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表面形態が異なる TiO2電極に吸着した CdSe量子ドットの 光

吸収と光電変換特性 

 

近年半導体量子ドット（semiconductor quantum dot, 略して QD）は、大きな光吸収係

数と双極子モーメントを有し、さらに多重励起子生成効果を示すため、次世代の太陽電

池における高効率増感剤の一つとして注目されている。増感剤はナノ粒子酸化物(今回

は TiO2 を適用)電極に吸着され、太陽電池の作用電極基板として使用される。ここで、

ナノ粒子酸化物電極には種々のモルフォロジーを持つものが適用されている。本研究で

は、数 10 ナノメートルの粒径を有する TiO2ナノ粒子集合体電極基板と、フォトニック

特性を示す逆オパール（蜂の巣）構造を有する TiO2 電極基板を対象とし、CdSe QD を

吸着した２つの電極基板系の光吸収スペクトル特性評価、光電流量子効率スペクトル特

性評価、さらに太陽電池デバイスを形成し光電変換特性評価を行った。CdSe QD の吸

着には Cd+と Se-イオンを交互に吸着する successive ionic layer adsorption and reaction (略

して SILAR)法を適用した。この手法は従来のイオン系が混合した溶液中で行う吸着法

(CBD 法)に比べて、良質で粒径均一性の良い QD が形成出来ることで知られている。こ

こで、対象とする基板電極系は半透明・不透明であるため、光吸収測定にはこれらに有

効な光音響法を適用した。光電流量子効率は短絡電流の波長分散から、光電変換は疑似

太陽光を適用する既存のソーラーシミュレータにより評価を行った。 

 光吸収評価から、CdSe QD の成長と量子閉じ込め効果の出現が判明した。光吸収結

果に対して有効質量近似を適用し、交互のイオン吸着回数(3-14回)に対する CdSe QDの

粒径変化を求めた。その結果、ナノ粒子集合体電極基板と逆オパール構造電極基板では

粒径の大きさと変化は一致し、5nm から 12nm まで単調に増加し、結晶成長は電極基板

のモルフォロジーには依存しないという結果が得られた。一方光透過率の測定を行った

結果、ナノ粒子集合体電極基板では逆オパール電極に比べて 3 倍ほど CdSe QD の吸着

速度が速いことが判明した。一つの可能性として、ナノ粒子集合体電極基板と逆オパー

ル構造電極基板における TiO2の結晶面方位が異なり、QD吸着速度が異なることが考え

られ、今後は基板における各結晶面方位の状態密度の評価が重要となる。続いて光吸収

におけるバンドギャップ以下の光吸収領域の評価から、ナノ粒子集合体電極基板吸着に
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比べ逆オパール構造電極基板吸着ではより格子乱れが多いことが判明した。逆オパール

構造電極基板作製における、より一層の詳細な条件の検討が必要となる。 

光電流量子効率測定から、TiO2 の光吸収端下の領域（可視領域）で光電流が観測さ

れた。この結果から、CdSe QD の分光増感機能の発現が判明した。CdSe QD の粒径の

増加に伴い、極大値は次第に低エネルギー側にシフトした。ナノ粒子集合体電極基板吸

着に比べ逆オパール構造電極基板吸着では光電流量子効率の大きさはおよそ 1/2 で、吸

着表面積の違いと吸着条件の違いが要因の一つと考えられる。 

光電変換特性評価から、いずれの系でも短絡電流は CdSe QD の成長に伴い増加する。

しかし、ナノ粒子集合体電極基板吸着に比べ逆オパール構造電極基板吸着では、短絡電

流の大きさはおよそ 1/2 で、光電流量子効率の違いに対応している。一方開放電圧の値

は両系とも CdSe QD の成長には依存せずほぼ一定値であるが、逆オパール構造電極基

板吸着系ではナノ粒子集合体電極基板吸着系に比べて、およそ 0.1V ほど高いことが判

明した。この事実は、逆オパール構造電極の価電子帯の頂上が、ナノ粒子集合体電極に

比べてエネルギー的に高い位置にあることを示唆している。今後は光電子分光法等を適

用しナノ粒子酸化物基板の電子構造の検討が必要となる。形状因子に関しては、ナノ粒

子集合体電極基板吸着と逆オパール構造電極基板吸着では大きな違いは見られなかった。

以上の光電変換特性評価から、逆オパール構造電極基板吸着系での最大光電変換効率は

1.3%、ナノ粒子集合体電極基板吸着系では 2.7%が得られた。さらに、光電変換効率は

デバイスの直列抵抗成分と並列抵抗成分が大きく関与するため、これらの抵抗成分の検

討を行った。その結果、逆オパール構造電極基板吸着系ではナノ粒子集合体電極基板吸

着系に比べ、直列抵抗成分はおよそ 3 倍大きく、並列抵抗成分はおよそ 1.5 倍程度大き

いことが判明した。光電変換特性では直列抵抗成分の減少と並列抵抗成分の増大を図る

ことが光電変換効率の向上につながるため、電極基板、特に逆オパール構造電極基板吸

着系における CdSe QD との間の界面準位の評価を行い、界面準位の減少を図り直列抵

抗成分の減少と並列抵抗成分の増大につなげることが重要となる。 
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Optical Absorption and Photovoltaic properties of CdSe Quantum 

Dots on TiO2 Electrodes with Different Morphology 

 

 

ABSTRACT 

 

Semiconductor quantum dots (QDs) have attracted significant interest in sensitized 

solar cells. The semiconductor QDs exploit as a sensitizer and have several advantages such 

as quantum confinement, large extinction coefficient, and multiple exciton generation. A 

successive ionic layer adsorption and reaction (SILAR) method is an ion-by-ion growth of 

thin films and provides high coverage of the electrode. Therefore, the SILAR method is a 

fascinating process for preparation of CdSe QDs. In addition, an inverse opal TiO2 (IO-TiO2) 

film have a honeycomb structure with large interconnected pores that lead to a better 

infiltration of electrolyte in a photoelectrochemical cell.  

To investigate the effect of the electrode morphology, we have studied the optical 

absorption properties of CdSe QDs adsorbed on IO-TiO2 and nanoparticulate TiO2 (NP-

TiO2) electrodes for comparison, including the photovoltaic properties of CdSe QDs 

sensitized solar cells (QDSSCs). CdSe QDs were grown on an IO-TiO2 and NP-TiO2 surface 

by a SILAR method for different cycles. A sandwich structure solar cell was consisted of 

Cu2S on brass as a counter electrode and a polysulfide (S/S
2-

) redox system as the electrolyte. 

The average diameter of the QDs was estimated by applying an effective mass 

approximation to the optical absorption spectra. Linear dependence of the size of the QDs 

with increasing number of cycles was confirmed by a redshift in the optical absorption 

spectrum. The average diameter of the CdSe QDs on the IO-TiO2 electrodes was similar to 

that on the NP-TiO2 ones, indicating that growth is independent of morphology. However, 

there were more CdSe QDs on the NP-TiO2 electrodes than on the IO-TiO2 ones, indicating 

that there were different amounts of active sites on each type of electrode. In addition, the 
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Urbach parameter (as a guide of disordered states) of the exponential optical absorption tail 

was also estimated from the optical absorption spectrum. The Urbach parameter of CdSe 

QDs on IO-TiO2 electrodes was higher than that on NP-TiO2 ones, indicating that CdSe QDs 

on IO-TiO2 electrodes are more disordered states than those on NP-TiO2 electrodes. The 

Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to 

move toward a constant value. The incident photon-to-current conversion efficiency (IPCE) 

and photovoltaic properties of sandwich structure solar cells were studied under an 

illumination of air mass (AM) 1.5 using Cu2S on brass as a counter electrode and a 

polysulfide (S/S
2-

) redox system. The photosensitization of CdSe QDs on TiO2 electrodes in 

the visible region could be observed in both electrode morphologies. The IPCE spectra of 

both IO-TiO2 and NP-TiO2 cells were shifted to low photon energy region because a size of 

CdSe QDs on TiO2 grows with increasing SILAR cycle. The lower IPCE in IO-TiO2 cell 

comparison with NP-TiO2 cell could be because of a fewer adsorption of Cd
2+

 ions, and 

smaller surface area. The maximum photovoltaic conversion efficiency (η) of CdSe QDs on 

IO-TiO2 was 1.3% and that of CdSe QDs on NP-TiO2 was 2.7%, prepared with 9 cycles. 

Lower η of CdSe QDs on IO-TiO2 than that on NP-TiO2 was possibly because of the lower 

adsorption of Cd
2+

 ions, a larger amount of surface states, and lower TiO2 surface area. In 

this study, the series resistance (Rs) could assume that depends on the charge transfer 

resistance in TiO2 film adsorbed with CdSe QDs. The estimated Rs of IO-TiO2 cell is larger 

than NP-TiO2 one. A possible reason for the different Rs, the QDs on IO-TiO2 has fewer 

amounts than the QDs on NP-TiO2, which result in the QDs on IO-TiO2 has fewer injected 

electrons than the QDs on NP-TiO2. These results indicate that the CdSe SILAR cycle is the 

important condition that affects the photovoltaic properties of CdSe QDSSCs. 
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Introduction 
 

1.1 Introduction 

1.1.1 Background 

At the present time, most of the world’s consumption of energy is based on coal, 

oil and natural gas. However, the use of this fossil fuel could result in pollution. Burning 

coal produces sulphur dioxide, an acidic gas that contributes to the formation of acid rain 

and burning any fossil fuel produces carbon dioxide, which leads to the "greenhouse 

effect", warming the Earth. Greenhouse effects melt glaciers at the arctic regions and will 

cause not only an increase of sea level but also other atmospheric phenomena that could 

ultimately result in significant ecological problems for the earth. There has been an 

enormous increase in the demand for energy since the middle of the last century as a 

result of industrial development and population growth. In the 1970s, “Middle east oil 

crisis” panicked world due to petroleum shortage and high gasoline prices. The supply 

shortage and environmental problems have attracted our interest to find another energy 

source beyond fossil fuel. While there are already alternative energy sources, there are 

tradeoffs in the use of many of these sources. For example, nuclear power is a powerful 

and long-term alternative energy source but radioactive materials from nuclear power 

plants are extremely hazardous, and the disposal of the nuclear waste after power 

generation is a complicated environmental issue. These concerns became even more 

visible after the recent earthquake in Japan and the resulting tsunami crippled the nuclear 

1 
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power plants. Radioactive materials from the reactor chambers contaminated not only the 

soil and sea water but also the Earth’s atmosphere. Nuclear energy, which was considered 

to be one of the best candidates as an alternative energy source, is now being 

reconsidered as a safe and stable energy source. Therefore, renewable energy sources 

which are generated from natural resources such as sunlight, wind, water, and so forth 

have emerged as clean alternative energy sources for the future. Solar energy is an 

alternative renewable energy without any environmental damage. The following is 

several advantages of solar energy, 

Inexhaustible fuel source 

No pollution (enviromentally friendly) 

Readily availability (in a sunny enough climate) 

Often an excellent supplement to other renewable sources 

Versatile, is used for powering items as diverse as solar cars and satellites 

Therefore, a significant number of researchers have been focused on developing 

high efficiency, stable and low cost solar cells using various materials for a long time. 

 

Photovoltaic effect 

 Photovoltaic effect is the basic process through which a solar cell converts solar 

radiation into electricity, which was first observed by Henri Becquerel [1] in 1839. He 

generated electricity between two electrodes attached to a liquid system upon irradiating 

light onto this system. The next significant photovoltaic development arose from the first 

demonstration of photovoltaic effects in selenium (solid-state system) by Adam and Day 

[2] in 1876. They observed the photovoltaic effect by illuminating a junction between the 

platinum and selenium. The next significant step forward came with the work of Fritts [3] 

in 1883. He was able to prepare a selenium solar cell, the first "thin-film" photovoltaic  
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devices, consisted of thin selenium films which adhered to one metal plate (e.g. brass) 

and gold leaf. 

Fundamentally, there are three basic requirements for the photovoltaic effect 

(shown in Fig. 1.1). First, upon irradiation, light or photon should be absorbed creating 

electron-hole pairs. Then these electron-hole pairs should be separated so that their 

recombination is inhibited.  In the end, these electrons and holes should be collected 

separately by each of collecting electrodes. Anode is the electrode collecting electrons 

and cathode is electrode collecting holes. Thus, current can be induced to flow in an 

external circuit. 

 

Classification of solar cells 

Generally, solar cell technologies are classified into three generation (shown in 

Fig. 1.2) according to Martin Green from University of New South Wales (UNSW). The 

first generation solar cells is aimed to obtain high efficiency and mainly based on 

crystalline silicon, which is currently used worldwide with the best laboratory energy 

n-type 

p-type 

-     

+     
external 

load electron-hole pair 

Figure 1.1: Basic operation of solar cells. 
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conversion efficiency achieved  25%. The theoretical limit of the solar cell using single 

junction is calculated by Shockley and Queisser [4] to be about 31%, limited to the 

thermalization loss of hot carriers (heat loss of the excess kinetic energy of hot 

photogenerated carriers created by the absorption of photon with high energy) and no 

absorption of photon with energy less than band gap. In fact to synthesis such high purity 

silicon, it requires high cost, energy-intensive high-temperature (more than 1000 
O
C) and 

high-vacuum processes. The cost of silicon solar cell may be reduced by thin film 

technology (known as second generation solar cells), in which thin film silicon solar cells 

are mainly deposited by chemical vapour deposition (CVD) from silane gas (SiH4) and 

hydrogen in 200 
O
C. This process produces amorphous silicon (no crystalline orientation) 

with lower conversion efficiency. The best laboratory efficiencies could be achieved 

20% for polycrystalline silicon and 15% for amorphous silicon. The other second 

generation solar cells include the chalcogenide material, such as cadmium telluride 

(CdTe), copper indium sulfide (CIS) and copper indium gallium selenide (CIGS). These 

materials are applied in a thin film to a supporting substrate such as glass or ceramics 

reducing material mass and therefore costs. These technologies, particularly CIGS-CIS, 

DSC and CdTe offer significantly cheaper production costs. Dye-sensitized solar cells 

(DSSCs) and organic solar cells are the advanced thin film photovoltaic with low cost 

and simple production based on photoelectrochemical method. So far, the energy 

conversion efficiency of DSSCs could exceed 11% [5]. Third generation solar cells aim 

to enhance the performance of second generation (thin-film technologies) while 

maintaining very low production costs. Current research purposes to obtain the energy 

conversion efficiencies of 30-60% while retaining low cost materials and manufacturing 

techniques. This may be achieved by exploiting the  

 

http://en.wikipedia.org/wiki/Copper_indium_gallium_selenide
http://en.wikipedia.org/wiki/Dye-sensitized_solar_cell
http://en.wikipedia.org/wiki/Cadmium_telluride
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hot photogenerated carriers in quantum dots (QD) to produce higher photovoltages or 

higher photocurrents. The former is based on miniband transport and collection of hot 

carriers in QD array photoelectrodes before their relaxation to the band edges through 

photon emission and heat loss consequently. The latter is based on generation and 

collection additional electron-hole pairs by utilizing hot carriers in QD solar cells through 

enhanced impact ionization processes. Further, the scope in this study concentrates on the 

DSSCs and the application of semiconductor QD (i.e. CdSe QD) as photosensitizer 

replacing dye. 

