
Robust Path Selection Schemes

under Uncertain Network

Conditions

Ravindra Sandaruwan Ranaweera

Department of Computer and Network Engineering

The University of Electro-Communications

A thesis submitted for the degree of

Doctor of Philosophy

March 2019

APPROVED BY SUPERVISORY COMMITTEE:

Chairperson: Prof. Kitsuwan Nattapong

Member: Prof. Naoto Kishi

Member: Prof. Yasushi Yamao

Member: Prof. Eiji Oki

Member: Prof. Minoru Terada

Date of the final-defense: 2019/02/04

ii

論文の和文概要

ネットワーク状態には、トラフィック要求、ネットワークデバイスまたはリンクの

障害、およびノード負荷が含まれている。ユーザーが満足するサービスを提供しながら良好

なサービス品質を達成するためには、ロバスト的かつ効率的な経路を選択する必要がある。

本論文は、不確実なネットワーク条件でロバストな経路選択方式を提供する手法を

提案する。具体的には、トラフィック需要とリンク障害の不確定性を持つインターネットプ

ロトコル（IP）ネットワークのためのリンク重み計算方式と、ノード負荷を考慮した経路選

択方式について提案する。また、それぞれ提案方式の効果をシミュレーション・実験を用い

て確認し、最後に論文のまとめと今後展望について説明する。

Abstract

The constant evolution of network technologies pose a challenge

in network performance management due to complicated and uncer-

tain network conditions. Network conditions include traffic demand,

failures in network devices or links, and node load. In order to achieve

a desired quality of service while providing a satisfying service to cus-

tomers, networks must be able to select paths robustly and efficiently.

This thesis provides robust path selection schemes under uncertain

network conditions. This thesis focuses on the uncertain network

conditions of traffic demands, link failures, and node load, since they

strongly affect network services.

In the first part of the thesis, a path selection scheme for Internet

Protocol (IP) networks with traffic demand and link failure uncer-

tainty is presented. Open Shortest Path First (OSPF) is widely used

as a routing protocol in IP networks. OSPF selects the shortest path

between source and destination pairs. To determine shortest paths,

OSPF requires to assign link weight for each link in the network. If

link weights are not optimal, network traffic may concentrate to one

link and it may increase the packet drop rate, reducing the quality of

service. Implementing the most appropriate set of link weights is a

challenging traffic engineering problem in OSPF networks.

Start-time Optimization (SO) is a commonly used link weights

optimization scheme. However, it does not consider network condi-

tion changes caused by network failures, such as link failure, nor traffic

demand changes. Preventive Start-time Optimization (PSO) on the

other hand considers network changes caused by link failures preven-

tively and calculates an optimal set of link weights. SO and PSO

were introduced for scenarios where traffic demand is exactly known.

However, estimating or measuring traffic demand exactly is a difficult

task for network operators. These link weight optimization methods

may not be fully applicable in a context where the traffic demand

often fluctuates. In order to handle traffic demand fluctuations dy-

namically, the path selection scheme presented in this thesis uses a

so-called hose model. In the hose model, specifying the total egress

and ingress traffic at each node is enough; a traffic demand between

each source and destination pair is not required to be specified.

Network operators may have different objectives when configuring

routing paths. One network operator may want to configure paths to

reduce the network congestion. Another network operator may want

to configure paths to reduce the network resource usage. In order to

address these objectives, the path selection scheme presented in this

thesis is applied to reduce the network congestion and the network

resource usage. The network congestion reduction and the network

resource reduction problems are formulated as mixed integer linear

programming (MILP) problems that consider both traffic demand

fluctuation and link failure. To mitigate the complexity of solving

the MILP formulations, heuristic approaches are also presented. Sim-

ulation results show that the presented scheme, while being robust

to traffic demand fluctuations and link failures, is able to reduce the

network congestion and the network resource usage.

In the second part of the thesis, a path selection scheme for net-

works considering node load is presented. A group of nodes or servers

connected with links is also a network. In order to communicate be-

tween servers in the network, a source server sends data packets to

a destination server through the network and the destination server

responds to the source server accordingly. As a consequence of the

destination server being heavily loaded, data packets will be queued

to be processed later making the response time longer. On the other

hand, relatively free destination server will respond quickly finishing

the communication process in a shorter time. Therefore, response

time or delay time between two servers can be used to measure server

load.

Apache Hadoop (Hadoop) is a parallel-distributed computing

framework and usually consists with tens to thousands of servers.

