithm (δ = 0.95). In this chapter, we focus on improving

the BER performance in the large size MIMO system and requiring relatively low

complexity in the LR operations and the signal estimation.

6.1 Introduction

Many detection methods have been proposed in order to achieve the near-ML per-

formance. In [45], the optimal OSIC based on LR has been proposed by updating

the mean and variance of the effective symbols in the LR domain at each SIC de-

tection stage to achieve the near-ML performance in the 4× 4 MIMO system. In

[46], the channel matrix is forward and backward reduced by the LLL algorithm,

respectively. Using two reduced channel matrices in the signal estimation stage

can decrease the difference of BERs among all the receive antennas. Meanwhile,
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the detection scheme also applies the list detection in order to improve the BER

performance. However, it requires somewhat high complexity for the ML metric.

The detection scheme in [47] combines the SIC detection with the list detection.

In the signal estimation, the partial symbols are first detected by the list detection

to avoid the error propagation. After that, the rest of the symbols is obtained

by the SIC operations, whose complexity is determined by the length of candi-

dates. These detection scheme using the SIC or/and the list detection have the

improvement of the BER performance in the 4× 4 MIMO system accompanying

with the complexity costs. Hence, most of the low complexity detection methods

are effect in the small size MIMO system and the BER improvement is not good

in the large size MIMO system.

In this chapter, we first apply the OSIC based on LR, called LR-OSIC, which

can obtain more reliable estimation of the transmit signal compared to the LR-

SIC. The improvement of the LR-OSIC is not sufficient to approach the ML

performance in the large size MIMO. Therefore, we introduce the list detection.

In the LR-OSIC, the estimate symbol in the LR domain is also quantized using

the rounding operation. Through the observation of the probability distribution

of the difference between the estimate symbol and the rounding integer, we eval-

uate the channel condition. According to the mean squared error of the signal

vector in the LR domain, we use the conditional list generation to update the

soft estimate of the LR-OSIC under the ill-conditioned channel. Using this prop-

erty, we decrease the complexity for computing the useless list candidates in the

better-conditioned channel. The simulation results also verify that the proposed

detection can achieve the near-ML performance in the 8 × 8 MIMO system and

require almost the same complexity of the LR-OSIC in the high Eb/N0 region.

6.2 System model

The system model employes the real-valued channel matrix and vectors as same

as Chapter 5. Recall (5.1) as

y = Hs + z (6.1)
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where the equivalent real-valued channel matrix and vectors letting n = 2Nr and

m = 2Nt are defined as

H ,

[
Re[Hc] −Im[Hc]
Im[Hc] Re[Hc]

]
∈Rn×m, s ,

[
Re[sc]
Im[sc]

]
∈ Zm×1,

y ,

[
Re[yc]
Im[yc]

]
∈ Rn×1, and z ,

[
Re[zc]
Im[zc]

]
∈ Rn×1 (6.2)

We employ the extended matrix form of the channel matrix and vectors as

ȳ ,

[
y

0m

]
, H̄ ,

[
H√
γ−1Im

]
, z̄ ,

[
z

−
√
γ−1s

]
(6.3)

where γ = Es/N0 with Es = E[‖s‖2]
m

. Then it holds instead of (6.1) using the

QR-decomposition of the channel matrix H̄=QR as that

ȳ = H̄s + z̄ ≡ QRs + z̄ (6.4)

The real LLL algorithm is firstly performed in Table 5.1 to transform R as

R̃. By pre-multiplying Q̃T, the model system using (5.6) is rewritten as

y′ = Q̃TȳS

= R̃v + QT z̄

2

= R̃v + z′

(6.5)

where z′ , Q̃T z̄
2
.

In the case that the entries of s are of the commonly used QAM mapping,

proper shifting and scaling of s is necessary in order to derive ṽ. The detailed

explanation on shifting and scaling operations is given in Chapter 5. Thus, LR-

SIC detection scheme starts from the last entry of the signal vector. The last entry

of signal vm is first derived as v̂m = Q{y′m/r̃m,m}. Assuming that the previous

decisions are correct, the interferences can be cancelled in each step. The rest of
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the transmit signals are derived in the following recursion as

v̂i = Q

{
y′i −

∑m
j=i+1 r̃i,j v̂j

r̃i,i

}
, i = m− 1, . . . , 1. (6.6)

As the same method as the LR-MMSE detection, the signal vector in the LR

domain should be transformed back into the s-domain as

ŝS = Tv̂ (6.7)

ŝ = S−1[ŝS] = 2ŝS − (K − 1)1m (6.8)

Using the same method, the final decision ŝ is forced to the nearest constella-

tion points if they are lying outside the original signal constellation as ŝ := C[ŝ].

6.3 Proposed LR-OSIC with conditional list gen-

eration

The LRA detection can achieve full diversity gain like the ML detector. How-

ever, the LLL algorithm does not guarantee to find out the shortest lattice vector.

Hence the LRA detection degrades the performance compared to the ML detec-

tion, especially in the large size MIMO. We first present the LR-SIC detection,

and next the more reliable symbols are prior to being detected in the LR-OSIC.

After that, we introduce the conditional list generation based on the soft es-

timate of the LR-OSIC to rarely correct the estimate errors, leading to better

BER performance. Since the proposed detection is based on the LR-OSIC, first

the ordering method will be briefly described as follows.