 

Dye-sensitized solar cells (DSSCs) 

Dye Sensitized TiO2 Nanocrystalline solar cells (DSSCs) has attracted much 

attention becacuse they are generally made from inexpensive and nontoxic components, 

and can be designed in a diversity of colors and transparencies. Since the pioneering work 

of dye-sensitized nanocrystalline TiO2 by Grätzel and co-workers in 1991 [6], efforts 

have been made to improve the performance of DSSCs. However, the development of 

DSSCs has been slow over the last ten years, with the highest record of 12% ever 

Generations of 
Solar cells 

1st 

(high η) 

Crystallinge 
silicon 

2nd 

(Low-cost thin 
film) 

Silicon 

(Amorphoous, 
Polycrystalline) 

Chalcogenide 

(CdTe, CIS, CIGS) 
Dye-sensitized Organic 

3rd 

(Low-cost, 
Unique 

properties) 

Quantum dot 

Figure 1.2: Classification of solar cells. 
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reported [7]. In this cell, the use of dye molecules as photosensitizers, nanostructured 

TiO2 as the electron transport layer and I¯/I3¯redox couple as hole transport layer 

dramatically improve light harvesting efficiency. Based on the DSSC’s structure, 

quantum dot (QDs) was introduced as a replacement of dye to its excellent opto-

electronic properties [8]. Quantum dot-sensitized solar cells (QDSSCs) are interesting 

photovoltaic devices because quantum dots show some benefits, such as quantum high 

extinction coefficient, quantum confinement effect and so on. Particularly, the multiple 

exciton generation (MEG) of QD solar cells can theoretically give about 44% of 

conversion efficiency, higher than Shockley–Queisser efficiency limit. Due to the 

quantum confinement effect, the bandgap of semiconductor nanoparticles and, hence its 

optical absorption, can be modulated over a wide spectral range by controlling their size 

to match the distribution of solar light. Moreover, semiconductor nanocrystals have 

robust inorganic nature so these particles are more stable against photodegradation than 

the usual organic dyes. With these advances, researchers were able to fabricate solar cell 

devices achieving efficiency up to 7% in QD related solar cells [9]. 

The relatively low efficiency obtained in DSSC is assigned to the poor penetration 

of material into the thick TiO2 film, and the detachment of hole transport layer from TiO2 

electrode [10]. In order to address the penetration of both sensitizers and redox couples, a 

novel approach has been proposed using mesoporous inverse opal titania starting from 

self-organizing systems, such as opal of polystyrene latex, as template. This inverse opal 

(volumetric inverse of opal) titania has large interconnected pores lead to better 

infiltration. In addition, it also exhibits photonic band gap (frequency range that will not 

allow the propagation of particular wavelengths because of multiple Bragg reflection), 

which depends on the filling fraction of TiO2 in the inverse opal structure. On the red-

edge of the photonic band gap, the photon will be localized in high refractive index layer 

of sensitized inverse opal TiO2 thus could significantly enhance the sensitizer absorption, 
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especially in the edge of optical absorption where the sensitizer absorbs weakly solar 

light [2].  

 Quantum dot-sensitized solar cells (QDSSCs) may improve the efficiency by both 

materials development and the progress in understanding the cell mechanisms. Materials 

development involves (1) the emergence of absorber such as CdSe, CdS, PbS and Sb2S3, 

which extend the light absorption range from the visible to the near-infrared region [11], 

(2) the improvement of QD synthesis and loading using successive ionic layer adsorption 

and reaction (SILAR) [12], chemical bath deposition (CBD) [13], monodisperse QDs 

with molecular linkers [14], and direct adsorption (DA) [15], (3) different morphology of 

wide metal oxide semiconductors [16], (4) new counter electrode [17], and (5) the 

improvement of redox couple electrolyte [18]. In addition, the basic understanding of the 

cell mechanisms includes (1) the existence of several electron injection paths [19], (2) 

fast hole extraction relative to electron recombination [20], (3) charge accumulation in 

QDs layer [21], (4) the effect of surface modifications of both the QDs and the metal 

oxide [22]. 

 

1.1.2 Purposes 

Based on the background mentioned above, this study mainly focuses on the study 

and application of inverse opal structured electrode and CdSe QD replacing 

nanocrystalline electrode and dye sensitizer, respectively. CdSe is selected among the 

other semiconductors due to the possible electron injection from CdSe to TiO2 and its 

well-known properties.  The purposes of this study are as follows: 

1. Synthesis of three dimensional inverse opal TiO2 and characterize its physical 

properties. 

2. Adsorbing of CdSe quantum dots on inverse opal TiO2 and characterize the 

photosensitization of inverse opal TiO2 with CdSe QDs 
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3. Investigation on the photovoltaic properties of CdSe QD-adsorbed inverse opal 

TiO2 and introduce suggestions for better solar cells. 

 

1.1.3 Brief outline of the thesis 

This thesis consists of a total of 5 chapters. The first chapter shows the 

introduction to this field, purpose and outline of this thesis. Moreover, it provides a 

general overview of some of the concepts that are needed for reading this thesis, such as 

background of TiO2 and related theories of semiconductor quantum dots. It is by no 

means a complete overview, thus many references are necessary to provide the 

comprehensive background to this field.  

Chapter 2 explains the experimental procedures, i.e. sample preparations and used 

characterization techniques. The former includes the inverse opal TiO2 preparation and 

the method to adsorb the CdSe QD in situ on inverse opal TiO2. The latter includes the 

used technique to characterize its structure, morphology, optical absorption, photocurrent, 

photovoltaic properties. 

Chapter 3 shows the adsorption of CdSe in situ on inverse opal TiO2 and its effect 

on the morphology. Photoabsorption of inverse opal TiO2 with CdSe QDs is studied by 

characterizing its optical absorption by photoacoustic spectroscopy as a function of 

SILAR cycles. Moreover, size of semiconductor nanoparticle is calculated from the 

effective mass approximation. Urbach parameter is determined from the optical 

absorption band edge to consider defects of TiO2 adsorbed with CdSe QDs. 

 Chapter 4 contains characterization of the photovoltaic properties of CdSe QD-

sensitized inverse opal TiO2 in solar cell application. The typical photovoltaic properties 

will be compared with those of CdSe QD-sensitized nanoparticulate TiO2 solar cells. 

Metal sulfide electrode is then used as active counter electrode against the polysulfide 
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electrolyte, usually used as redox couple in QD-sensitized solar cells. Further 

improvements are suggested resulting in efficient QD-sensitized solar cells. 

 Finally, chapter 5 summarizes the whole results in this study. In addition, an 

appendix is added in this thesis, which investigates co-sensitized solar cell. PbS/CdS 

quantum dot sensitized solar cell was studied by measuring optical absorption, 

photocurrent, and photovoltaic properties. The co-sensitized solar cell can have more 

conversion efficiency than solar cells with only single sensitizer.  

 

1.2 Basics of TiO2 

1.2.1 Crystal Structural of TiO2 

Titanium dioxide occurs in nature in three mineral forms: rutile, anatase and 

brookite, additionally two high pressure forms, the monoclinic baddeleyite form and the 

orthorhombic α-PbO2 form have been found at the Ries crater in Bavaria [23]. Rutile is 

the most common form in nature and the most stable polymorph among the three 

modifications. Anatase and brookite both convert to rutile upon heating. Rutile, anatase 

and brookite all contain six coordinated titanium in the form of TiO6 octahedral, but with 

different stacking-up topology. The crystal structures of the three polymorphs were 

illustrated in Fig. 1.3. Both rutile and anatase crystalize in tetragonal system. The two 

crystal structures differ in the distortion of each octahedron and by the assembly pattern 

of the octahedra chains. In rutile, the octahedron shows a slight orthorhombic distortion, 

while the octahedron of anatase is significantly distorted so that its symmetry is lower 

than orthorhombic. The name of anatase roots from the Greek “anatasis” which means  
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"extension", indicating the vertical axis of the crystals being longer than that in rutile 

[24]. Brookite crystallizes in the orthorhombic system. Brookite occurs rarely compared 

to the anatase and rutile forms of titanium dioxide. Because brookite shows no 

photocatalytic activity, it attracts the least research interest. These differences in lattice 

structures cause difference mass densities and electronic structures as well as other 

chemical and physical properties. 

 

1.2.2 Applications of TiO2 

TiO2 is one of the top fifty chemicals produced worldwide. Since its commercial 

production in the early twentieth century, titanium dioxide has been widely used as a 

pigment in sunscreens, paints, ointments, toothpaste, etc. It provides for maximum 

whiteness and opacity [25]. It does so more effectively than any other white pigment. 

These unique properties are derived from the refractive index of titanium dioxide which 

is the highest among any material known to man, even greater than diamond.  

Rutile Anatase Brookite 

Figure 1.3 Crystal structures of rutile, anatase and brookite polymorphs of TiO2 
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TiO2 is also a potent photocatalyst that can break down almost any organic 

compound when exposed to sunlight [26]. A wide range of environmentally beneficial 

products utilizing TiO2's reactivity are being developed including self-cleaning fabrics, 

auto body finishes, and ceramic tiles. Also in development is a paving stone that uses the 

catalytic properties of TiO2 to remove nitrogen oxide from the air, breaking it down into 

more environmentally benign substances that can then be washed away by rainfall. It 

remains to be seen, however, whether the formation of undesirable intermediate products 

during these processes outweighs the benefits offered by TiO2's photocatalytic properties.  

As the most promising photocatalyst, TiO2 materials are expected to play an 

important role in helping solve many serious environmental and pollution challenges. The 

general scheme for the photocatalytic destruction of organic compounds involves the 

excitation of the semiconductor by irradiation with suprabandgap photons, and continues 

through surface redox reactions. One of the applications is photovoltaic application. 

Photovoltaics based on TiO2 nanocrystalline electrodes have been widely studied [27]. At 

the heart of the system is a nanocrystalline mesoporous TiO2 film with a monolayer of the 

charge transfer dye attached to its surface. The film is placed in contact with a redox 

electrolyte or an organic hole conductor. Photoexcitation of the dye injects an electron 

into the conduction band of TiO2. The electron can be conducted to the outer circuit to 

drive the load and make electric power. The original state of the dye is subsequently 

restored by electron donation from the electrolyte, usually an organic solvent containing a 

redox system, such as the iodide/triiodide couple. The regeneration of the sensitizer by 

iodide prevents the recapture of the conduction band electron by the oxidized dye. The 

iodide is regenerated in turn by the reduction of triiodide at the counter electrode, with 

the circuit being completed via electron migration through the external load. The voltage 

generated under illumination corresponds to the difference between the Fermi level of 

TiO2 and the redox potential of the electrolyte. Overall, the device generates electric 

power from light without suffering any permanent chemical transformation. 
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1.2.3 TiO2 nanomaterials 

When the dimension of matter is brought down to nanometer scale, many of its 

features would easily change and have many unique features both different from macro-

matters and single atoms due to the quantum effect, regional confinement of matter, and 

ultra-high surface area or interface effects [28]. The final objective of nanotechnology is 

to produce products of special functions with new physical and chemical features by 

making atoms, molecules and matters presenting their features directly in the length of a 

nanometer such as: the strength of ten times of iron could be very light, all the 

information in a library could be stored in a chip the size of a sugar cube, and tumors the 

sizes of only several cells can be detected. Titanium dioxide's photocatalytic 

characteristics are greatly enhanced due to the advent of nanotechnology [29]. At the 

nano-scale, not only the surface area of titanium dioxide particle increases dramatically 

but also it exhibits other effects on optical properties and size quantization. An enhanced 

rate in photocatalytic reaction is observed as the redox potential increases and the size 

decreases [30]. The same effect also applies to the photovoltaic application, which also 

utilizes the photo-generated charge carriers. Due to its potent performance in 

photocatalysis and photovoltaic application, tremendous interests and efforts have been 

devoted to research on TiO2 nanomaterials in terms of synthesis and modification, 

property characterization, fundamental mechanism investigation, theoretical calculation, 

and application. The TiO2 nanomaterials synthesis methods are summarized as a chart in 

Fig. 1.4. The physical methods mainly include mechanical milling and physical vapor 

deposition. The chemical routes especially wet-chemibcal routes are extensively used to 

synthesize TiO2 materials. It can be further categorized into sol-gel,  
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hydrothermal/solvothermal, micelle/inverse micelle, sonochemical/microwave, and 

electrochemical techniques. These techniques are mainly based on the hydrolysis or 

solvolysis between titanium-containing precursors and the solvent or chelating agents 

with or without external assistance such as elevated temperature and pressure in 

hydrothermal reactor, surfactant in micelle method, microwave or sonar energy to 

facilitate or direct the crystal growth. 

 

1.2.4 Template-based synthesis 

In a general way, “template” is defined as a central structure within which a 

network forms in such a way that removal of the template creates a filled cavity with 

morphological and/or stereochemical features related to those of template. A method 

termed “template synthesis” entails the preparation of a variety of micro- and 

Synthesis Method 

Chemical 

CVD, Direct 
oxidation Wet chemical 

Electrochemistry Sol-gel Hydro/ 
solvothermal 

Micelle and inverse 
micelle 

Microwave/ 
sonochemical 

Physical 

Mechanical PVD 

Figure 1.4 Summary of synthesis methods of TiO2 nanomaterials 
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nanomaterials of a desired morphology and, therefore, provides a route for enhancing 

nanostructure order. Various porous “templates” are employed and the nanostructures are 

synthesized within the pores. If the templates used have spherical pores of uniform 

diameter, monodisperse nanospheres of the desired material are obtained within the voids 

of the template material. Depending on the operating parameters, these nanospheres may 

be solid (forms opals) or hollow (forms inverse opals). The nanostructures can remain 

inside the pores of the templates or they can be freed and collected by removing the 

templates. The most frequently used templates are polystyrene film. Two essential steps 

are needed. First step is to deposit the desired materials to fill the pores inside the 

membrane. Various deposition techniques could be utilized such as sol-gel, 

polymerization, atomic layer deposition (ALD), pulsed laser deposition (PLD), etc [31]. 