These servers are connected via network to run jobs in a distributed

manner. The storage layer of Hadoop, called Hadoop Distributed

File System (HDFS) calculates paths between servers based on each

server’s rack assignment information. Rack assignment is configured

by the cluster administrator. HDFS keeps three (by default) or more

replicas (copies) of each data block for fault tolerance and availabil-

ity purposes. When a client wants to fetch non-local data, HDFS

selects a server that holds a replica of that data based on the proxim-

ity to the client. This source client and multiple destination servers

that hold the data, result in multiple paths between the source and

destinations. Selecting one destination server to fetch data from can

also be said as selecting one path between the source and a destina-

tion server. HDFS only considers the distance (hop count) between

servers and does not consider server load of the destination when se-

lecting a destination server. This hop count based static behavior of

selecting a destination server decreases the overall efficiency of the

cluster, wasting valuable cluster resources.

This thesis also presents a path selection scheme based on de-

lay distribution between servers for Hadoop clusters. This scheme

selects a destination server by comparing the delay distributions be-

tween client-server pairs. The delay distributions are calculated by

measuring the round-trip time between server pairs periodically. Our

experiments observe that the presented scheme, while being robust to

server load and network delay, is able to select the best path result-

ing shorter data fetch time compared to conventional Hadoop. This

reduction in data fetch time will lead to the reduction in job runtime,

especially in real-world multi-user clusters where non-local data fetch

can happen frequently.

Acknowledgements

This thesis is the summary of my doctoral study at the University

of Electro-Communications, Tokyo, Japan. I am grateful to a large

number of people who have helped me to accomplish this work.

First of all, I would like to express my sincere gratitude to my

advisors, Professor Eiji Oki and Assistant Professor Nattapong Kit-

suwan, for their mentor-ship, guidance and encouragements. Espe-

cially, by working under the supervision of Professor Oki, I received

an invaluable experience that helped me to shape my academic and

professional skills.

I would like to thank my previous senior manager at work, Mr.

Shuji Ushida for allowing me to start my doctoral study while working

full-time at the company.

I would like to express my sincere appreciation to Professor Naoto

Kishi, Professor Yasushi Yamao, and Professor Minoru Terada for be-

ing part of my judging committee and providing their precious com-

ments to improve this thesis.

Finally, I want to deeply thank my lovely wife, parents, and

friends for all the support and caring.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Uncertainty of network conditions 1