6.3.1 Ordering the real lattice basis of channel matrix

Ordering the column vectors of the LLL-reduced channel matrix brings large

improvement on the BER performance of the LR-SIC due to decreasing the error

propagation. The estimate errors of the new signal vector in the LR domain

correspond to the main diagonal entries of the error covariance matrix Φ, defined
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as

Φ = E
[
(ṽ − v)(ṽ − v)T

]
= E

[
R̃−1z′z′T(R̃−1)T

]
= R̃−1E

[
z′z′T

]
(R̃−1)T = (R̃)−1N0

8
Im(R̃−1)T

=
N0

8

(
R̃TR̃

)−1

(6.9)

It is obvious that the small eigenvalue of R̃TR̃ will lead to large errors due to

noise amplification. According to (6.9), let Ψ = (R̃TR̃)−1. In this chapter, we

propose a simplified ordering method using the output of the LLL algorithm in

the following procedures.

Algorithm: Ordering the real lattice basis.

Input: Q̃, R̃, and T.

Output: The updated Q̃, the updated R̃, and the ordered T.

• Step 1) Calculate Ψm = (R̃T
mR̃m)−1, where the subscript m denotes the

dimensions of the square matrix. Note that since R̃ is the upper triangular

matrix, the partial square matrix R̃l denotes the partial columns(rows) of

R̃ from the first column(row) to the l-th column(row), l ∈ [2,m].

• Step 2) Find out the minimum diagonal element of Ψm. Then the specific

transmit signal having the lowest detection error variance is first detected.

Swapping this specific column to the last column in R̃ and T by turns, we

apply the Givens rotation matrix Θ seen in Table 5.1 to keep the upper

triangular matrix for R̃. And Q̃ is also updated by multiplying ΘT.

• Step 3) The iterations including Step 1) and Step 2) are performed. In each

stage, Ψi = (R̃T
i R̃i)

−1 is first obtained, where i = m − 1, . . . , 2. Then the

column of R̃i corresponding to the minimum diagonal element of Ψi should

be swapped to the i-th column of R̃i by turns. Until the iteration with

i = 2 is finished, finally obtain the output the updated Q̃, the updated R̃

and T.

The ordering operations requires the polynomial complexity including the

computation of the error covariance matrix Ψi, i ∈ [1,m], and the Givens rotation
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matrix. Since the updated R̃ has the information of the detection error variance,

more reliable symbol is prior to being estimated by the SIC operations in (6.6).

The ordered T records the whole operations of the updated R̃, which is a unitary

matrix. At last, align back the estimate signals to the original order as ŝ :=

C[S−1[T−1v̂]].

6.3.2 Proposed LR-OSIC with conditional list generation

For the SIC operations, the simplest quantization in (6.6) is the rounding op-

eration as v̂ = Q{ṽ}. However, the superior BER cannot be achieved only by

rounding off the estimate symbol. First, we observe the probability distribution

of ṽ − v̂ with all the antennas’ signals using the LR-OSIC for QPSK, 16QAM

and 64QAM in the 4 × 4 and 8 × 8 MIMO systems as shown in Figs. 6.1 - 6.6,

respectively.

As illustrated in Figs. 6.1 - 6.6, the probability distribution of ṽ − v̂ is close

to the average distribution in the low Eb/N0 region. The quantization error often

happens in case that the difference of (ṽi − v̂i) is around ±0.5, i ∈ [1,m]. On

the contrary, the probability distribution of ṽ − v̂ approaches to the Gaussian

distribution as Eb/N0 increases. The quantization errors should rarely occur since

the difference is concentrated to zero.
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Figure 6.1: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 4× 4
MIMO: QPSK.

Figure 6.2: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 8× 8
MIMO: QPSK.

Figure 6.3: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 4× 4
MIMO: 16QAM.

Figure 6.4: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 8× 8
MIMO: 16QAM.
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Figure 6.5: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 4× 4
MIMO: 64QAM.

Figure 6.6: The probability distribu-
tion of ṽ− v̂ for LR-OSIC in the 8× 8
MIMO: 64QAM.

Hence we define the mean squared error of the new signal vector in LR domain

as εv ,
∑m

i=1 |ṽi− v̂i|2. And define a threshold of the mean squared error εTH as

εTH , ∆2 ·m (6.10)

with

∆2 ,

∑m
i=1 |ṽi − v̂i|2

m
(6.11)

where εTH is predetermined by the MIMO size and ∆2 denotes the average mean

squared error of the new signal vector, of which the difference of (ṽi − v̂i) is ±∆

to zero in Figs. 6.1 - 6.6. The value |∆| is chosen from |∆| = {0.1, 0.15, 0.2}
and |∆| ≤ 0.5. Therefore, if εv ≤ εTH , let the estimate symbols of the LR-OSIC

be the final decision. Else, we propose the conditional list detection to update

the estimate of the LR-OSIC. This proposed detection is called LR-OSIC with

conditional list generation.

The list detection is proposed based on the soft estimate of the LR-OSIC.

The list tree is generated in Fig. 6.7, where l denotes the list number, l ∈ [0,m].

The estimated symbols in the list 0 are detected by the LR-OSIC, expressing

as v̂(0) =
[
v̂

(0)
1 , v̂

(0)
2 , . . . , v̂

(0)
m

]T

. The quantization error often happens in case

that the difference of (ṽi − v̂i) is around ±0.5, i ∈ [1,m]. We give another
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(0)
1̂v

ROOT

(0)
2v̂

(0)
3v̂

(0)
4v̂

(1)
1̂v

(2)
1̂v

(3)
1̂v

(4)
1̂v

(2)
2v̂

(3)
2v̂

(4)
2v̂

(3)
3v̂

(4)
3v̂

(4)
4v̂

i=4

i=3

i=2

i=1

List l=0 l=1 l=4l=2 l=3

Figure 6.7: The example of list tree in 2× 2 MIMO.