The second step is to remove the template to release and collect the nanostructures. 

Polystyrene can be removed by high temperature firing. Depending on the specific 

technology used, the process might have some additional steps involved. Various 

deposition techniques have been used to create titania 3-D structure inside the pores of 

template. Sol-gel is frequently used. The formula and recipe of sol-gel is not different 

from traditional sol-gel to produce nanoparticles or bulk materials. One just has to dip the 

template into the sol before the gelation happens to fill the pores with the sol under the 

drive of capillary force and gravity. Additional assistances could be taken to help the sol 

penetrate into the pores, such as centrifudge [32], vacuum pump [33], etc. One can also 

pre-treat the template surface to enhance the hydrophobicity or hydrophilicity depending 

on the sol formula to improve the filling efficiency. After filling, the sol-filled template 

will go through the same gelation-drycalcination process to form the desired crystal 

structure. It commonly occurs that thin films form on the top and bottom surfaces of 

membrane. Thus it is necessary to wipe away excessive sol on the surfaces or use 

mechanical polishing to thinning the calcined films after calcination. Then the template is 

removed to release the titania nanostructures. The morphology of the obtained materials 
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closely associated with the network geometry of the template used, and clusters or 

bundles of opals are normally seen. Sol-gel is the most accessible and economical method 

to produce nanomaterials. One can also use other techniques to do the deposition step 

such as electrophoresis deposition, atomic layer deposition, etc, depending on the 

available instruments and experimental conditions. Utilizing different deposition steps 

one has also to slightly adjust the specific steps in pre-deposition and template-removal 

processes. 

 

1.3 Semiconductor quantum dots as solar cell sensitizers 

Quantum dots are semiconducting materials which are synthesized in such a way that 

they are spherical in shape and have diameters at or below the materials’ characteristic 

exciton Bohr radius. The Bohr radius of a material, which is linearly dependent on the 

materials’ relative dielectric permittivity and inversely dependent on the materials’ 

reduced effective mass has units of length and is a physical representation of the natural 

separation between a Coulombically bound electron and hole (exciton) within a material, 

such as what is generated immediately after the absorption of a photon. In bulk (large 

crystal lattice) materials, the crystal lattice is much larger than the size of the exciton, 

allowing free and independent movement of the exciton about the lattice. However, in a 

quantum dot, the size of the lattice is at or below the materials’ exciton Bohr radius, 

which translates to a confinement of the electron-hole pair to a volume less than what it 

naturally wants to occupy. This “confinement effect” results in discrete energy levels (as 

opposed to a continuum of energy levels in a bulk sample) which exhibit particle-in-a-

box like behavior [34]. Specifically, the stronger the confinement—the smaller the 

diameter of the quantum dot—the larger the bandgap of the material. In terms of 

implementation into solar cells as next generation sensitizers, quantum dots offer the use 

of multiple bandgaps from a single material simply by changing the size of that material. 
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Therefore, to achieve maximum efficiency, one simply needs to optimize the 

performance of a single quantum dot material, which would efficiently convert one 

region of the solar spectrum due to the use of a single bandgap. Once this is achieved, one 

could then efficiently capture another region of the spectrum by changing the bandgap of 

the material, which in quantum dots means only changing the materials’ size. Another 

advantage to using QDs as sensitizers in next generation solar cells is the wealth of 

attention which has been paid to popular QD materials in their non-quantized forms. For 

example, because of their absorption characteristics within the visible region of the solar 

spectrum, single crystal cadmium chalcogenides (CdX, X = S, Se, Te) were identified by 

many as an alternative to silicon in single crystal devices. As a result, much work was 

done by Bard [35], Hodes [36], and Wrighton [37], among others, in the 1970s and 1980s 

regarding morphological and electrolyte effects on performance and stability of CdS [38], 

CdSe [39], and CdTe [40] bulk photoanodes. As quantization effects became better 

understood and techniques were developed to synthesize and characterize cadmium 

chalcogenide materials which exhibit quantum confinement in the 1990s and beyond, the 

focus of these materials as sensitizers for next generation photovoltaics shifted sharply  

 

 

Figure 1.5. Artistic depiction of the materials which make up a quantum dot 

sensitized solar cell. 
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from bulk macroscopic samples to ordered nanostructured crystallites [41]. 

 

Quantum Dot Sensitized Solar Cell Design. Figure 1.5 shows an artistic depiction of 

the basic design of a quantum dot sensitized solar cell (QDSSC). The fundamental 

difference between a QDSSC and a dye sensitized solar cell is the material used to 

harvest the visible portion of the solar spectrum. The following paragraph discusses the 

necessary energetic considerations needed to assemble a functioning QDSSC. In order to 

successfully substitute the sensitizer in Grätzel cell (the dye) with a semiconducting 

quantum dot, one needs to consider the characteristic energetics of each cell component. 

It is easiest to understand the effect of energetics on cell voltage through an energy 

diagram. Figure 1.6 shows the energetics of the QD sensitizer, the TiO2 scaffold, the 

electrolyte solution, along with the working and counter electrodes. Note that the position 

of the QDs’ and TiO2’s conduction and valence bands, along with the position of the 

electrolyte oxidation potential are shown as relative as opposed to absolute positions 

which are arranged in a way that promotes cell operation. The phrase “electrons sink and 

holes float” can be an aid in diagrams such as Figure 1.6, which literally means that 

electrons are energetically drawn to change energy level as low (more negative, vacuum  

 

 

Figure 1.6. A diagram of the energetics which drive electron and hole 

transport in a quantum dot sensitized solar cell. 
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scale) as possible, and holes to energy level as high (more positive, vacuum scale) as 

possible. In order for all of the reactions to take place as described above the two relative 

energy requirements must be met: the QD conduction band must lie above the TiO2 

conduction band, and the electrolyte potential must lie between the QD valence band and 

the TiO2 conduction band. The maximum voltage is then defined as the energetic 

difference between the TiO2 conduction band and the electrolyte oxidation potential, 

Figure 1.6 [42]. 

 

 

 

 

 

Figure 1.7: Band edges position of several semiconductors in contact with 

aqueous electrolyte at pH 1. The energy scale is indicated in electron volts 

using either the normal hydrogen electrode (NHE) or the vacuum level as a 

reference.  
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1.3.1 Cadmium selenide 

Cadmium selenide or cadmium (II) selenide, sometimes written as the chemical 

formula of CdSe, belongs to the class of II-IV semiconductors. CdSe is selected as the 

photosensitizer of TiO2 due to its smaller band gap of CdSe relative to TiO2 extending the 

optical absorption to visible region as well as its well-known properties (shown in Table 

1.1). Moreover, the more negative energetic bottom level in conduction band of CdSe  

 

Table 1.1 List of some properties of CdSe (Wurtzite structure). 

Density: 5.81 g/cm
3
 

Lattice parameter a = 4.2985 Å 

c = 7.0150 Å 

Dielectric constant 10.2 

Young’s Modulus 510
11

 dyne/cm
2
 

Electron mobility (300 K) < 650 cm
2 

V
-1

 s
-1

 

Coefficient of thermal expansion 

(500 K) 

α1=6.2610
-6

/K 

α3=4.2810
-6

/K 

Specific Heat 0.49 J/gK 

Thermal conductivity (at 25 
o
C) 0.04 W/cmK 

Max. Transmittance (λ =2.5-15 μm) ≥ 71 % 

Absorption coefficient (λ =10.6 μm) ≤ 0.0015 cm
-1

 (including 2 surfaces) 

Refractive index (λ =10.6 μm) 2.4 

Solubility in water Insoluble 



INTRODUCTION 
 

20 
 

than that of TiO2 and the more positive energetic top level in valence band of CdSe than 

that of TiO2 (shown in Fig. 1.7 [43]) indicate the possible injection of photoexcited 

electrons from CdSe to TiO2 conduction band and no injection of photoexcited holes 

from CdSe to TiO2 valence band making the charge separation upon photoexcitation in 

CdSe feasible. 

CdSe is generally yellow to red crystalline solid with melting point at 1268°C. 

This material can be crystallized in either the wurtzite or hexagonal structure, as shown in 

Fig. 1.8. The formula weight is 191.37 g/mol. It is an intrinsic semiconductor with a band 

gap of 1.70 eV at 300 K. Some characteristics of CdSe in wurtzite structure are presented 

in Table 1.1. 

In nano size, CdSe exhibits the quantum confinement effect where CdSe nanocrystals of 

different sizes exhibit different colors. With decreasing crystal size the band gap of the 

crystal increases and the dot emits more energetic or bluer photons. CdSe QDs which is 

grown by using method of colloidal chemistry, (core-shell) CdSe/ZnS with 

trioctylphosphine oxide (TOPO) as surface stabilizing molecule has high luminescence 

efficiency (65 %) at room temperature. Recently this nanocrystal has found important 

applications in Biology. QDs are coupled to biological molecules for use in ultrasensitive 

biological detection at the single-dot level. Quantum dots are used there as fluorescent 

tags capable of tracing specific proteins within cells and in the future it is hoped to 

develop lighting up DNA or viruses by QDs. 

1.3.2 Quantum confinement  effect 

The band gap (Eg) of a semiconductor is defined as the energy difference between 

the highest energy valence band states and the lowest energy conduction band states. The 

excitation of an electron from the valence band to the conduction band leaves a hole in 

the valance band. The electron and hole can form a bound state through Coulombic 

interactions. This bound electron-hole pair is called an exciton [44] (in this case a  

http://en.wikipedia.org/wiki/Intrinsic_semiconductor
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Kelvin
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Wannier exciton). The bound state has energy slightly less than the energy of the band 

gap. 

When the radius of the nanoparticle approaches the size of the exciton Bohr 

radius, the motion of the electrons and holes become confined in the nanoparticle. The 

Bohr radius (aB) of the exciton is given by  

  












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**2

0

2

0 114

he

B
mmem

a


                       (2.1) 

where   is the high frequency relative dielectric constant of the medium 

me is the effective mass of the electron (in m0 units) 

mh is the effective mass of the hole(in m0 units) 

m0 is the mass of the electron at rest. 

This resulting Bohr radius for excitons in semiconductors is much larger than that of 

hydrogen atom.  A created electron-hole pair can only “fit” into a nanoparticle when the  

Figure1.8: Solid state structure of CdSe. (a) Wurtzite structure (b) hexagonal structure.  

 

Cd 

Se 
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charge carriers are in a state of higher energy. As a consequence of this, the band gap 

increases with decreasing particle size.  In this regime of spatial confinement, the kinetic 

energy becomes quantized and the energy bands split into discrete levels shown in Fig. 

2.3. Regarding this, both the absorption and emission spectra of the material shift to 

higher energies with decreasing particle size.  

One possible way to explain the quantum confinement effect is through the use of 

the effective mass approximation approach (EMA) [45]. Here, the size dependency of the 

band gap of the nanoparticle can be derived as: 

   
R

e

mmRm
EE

oheo
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2

2
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22
                              (2.2) 

where R is the radius of the semiconductor particle and  Eg is the band gap of the bulk 

semiconductor. The first term in the equation above represents the particle in box 

Figure 1.9: Quantum confinement effect on electron energy levels. 
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quantum localization energy and has a 1/R
2
 dependence. The second term represents the 

Coulomb energy having a 1/R dependence. For large R values, E approaches Eg. 

1.3.3 Hot carrier and multiple exciton generation 

Photoexcitation of a semiconductor with photons having energies above the band 

gap of semiconductor creates electron and holes with a total excess kinetic energy equal 

to the difference between the photon energy and band gap. This excess kinetic energy 

causes the effective temperature of carriers much higher than the lattice temperature, 

called as hot electrons and hot holes. To enhance the energy conversion efficiency, two 

fundamental ways to utilize hot carriers has been proposed by Nozik [46], i.e. enhanced 

photovoltage and enhanced photocurrent. By utilizing hot photogenerated carriers to 

produce higher photovoltages and photocurrents, the maximum attainable thermodynamic 

conversion efficiency of solar photon could increase up to about 66 % from 31% for 

Schokley-Queissar limit [47] of single band gap cells. The former requires the extraction 

of the hot carriers before they cool through their respective carrier-carrier collisions 

(called carrier thermalization) and carrier-phonon interactions (phonon emission occurs 

as the result of the cooling of the carriers and heating of the lattice until carrier and lattice 

temperatures become equal; the phonons involved in the process are the longitudinal 

optical phonons). In order to achieve this, the rates of the photogenerated carrier 

separation, transport and interfacial transfer across the semiconductor interface must all 

be fast compared with the rate of carrier cooling. The latter requires the energetic hot 

carriers to produce a second or more electron-hole pairs (multiple exciton generation, 

MEG) through impact ionization due to strong carrier-carrier interactions, as shown in 

Fig. 1.10. This is the inverse of an Auger process whereby two electron-hole pairs 

recombine to produce a single highly energetic electron-hole pair. Thus for enhanced 

photocurrent, the rate of impact ionization (i.e. inverse Auger effect) should be greater 

than the rate of Auger process or carrier cooling.  
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In bulk semiconductor, this MEG is inefficient because of the relatively weak 

Coulomb interactions, the restrictions imposed by energy and translational momentum 

conservation, as well as fast energy loss due to phonon emission. Strict selection rules 

and competing processes in the bulk permit MEG at energies of n x Eg where Eg is the 

band gap of bulk semiconductorand n  3; however, efficient MEG is observed only for n 

 5 as a matter of fact [48]. On the other hand, MEG become efficient in zero-

dimensional quantum dots with the lower values of n (typically 2 -3) [49] with respect to 

E1 (first excitation energy and not Eg any longer in quantum confinement regime) because 

of wide separation between discrete electronic states inhibiting phonon emission due to 

phonon bottleneck, stronger Coulomb interactions and relaxation in translational 

momentum conservation. In phonon bottleneck [50], a large population of hot carriers 

produces a no equilibrium distribution of phonon (in particular, LO phonon that are the 

type involved in the electron-phonon interactions at high carrier energies) because the LO 

phonons cannot equilibrate fast enough with crystal bath; these hot LO phonons can be 

reabsorbed by the electron plasma to keep it hot. Besides Auger mechanism; electron-

hole scattering, deep-level trapping and acoustical-optical photon interactions are other 

possible mechanisms for breaking the phonon bottleneck. 