1.2 Routing in IP networks . 4

1.3 Link weight optimization . 5

1.4 Traffic demand models . 7

1.5 Apache Hadoop . 8

1.6 Problem formulation . 11

1.6.1 Path selection scheme considering traffic demand and link

failure uncertainty . 11

1.6.2 Path selection scheme considering node load uncertainty . 11

1.7 Contributions . 12

1.8 Organization of the thesis . 13

2 Path selection scheme for congestion reduction with link failure

and traffic uncertainty 15

2.1 Network congestion . 15

2.2 Terminologies . 16

2.3 MILP formulation for congestion reduction 18

2.4 Heuristic approach . 20

2.5 Simulation results . 23

iii

CONTENTS

3 Path selection scheme for energy consumption reduction with

link failure and traffic uncertainty 35

3.1 Energy saving routing . 35

3.2 MILP formulation for energy consumption reduction 37

3.3 Heuristic approach . 39

3.4 Simulation results . 39

3.5 Summary . 43

4 Path selection scheme for networks with imbalanced node load 47

4.1 Overview of Hadoop . 47

4.1.1 Components of Hadoop . 48

4.1.2 MapReduce framework . 50

4.1.3 Rack awareness . 51

4.1.4 Data read procedure in HDFS 51

4.2 Path selection scheme under node load uncertainty 53

5 Experimental results of path selection scheme for networks with

imbalanced node load 59

5.1 Experiment environment . 59

5.2 Results and discussions . 60

5.3 Summary . 67

6 Conclusions and future works 69

6.1 Conclusions . 69

6.2 Future work . 71

References 73

Publications 83

iv

List of Figures

1.1 A simple network topology and topologies after single link failure 6

1.2 Pipe model and its traffic demand 8

1.3 Hose model and its traffic constraints 8

1.4 Replica selection is equal to path selection 10

1.5 Organization of the thesis . 14

2.1 Sample networks used in the simulations 24

2.2 Random networks generated using BRITE 30

2.3 α’s dependency on number of nodes and adjacency nodes 31

2.4 β’s dependency on number of nodes and adjacency nodes 32

3.1 α’s dependency on number of nodes and adjacency nodes 42

3.2 β’s dependency on number of nodes and adjacency nodes 43

4.1 Components of Hadoop and their relationship 50

4.2 Fat tree topology based Hadoop cluster 52

4.3 Relationship between delay distribution comparison policies . . . 56

v

List of Tables

2.1 Characteristics of the sample networks used to compare the heuris-

tic and conventional schemes . 25

2.2 Comparison of worst-case network congestion ratios of MILP and

the heuristic . 26

2.3 Comparison of worst-case network congestion ratios of the heuristic

and conventional schemes for single link failure scenarios 27

2.4 Comparison of network congestion ratios with no link failure . . . 28

2.5 Characteristics of the random sample networks 29

2.6 Comparison of worst-case congestion ratios with different link weight

setting schemes . 33

2.7 Comparison of presented scheme’s performance related to Ic . . . 33

2.8 Comparison of worst-case congestion ratios of ECMP routing and

single path routing . 34

3.1 Comparison of worst-case network resource usage for any single link fail-

ure scenario . 40

3.2 Comparison of network resource usage for no link failure scenario 41

3.3 Comparison of presented scheme’s performance related to Ic . . . 44

3.4 Comparison of worst-case resource usages of ECMP routing and

single path routing . 44

5.1 Virtual server specifications . 61

5.2 Data fetch times of different ϵ values 61

5.3 HDFS data fetch times . 62

5.4 Job completion time without background jobs running 64

vii

LIST OF TABLES

5.5 Wordcount job completion time without background jobs running 65

5.6 HDFS data fetch time with changing the number of background jobs 66

5.7 Comparison of data fetch time with fetched data size 67

viii

Chapter 1

Introduction

Communication networks (networks) play a critical role in modern software sys-

tems. Routing is the main process used to send data from point A to point B by

determining a path (route) that exists in the network [1]. In this thesis, the term

routing is used to refer sending data along the selected path. A stable network

is crucial for software systems to provide their intended services without any in-

terruption. However, networks are inherently unpredictable requiring robust and

efficient path selection schemes to provide satisfying services to customers.

Network instability is caused by a variety of factors; link failures, router fail-

ures, traffic demand fluctuations, node overload, software configuration errors and

bugs, malicious attacks, and human errors [1, 2, 7]. One or more of these problems

affect the performance of the network. This thesis considers link failures, traffic

demand fluctuations, and node load since they strongly affect network services

and can be managed by routing schemes easily compared to others. Since router

failures can be interpret as multiple link failures, malicious network attacks and

errors related to software and human are unmanageable by routing schemes, they

are considered as being out of scope of this work.

1.1 Uncertainty of network conditions

In general, a network consists with nodes and links. A link connects two nodes

allowing them to exchange data between each other. Data that travel through

the network is called traffic in general. A critical function of a network is to carry

1

1. INTRODUCTION

traffic from one node to another based on routing decisions. Usually, routing

decisions are dictated by the requirements of the network in addition to specific

goals of a network service provider. Such goals may include how to provide an

efficient and fair service so that most users receive an acceptable service rather

than few specific users receiving outstanding service. Aforesaid view is partly

required because there are finite amount of resources in a network, e.g., link

capacity, and a service provider has a responsibility to treat all traffic neutrally

[9].

The traffic volume that a source node requests to send to a destination node,

is called a traffic demand in Internet Protocol (IP) networks. The set which

describes all the demands between every source-destination pair in the network

is called the traffic matrix. In real-world networks, traffic demand between all

the source-destination node pairs can easily fluctuate. This makes it difficult for

network operators or network administrators to know the actual traffic matrix,

especially when the network size is large [8]. This uncertain nature of the traffic

can impact the path selection decisions of the network adversely affecting the

quality of service [1, 10, 11, 39]. Considering traffic demand uncertainty for

design and planning of IP networks has recently attracted much attention [10,

11, 13, 14, 15, 40]. Bauschert et al. [10] presented multi-layer and mixed-line-

rate network designs for network planning under traffic demand uncertainty. In

[11], the authors considered the egress traffic demand at each node to calculate

robust paths. Mitra et al. [12] presented a scheme to maximize the revenue under

uncertain traffic demands. All of these work stress the importance of robust path

selection schemes under uncertain traffic demands. Therefore, it is necessary to

study ways to minimize the impact of traffic demand fluctuations.