candidate for each entry of the soft estimate of the LR-OSIC. Thus, the symbols

v̂
(l)
i with l = i marked white nodes in Fig. 6.7 are obtained by +1 or −1 on the

rounding integer obtained by the estimate of LR-OSIC. The symbols in the l-th

list v̂(l) =
[
v̂

(l)
1 , v̂

(l)
2 , . . . , v̂

(l)
m

]T

are defined as

v̂
(l)
i =


v̂

(0)
i l > i

v̂
(0)
i + sgn

(
ṽ

(0)
i − v̂

(0)
i

)
l = i

Q
{
ṽ

(l)
i

}
= Q

{
y′i−

∑m
j=i+1 r̃i,j v̂

(l)
j

r̃i,i

}
l < i

(6.12)

Then, all the list candidates can be expressed as

v̂(1) =
[
v̂

(1)
1 , v̂

(1)
2 , . . . , v̂(1)

m

]T

=
[
v̂

(1)
1 , v̂

(0)
2 , . . . , v̂(0)

m

]T

v̂(2) =
[
v̂

(2)
1 , v̂

(2)
2 , . . . , v̂(2)

m

]T

=
[
v̂

(2)
1 , v̂

(2)
2 , v̂

(0)
3 , . . . , v̂(0)

m

]T

...

v̂(l) =
[
v̂

(l)
1 , v̂

(l)
2 , . . . , v̂(l)

m

]T

=
[
v̂

(l)
1 , . . . , v̂

(l)
l , v̂

(0)
l+1, . . . , v̂

(0)
m

]T

...

v̂(m) =
[
v̂

(m)
1 , v̂

(m)
2 , . . . , v̂(m)

m

]T

=
[
v̂

(m)
1 , v̂

(m)
2 , . . . , v̂(m)

m

]T

(6.13)

In Fig. 6.7, the number under the nodes denotes the partial path metric for

115



6. ORDERING SIC WITH CONDITIONAL LIST GENERATION
FOR LATTICE-REDUCTION AIDED MIMO DETECTION

each list candidate. If εv > εTH in this example, the estimate symbols in list

2 should update the final new vector with smallest path metric. Thus, the ML

metric ignoring a scaling factor for constructing the list becomes

‖y −Hs‖2 ∼
∥∥∥y′ − R̃v

∥∥∥2

(6.14)

The probability function of the transmit signal can be expressed as P (y|s) =

1√
2πN0

exp
(
−‖y−Hs‖2

2N0

)
∼ 1√

2πN0
exp

(
−‖y

′−R̃v‖2
2N0

)
. According to (6.5), the new

signal vector can be expressed as

ṽ =R̃−1y′

=R̃−1(R̃v + z′)

=v + R̃−1z′

=v + R̃−1 QTz

2
=v + z̃

(6.15)

where z̃ , R̃−1 QTz
2

. Since the elements of z are i.i.d. Gaussian, z̃ is jointly Gaus-

sian with zero mean and covariance matrix given by G = N0

2
R̃−1QT

2

(
R̃−1QT

2

)T

=

N0

8

(
R̃TR̃

)−1

. Using the list candidates of the new signal vector, we have

P (y′|v̂(l)) = P (z′ = ṽ(l) − v̂(l))

=
1

((2π)m det G)
1
2

exp

(
−1

2

[
ṽ(l) − v̂(l)

]T
G
[
ṽ(l) − v̂(l)

]) (6.16)

Therefore the optimal estimate of new signal vector v̂ is chosen from v̂ =

{v̂(0), v̂(1), . . . , v̂(m)}, determined using the ED as

v̂<opt> = arg min
l∈[0,m]

m∑
i=1

∣∣∣∣∣y′i − r̃i,iv̂(l)
i −

m∑
j=i+1

r̃i,j v̂
(l)
j

∣∣∣∣∣
2

= arg min
l∈[0,m]

m∑
i=1

∣∣∣y′′(l)i − r̃i,iv̂(l)
i

∣∣∣2 (6.17)

where the receive signal subtracted the interferences is defined as y
′′(l)
i , y′i −
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∑m
j=i+1 r̃i,j v̂

(l)
j .

The proposed LR-OSIC with conditional list detection is summarized in Ta-

ble 6.1. The value of εTH is a tradeoff between the BER performance and the

complexity. In the proposed detection, we apply the ML metric in the LR domain

to obtain the optimal estimate of the new signal vector with the smallest path

metric. In some cases that the quantization errors may occur, the list detection

is used to update the soft estimate of the LR-OSIC in the condition of εv > εTH .

Hence the path metric of the updated estimate of the new signal vector should

be smaller than that of the estimate signal of the LR-OSIC, which results in the

superior BER performance.

Table 6.1: LR-OSIC with conditional list detection

Input: y′, the updated R̃, the ordered T and v̂(0); Output: ŝ

(1) Initialization: εTH and y′(l) = y′.

(2) εv ,
∑m

i=1 |ṽ
(0)
i − v̂

(0)
i |2

(3) if εv ≤ εTH
(4) v̂(Opt) = v̂(0).
(5) end if
(6) else
(7) List candidates are generated in (6.12): v̂(l), l ∈ [1,m].

(8) v̂(Opt) = arg minl∈[0,m]

∑m
i=1

∣∣∣y′(l)i − r̃i,iv̂
(l)
i −

∑m
j=i+1 r̃i,j v̂

(l)
j

∣∣∣2.

(9) end else
(10) ŝS = S−1[T−1v̂(Opt)].
(11) ŝ := C[S−1[ŝS]].
(12) End

6.4 Numerical results

The computer simulations were carried out for QPSK, 16QAM and 64QAM in the

4×4 and 8×8 MIMO systems, respectively. In the simulations, the channel gains

were generated using the i.i.d. Gaussian random variables with zero mean and

variance of 1/2 for each dimension. Additive noise at each receive antenna was

generated using the i.i.d. Gaussian random variables with zero mean and variance
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of N0/2 for each dimension. The performances of the different detections were

measured by the BER performance and the complexity.