 The first experimental evidence for high efficiency MEG in quantum dot was 

detected in PbSe QDs [51]. Later, MEG was also observed for QDs of other 

semiconductor, such as PbTe [52], CdSe [53], InAs [54] including an important 

photovoltaic material Si. Moreover, MEG in photocurrent was indicated in PbSe QD 

device structure. However, more recent studies have questioned the efficiency of MEG 

particularly for CdSe and InAs QDs. Synthesis differences between samples may left 

some with the QD surfaces that affect the efficiency of MEG. So engineering QDs is the 

key factor to optimize the potential MEG in solar cell applications. 
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Figure1.10: Representation of multiple exciton generation (E1 relating to 

first excitation energy in quantum dot, likewise Eg relating to energy band 

gap of bulk semiconductor). 
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Experimental procedures 
 

2.1 Sample preparation 

2.1.1 Inverse opal titanium dioxide 

The inverse opal TiO2 was prepared by filling the void in an artificial template 

and subsequently removing the template. Generally speaking, it can be grouped into three 

steps as follows, as briefly described in Fig. 2.1 

(1) Template preparation [1]  

1. Conductive fluorine-doped tin oxide (FTO) coated glass of 4.5 cm length 

and 2.3 cm width was cleaned ultrasonically with detergent, concentrated 

KOH, distilled water and methanol, consecutively.  

2. 10 wt% of monodisperse hydrophobic polystyrene latex from Seradyn Co. 

was diluted with distillated water to a concentration of 0.1 wt%. The 

suspension was then dispersed ultrasonically for 30 min. 

3. The FTO glass was immersed vertically in 30 ml beaker containing 15 ml 

latex suspension. 

4. The beaker was then kept in an oven at 40°C for 1 to 2 days until the 

suspension was fully evaporated. 

 

 

2 
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(2) Filling the void in template with TiO2 

1. 2 % TiCl4 (from WAKO, 99 %) in methanol (from WAKO, 99.8 %) as 

TiO2 source was prepared by mixing 2 ml TiCl4 and 98 ml methanol [2].  

2. 2 % TiCl4 in methanol was vertically dropped on to a 1.3 x 2.3 cm 

template by using a 10-μl sized micropipette. 

3. The template was then kept in a desiccator (humidity 45-50 %, 

temperature 24-25%) for 30 min. 

4. The template was heated in an oven at 80°C for 10 min. 

5. The 2-4 processes were repeated for few times. 

 

 

Figure 2.1: Schematic procedure of the fabrication inverse opal TiO2 (a) template 

preparation, (b) filling the template with TiO2 (c) calcination of template and 

annealing of TiO2. 

(a) 

(b) (c) 



EXPERIMENTAL PROCEDURES 

32 
 

In this step, heat treatment time at 80°C is necessary to make a compact structure 

before the further addition of TiCl4.  

(3) Calcinations of the template and annealing of TiO2 

Calcinations of the template and annealing of TiO2 were conducted together in 

which the sample was heated at 450°C with 0.5°C/min heating rate. After 1 hour heating 

at 450°C, the temperature was cooled down to room temperature within 3 hours. 

 

2.1.2 Adsorption of CdSe QDs on inverse opal TiO2  

Figure 2.2 shows a flowchart of chemical solution preparation for CdSe 

adsorption and figure 2.3 shows the order of TiO2 is dipped in the solution. All chemicals 

used in this deposition process are cadmium nitrate tetrahydrate (≥ 99.0 %), selenium 

dioxide (≥ 97.0%), and sodium tetrahydroborate (≥ 95.0%) obtained from WAKO. For 

this study, CdSe QDs adsorption on inverse opal TiO2 was conducted by successive ionic 

layer adsorption and reaction (SILAR) method similar to what H. Lee, et. al. [3] has 

done. The adsorption procedure is as follows: 

1. Weigh metal nitrates in vials in order to make 30 mM Cd(NO3)2 solution 

later and put those inside the glove box.  

2. 0.6657 g of SeO2 is dissolved in 200 mL ethanol (30 mM), and 

purged/stirred for about 2 minutes and 0.4539 g of NaBH4 (60 mM) added 

into the round-bottom flask containing SeO2, and purged/stirred for about 

1 hour.  

3. Pure ethanol in large volume is also prepared and purged for 1 hour 

separately for making metal nitrate solutions and washing the electrodes 

used inside glove box.  
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4. Move the bottom in (2) and (3) inside the glove box, which then was 

sealed and purged with inert gas (N2). Evacuation/purging were made the 

inside atmosphere with a low oxygen level.  

5 Inside the glove box, prepare metal nitrate solution designated above in 

one beaker and selenide solution in another beaker.  

6. The TiO2-modified electrode was dipped into the metal
2+

 solution, pure 

ethanol (then dried), the Se
2-

 solution, and then pure ethanol (then dried) 

successively for 30 seconds for deposition each and longer time for 

washing and dried. Such an immersion cycle was repeated several times. 

The electrode became darker as the number of SILAR cycles was 

increased. 

 

 

 

6 mmol SeO2 in 200 ml ethanol 

Add12 mmol NaBH4  

SeO2 solution 

(Se
2-

 precursor) 

Figure 2.2: Flowchart of chemical solution preparation for CdSe adsorption. 
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6 mmol Cd(NO3)2 in 200 ml ethanol 

Cd(NO3)2 solution 

(Cd
2+

 precursor) 
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2.2 Characterization 

2.2.1 Scanning electron microscopy [4] 

Scanning electron microscopy (SEM) is the best known and most widely-used of 

the surface analytical techniques. The first Scanning Electron Microscope (SEM) debuted 

in 1942 with the first commercial instruments around 1965. SEM is considered a 

relatively rapid, inexpensive, and basically non-destructive approach to surface analysis. 

High resolution images of surface topography, with excellent depth of field are produced 

using a highly-focused, scanning (primary) electron beam. The primary electrons enter a 

surface with energy of 0.5 - 30 keV is focused in the microscope column (Fig. 2.4) 

though a combination of condenser lenses and apertures, and generate many low energy 

secondary electrons. The intensity of these secondary electrons is largely governed by the 

surface topography of the sample. An image of the sample surface can thus be 

constructed by measuring secondary electron intensity as a function of the position of the 

scanning primary electron beam. High spatial resolution is possible because the primary 

electron beam can be focused to a very small spot (< 10 nm). High sensitivity to 

topographic features on the outermost surface (< 5 nm) is achieved when using a primary 

electron beam with an energy of > 1 keV. In addition to low energy secondary electrons,  

Figure 2.3 Drawing of SILAR deposition for CdSe 
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backscattered electrons and X-rays are also generated by primary electron bombardment. 

The intensity of backscattered electrons can be correlated to the atomic number of the 

element within the sampling volume. Hence, some qualitative elemental information can 

be obtained. The analysis of characteristic X-rays emitted from the sample gives more 

quantitative elemental information. Such X-ray analysis can be confined to analytical 

volumes as small as 1 cubic micron  

2.2.2 X-ray diffraction spectrometry [5] 

In 1895, the German physicist Roentgen discovered X-rays. Even before this 

method was understood, people had already begun to use it. Its earliest use was for 

radiographic method. Later, it was put to use by engineers wanting to study the internal 

structure of opaque objects. It was not until 1912 that the phenomenon of X-rays 

Figure 2.4 Schematic of the SEM column which focuses the electrons emitted 

from a heated tungsten filament into a small nanometer sized spot. 
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diffraction by crystal was discovered, and this simultaneously proved the wave nature of 

X-rays and provided a new method for investigating the fine structure of matter.  

X-ray diffraction (XRD) is the coherent scattering of X-rays by a crystalline 

material. This technique can be used to obtain a wide range of structural information. The 

X-ray diffraction peaks from a polycrystalline solid can be used to determine the 

crystalline phase of the material, average grain size, residual stress, and preferred 

crystalline orientation (texture). High-resolution x-ray diffraction can be used to obtain 

the orientation and quality of single crystals and the composition and relaxation of 

epitaxial layers. XRD is a non-destructive technique and requires no special sample 

preparation. In powder diffraction, the sample is sufficiently random orientation of the 

crystals, and then exposed to monochromatic x-rays. If the orientation of the crystalline 

particles is truly random with its characteristic interplanar spacing (d), there will be 

enough correctly oriented particles to satisfy Braggs law (Eq. 2.1). Different families of 

planes will satisfy Braggs law for different values of θ and the intensity of the reflection 

is measured as the detector is rotated though the angle 2θ. 

               (2.1) 

 

 

Figure 2.5 Bragg diffraction. 
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where n is an integral number of the wavelength λ. The XRD spectra are most commonly 

obtained using CuKα radiation (wavelength, λ = 1.5428Å). 

When the size of the individual crystals is less than 0.1m (1000 Å), the term 

particle size is used [6]. Crystals that have small sizes causes a broadening in the Debye 

rings. The extent of this broadening is given by the following equation (called the Debye-

Scherrer formula): 

  
    

     
      (2.2) 

where 

B is the broadening of the diffraction line, measured at half its maximum intensity 

(radians) 

t is the diameter of the crystal particle 

λ is the X-ray wavelength 

θ is the angle of incidence of the X-ray beam at the maximum of the diffraction 

beam. 

When the particle size exceeds 1000 Å, B is essentially zero. 

2.2.3 Photoacoustic spectroscopy 

One of the most effective means for studying the properties of matter 

nondestructively is to observe how photons interact with the material. This is known as 

optical spectroscopy. This can be done by absorption and reflection spectroscopy. 

Another usable technique involves the measurement of photoacoustic signals. The term 

of photoacoustic usually refers to the generation of acoustic waves by modulated optical 

radiation [7]. In a broader sense, photoacoustic means the generation of acoustic waves or 

other thermoelastic effects by any type of energetic radiation, including electromagnetic 

radiation from radio frequency to x ray, electrons, protons, ions and other particles. 
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Rosecwaig-Gersho Theory 

 In 1976, Rosencwaig and Gersho derived the analysis of the photoacoustic 

process in solid. The Rosencwaig-Gersho theory is based on the generally accepted 

mechanism for the photoacoustic effect in condensed phase. A modulated monochromatic 

beam of light is incident on the sample surface. The light is absorbed by the sample to a 

degree dependent upon the optical absorption coefficient of the sample. As a result the 

sample is periodically heated and cooled at the modulation frequency. The periodic 

temperature change is transmitted to a boundary layer of gas at the sample surface. The 

boundary layer of gas expands and contracts with the temperature variation, acting as a 

small acoustic piston analogous to a vibrating plate. The acoustic signal which is 

produced in the confined gas is detected by a microphone. 

 An outline of the Ronsencwaig-Gersho derivation is given making reference to 

Fig. 2.6. A monochromatic beam of light with intensity I0 is modulated at frequency 

ω/2π. The incident modulated beam has intensity I: 

  
 

 
                (2.3) 

As the light beam is transmitted into the sample, energy is deposited in the sample 

in a Lambert’s law manner: 

  

  
         (2.4) 

where i is the transmitted intensity and β is the absorption coefficient. Assuming that the 

absorbed energy is degraded to heat in time, t, shorter than 2π/ω and assuming that the 

absorbed energy is completely degraded to heat, the heat density at depth x in the sample 

is: 

      
 

 
                  (2.5) 
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Thus, for a nonscattering sample the heat density which drives the periodic of the sample 

depends on the optical absorption coefficient and the modulation frequency. 

The temperature fluctuation produced at the sample surface (x = 0) depends not 

only on the heat density but also on the thermal diffusivity of the sample, αs. The 

temperature change produced in the acoustic cell is described by the thermal diffusion 

equations shown below. 

   

    
 

  

  

  
 

   

   
   (      )          (2.6) 

   

    
 

  

  

  
               (2.7) 

   

   
 

 

  

  

  
            (2.8) 

The term used to describe thermal properties are defined as follows: 

   is temperature. 

 αj is thermal diffusivity of material j. 

 aj is thermal diffusion coefficient of material j. 

 kj is thermal conductivity of material j 

 ρj is density of material j. 

Figure 2.6 Idealized photoacoustic cell 
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 cj is specific heat of material j. 

where 

   
  

    
      (2.9) 

and 

   (
 

   
)
   

      (2.10) 

The subscript, j, denotes backing (b), gas (g), sample (s), or reference sample (r). 

 Rosencwaig and Gersho derive a solution to these equations for the time-

dependent temperature at the sample surface using appropriate boundary conditions and 

reasonable simplifying assumptions The time-dependent temperature at the gas-solid 

boundary is integrated over the thickness of the gas boundary layer, 2πμg, giving the 

spatially averaged temperature of the boundary layer. 

 ̅    ∫         
    

 
 

 

 √  
   

          (2.11) 

Assuming that the gas boundary layer acts as an adiabatic acoustic piston, Rosencwaig 

and Gersho solve for the pressure change as a function of time. The general solution for 

the acoustic response function, ΔP(t), is: 

                    (2.12) 

where 

  
      

 √               
  

[
                                        

                              
]  (2.13) 

The term used are defined as follows: 

 P0 is ambient pressure 

 T0 is ambient temperature 

 γ is ration of specific heats for gas. 

 η is phase delay for production of acoustic signal (~π/4) 
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where 

   
    

    
         (2.14) 

   
    

    
         (2.15) 

   
      

   
         (2.16) 

                   (2.17) 

 Because this complex function is not easily interpreted, Rosencwaig and Gersho 

develop six special case depending on the limiting relative magnitudes of sample 

thickness (l), thermal diffusion length (μs = 1/as), and optical absorption length (μβ = 1/β). 

Three of these special cases deal with thermally thick sample. Either the thermally thick 

assumption (μs << l) or the thermally thin assumption (μs >>l) permit simplification of the 

general result. The thermally thin limiting condition has much less general analytical 

applicability because it is difficult to achieve experimentally for many materials. Only the 

thermal thick limiting case will be considered. The three special cases for thermally thick 

samples are summarized in Table 2.2. For optically transparent sample the signal 

amplitude is predominantly due to light absorbed within the first thermal diffusion length 

and that the magnitude of the complex response function, Q, is proportional to the optical 

absorption coefficient times this length. Rosencwaig and Gersho suggest that this 

relationship is also approximately true for optically opaque samples as long as μβ > μs, but 

that when μβ < μs the signal originates predominately from the first optical absorption 

length and Q becomes independent of the optical absorption coefficient. At this point the 

signal is saturated. 

The Rosencwaig-Gersho special cases are useful for understanding the 

dependence of the photoacoustic response on the optical absorption coefficient; however, 

for quantitative applications they are as much an oversimplification as the general  
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Table 2.2 Rosencwaig-Gersho special case for thermally thick samples 

Special cases Photoacoustic signal 

Optically transparent 

(μs << l < μβ) 
        

Optically opaque 

(μs < μβ < l) 
        

Photoacoustically opaque 

(μβ < μs << l) 
        

 

 

 

solution is complex. An alternative presentation of their result is useful in quantitative 

applications. 