Emerging software systems rely on the reliability of networks. Unfortunately,

due to network failures such as link failures, maintenance windows, router reboots,

etc. these services are adversely affected [17, 18]. Among these failures, link

failures are considered to be one of the main challenges faced by network operators

because link failures occur on a daily basis [17]. Moreover, it is observed that

most of the link failures are common and transient. Failures in information

networks are common and can result in substantial losses [19]. Recovery from

link failures in IP networks can take a long time [21] because most of the IP

2

1.1 Uncertainty of network conditions

routing protocols are not designed to minimize network outages. In [21] it says

that a single link failure can cause users to experience network service outages

of several minutes even when the underlying network is highly redundant with

plenty of spare bandwidth available and with multiple ways to route around the

failure. Needless to say, depending on the application, outages of several minutes

are not acceptable, for example, for e-commerce, voice over IP (VoIP) services,

or transportation systems. Therefore, it is necessary to study ways to minimize

the impact of link failures. For more information regarding the impacts of link

failure, I would like to refer readers to [19, 20].

Depending on the type of the network, nodes have different names [1]. For

example, routers, switches, servers etc. can be called nodes depending on the

network type. Suppose that a source server communicate to a destination server

and the destination server is overloaded. The destination server will queue the

request to process later, making the response time longer. On the other hand, a

relatively free destination server that can serve the source server’s request may

respond without any delay. In distributed computing environments, node load

becomes a key challenge in node selection [22]. Zhang et al. [23] presented an

scheme that prevents node overload by delaying routing updates. Chang et al.

[24] investigated the router performance of commercial routers depending on the

workload. They found that some routers exhibit performance degradations in

overloaded routers. Reference [1] explains the effects of routing instability caused

by overloaded nodes. It also explains the impacts of “Network storm effect”,

which is caused by overloaded nodes. In order to indicate that a router is in

overloaded condition, a “overload bit” is used to communicate the overloaded

situation to other routers. Sending excessive amount of state by one node to

other nodes within the network, overloads the other nodes. This is considered a

large threat to todays routing protocols [26]. Node overload can frequently lead

to problems in queuing delay of data processing [2]. This delay caused by node

overload can adversely affect the quality of service. Therefore, it is necessary to

study ways to minimize the impact of node overload.

In recent years, the idea of robust optimization has gained much attention

in the field of optimization [3, 4]. Robust optimization deals with uncertainty

in the data of optimization problems. Under this framework, the objective and

3

1. INTRODUCTION

constraint functions are only assumed to belong to certain sets in function space

(the so-called “uncertainty sets”). The goal is to make a decision that is feasible

no matter what the constraints turn out to be, and optimal for the worst-case

objective function (min-max objective). Mulvey et al. [5] presented an approach

that integrates goal programming formulations with scenario-based description

of the problem data. Soyster [6] et al. presented a linear optimization model to

construct a solution that is feasible for all input data such that each uncertain

input data can take any value from an interval. Robust optimization is being

used in many real-world applications such as finance, mechanics, and control etc.

due to the recent progress in linear programming.

1.2 Routing in IP networks

Routing is the main process used to deliver data in networks. IP networks use

hop-by-hop routing model. This means that each router is only responsible for for-

warding a datagram to another router. This process continues until the datagram

reaches its destination or times-out because its path is too long. Random-walk

routing techniques are not particularly reliable, and so it is important that the

routers in a network have a coordinated approach to decide which is the next

hop along the path to a destination. Routing techniques essentially pass infor-

mation between neighboring routers and use this data to build the shortest paths

to all destinations. These are then stored in a routing table and passed on to

the router’s neighbors. The path computation model deployed in IP networks is

iterative and distributed.

These next hop information in the routing table can either be set manually or

dynamically. In simple networks, routing tables can be manually configured or

learned from the configuration of interfaces on the router [1]. In more complex

networks in which there are many routers arranged in a mesh with lots of links

between routers, each link having different capabilities, manual configuration be-

comes onerous. More important - when a link or a router fails, all of the routing

tables across the whole network must be updated to take account of the change.

Similar changes are desirable when failures are repaired or when new links and

4

1.3 Link weight optimization

nodes are added. Therefore, it is desirable to use a routing protocol to determine

the next hop information dynamically.

Open Shortest Path First (OSPF) [28] is a widely used protocol that routes

IP packets dynamically. It gathers link state information from available routers

and constructs a topology map of the network. The topology determines the

routing table presented to the Internet Layer which makes the routing decisions

based solely on the destination IP address found in IP packets. OSPF detects

changes in the topology, such as link failures, very quickly and converges on a new

loop-free routing structure within seconds using detour routes. It computes the

shortest path tree for each route using a method based on Dijkstra’s algorithm

[29], a shortest path first algorithm. In order to select a specific path in OSPF,

there are costs assigned to all of the links. Traffic engineering is the process of

predetermining the path through the network that various flows of data will travel

and link cost (link weight) is used to introduce traffic engineering in OSPF routing

model. Link weights must be calculated considering network topology, network

resources etc. so that the calculated link weights would satisfy the requirements

set by the network operator.