6.4.1 Suitable values of factor δ and εTH

We observe that the various value of δ has a great influence on the BER per-

formance, and look for a suitable value of δ for the proposed detection with

εTH = {0.16, 0.36, 0.64}.
The various value of δ vs. the BER characteristics for QPSK, 16QAM and

64QAM in the 4 × 4 MIMO system are shown in Figs. 6.8, 6.10 and 6.12, re-

spectively. In Fig. 6.8, the BER curves for QPSK are compared at the fixed

Eb/N0 of 16dB. The the proposed detection with εTH = {0.16, 0.36, 0.64} has

almost same BER characteristics as the various δ. For the LR-SIC detections,

the BER characteristics achieve the great performance with δ more than 0.75.

The LR-OSIC detection has same trend as the proposed detection. Figure 6.10

shows the BER curves for 16QAM at the fixed Eb/N0 of 21dB. The proposed

detections with εTH = {0.16, 0.36, 0.64} have almost same BER performance and

provide the great BER performance at δ ≥ 0.4. As seen in Fig. 6.12, the BER

curves for 64QAM are compared at the fixed Eb/N0 of 26dB. The trends of the

proposed detections are as same as that of the BER curves for 16QAM in Fig.

6.10. The proposed detections with εTH = {0.16, 0.36, 0.64} provide the great

BER performance at δ ≥ 0.5.

Figures 6.9, 6.11 and 6.13 show the various value of δ vs. the BER char-

acteristics for QPSK, 16QAM and 64QAM in the 8 × 8 MIMO system, respec-

tively. We observe the BER characteristics for the proposed detection at the

fixed Eb/N0 of 12dB, 18dB and 21dB for QPSK, 16QAM and 64QAM, respec-

tively. For the conventional detections, the value of δ is assigned as 0.75 for the

LR-SIC and LR-OSIC as the common choice. For the proposed detections with

εTH = {0.16, 0.36, 0.64} regardless of the modulation order achieve better BER

performance as the value of δ increases or the value of εTH decreases. Hence the

conditional list detection remarkably reduces the error propagation.

The values of δ and εTH are the tradeoff factors between the complexity and

the BER performance. In the large size MIMO system, the value of δ has less
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influence to the BER performance. However, if the decision boundary is not good,

the condition list detection is performed to correct the error estimation. Hence, if

we choose a suitable value of δ, we can obtain the better decision boundary. And

the smaller percentage of εTH > εv also reduces the complexity of the proposed

detection.

We summarize the suitable value for both factors for the proposed detection

in Table 6.2.

Table 6.2: The suitable values of factor δ and εTH for the proposed detection

Modulation order Nt = Nr = 4 Nt = Nr = 8
QPSK δ = 0.0, εTH = 0.36 δ = 0.5, εTH = 0.36

16QAM δ = 0.4, εTH = 0.36 δ = 0.6, εTH = 0.36
64QAM δ = 0.5, εTH = 0.36 δ = 0.6, εTH = 0.36

Figure 6.8: The δ vs. BER character-
istics in the 4×4 MIMO system: QPSK.

Figure 6.9: The δ vs. BER character-
istics in the 8×8 MIMO system: QPSK.
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Figure 6.10: The δ vs. BER char-
acteristics in the 4 × 4 MIMO system:
16QAM.

Figure 6.11: The δ vs. BER char-
acteristics in the 8 × 8 MIMO system:
16QAM.

Figure 6.12: The δ vs. BER char-
acteristics in the 4 × 4 MIMO system:
64QAM.

Figure 6.13: The δ vs. BER char-
acteristics in the 8 × 8 MIMO system:
64QAM.

6.4.2 BER characteristics

We made computer simulations of the BER characteristics versus Eb/N0 using

the LR-SIC, the LR-OSIC, the proposed detection with εTH = {0.16, 0.36, 0.64},
respectively. Corresponding to εTH = {0.16, 0.36, 0.64}, the value ∆2 is chosen

from ∆2 = {0.1, 0.15, 0.2}.
Figure 6.14 shows the BER vs. Eb/N0 for QPSK in the 4× 4 MIMO system.

The proposed detection with εTH = {0.16, 0.36, 0.64} has a little improvement

at a BER of 10−5 compared to LR-OSIC, respectively. Figure 6.15 shows the
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BER vs. Eb/N0 for QPSK in the 8 × 8 MIMO system. The curve of the LR-

OSIC for QPSK improves 2dB gain compared with that of the LR-SIC and is

still about 2dB worse than that of the ML at the BER of 10−5. However, the

proposed detection with εTH ≤ 0.36 can achieve the near-ML BER performance,

which almost coincides with the ML curve below the BER of 10−4. It is noticed

that the proposed detection with εTH = 0.64 has great improvement of the BER

performance with lower complexity discussed in the following subsection.

As shown in Fig. 6.16, for 16QAM in the 4× 4 MIMO system, the proposed

detection with εTH = {0.16, 0.36, 0.64} has a little improvement at a BER of 10−5

compared to LR-OSIC, respectively. In Fig. 6.17, the curve of the LR-OSIC for

16QAM in the 8×8 MIMO system improves 2dB gain compared with that of the

LR-SIC and is still about 3.2dB worse than that of the ML at the BER of 10−5.

In addition, the curve of the proposed detection with εTH ≤ 0.36 for 16QAM

significantly improves 2.8dB gain compared with that of the LR-OSIC at the

BER of 10−5, which is about 0.4dB worse than that of the ML at the BER of

10−5. However, the curve of the proposed detection is much steeper than that of

ML detection. It illustrates that both of curves may coincide below the BER of

10−5.