Figure 2.7 shows a system for solid state photoacoustic spectroscopy. A high-

powered arc discharge lamp (i.e. Xe lamp) is used as the source of illumination and a 

scanning grating monochromator is used to achieve the spectral desired. A mechanical 

chopper modulates the monochromated light. Optical lenses are used for focusing. The 

PA cell hand-crafted from aluminum is a gas tight cell equipped with a microphone for 

signal detection. Quartz glass was used for the windows (since it is optically transparent 

Figure 2.7: Schematic diagram of photoacoustic spectroscopy. 
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in the short wavelength region). The sample is placed in the airtight cavity.  In the 

presence of modulated light, the gas inside the cavity (air) is periodically heated. This 

causes slight changes in pressure inside the cell that is detected as an audible signal. The 

microphone detects this signal and it is amplified and stored in the computer. The 

reference sample used for normalization is a black absorber (carbon black sheet) to 

eliminate the spectral variations of the illumination source. Shown in Fig. 2.8 is a typical 

spectrum of a carbon black sheet.  

2.2.4 Incident photon to current efficiency spectroscopy [8] 

The incident photon to current efficiency (IPCE) is the ratio of injected electron 

numbers to incident photon numbers which indicate the quantum yield for electron 

injection from the exited sensitizer (in this study: CdSe quantum dots) to the conduction 

band of the semiconductor (TiO2) and the collection efficiency of the electron to the 

 

 

 

Figure 2.8: Typical PA spectrum of carbon black. 
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back-contact (FTO). Therefore, the area of the IPCE curve can be directly converted into 

short circuit current density when considering light harvaesting efficiency and light flux. 

In order to understand a solar cell’s photocurrent response for a specific 

wavelength, it is necessary to know the number of incident photon at the wavelength. A 

photodiode with known spectral responsivity was used to calculate the number of photons 

per wavelength in the light source. This photodiode produced a photocurrent output when 

exposed to light from the monochomator, as the monochromator performed a wavelength 

sweep in 6 nm increments from 270 nm to 800 nm. The energy of incident photons E was 

calculated using the following formula: 

  
  

 
       (2.18) 

where h is Planck’s constant, c is the speed of light, and λ is the wavelength of the 

photon. The number of photons from the monochromator at a giver wavelength can then 

be calculated as follow: 

                                              
 

 
   (2.19) 

where i is light intensity at a given wavelength. It is possible to find the incident photon 

to converted electron ratio of a solar cell. The number of electrons generated per second 

while under illumination from the monochromator for a given wavelength was found to 

be: 

                            
            

 
    (2.20) 

where q is electron charge. 

IPCE or incident photon to current efficiency which corresponds to the quantum 

efficiency is calculated from Eq. 2.18. 

        
                         

                       
     

        

   
      (2.21) 

Isc is the measured short current density (mA), P is the incident light power (mW) and λ is 

wavelength of incident light (nm). 
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Figure 2.9 shows the schematic diagram of IPCE spectrometer. In IPCE 

spectroscopy, a xenon lamp with power supply, monochromator and ammeter were used 

for the IPCE measurement. To measure photocurrent response, an incandescent bulb was 

used to shine white light through the monochromator. This monochromator use a rotating 

diffraction grating to produce monochromatic light. The incident light is directly focused 

on the sample produced a current response, without modulation through chopper. The 

amplitude of this signal is the photocurrent. The intensity of incident light is calibrated 

using power meter and the distribution of incident light is obtained by using 

photoacoustic spectrum of carbon. 

2.2.5 Power conversion efficiency measurement [9] 

The photovoltaic performances or J-V characteristics of solar cells are 

characterized using solar simulator. There are four basic parameters to test the 

performance of the cells. First, the open circuit voltage, Voc, is defined as the voltage 

between the cell terminals (cathode and anode) when no current flows in the external 

circuit. Voc is determined from the intercept of the light J-V curve with the voltage axis (J 

= 0). Second, the current density of the illuminated cell with directly connected terminals 

Figure 2.9 Incident photon to current efficiency measurement setup. 
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(no external voltage is applied) is called the short circuit current density, Jsc. It is the 

intercept of the light J-V curve with the current density axis (V = 0), as shown in Figure 

2.10. The third parameter is called the fill factor (FF). It measures the coincidence of the 

maximum power point Pmax with the value of multiplying Voc by Jsc. 

   
    

       
 

         

       
     (2.20) 

where Vmax and Jmax are the voltage and the current density corresponding to Pmax. 

Fig. 2.10 shows typical current-voltage characteristic curve of solar cell. The fill 

factor does not depend on the area of the cell and is essentially a measure of quality of the 

solar cell. FF can be expressed as the ratio between the rectangle defined by the gray are 

and the rectangle defined by the diagonally striped area depicted in Fig. 2.10. The 

maximum value of the FF is 100 %, which means that the J-V curve is a perfect 

rectangular at the first quarter of the J-V plot. The last parameter is the power conversion 

efficiency, η. It evaluates the ratio between the maximum power generated by the cell to 

the power of the incident light Pin. AM1.5 spectrum (which results in Pin = 100 mW/cm
2
)  

 

 

 

Figure 2.10 Typical Current-Voltage characteristic curve of solar 
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is the typical spectrum under which η is measured. Therefore, the power conversion 

efficiency is expressed as 

     
    

   
 

          

   
       (2.21) 

The most frequently used experimental conditions are the irradiance of 100 

mW/cm
2
, which is defined as the standard 1 sun value with spectrum consistent to an air 

mass (AM) global value of 1.5 at ambient temperature 25°C. AM1.5 is a standard 

reference solar spectral irradiance after the solar radiation has traveled through the 

atmosphere with the Sun at an altitude angle of 41.8°, which simulates a longer optical 

path through the Earth’s atmosphere relative to the Sun at zenith above the Earth’s 

atmosphere (AM1), as shown in Fig. 2.11. The use of this standard irradiance value is 

almost universally used to characterize terrestrial solar panels and particularly convenient 

because the cell efficiency in percent is then numerically equal to the power output from 

the cell in mW/cm
2
. 

 

 

 

 

AM 1 AM 1.5 

 = 41.8
°
 

Atmosphere 

Figure 2.11: Air mass (a) optical path length of sunlight through Earth’s atmosphere (b) solar 

irradiance spectrum. 
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Optical absorption characterization of CdSe 

QD on TiO2 

 

3.1 Introduction 

Dye-sensitized solar cells (DSSCs) built on titanium dioxide (TiO2) nanostructure 

have been receiving significant attention by reason of their high photovoltaic conversion 

efficiencies, often exceeding 11% [1,2]. DSSCs are relatively inexpensive to fabricate 

compared with conventional silicon based solar cells. In addition to organic dyes, 

quantum dots (QDs) of various semiconductors, such as CdS, CdSe and PbS, have also 

attracted significant interest as solar cell sensitizers. The usage of semiconductor QDs as 

sensitizers has several benefits in solar cell applications [3-6]. Firstly, by manipulating 

QDs’ size, the energy gap of the QDs can be adjusted to cover a large fraction of the solar 

spectrum [7]. Secondly, semiconductor QDs have a large extinction coefficient owing to 

quantum confinement and the large intrinsic dipole moment, which can lead to rapid 

charge separation [8] Thirdly, they have the potential for multiple exciton generation 

(MEG) [9,10], which can potentially increase the efficiency of photovoltaic devices [9-

12]. As for present photovoltaic devices, there is a maximum thermodynamic energy 

conversion efficiency of about 31% calculated by the Shockley-Queisser detailed balance 

limit [13]. When MEG is incorporated into the calculations, the value of the maximum 

thermodynamic energy conversion efficiency is able to push up to 44% [14]. Although, 

the performance of quantum dot-sensitized solar cells (QDSSCs) is still below DSSCs 

3 
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(the reported maximum conversion efficiency of QDSSCs is ~5% at present), QDSSCs 

are attracting increasing attention among researchers, and progress is very rapid [15-19] 

The QDs are grown directly on the surface of a TiO2 electrode by the chemical 

reaction of ionic species using either chemical bath deposition (CBD) [3,4] or a 

successive ionic layer adsorption and reaction (SILAR) method [20,21]. However, CBD 

on a porous substrate tends to block the pores in the structure. By comparison with CBD, 

the thin films in the SILAR method are grown ion-by-ion by the absorption and reaction 

of ions in different solutions that excludes the formation of clusters. The SILAR method 

involves nucleation and growth mechanisms, and provides high coverage of the electrode 

leading to a polydisperse QD size distribution. Furthermore, the SILAR method does not 

require precise control of the concentration of ions, the pH value, nor the temperature 

[22].  

There are several factors that assist to improve the performance of QDSSC; (1) 

pore structure of TiO2 electrode for a higher covering of QDs, (2) a surface passivation of 

TiO2 to reduce recombination, and (3) improved counter electrode materials. Also, the 

TiO2 electrode morphology is important for achieving reliable assembly [6,23]. In 

DSSCs, the working-electrode should have a high surface area to increase the amount of 

sensitizer loading in order to enhance light harvesting because of the limitation of the dye 

adsorption on TiO2 as single monolayer [24]. However, the recombination process is 

proportional to the surface area of the electrode. The surface area for QDSSCs may not 

need to be increased by as much as for DSSCs, because the QD has higher extinction 

coefficient and the QDs are not limited to a single molecular monolayer as are the dyes. 

A balance between recombination and light harvesting is needed to maximize the 

sensitized solar cell performance. To resolve the penetration of redox couples to 

sensitizers, a method using an inverse opal TiO2 electrode (IO-TiO2) has been suggested. 

IO-TiO2 has a honeycomb structure with large interconnected pores that leads to better 

infiltration, despite the smaller surface area compared to nanoparticulate electrodes [25].  
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To date, the SILAR process has been applied to the preparation of CdSe QDs 

[20,21]. Among semiconductors, CdSe is well known as a sensitizer for QDSSCs because 

of its high light harvesting in the visible region. However, deposition of CdSe QDs by the 

SILAR method on IO-TiO2 has not yet been reported. In this study, we investigated the 

effect of the number of SILAR cycles on the optical absorption properties of CdSe QDs 

on IO-TiO2 electrodes. SILAR method was used to adsorb CdSe QDs not only on the IO-

TiO2, but also on a nanoparticulate TiO2 electrode (NP-TiO2) for comparison. The optical 

absorption properties were characterized using a gas-microphone photoacoustic (PA) 

technique [26]. This is a photothermal detection method that has developed to be useful 

for examining the optical absorption and thermal properties of several materials by 

evaluating nonradiative de-excitation processes. PA method is especially useful for 

optical scattering and opaque samples [19,26]  

 

3.2 Experimental 

 The preparation method for IO-TiO2 has been reported in a previous study[27]. 

Fluorine-doped tin oxide (FTO) covered glass was ultrasonically cleaned in detergent, 

KOH, distilled water and methanol. An uniform polystyrene (PS) latex suspension (474 

nm in diameter) was agitated by ultrasound for 30 min to split aggregated particles. The 

fabricated opal samples were prepared by dipping the FTO substrate vertically in a 0.1 

wt.% monodisperse PS suspension and evaporated leaving a colloidal PS template on the 

substrate. Hydrolysis process was then performed with a 10-μl droplet of 2% TiCl4 in 

methanol was put into the colloidal surface for 30 min. After that, the sample was then  
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baked to 80C under the air. This procedure was repeated three times to make certain the 

permeation of all voids. Finally, the sample was subsequently baked at 450C for 1 h 

under the air to remove the template and anneal the TiO2. The scanning electron 

microscopy (SEM) image shown in Fig 3.1 (a) shows IO-TiO2 electrode in which the 

honeycomb structure can be observed with a period of 380 nm. The IO-TiO2 thickness 

was measured as 3 µm using a contact profilometer (DEKTAK, ULVAC). NP-TiO2 was 

fabricated using a method described in a previous report [28]. To fabricate NP-TiO2, TiO2 

pastes were made by combination of 15 nm TiO2 nanoparticles (Super Titania, Showa 

Denko, anatase structure) and polyethylene glycol (molecular weight 500 000) in distilled 

water. The prepared pastes were applied onto FTO substrates (10 Ω/square; that is unit of 

sheet resistance) using the doctor blade method, followed by sintering at 450 C for 30 

min. The NP-TiO2 thickness was found to be 3 µm. A SEM image of the NP-TiO2 is 

shown in Fig. 3.1(b). In the case of NP-TiO2 electrode, we chose 15 nm of NP-TiO2 

because previous study in our group found that the size of the TiO2 was the optimal 

condition for QDSSC [28,29]. Then, both conditions were compared. 

 

FIG. 3.1. Scanning electron microscopy (SEM) image of (a) IO-TiO2 and (b) NP-TiO2. 
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 The CdSe QDs were adsorbed on the TiO2 electrodes in a nitrogen atmosphere 

using the SILAR method [20]. The TiO2 electrode was immersed sequentially into two 

different solutions for about 30 s each. One solution contained 0.03 M Cd(NO3)2 

dissolved in ethanol and the other solution consisted of 0.03 M SeO2 and 0.06 M NaBH4 

in ethanol. Following immersion, the films were rinsed for 1 min using pure ethanol to 

remove excess precursor, and the electrode was dried before the next dipping. This 

immersion cycle was repeated several times from 3 to 15 cycles in order to investigate the 

FIG. 3.2. PA spectra of CdSe QDs adsorbed on (a) IO-TiO2 and (b) NP-TiO2 

electrodes with different numbers of CdSe SILAR cycles. 
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effect of the number of SILAR cycles. Subsequently, the samples were coated with ZnS 

to prevent both photocorrosion and recombination processes between electron and hole 

on the surface. The SILAR method was used for this passivation coating, which was done 

by dipping the sample twice each in 0.1 Zn(CH3COO)2 and 0.1 M Na2S for 1 min each 

immerse [30]. 

 The optical absorption spectra of the TiO2 electrodes adsorbed with CdSe QDs 

were measured by gas-microphone photoacoustic (PA) spectroscopy [19,26]. A 300-W 

xenon arc lamp was utilized as a light source. Monochromatic light was achieved by 

delivering light through a monochromator. This light was regulated with a mechanical 

chopper. The modulated light was focused onto the surface of the sample located inside 

the sealed PA cell. The light absorbed by the sample is changed into heat by a 

nonradiative relaxation process, which results in a pressure variation of the air inside the 

cell. The pressure variation is related to the optical absorption of the samples and it is 

identified as a PA signal by a microphone [26]. In this study, the PA spectrum 

measurements were performed in the wavelength region between 270 – 830 nm with a 

modulation frequency of 33 Hz at room temperature. The PA signal was observed by first 

passing the microphone output through a preamplifier and then pass to a lock-in 

amplifier. The spectra were calibrated by PA measurements from a carbon black sheet. 

 

3.3 Results and discussion 

 Figure 3.2 shows the PA spectra of CdSe QDs adsorbed on (a) IO-TiO2 and (b) 

NP-TiO2 electrodes with different numbers of SILAR cycles. The spectra are normalized 

at 3.0 eV of a photon energy. In this experiment, the samples show light scattering and 

semi-transparent. Then, the PA method is applied for the light absorption. The PA theory 

is based on Rosencwaig and Gersho [26]. The PA signal (P) is proportional to optical 

absorption coefficient (α). The energy band gap determination from shoulder method in 
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the PA spectra was reported by Rosencwaig [31]. In the case of semiconductors, the 

shoulder in the PA spectra agree very well with the accepted value. Moreover, Prias-

Barragan and et al. [32] reported values of the band gap obtained by PA techniques were 

good agreement with photoreflectance results. The band gap determined from the 

shoulder in PA spectra is the reasonable value. This is due to the higher sensitivity of PA 

signal intensity than conventional transmission measurements. In QDs, the PA shoulder 

can assume as well as a peak of absorption coefficient. However, the peak cannot 

obviously observe because of two reasons, that is, the broad shoulder is connected with  

 

 

FIG. 3.3. Tauc plots of CdSe QDs adsorbed on (a) IO-TiO2 and (b) NP-TiO2. 
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the size distribution of the QDs and acoustic saturation at the strong absorption side of the 

band gap region. With the increasing number of SILAR cycles, a redshift of the PA 

shoulder (E1) can be noticed, indicating the growing of CdSe QDs. E1 is assumed to be 

the first excitation energy of the CdSe QDs. Fig. 3.3 show Tauc plots of CdSe QDs 

adsorbed on (a) IO-TiO2 and (b) NP-TiO2, which optical band gap can estimate from the 

x-intercept of the line gives the optical band edge. The Eg values estimated from Tauc 

plot are similar to the PA shoulder. The average diameter was estimated by using the 

effective mass approximation (EMA) [33]. The EMA derives from the crystal potential as 

a spherical well of infinite depth. The EMA fails for the small crystal size because of the 

finite potential step at the crystalline surface. Murray et al [34] showed that calculating 

CdSe QD size using EMA agreed with experimental results, in the case that QD size was 

 

 

 

FIG. 3.4. Dependence of the average diameter of CdSe QDs adsorbed on IO-TiO2 

and NP-TiO2 electrodes on the number of CdSe SILAR cycles. 
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over ~4 nm in diameter. In our results, the calculated diameters were about 4-12 nm, 

therefore they were in an acceptable range. Figure 3.4 shows the dependence of the 

average diameter of the QDs adsorbed on the IO-TiO2 and NP-TiO2 electrodes on the 

number of CdSe SILAR cycles. Above 3 cycles, the growth rates of the QDs on each type 

of electrode are similar (~0.8 nm/cycle), indicating that the growth rate is independent of 

the electrode morphology, unlike the case for CBD [23]. With the SILAR method [35], 

the TiO2 substrate is first immersed in a cationic precursor solution containing Cd
2+

 ions. 

The Cd
2+

 ions nucleate at active sites on the surface where the ions can be adsorbed. 

Then, the substrate is immersed in an anionic precursor solution containing Se
2-

 ions. The 

Se
2-

 ions reach the surface and react with the adsorbed Cd
2+

 ions to form CdSe QDs. For 

comparison, CdSe with a zinc blende structure has a lattice constant of 0.60 nm, thus Cd-

Se spacing is about 0.3 nm [36]. The Se
2-

 ions are adsorbed on the Cd
2+

 in single layers, 

so the size of the QDs should increase by the Cd-Se spacing in the relevant direction for 

each SILAR cycle. However, the increase in size with each SILAR cycle is ~0.8 nm, 

which is greater than the Cd-Se spacing, showing that more than one layer is adsorbed 

during the 30s immersions in the precursor solutions since the rinsing process does not 

fully remove the free ions. In the case of the CBD method[23], the CdSe QD diameter 

increases and shows a saturation with increasing adsorption time, due to normal growth 

from the solution but with suppression (negative growth or dissolution) of the CdSe QD 

crystal growth. Suppression of the crystal growth does not occur with the SILAR method. 

Thus, crystal growth with the SILAR method can be easily controlled by changing the 

number of deposition cycles. However, the amount of CdSe QDs on NP-TiO2 is greater 

than that on IO-TiO2, which was confirmed by measuring the optical absorbance of the 

CdSe QDs on IO- TiO2 and NP-TiO2. In the photon energy region between 2 and 3 eV, 

which is higher than the energy of the first excited state of CdSe QDs, the optical 

absorbance of the CdSe QDs on the IO-TiO2 is approximately one quarter of that of the 

CdSe QDs on NP-TiO2. Furthermore, BET surface area measurements were carried out. 
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(Brunauer–Emmett–Teller (BET) theory explains the physical adsorption of gas 

molecules on a solid surface and serves as the basis for an important analysis technique 

for the measurement of the specific surface area of a material.) The BET surface area of 

IO-TiO2 is 44 m
2
/g, which is half that of NP-TiO2 (80 m

2
/g). This indicates that IO-TiO2 

has fewer growth nuclei than NP-TiO2. The number of growth nuclei on the surface (N(t)) 

can be expressed as a function of time, by N(t) = N0[1 – exp(-At)] [35], where A, which 

depends on the activation energy, is the probability that an active site (a preliminary stage 

which can develop into a QD) will transform into a growth nucleus, and N0, which 

depends on the surface structure of the TiO2, is the number of active sites on the surface 

at the beginning of the QD formation process. The growth nuclei are the initial sites for 

the growth of QDs, and the number of QDs depends on the number of these nuclei. Both 

IO-TiO2 and NP-TiO2 are immersed in the precursor solution for 30 s. The immersion  

 

 

FIG. 3.5. Dependence of width of the exponential tail of CdSe QDs adsorbed on IO-TiO2 

and NP-TiO2 electrodes on the number of SILAR cycles. 
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time is a control condition for both IO-TiO2 and NP-TiO2. There is a possible reason why 

IO-TiO2 has fewer growth nuclei than NP-TiO2. IO-TiO2 has fewer active sites than NP-

TiO2, so there is less adsorption of Cd
2+

 ions on the surface in the first stage. On the TiO2 

surface, two coordinating O
2-

 anions, which are next to two Ti neighbors, have one 

degree of coordinative unsaturation, making them able to react and bond with Cd
2+

 ions. 

These two coordinating O
2-

 anions on the TiO2 surface behave as an active site for Cd
2+

, 

and this depends on the morphology, as reported [37]. The surfaces of IO-TiO2 and NP-

TiO2 exhibit different structural arrangements, with different surface reactivities and 

numbers of O
2-

 anions. This suggests that the O
2-

 centers exposed on the surface of IO-

TiO2 are quite distant from each other. 

In the experiments, the PA intensity is proportional to the optical absorption 

coefficient of the electrode [26]. The PA intensities plotted semi-logarithmically change 

linearly below the PA shoulder (absorption edges) in correspondence with the Urbach 

rule for the optical absorption coefficient (exponential tail). Investigation of these 

exponential tails can afford data on the band structure, the disorder, defects, impurities, 

and electron-phonon interactions. An experimental relationship for the dependency of the 

PA signal intensity of the exponential tail on photon energy (hυ) is defined by  

,exp 0

0 








 


uE

hh
PP


                                                     (3.1) 

where h is Planck’s constant, and P0, υ0, Eu are fitting parameters [38]. The width of the 

exponential tail Eu is an inverse logarithmic slope of absorption below the first excitation 

energy. We assume that the value of Eu is a reflection of the disorder in the 

semiconductor crystal [39]. Thus, when the number of defects increases, the width of the 

exponential tail in the region below the first excitation energy also increases. Figure 3.5 

shows the dependence of Eu for CdSe QDs on IO-TiO2 and NP-TiO2 on the number of 

SILAR cycles, which the value of Eu was estimated from logarithmic PA intensity in Fig. 

3.2. The value of Eu decreases with the number of SILAR cycles for both IO-TiO2 and 
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NP-TiO2, indicating a decrease in disorder. The value of Eu for CdSe QDs on IO-TiO2 is 

higher than that for NP-TiO2, indicating that the CdSe QDs on IO-TiO2 have greater 

disorder than those on NP-TiO2. The size of the QDs on IO-TiO2 are similar to those on 

NP-TiO2, so the surface to volume ratios are similar to each other, indicating that the 

disorder in IO-TiO2 is higher than in NP-TiO2. Above 9 SILAR cycles on both IO-TiO2 

and NP-TiO2, Eu approaches a constant value because, as the size of the QDs increases, 

their surface area decreases due to the increasing boundaries between them. 

 

3.4 Conclusions 

 We used PA spectroscopy to study the optical absorption of CdSe QDs adsorbed 

on IO-TiO2 and NP-TiO2 electrodes. CdSe QDs were grown directly on IO-TiO2 and NP-

TiO2 by the SILAR method with from 3 to 15 SILAR cycles. The growth of the CdSe 

QDs on the electrodes was estimated from the PA spectra. The growth rates of the QDs 

on IO-TiO2 and NP-TiO2 were similar, indicating that this is independent of morphology. 

However, measurements of the optical absorbance showed there were more CdSe QDs on 

NP-TiO2 than on IO-TiO2, indicating that there were a greater number of active sites on 

NP-TiO2 than on IO-TiO2. The width of the exponential tail, Eu, of CdSe QDs on IO-

TiO2 was higher than that on NP-TiO2, indicating that the CdSe QDs on IO-TiO2 had 

more disorder than NP-TiO2. Above 9 SILAR cycles in both cases, Eu tended to move 

towards a constant value because the amount of disorder is dominant.  

 

 

 

 

 

 



OPTICAL ABSORPTION CHARACTERIZATION OF CdSe QD ON TiO2 

61 
 

__________________________ 

Reference 

[1] Y. Chiba, A. Islam, Y. Watanabe, R. Koyama, N. Koide and L. Han, Jpn. J. Appl. 

Phys. 45, L638 (2006).  

[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: 

Res. Appl. 20, 12 (2012).  

[3] C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91, 053503 (2007).  

[4] L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, Appl. Phys. Lett. 91, 023116 

(2007).  

[5] H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, 

T. Geiger, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Adv. Funct. 

Mater. 19, 2735 (2009).  

[6] T. Toyoda and Q. Shen, J. Phys. Chem. Lett. 3, 1885 (2012).  

[7] N. Guijarro, Q. Shen, S. Giménez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. 

Toyoda and R. Gómez, J. Phys. Chem. C 114, 22352 (2010).  

[8] D. F. Underwood, T. Kippenny and S. J. Rosenthal, Eur. Phys. J. D 16, 241 (2001). 

[9] A. J. Nozik, Physica E 14, 115 (2002).  

[10] V. I. Klimov, J. Phys. Chem. B 110, 16827 (2006).  

[11] R. D. Schaller, M. Sykora, J. M. Pietryga and V. I. Klimov, Nano Lett. 6, 424 

(2006).  

[12] A. J. Nozik, Chem. Phys. Lett. 3, 457 (2008).  

[13] W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).  

[14] M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. Metzger, R. J. 

Ellingson and A. J. Nozik, Nano Lett. 7, 2506 (2007).  

[15] Q. Niitsoo, S. K. Sarkar, P. Pejoux, S. Rühle, D. Cahen and G. Hodes, J. Photochem. 

Photobiol. A 181, 306 (2006).  



OPTICAL ABSORPTION CHARACTERIZATION OF CdSe QD ON TiO2 

62 
 

[16] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. 

Soc. 130, 4007 (2008).  

[17] Q. Shen, A. Yamada, S. Tamura and T. Toyoda, Appl. Phys. Lett. 97, 123107 

(2010).  

[18] V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, ACS Nano 4, 5788 (2010).  

[19] T. Toyoda, K. Oshikane, D. Li, Y. Luo, Q. Meng and Q. Shen, J. Appl. Phys. 108, 

114340 (2010).  

[20] H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grӓtzel and M. 

K. Nazeeruddin, Nano Lett. 9, 4221 (2009).  

[21] J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson and X. 

Peng, J. Am. Chem. Soc. 125, 12567 (2003).  

[22] L. Yin and C. Ye, Sci. Adv. Mater. 3, 41 (2011).  

[23] T. Toyoda, T. Uehata, R. Suganuma, S. Tamura, A. Sato, K. Yamamoto, Q. Shen 

and N. Kobayashi, Jpn. J. Appl. Phys. 46, 4616 (2007). 

[24] M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003). 

[25] P.R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, G. Ruani, Sol. Energy 

Mater. Sol. Cells 87, 513 (2005). 

[26] A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).  

[27] L. J. Diguna, M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. 

Shen and T. Toyoda, Jpn. J. Appl. Phys. 45, 5563 (2006).  

[28] Q. Shen and T. Toyoda, Thin Solid Films 167, 438 (2003).  

[29] Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, J. Appl. Phys. 103, 084304 

(2008) 

[30] S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Liang, J. Mater. Chem. 12, 

1459 (2002). 

[31] A. Rosencwaig, Phys. Today 28, 23 (1975). 



OPTICAL ABSORPTION CHARACTERIZATION OF CdSe QD ON TiO2 

63 
 

[32] J.J. Prías-Barragán, L. Tirado-Mejía, H. Ariza-Calderón, L. Baños, J.J. Perez-Bueno, 

and M.E. Rodríguez, J. Cryst. Growth 286, 279 (2006). 

[33] A. I. Ekimov, A. L. Efros and A. A. Onushchenko, Solid State Commun. 56, 921 

(1985).  

[34] C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993), 

V. N. Soloviev, A. Eichhofer, D. Fenske and U. Banin, J. Am. Chem. Soc. 122, 2673 

(2000). 

[35] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci. 27, 85 (2004).  

[36] R. Solanki, J. Huo and J. L. Freeouf, Appl. Phys. Lett. 81, 3864 (2002).  

[37] G. Martra, Appiled Catalysis A: General 200, 275 (2000). 

[38] T. H. Keil, Phys. Rev. 144, 582 (1966).  

[39] S. Knief and W. Niessen, Phys. Rev. B 59, 12940 (1999). 