Figures 6.18 and 6.19 show the BER vs. Eb/N0 for 64QAM in the 4 × 4

and the 8× 8 MIMO systems, respectively. The proposed detection with εTH =

{0.16, 0.36, 0.64} in Fig. 6.18 has a little improvement at a BER of 10−5 compared

to LR-OSIC, respectively. As the same trend, the proposed detection as seen in

Fig 6.19 can also provides the near-ML performance in the 8× 8 MIMO system.
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Figure 6.14: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
QPSK.

Figure 6.15: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
QPSK.

Figure 6.16: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
16QAM.

Figure 6.17: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
16QAM.
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Figure 6.18: The Eb/N0 vs. BER
characteristics in the 4×4 MIMO:
64QAM.

Figure 6.19: The Eb/N0 vs. BER
characteristics in the 8×8 MIMO:
64QAM.

Thus, the proposed detection has great improvement of BER performance

compared to LR-OSIC and is effective with the same list candidates in the 8× 8

MIMO system. Even for the high modulation order such as 64QAM, the proposed

detection also requires the same complexity as the modulation order of QPSK

and 16QAM.

6.4.3 Computational complexity

The flat fading channel is assumed that the data packet length is much shorter

than the coherence time of the channel, treating the channel to be non-time

varying during the packet duration. The LLL reduction and ordering operations

of the channel matrix are performed at the beginning of the packet, which features

the polynomial complexity. Hence we can apply them all over the packet and the

above complexity can be negligible. We focus on the analysis of the computational

complexity in the signal estimation stage.

We compared the complexity of the LR-SIC, the LR-OSIC and the proposed

detection in the signal estimation, respectively. Without the ordering operations,

the LR-SIC and the LR-OSIC have the same complexity in the signal estimation

stage. The complexity for computing y′ in (6.5) and v̂ in (6.6) is counted up
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as (8N2
t + 8NtNr − 2Nt) and 4N2

t flops, respectively. The scaled and shifted

operations in (6.8) requires (4Nt + 4Nr) flops. In addition, the scaled back and

the shifted back operations for the transmit signal is counted up as 4Nt flops .

Hence, the total complexity of the LR-OSIC is (20N2
t +8NtNr+4Nt+4Nr) flops,

which requires 480 flops for Nt = Nr = 4 and 1856 flops for Nt = Nr = 8.

We observed the probability of εv ≤ εTH for the proposed detection with

εTH = {0.16, 0.36, 0.64} in the 4× 4 and the 8× 8 MIMO systems, respectively,

which implied the percentage of the estimate of the LR-OSIC detection to be the

final estimate of the transmit signal without the list generation. The additional

complexity for the list generation is 2Nt and (
16N3

t −Nt

3
−2N2

t ) flops for computing

the candidates with l = i and the rest symbols with l < i in (6.12), respectively.

And the optimal decision in (6.17) requires 8Nt flops for computing the path

metric of the LR-OSIC and (8N2
t + 4Nt) flops for that of the list candidates. The

total extra complexity of the conditional list generation requires (
16N3

t +41Nt

3
+6N2

t )

flops.

As seen in Figs. 6. 20 - 6. 25, the probability of εv ≤ εTH for the proposed

detection with εTH = 0.64 is more than 95% corresponding to a BER below

10−3 for three modulations in the 4 × 4 MIMO system, which results in lower

complexity of the conditional list generation. Therefore, the proposed detection

with εTH = 0.64 has much better tradeoff between the BER performance and the

complexity.

In the 8× 8 MIMO system, since the proposed detection with εTH = 0.36 can

achieve the near-ML performance, the percentages of εv ≤ εTH for QPSK, 16QAM

and 64QAM are about 88%, 88% and 90% corresponding to the BER of 10−4,

and about 96%, 96% and 97% corresponding to the BER of 10−5, respectively.

Therefore, the conditional list detection requires very lower complexity at a BER

below 10−4 and the proposed detection requires almost the same complexity of

the LR-OSIC in the high Eb/N0 region, which requires 1856 flops for Nt = Nr =

8 excluding the complexity of the LR operations and the ordering operations.

It is noticeable that the same complexity of the proposed detection is required

regardless the modulation order, which is more worthy for the high modulation

order such as 64QAM.

124



6.4 Numerical results

Figure 6.20: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 4× 4 MIMO: QPSK.

Figure 6.21: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 8× 8 MIMO: QPSK.

Figure 6.22: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 4× 4 MIMO: 16QAM.

Figure 6.23: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 8× 8 MIMO: 16QAM.
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Figure 6.24: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 4× 4 MIMO: 64QAM.

Figure 6.25: The Eb/N0 vs. Prob-
ability of εv ≤ εTH for the proposed
detection in the 8× 8 MIMO: 64QAM.

6.5 Chapter summary

In this chapter, we proposed the OSIC with conditional list generation for lattice-

reduction aided MIMO detection. The LR-OSIC was first introduced in order to

obtain more reliable estimate in the LR domain. Then, we applied the mean

squared error of the new signal vector to evaluate the channel condition and the

reliability for the soft estimate of the LR-OSIC. The list tree was generated to

update the soft estimate of the LR-OSIC in the condition of εv > εTH . Combining

the LR algorithm with ordering method, the value of δ decreased and the more

reliable symbol was prior to being detected. The conditional list detection further

reduced the error propagation. The simulation results exhibited that the proposed

detection can achieve the near-ML performance with almost the same complexity

of the LR-OSIC in the high Eb/N0 region in the 8 × 8 MIMO, especially for

QPSK modulation. For the high modulation order, the proposed detection was

also effective even in the large size MIMO.
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Chapter 7

Discussions and future work

7.1 Contributions and discussions

As an essential part of the MIMO systems, different MIMO detection schemes

have been well discussed over the past decade. In the fast developing wireless

communication systems, since it is attractive to exploit multi-path propagation

without the expense of high complexity, this thesis introduced our works in lat-

tice reduction aided detection and its application in MIMO systems, especially

towards the low complexity MIMO detection.