 

 

 



PHOTOVOLTAIC PROPERTIES OF CdSe QD ON TiO2 

64 
 

 

 
 

 

 

 

Photovoltaic properties of CdSe QD on TiO2 

 

4.1 Introduction 

One of the major renewable energy sources, solar energy has the potential to 

become an essential component of future global energy production. Dye-sensitized solar 

cells (DSSCs) based on nanostructured TiO2 electrodes have been attracting much 

attention as an alternative to conventional silicon solar cells since the pioneering work on 

dye-sensitized nanocrystalline TiO2 by O’Regan and Grätzel [1]. In these cells, the use of 

dye molecules as photosensitizers, nanostructured TiO2 as the electron transport layer, 

and, the I
¯
/I3

¯ 
redox couple as a hole transport layer dramatically improve the light-

harvesting efficiency. Ru-based dyes attached to mesoporous TiO2 with large surface 

areas absorb solar energy efficiently. The electrons injected by the optically excited dye 

into the TiO2 conduction band diffuse across the semiconductor film layer and reach the 

back contact. Redox couples diffusing in solution, which are in turn reduced at the 

counter electrode, regenerate the oxidized dye. To achieve efficient solar energy 

conversion as well as long-term photostability, some researchers have applied quantum-

dot semiconductors as dye substitutes for sensitizers [2]. The use of semiconductor QDs 

as sensitizers has several advantages in solar cell applications [3]. Firstly, by controlling 

their size, the energy gap of the QDs can be tuned to cover a large fraction of the solar 

spectrum [4]. Secondly, semiconductor QDs have a large extinction coefficient due to 

quantum confinement and the large intrinsic dipole moment, which can lead to rapid 

4 
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charge separation [5]. Thirdly, they have the potential for multiple exciton generation 

(MEG) [6], which can potentially increase the efficiency of photovoltaic devices [7]. As 

for present photovoltaic devices, there is a maximum thermodynamic energy conversion 

efficiency of about 31% calculated by the Shockley-Queisser detailed balance limit [8]. 

When MEG is incorporated into the calculations, the value of the maximum 

thermodynamic energy conversion efficiency can be pushed up to 44% [9]. Although, the 

efficiency of quantum dot-sensitized solar cells (QDSSCs) is still lower than DSSCs (the 

reported maximum conversion efficiency of QDSSCs is ~5% at present), QDSSCs are 

attracting increasing attention among researchers, and progress is very rapid [10]. 

There are several factors assist to improve the performance of QDSSC; (1) pore 

structure of TiO2 electrode for a higher covering of QDs, (2) a surface passivation of 

TiO2 to reduce recombination, and (3) improved counter electrode materials. Also, the 

TiO2 electrode morphology is important for achieving reliable assembly [11]. In DSSCs, 

the working-electrode should have a high surface area to increase the amount of sensitizer 

loading in order to enhance light harvesting because of the limitation of the dye 

adsorption on TiO2 as single monolayer [12]. However, the recombination process is 

proportional to the surface area of the electrode. The surface area for QDSSCs may not 

need to be increased by as much as for DSSCs, because the QD has higher extinction 

coefficient and QDs adsorption shows several layers. A balance between recombination 

and light harvesting is needed to maximize the sensitized solar cell performance. To 

address the penetration of both sensitizers and redox couples, an approach using an 

inverse opal TiO2 electrode (IO-TiO2) has been proposed. IO-TiO2 has a honeycomb 

structure with large interconnected pores that leads to better infiltration, despite the 

smaller surface area compared to nanoparticulate electrodes [13]. In addition, it also 

exhibits a photonic band gap, which depends on the filling fraction of TiO2 in the inverse 

opal structure. At the wavelength near the photonic band gap, the group velocity of 

photons becomes anomalously small. This phenomenon can be understood by 
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considering the bending of the photon dispersion curve (E vs k) in a periodic dielectric 

[14]. At wavelengths approaching the photonic band gap, light can be described as a 

standing wave [15]. The peaks of this standing wave are localized in the high dielectric 

part of the photonic crystal on the red edge of the photonic band gap, whereas they are 

localized in the low dielectric part of the photonic crystal on the blue edge. Taking note 

of the sensitizer in the high dielectric part of photonic crystal, it may be possible to 

significantly enhance solar energy absorption by adjusting the red edge of the photonic 

band gap to fit with the absorption of the sensitizers used, particularly for quantum dots 

that originally have large extinction coefficients. 

To date, the SILAR process has been applied to the preparation of CdSe QDs 

[16]. Among semiconductors, CdSe is well known as a sensitizer for QDSSCs because of 

its high light harvesting in the visible region. However, deposition of CdSe QDs by the 

SILAR method on IO-TiO2 has not yet been reported. In this study, we investigated the 

effect of the number of SILAR cycles on the photovoltaic properties of CdSe QDs on IO-

TiO2 electrodes. SILAR method was used to adsorb CdSe QDs not only on the IO-TiO2, 

but also on a nanoparticulate TiO2 electrode (NP-TiO2) for comparison. The photovoltaic 

properties were characterized with a solar simulator.  

In this chapter, CdSe QDs are adsorbed in situ on inverse opal TiO2. 

Photosensitization of inverse opal TiO2 with CdSe QDs is studied by characterizing its 

photocurrent as well as photovoltaic performances as a function of SILAR cycles. 

 

4.2 Experimental 

 The preparation method for IO-TiO2 has been reported in a previous study [17]. 

Fluorine-doped tin oxide (FTO) coated glass was ultrasonically cleaned in detergent, 

KOH, distilled water and methanol. A monodisperse polystyrene (PS) latex suspension 

(474 nm in diameter) was agitated by ultrasound for 30 min to break aggregated particles. 
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The synthetic opal samples were assembled by immersing the FTO substrate vertically in 

a 0.1 wt.% monodisperse PS suspension and evaporated leaving behind a colloidal crystal 

film on the substrate. A 10-μl drop of 2% TiCl4 in methanol was added to the colloidal 

surface. After hydrolysis for 30 min, the sample was subsequently heated to 80C in air. 

This process was repeated several times to ensure the filling of all voids. Finally, the 

sample was subsequently heated at 450C for 1 h in air to calcinate the template and 

anneal the TiO2. The IO-TiO2 thickness was measured as 3 µm using a contact 

profilometer (DEKTAK, ULVAC). NP-TiO2 was fabricated using a method described in 

a previous report [18]. To fabricate NP-TiO2, TiO2 pastes were prepared by mixing 15 

nm TiO2 nanoparticles (Super Titania, Showa Denko, anatase structure) and polyethylene 

glycol (molecular weight 500 000) in pure water. The prepared pastes were applied onto 

FTO substrates (10 Ω/sq) using the doctor blade method, followed by sintering at 450 C 

for 30 min. The NP-TiO2 thickness was found to be 3 µm. In the case of NP-TiO2 

electrode, we chose 15 nm of NP-TiO2 because previous study in our group found that 

the size of the TiO2 was the optimal condition for QDSSC [18]. Then, both conditions 

were compared. 

 The CdSe QDs were adsorbed on the TiO2 electrodes in a nitrogen atmosphere 

using the SILAR method [16]. The TiO2 electrode was immersed sequentially into two 

different solutions for about 30 s each. One solution contained 0.03 M Cd(NO3)2 

dissolved in ethanol and the other solution consisted of 0.03 M SeO2 and 0.06 M NaBH4 

in ethanol. Following immersion, the films were rinsed for 1 min using pure ethanol to 

remove excess precursor, and the electrode was dried before the next dipping. This 

immersion cycle was repeated several times from 3 to 15 cycles in order to investigate the 

effect of the number of SILAR cycles. Subsequently, the samples were coated with ZnS 

to prevent both photocorrosion and recombination processes between electron and hole 

on the surface. The SILAR method was used for this passivation coating, which was done 
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by dipping the sample twice each in 0.1 Zn(CH3COO)2 and 0.1 M Na2S for 1 min each 

dip [19]. 

 The incident photon-to-current conversion efficiency (IPCE) and the photovoltaic 

measurements were performed in a sandwich structure solar cell with a Cu2S counter 

electrode [20]. The polysulfide electrolyte (1 M S and 1 M Na2S solution) was used as the 

regenerative redox couple [21]. The active area of the cells was 0.24 cm
2
. Their IPCE 

spectra were measured under the short circuit photocurrent with the same conditions as 

those used for the PA measurement. The photocurrent was measured using a zero 

shuntmeter. The photovoltaic characteristics (short circuit current: Jsc; open circuit 

voltage: Voc; fill factor: FF; photovoltaic conversion efficiency: η) were measured using a 

solar simulator (Peccell Technologies, Inc.) under one sun illumination (AM 1.5, 100 

mW/cm
2
).  

 

4.3 Results and discussion 

Figure 4.1 shows IPCE spectra of CdSe QDs adsorbed on TiO2 electrodes with 

different CdSe SILAR cycles, (a) IO-TiO2 and (b) NP-TiO2. The photosensitization of 

CdSe QDs on TiO2 electrodes in the visible region can be clearly observed. Below 9 

SILAR cycles, the IPCE spectra of both IO-TiO2 and NP-TiO2 cells are enhanced in low 

photon energy region because a size of CdSe QDs on TiO2 grows with increasing SILAR 

cycle. The maximum IPCE of the IO-TiO2 cell is 36% at 3.2 eV for 13 SILAR cycles and 

the maximum IPCE of the NP-TiO2 cell is 71% at 3.2 eV for 9 SILAR cycles. Probable 

reasons for the lower IPCE in IO-TiO2 cell are, (1) a fewer adsorption of Cd
2+

 ions, and 

(2) smaller surface area. As a result, the CdSe QDs adsorbed on IO-TiO2 are probably 

fewer amounts than those on NP-TiO2. Thus, the IPCE of CdSe QDs on IO-TiO2 is about 

a half of those on NP-TiO2. Over 13 cycles, the IPCE value of IO-TiO2 cell decreases, 

although there is a decrease in the number of defects as indicated by Fig. 4.1.  
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This may be due to the increased amount of recombination of photoexcited carriers in the 

increasing interfacial area among the QDs. The recombination mechanism can be the 

internal recombination at the interface of QDs (e.g., grain boundary recombination), 

which does not operate for the nearly isolated QDs [22]. The IPCE value of NP-TiO2 cell 

decreases when over 9 cycles because the NP-TiO2 electrode has smaller porous size than 

the IO-TiO2 electrode. 

 

Figure 4.1 IPCE spectra of CdSe QDs adsorbed on IO-TiO2 (a) and NP-TiO2 (b) electrodes 

with different CdSe SILAR cycles. 
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 The J-V curves of CdSe QDSSCs with a sandwich structure grown for different 

CdSe SILAR cycles are shown in Fig 4.2. The value of short circuit current (Jsc), open 

circuit voltage (Voc), fill factor (FF), conversion efficiency (η), shunt resistance (Rsh), and 

series resistance (Rs) are summarized in Table 4.1. For IO-TiO2, Jsc attains the maximum 

value of 5.8 mA/cm
2
 at 13 SILAR cycles and η achieves the maximum value of 1.3% at 9 

and 13 SILAR cycles. For NP-TiO2, Jsc and η increase with increasing SILAR cycles, 

reach the maximum value of 12.4 mA/cm
2
 and 2.7%, respectively at 9 SILAR cycles, and 

then decrease value with increasing SILAR cycles. These results are different from the 

case of the CBD method in which Jsc of IO-TiO2 (~9.0 mA/cm
2
) is similar to NP-TiO2 

Figure 4.2 J-V curves of CdSe QDSSCs with different CdSe SILAR 

cycles (a) IO-TiO2 (b) NP-TiO2. 
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(~9.3 mA/cm
2
) and Voc of IO-TiO2 (~0.71 V) is higher than that of NP-TiO2 (~0.51 V), as 

has been reported.
6
 For the SILAR method, the Voc of NP-TiO2 (~0.57 V) is close to the 

Voc of IO-TiO2 (~0.56 V). It is because coverage of growing QDs on TiO2 surface is a 

time-dependent function. In this experiment, the SILAR method takes immersion time of 

30 seconds that is less than the CBD (~8 hrs). Thus, the CBD has a possibility of more 

coverage of QDs on TiO2 surface. Therefore, it is possible that the amount of QDs 

adsorbed by the CBD is more than SILAR, resulting in higher Jsc. The photovoltage in 

electrochemical QDSSC is limited by the energy difference between the conduction band 

edge of TiO2 and the redox potential of polysulfide. The band edge potential can strongly 

shift as a function of surface pH
 
[23] that relate to a fraction of TiO2 surface is in direct 

contact with the electrolyte due to incomplete QD surface coverage. The QDs grown by 

CBD probably cover more TiO2 surface than those by the SILAR, resulting higher Voc of 

QDs on electrode prepared by the CBD. The CBD process tends to block the pores in NP-

TiO2, but IO-TiO2 has less probability of being blocked pores due to larger voids. The 

blockages cause electrolyte cannot spread into the voids. The QD surface exposed to the 

electrolyte is reduced, which results in a limitation of the number of oxidized QDs that 

can be regenerated by electron capture from the electrolyte. In the case of IO-TiO2, the 

voids are larger than those of NP-TiO2. Accordingly, the electrolyte spreads thoroughly 

over the large interconnected pores inside IO-TiO2. The tendency of η is intimately 

related to Jsc and consistent with the IPCE. Lower Jsc and η of CdSe QDs on IO-TiO2 

than those on NP-TiO2 are (1) lower surface area, (2) the lower adsorption of Cd
2+

 ions, 

and (3) larger amount of surface states. 

To further understand these results, J-V parameter analysis was performed using 

an equivalent circuit model. The equivalent circuit of a solar cell is shown in Figure 4.3. 

The equivalent circuit mainly considered the photoanode of QDSSC as the electrolyte 

and the counter electrode were the same for all the samples in the present study. 
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According to Kirchhoff’s law, the relation between output current density and voltage can 

be written as: 

        [   ( 
     

   
)   ]  

     

   
    (4.1) 

where J and V are the output current density (mA/cm
2
) and voltage (V), respectively. Jph 

is the photo current density (mA/cm
2
). Rs and Rsh are series and shunt resistances (kΩ 

cm
2
), respectively. J0 and n are the inverse saturation current density (mA/cm

2
) and 

ideality factor of diode D. T is the temperature, k is the Boltzmann constant, and q is the 

charge of electron. By fitting experimental J-V curves with Equation 4.1, five parameters 

(i.e., Jph, J0, n, Rs and Rsh) can be extracted. In order to yield fitting results, an estimation 

of J-V parameters [24] and a successive large perturbation method [25] were used. J-V 

curve measurement range was extended below 0 V and to negative values [24]. When the 

voltage was near 0 V, the diode current density (      [   ( 
     

   
)   ] ) was 

approximately 0 [24]. Moreover, Rs was usually much smaller than Rsh. Thus, Equation 

4.1 can be simplified as: 
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Figure 4.3 Equivalent circuit of a solar cell. 
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It is a linear relationship between J and V. Thus, an estimation of Rsh can be obtained by 

fitting the J-V curve near 0 V (i.e., from the slope) [24]. Similarly, an estimation of Rs can 

be obtained by fitting the J-V curve near J = 0 mA/cm
2
. 