As described in chapter 1, there are many branches for the MIMO detections.

SD and QRM-MLD belongs to the exhaustive tree search. The difference is that

SD is depth-first algorithm and QRM-MLD is breadth-first algorithm. Further-

more, the LR technology is to look for a better lattice basis. The LR operations

are performed on the channel matrix. Hence, we obtain much better decision

boundary and more reliable signal estimation. In conclusion, we have the same

objectives and do the researches on different fields of the MIMO detection.

First, we have reviewed and explained the ML and the linear detections, from

where we gave the argument between the performance and the complexity. Next,

we presented the technology of lattice reduction, combined with the linear, the

SIC, the GS and the list detections. These detection schemes improved the per-

formance with relatively low complexity. The numerical results exhibited that

the BER curves in the small size MIMO systems approached that of ML detec-

tion with the complexity costs, such as more complicated computing in the signal
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estimation stage in the LR-GS detection, ordering the detection sequence in the

LR-OSIC detection, and the decision of the list candidates in the LR-List detec-

tion. Meanwhile, for the large size MIMO system, the improvements of the above

conventional detections were not sufficient to approach the ML performance.

Our researches have been investigated in order to achieve the ultimate goal

looking for a near-ML detection scheme on the performance together with low

complexity. The objective is to solve three problems existed in MIMO detection

methods as

• In order to design the effective detection scheme with very low complexity in

the small size MIMO systems, we applied a novel adaptive tree search with

variable path expansion to solve the problem, which was high complexity for

the conventional QRM-MLD in particular for the large size MIMO system

and the high modulation order. The adaptive tree search scheme was to

adaptively control the candidates for each survived branch in the tree search.

We adopted a path metric ratio function to evaluate the reliability for all the

survived branches. To decrease the number of the low reliable candidates

in each layer, a large amount of the computation for the path metric was

avoided.

• Another detection method, improving the quantization scheme based on

LR-GS detection in the signal estimation, can fix the problem in the con-

ventional LRA detection using the rounding operation, which resulted in

the less reliable signal estimation and led to the BER performance loss. In

order to decrease the quantization errors in the quantization step in the LR-

domain, we gave another quantization candidate according to the rounding

integer. We used a simple tree search in order to rarely correct some quan-

tization errors. The threshold function was defined by the minimum partial

path metric for each entry of the signal vectors. Hence the BER perfor-

mance of the proposed quantization scheme was improved by decreasing

the quantization errors.

• The third detection scheme was paid attention on improving the BER per-

formance in the large size MIMO system, to decrease the error propagation
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of the property for the SIC detection due to degrading the performance.

The LR-OSIC was first introduced to obtain more reliable estimate in the

LR domain. We had investigated the distribution of MSE in the LR domain

to evaluate the channel condition and the reliability for the soft estimate

of the LR-OSIC. The list tree is generated to update the soft estimate of

the LR-OSIC in the condition of εv > εTH . For the high modulation order,

the proposed detection was also effective even in the large size MIMO. The

complexity was same regardless of the modulation order.

7.2 Comparison of three proposed detections

In this thesis, we presented three proposed detection schemes: the adaptive tree

search with variable path expansion detection (Chapter 4), the improved quan-

tization scheme based on LR-GS detection (Chapter 5), and the conditional list

based on LR-OSIC detection (Chapter 6) as proposed detection 1, proposed de-

tection 2, and proposed detection 3, respectively.

We gave an example of 16QAM for the BER characteristics as seen in Figs. 7.1

and 7.2, respectively. The best BER performance was achieved by the proposed

detection 1 in the 4×4 and 8×8 MIMO systems. In the small size MIMO system,

the proposed detection 2 achieved almost same BER performance compared to

the proposed detection 1, and the BER curve of the proposed detection 3 was

about 0.5dB worse than that of the proposed detection 1 at the BER of 10−5.

In the large size MIMO system, the proposed detection 3 achieved almost the

same BER performance as the ML detection. the BER curves of the proposed

detections 2 and 3 were about 0.8dB and 0.4dB worse than that of the proposed

detection 1 at the BER of 10−5.
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Figure 7.1: The comparison of BER
characteristics using the three proposed
detections in the 4×4 MIMO: 16QAM.

Figure 7.2: The comparison of BER
characteristics using the three proposed
detections in the 8×8 MIMO: 16QAM.

Next, we compared the computation complexity. If the slow fading channel

was assumed that the data packet length is much shorter than the coherence time

of the channel, we can treat the channel to be non-time varying during the packet

duration. Since the LLL reduction, GSO procedure or ordering operations was

performed at the beginning of the packet, we can apply them all over the packet.

In this case, we can ignore the complexity of the LR operations, which required

the complexity O(x3). The complexity of LR operations is as described in [39],

[57]. The complexity of LR operation requires high complexity as the value of δ or

the size of MIMO system increases. The LLL algorithm with δ = 0.95 in proposed

detection 2 requires higher complexity than that of LLL algorithm and ordering

operations in proposed detection 3 in the large size MIMO system. Supposing

some applications, we must treat the LR operations symbol by symbol, and hence

the proposed detection 3 was suitable in the small size MIMO system, which

required relatively low complexity in the signal estimation and the complexity

O(x2) for the LR operations. In this thesis we focus on the complexity in the signal

estimation. Hence, the proposed detections 2 and 3 required very low complexity

in the signal estimation regardless of the modulation order, respectively.
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Table 7.1: Comparison of three proposed detections

Size of
MIMO

Proposed
Detection

Complexity of
Signal Estimation

BER
Performance

4× 4
1 Medium Near-ML
2 Low Near-ML
3 Low Suboptimal ML

8× 8
1 High Near-ML
2 Low Suboptimal ML
3 Low Suboptimal ML

We made comparison of the BER performance and the complexity among

three schemes as seen in Table 7.1. Note that near-ML is defined that the BER

curve is close to the ML curve and suboptimal ML is about 0.5 dB worse than

the BER curve of ML detection.