The dependence of the Rsh (a) and Rs (b) on the CdSe SILAR cycle is shown in 

Fig. 4.4. Rsh and Rs estimated from variations in the slopes of the J-V curve near the short 

and open circuit conditions, respectively. Rsh decreases up to 7 SILAR cycles and then 

becomes constant for more SILAR cycles. The Rsh is the charge transfer resistance of the 

recombination processes. The charge recombination processes between electrons in CdSe 

QDs and Sn
2-

 in electrolyte is considerably blocked by the ZnS passivation independently 

of the CdSe SILAR cycles. Thus, the value of Rsh mainly depends on the recombination 

processes between TiO2 and QDs, TiO2 and electrolyte, and among QDs. At 3 SILAR 

cycles, the Rsh of QDs on IO-TiO2 is lower value than that on NP-TiO2, thus the IO-TiO2 

has more recombination processes than the NP-TiO2. As a result, the charge 

recombination between electrons in the TiO2 and holes in the CdSe QDs probably occurs. 

Between 3 and 7 SILAR cycles, the increase in electron injection from the QDs is larger 

than the increase in recombination between the TiO2 and the QDs, which causes the 

values of Jsc and η to rise. This observation also suggests that there are the increasing 

back electron transfer processes between 3 to 7 SILAR cycles both TiO2 since Rsh relates 

to the back electron transfer across the TiO2/QDs/electrolyte junction. The value of Rs 

also decreases up to 7 SILAR cycles and then becomes constant for more SILAR cycles. 

The Rs is the sum of the sheet resistance of the FTO, the charge transfer resistance at the 

counter-electrode/electrolyte interface, the redox species diffusion, and the charge 

transfer resistance in TiO2 film [26]. In this study, the Rs depends on the charge transfer 

resistance in TiO2 film adsorbed with CdSe QDs, and the other resistances are assumed 

constant for different SILAR cycles. The increasing amount of CdSe QDs on TiO2 causes 

the increasing electron injected into TiO2 then the electron concentration in TiO2 is 

boosted, resulting in a decrease of the charge transfer resistance in TiO2 and Rs. The  
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increasing number of cycles, it increases the chance of a recombination of carriers 

increases with the increasing interfacial area among the QDs. The Rs of QDs on IO-TiO2 

is larger than that on NP-TiO2. A possible reason for the different Rs, the QDs on IO-TiO2 

has fewer amounts than the QDs on NP-TiO2, which a result in the QDs on IO-TiO2 has 

fewer injected electrons than the QDs on NP-TiO2. As discussed the PA result in chapter 

3, the QD surface state per volume on IO-TiO2 is larger than that on NP-TiO2, which 

decreases the electron injection from them to the TiO2 electrode. 

 

Figure 4.4 Dependence of the Rsh (a) and Rs (b) on CdSe SILAR cycle. 
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Table 4.1. Photovoltaic properties of CdSe QDs adsorbed on TiO2 electrodes with 

different CdSe SILAR cycles. 

CdSe SILAR cycle 

Jsc 

(mA/cm
2
) 

Voc 

(V) 
FF 

η 

(%) 

Rs 

(kΩ·cm
2
) 

Rsh 

(kΩ·cm
2
) 

Inverse opal TiO2       

3 1.0 0.53 0.45 0.22 0.16 2.8 

5 2.2 0.57 0.47 0.60 0.11 2.1 

7 4.2 0.55 0.46 1.1 0.061 0.95 

9 5.2 0.57 0.45 1.3 0.050 0.59 

13 5.8 0.48 0.46 1.3 0.038 0.62 

15 5.4 0.44 0.46 1.1 0.038 0.57 

Nanoparticulate TiO2       

3 3.0 0.52 0.56 0.86 0.057 6.0 

5 8.6 0.56 0.50 2.4 0.028 1.4 

7 10.7 0.49 0.46 2.5 0.022 0.67 

9 12.4 0.48 0.46 2.7 0.019 0.48 

11 12.2 0.41 0.44 2.2 0.018 0.42 

13 12.1 0.42 0.39 2.0 0.021 0.41 

 

4.4 Conclusions 

  The maximum photovoltaic conversion efficiency, ηmax, of CdSe QDs on IO-

TiO2 was 1.3% and the ηmax of CdSe QDs on NP-TiO2 was 2.7% at 9 SILAR cycles. 

Lower Jsc and η of CdSe QDs on IO-TiO2 than those on NP-TiO2 were the lower 

adsorption of Cd
2+

 ions, larger amount of surface states per volume, and lower TiO2 

surface area. The shunt resistance, Rsh, decreased with the charge recombination 
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increased. The Rs of QDs on IO-TiO2 was larger than that on NP-TiO2 because the QDs 

on IO-TiO2 had fewer injected electrons than the QDs on NP-TiO2. 

 

__________________________ 
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Summary 

 

Inverse opal TiO2 has been successfully synthesized by a simple method. The 

anatase structured and ordered porous in TiO2 inverse opal were confirmed by X-ray 

diffraction pattern and SEM images. CdSe have been successfully adsorbed on inverse 

opal TiO2 and nanoparticulate TiO2 by successive ionic layer adsorption and reaction 

(SILAR) method confirmed by wall thickening of inverse opal structure in FE-SEM 

images as increasing SILAR cycle. This CdSe growth has been also caused the red-shift 

in optical absorption (PA) spectra, where the higher energy of first excitation energy for 

each SILAR cycle relative to the band gap of bulk CdSe shows the occurrence of 

quantum confinement effect. The CdSe QD diameter on the electrodes was estimated 

from the first excitation energy. The growth rates of the QDs on inverse opal TiO2 and 

nanopaticulate TiO2 were similar, indicating that this is independent of morphology. 

However, measurements of the optical absorbance showed there were more CdSe QDs on 

nanopaticulate TiO2 than on inverse opal TiO2, indicating that there were a greater 

number of active sites on nanopaticulate TiO2 than on inverse opal TiO2. The width of the 

absorption edge, ΔE, of CdSe QDs on inverse opal TiO2 was higher than that on 

nanopaticulate TiO2, indicating that the CdSe QDs on inverse opal TiO2 had more 

disorder than nanopaticulate TiO2. 

The increased values in incident-photon to current efficiency (IPCE) spectra as 

increasing SILAR cycle indicates the larger fraction of electron injection from CdSe QDs 

into TiO2 conduction band. This result shows the photosensitization of inverse opal TiO2 

5 
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and nanoparticulate TiO2 with CdSe QDs. The optimum in IPCE value and photovoltaic 

properties for certain SILAR cycle describes the appropriate condition for electron 

injection at CdSe/TiO2 interfaces and hole injection at CdSe/electrolyte interfaces. The 

latter has been affected by the changing of the porous size in inverse opal TiO2 as well as 

nanoparticulate TiO2 with increasing SILAR cycle (in other word, the penetration of the 

electrolyte across the matrix). The cause of lower IPCE in inverse opal TiO2 cell 

(comparison with nanoparticulate TiO2) are a fewer adsorption of Cd
2+

 ions, and smaller 

surface area. As a result, the CdSe QDs adsorbed on inverse opal TiO2 are probably fewer 

amounts than those on nanoparticulate TiO2. Thus, the IPCE of CdSe QDs on inverse 

opal TiO2 is about a half of those on nanoparticulate TiO2. 

Inverse opal TiO2 and nanoparticulate TiO2 electrodes with CdSe QDs adsorption 

have been applied in solar application resulting in efficient QD-sensitized solar cells. 

CdSe QD-sensitized inverse opal TiO2 has slightly higher open circuit voltage compared 

to that of nanoparticulate TiO2 due to its macroporous structure making it potential in 

sensitized solar cell application. The maximum photovoltaic conversion efficiency, ηmax, 

of CdSe QDs on inverse opal TiO2 of about 1.3% and the ηmax of CdSe QDs on 

nanoparticulate TiO2 of about 2.7% have been attained, under solar illumination of 100 

mW/cm
2
. In addition, J-V parameter analysis was performed using an equivalent circuit 

model to find shunt resistance and series resistance. The shunt resistance, Rsh, decreased 

with the charge recombination increased. The series resistance, Rs, of QDs on inverse 

opal TiO2 was larger than that on nanoparticulate TiO2 because the QDs on inverse opal 

TiO2 had fewer injected electrons than the QDs on nanoparticulate TiO2. 
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Appendix 1 
 

 

PbS/CdS quantum dot sensitized solar cell 

 

 Quantum dot-sensitized solar cells (QDSCs) are interesting photovoltaic devices 

because quantum dots (QDs) show some benefits, such as quantum high extinction 

coefficient, quantum confinement effect and so on [1,2]. Particularly, the multiple exciton 

generation (MEG) of QD solar cells can theoretically give about 44% of conversion 

efficiency, higher than Shockley–Queisser efficiency limit [3]. At present, some kinds of 

QDs have been used to fabricate QDSCs, such as CdS, CdSe and so on. Semiconductor 

with low bulk band gap, such as PbS with Eg = 0.41 eV [4], has received attention since it 

can allow the absorption band extending to near infrared region of the solar spectrum. 

Recently, the use of PbS [5] colloidal quantum dots in Schottky solar cells has exhibited 

the potential of these materials for solar conversion energy, obtaining high photocurrents 

[5]. However, bulk PbS shows some problems for use as sensitizer; (1) the maximum 

theoretical efficiency is below 33%, reported for an absorber with a band gap of 0.4 eV 

[6], (2) the conduction band edge is lower energy level compared to TiO2 [7], (3) PbS is 

not stable with redox couples as iodine or polysulfide [8]. The first and second problem 

can be solved by controlling the PbS QD size where the quantum confinement is reached. 

The conduction band edge is shifted up, allowing the electron inject to TiO2 [9]. The 

instability of PbS in polysulfide can be solved by a CdS coating layer on PbS QDs by 

successive ionic layer adsorption and reaction method. 

 In the present study, PbS and CdS QDs have been deposited by the SILAR 

method onto TiO2 substrates. Several configurations of PbS and CdS have been  
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Figure A.1 Photoacoustic spectroscopy of PbS and 

CdS quantum dot on TiO2 

Figure A.2 Dependence of the energy gap and the average 

diameter of PbS and CdS QDs adsorbed on TiO2 electrodes 

on the number of SILAR cycles. 
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investigated, including only PbS, only CdS, and PbS/CdS system. The samples are 

labeled as PbS(X)/CdS(Y), where X and Y refer to the numbers of PbS and CdS SILAR 

cycles, respectively. All samples were coated with ZnS layer by SILAR two cycles. 

 The effect of the number of SILAR cycles on the optical absorption properties of 

PbS and CdS QD-sensitized TiO2 is shown by the photoacoustic spectra (Figure A.1). 

Increasing of the number of cycles leads to shift of the absorption edge toward lower 

photon energy. A significant shift (from ~2.5 to ~2.1 eV) is observed for shoulder point 

of the PbS electrodes, corresponding to samples PbS(1) and PbS(3), respectively. Also, 

the size of QD is calculated by effective mass approximation method. The QD size 

increases with the number of SILAR cycles. Enhanced absorption in the NIR region 

should increase the amount of photocurrent Jsc. Consequenly, a significant broadening of 

the IPCE spectrum is observed; see below. 

 

      

Figure A.3 Incident photon current efficiency 

spectra of PbS/CdS sensitized solar cell 
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 The current density-voltage (J-V) curves measured at one sun of illumination are 

shown in Figure A.4. The photovoltaic properties of the PbS, CdS, and PbS/CdS cells are  

reported in Figure A.5. PbS(3) and CdS(5) QDSCs reveals low photocurrents. The 

CdS(5) sample is considered by a high open circuit voltage (Voc = 0.54 V). Conversely, 

the PbS(3) sample presents a very low Voc = 0.27 V. In contrast, the co-sensitized sample 

combining PbS and CdS show an intermediary Voc between those for PbS and CdS 

QDSCs. Nevertheless, an increase in Jsc is observed, conducting to an improvement in 

efficiency. The photocurrent improvement is due to the broadening of the light absorption 

region into the red and NIR, as resulting from the IPCE spectra. After investigating the 

solar cell parameters obtained for the different configurations described in Figure A.5, 

some characteristic tendency can be revealed. Voc increases with the number of CdS 

SILAR cycles and decreases with the number of PbS SILAR cycles. The photocurrent 

 

          

Figure A.4 Current density and voltage curve of 

PbS/CdS sensitized solar cell 
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remarkably increases for PbS/CdS configuration. Finally, the FF is around 0.4. The slight 

differences observed in the FF can be ascribed to the different photocurrent. Cells with 

lower photocurrents exhibit higher FF because the voltage drop in the series resistance is 

lower. 

 The efficient QDSCs based on metal sulfide semiconductors. The PbS/CdS 

configuration has been revealed to improve the solar cell performance further than the 

efficiencies of the single sensitizer. PbS cell significantly increases the obtained 

photocurrents with the CdS coating. The strategy of co-absorbers leads to significant 

development in sensitized solar cell. 
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Figure A.5 Photovoltaic properties of PbS/CdS sensitized solar 

cell (a) Efficiency (b) Short circuit current density (c) Open 

circuit voltage (d) Fill factor 
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Table A.1. Photovoltaic properties of PbS and CdS QDs adsorbed on TiO2 electrodes 

with different SILAR cycles. 

PbS 

SILAR cycles 

CdS 

SILAR cycles 

Jsc 

(mA/cm
2
) 

Voc 

(V) 
FF 

η 

(%) 

- 

4 6.33 0.49 0.51 1.57 

5 7.35 0.54 0.49 1.97 

6 7.52 0.54 0.48 1.94 

1 

- 3.55 0.27 0.49 0.47 

4 9.06 0.46 0.44 1.83 

5 10.21 0.48 0.43 2.11 

6 9.72 0.47 0.39 1.81 

2 

- 6.29 0.28 0.43 0.77 

4 11.51 0.37 0.40 1.71 

5 12.85 0.43 0.37 2.06 

6 11.75 0.44 0.41 2.12 

3 

- 6.59 0.27 0.45 0.80 

4 10.08 0.36 0.43 1.56 

5 16.30 0.39 0.36 2.25 

6 14.00 0.40 0.36 1.99 
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