The proposed detection 1 was an exhaustive tree search, which was breadth-

first algorithm. It required very low complexity to make the channel matrix to

be upper triangular matrix, in order to reduce the complexity in the following

computing of path metric. Hence the proposed detection 1 remarkably reduced

the complexity of QRM-MLD in the small size MIMO system, especially for

the high modulation order. The proposed detection 1 had a little reduction of

complexity in the large size MIMO system. Considering the complexity, the

proposed detection 1 was not suitable in the large size MIMO system or high

modulation order.

The proposed detections 2 and 3 applied the LR technology. Using the LR

operations of the channel matrix, the complexity in the signal estimation became

same regardless of the modulation order, which was very worthy for the high

modulation order. The proposed detection 2 achieved near-ML performance in

the small size MIMO system, and required very low complexity in the signal

estimation stage. The proposed detection 2 achieved suboptimal performance in

the large size MIMO system. However, it required a little high complexity in

the LR operation in order to achieve the near-ML performance. In addition, the

proposed detection 3 was appropriate for the large size MIMO system and the
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Table 7.2: Suitable applications of three proposed detections

Channel Size of MIMO Modulation Order Proposed Detection

Fast fading
4× 4

QPSK &16QAM
1

64QAM

8× 8
QPSK &16QAM 1

64QAM 3

Slow fading
4× 4

QPSK &16QAM
2

64QAM

8× 8
QPSK &16QAM

3
64QAM

high modulation order, i.e. the 8 × 8 MIMO system, due to less complexity for

the LR operations and near-ML performance.

In conclusion, in the case of slow fading channel, we can ignore the complex-

ity of LR operations. The proposed detections 2 and 3 with large improvement

of BER performance were appreciate in high modulation order or/and large size

MIMO system. Supposing in the fast fading channel, the proposed detection 1

with near-ML performance was more suitable to apply in the small size MIMO

system and low modulation order. Since the LR operation of the proposed de-

tections 2 and 3 requires very high complexity, it cannot be ignored in the signal

estimation. We recommended the suitable applications for the proposed detec-

tion according to the size of MIMO system, the modulation order and the type

of fading channel in the following table.

7.3 Future work

Despite the advances in MIMO research, there is a strong argument that the full

benefits of spatially distributed transmission have only been initially explored.

There is a growing movement to look at MIMO systems employing a very large

number of transmit antennas (e.g., tens or hundreds of antennas). These systems

are most often referred to as massive MIMO or hyper MIMO systems. Massive

MIMO is still in its infancy because there are a number of unanswered technical
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questions. The receiver must have a usable estimate of the channel conditions

in order to reliably decode the transmitted signal. As well, a reliable estimate

of the channel at the transmitter side is absolutely critical to facilitate advanced

point-to-point MIMO techniques. It was even with very noisy channel estimation,

adding more antennas at the transmitter.

On large MIMO systems,large means number of transmit and receive antennas

of the order of tens to hundreds. Such large MIMO systems will be of immense

interest because of the very high spectral efficiencies possible in such systems. For

example, in a VBLAST system, increased number of transmit antennas means

increased data rate without bandwidth increase. However, major bottlenecks in

realizing such large MIMO systems include the lack of practical low-complexity

detectors for such large systems, and the associated channel estimation issues. In

the future research, we primarily focus on the second problem, i.e., low-complexity

large MIMO detection. Specifically, we present a low-complexity detector for large

MIMO systems that employ spatial multiplexing, and evaluate its performance

without and with channel estimation errors.

As for future work, designing the suitable detection algorithms or schemes is

an interesting research topic to achieve the better performances for the massive

MIMO system. This could lead to interesting and useful applications to future

wireless communications.

133



7. DISCUSSIONS AND FUTURE WORK

134



Appendix A

Weight matrices of MMSE

For MMSE estimation, we first derive the weight matrix. The optimum weight

matrix WMMSE in (2.33) is recalled as

WMMSE = arg min
W

E

[∥∥∥sc −WHyc
∥∥∥2
]

(A.1)

Taking derivative of the argument of (A.1) with respect to W, then equation it

to be zero, we obtain the optimum weight matrix. The estimated signal s̃c(MMSE)

is obtained as

s̃c(MMSE) = WH
MMSEyc (A.2)

The argument of (A.1) is expressed as

A =E

[∥∥∥sc −WHyc
∥∥∥2
]

=E

[(
sc −WHyc

)H(
sc −WHyc

)]
=E

[(
scH − ycHW

)(
sc −WHyc

)]
=E

[
scHsc

]
− E

[
scHWHyc

]
− E

[
ycHWsc

]
+

E
[
ycHWWHyc

]
(A.3)
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Next, take derivative of A with respect to W. In this derivation, we apply the

following formulas:

∂(aTXb)

∂X
= abT

(∂xHB)

∂x
= 0

(A.4)

Then, we have

∂A

∂W
= 0− 0− E

[
yc∗scT

]
+ E

[
yc∗
(
WHyc

)T
]

(A.5)

where

E
[
yc∗scT

]
=
(
E
[
ycscH

])∗
(A.6)

and

E

[
yc∗
(
WHyc

)T
]

= E
[
yc∗ycTW∗] =

(
E
[
ycycH

]
W
)∗

(A.7)

Let ∂A
∂W

= 0. Then W in (A.5) becomes the optimum weight matrix WMMSE,

and it holds that

(
E
[
ycycH

]
WMMSE

)H
=
(
E
[
ycscH

])H
(A.8)

Or

WH
MMSEE

[
ycycH

]
= E

[
scycH

]
(A.9)

Finally, the optimum weight matrix is obtained as

WH
MMSE = E

[
scycH

] (
E
[
ycycH

])−1
(A.10)

First, let us calculate E
[
scycH

]
.

E
[
scycH

]
= E

[
sc
(
Hcsc + zc

)H
]

= E
[
sc
(
scHHcH + zcH

)]
= E

[
scscH

]
HcH

(A.11)
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where

E
[
scscH

]
= E




sc1
...
sci
...
scNt


[
sc∗1 . . . sc∗i . . . sc∗Nt

]


= E




|sc1|2 . . . sc1s

c∗
i . . . sc1s

c∗
Nt

...
. . .

...
...

scis
c∗
1 . . . |sci |2 . . . scis

c∗
Nt

...
...

. . .
...

scNt
sc∗1 . . . scNt

sc∗i . . . |scNt
|2




= EsINt

(A.12)

where Es = E[‖s‖2]
Nt

. Then, Eq.(A.11) yields

E
[
scycH

]
= E

[
scscH

]
HcH = EsH

cH (A.13)

Next, we derive how to calculate E[ycycH] using (A.12) as

E
[
ycycH

]
= E

[(
Hcsc + zc

)(
Hcsc + zc

)H
]

= E
[(

Hcsc + zc
)(

scHHcH + zcH
)]

= HcE
[
scscH

]
HcH + E

[
zczcH

]
= EsH

cHcH +N0INr

(A.14)

Substituting (A.13) and (A.14) into (A.10), we have

WH
MMSE = E

[
scycH

] (
E
[
ycycH

])−1

= EsH
cH
(
EsH

cHcH +N0INr

)−1

= HcH
(
HcHcH + γ−1INr

)−1

(A.15)
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where γ is defined as γ , Es

N0
. After that, we derive

HcH
(
HcHcH + γ−1INr

)
= HcHHcHcH + γ−1HcH

=
(
HcHHc + γ−1INt

)
HcH

(A.16)

Then, multiplying the both sides of (A.16) from the right hand by
(
HcHcH +

γ−1INr

)−1

and from the left hand by
(
HcHHc + γ−1INt

)−1

, Eq. (A.16) becomes

that (
HcHHc + γ−1INt

)−1

HcH
(
HcHcH + γ−1INr

)(
HcHcH + γ−1INr

)−1

=
(
HcHHc + γ−1INt

)−1(
HcHHc + γ−1INt

)
HcH

(
HcHcH + γ−1INr

)−1
(A.17)

Finally, we can obtain that(
HcHHc + γ−1INt

)−1

HcH = HcH
(
HcHcH + γ−1INr

)−1

(A.18)

WH
MMSE in (A.15) is reformulated using (A.18) such that

WH
MMSE =

(
HcHHc + γ−1INt

)−1

HcH (A.19)

Using (A.19), the soft estimate of the transmit signal vector for the MMSE

detection is given by

s̃c(MMSE) = WH
MMSEyc

=
(
HcHHc + γ−1INt

)−1
HcHyc

(A.20)
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Appendix B

MMSE estimation of signal

vector v

In [34], Hassibi proposed an MMSE detector with the extended matrix form as

ȳc ,

[
yc

0Nt

]
, H̄c ,

[
Hc√
γ−1INt

]
, z̄c ,

[
zc

−
√
γ−1sc

]
(B.1)

where γ = Es/N0 with Es = E[‖sc‖2]/Nt. The LLL algorithm transforms the

channel matrix H̄ and the unity matrix INt into the reduced matrix H̄′ and the

transformation matrix T, respectively.

Recall the shifted and scaled receive signal in (3.22) as

ȳcS = H̄c

(
sc

2
+
K − 1

2
(1 + j)1Nt

)
+

z̄c

2

=
(
H̄Tc

)(
Tc−1

(
sc

2
+
K − 1

2
(1 + j)1Nt

))
+

z̄c

2

≡ H̄c′vc +
z̄c

2

(B.2)

where H̄c′ = H̄Tc, and the new signal vector in the LR domain vc is defined as

vc , Tc−1
(
sc

2
+ K−1

2
(1 + j)1Nt

)
. The scaled and shifted vector of sc is defined as

scS = S[sc] ,
sc

2
+
K − 1

2
(1 + j)1Nt (B.3)
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Therefore, Eq. (B.2) or (3.22) can be extended as

ȳcS ,

[
ycS

0Nt

]
=
(
H̄Tc

)
vc +

z̄c

2

=


[

Hc√
γ−1INt

]
︸ ︷︷ ︸

H̄

Tc

vc +
z̄c

2

=

[
HcTc√
γ−1Tc

]
vc +

z̄c

2

=

[
Hc′√
γ−1Tc

]
︸ ︷︷ ︸

H̄′

vc +
z̄c

2

(B.4)

where ycS denotes the shifting and scaling of the original receive signal.

According to (B.4), Eq. (3.24) can be derived as

ṽc(LR−MMSE) = H̄c′†ȳcS

≡
(
H̄c′HH̄c′)−1

H̄c′HȳcS

=

([
Hc′H

√
γ−1TcH

][ Hc′√
γ−1Tc

])−1[
Hc′H

√
γ−1TcH

][ ycS

0Nt

]
=
(
Hc′HHc′ + γ−1TcHTc

)−1
Hc′HycS

(B.5)
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