1.3 Link weight optimization

Based on weights of links in the network, routing protocols find the end-to-end

path for each source-destination pair such that the sum of link weights on the

path is minimized, so called the shortest path. Hence, to find a ‘good’ path for

each source and destination pair that satisfies some network constraints such as

the quality of service (QoS) of each session, energy consumption, and the target

utilization of each link, it is important to assign the appropriate weight for each

link in the network. A simple default weight setting policy suggested by Cisco

[31] is to make the weight of a link inversely proportional to its capacity. But this

simple weight setting policy do not emphasize on traffic matrix (traffic demand) or

required traffic over link. So still this does not give the most optimal performance

for the oblivious routing.

A more efficient way is optimizing link weights for a given topology consid-

ering the traffic over the network which will reduce a certain objective function.

5

1. INTRODUCTION

This scheme is called as Start-time Optimization (SO). Optimization provides

network operators with a powerful method for traffic engineering. Its general

objective is to distribute traffic flows evenly across available network resources in

order to avoid network congestion and quality of service (QoS) degradation. Mul-

tiple algorithms that focus on implementing SO are presented in [32, 33]. These

studies all assume that the network topology and the traffic matrix are given.

Unfortunately, SO is weak against link failures. When a link failure occurs, traf-

fic related to that link should be re-routed through other active links, which can

create an excess load to any other link and causes congestion in the network.

Link failure is considered as a failure but if we consider it as a topology change

in the network, we can take precautions for this problem in routing. When a link

fails, the network takes a new shape. So we can take topology as a variable which

can change with time because of link failure. For every possible link failure, we

can get a new topology. If we consider a network topology as shown in Figure

1.1(a), all the new topologies created by single link failure will be shown as Figure

1.1(b).

Figure 1.1: A simple network topology and topologies after single link failure

The weakness of SO can be overcome by computing a new optimal set of link

weights whenever the topology is changed. It can be said that this approach,

6

1.4 Traffic demand models

called Run-time Optimization (RO) provides the best routing performance after

link failure. However, updating link weights in any case may lead to network

instability [34] and 50% of link failures last less than one minute [17]. The analysis

in [17] observed that more than 70% of transient failures that lasted less than

10 minutes are single link failures. Therefore, it seems reasonable to target the

one-time configuration of link weights that can handle any single link failure.

PSO is a scheme that determines, at the start time, a suitable set of link

weights that can handle any single link failure scenario preventively [35]. The ob-

jective of this scheme is to determine, at the start time, the most appropriate set

of link weights that can avoid both unexpected network congestion and network

instability, the drawbacks of SO and RO, regardless of which link fails. PSO con-

siders all possible single link failure scenarios at start time in order to determine

a suitable set of link weights. However, the current PSO scheme is usable when

the traffic demand of the network is exactly known. This traffic model is called

a pipe model. However, in general, the pipe model is proved to be very difficult

for network operators to use [36, 37, 38].

1.4 Traffic demand models

In terms of bandwidth specification, networks can be divided into a pipe model

and a hose model. The pipe model needs to specify the traffic demand between

any two nodes. It means that the entire traffic demand (traffic matrix) of the

network is given [36, 37, 38]. Figure 1.2 shows an example of the pipe model

and its traffic demand. Even though the pipe model generally achieves a high

performance, it is difficult to measure or predict the traffic matrix in reality [37].

The PSO scheme [35] introduced in section 1.3 is based on the pipe model. It

calculates an optimal link weight set that can handle single link failures assuming

the traffic matrix is given.

Since the prediction of the actual traffic requirement as required in the pipe

model is difficult, it is, therefore, considered to be easier for network operators

to specify the traffic as just the total ingress (αi) and egress traffic (βi) (i.e., the

amount of traffic that can be sent to and received from the backbone network)

at each node. The traffic model that has achieved this specification is called

7

1. INTRODUCTION

Figure 1.2: Pipe model and its traffic demand

a hose model [40]. An example of the hose model is shown in Figure 1.3. The

ingress and egress bandwidth requirement is as Equation (1.1). Chu et al. formu-

lated the general routing problem of the hose model and presented an algorithm

for solving the link weight searching problem in [39]. The hose model presents

some challenging problems for traffic engineering as the hose model only needs to

specify the total ingress bandwidth requirement and the total egress bandwidth

requirement at each node.

Figure 1.3: Hose model and its traffic constraints

∑
j

dij ≤ αi (1.1a)

∑
i

dij ≤ βj (1.1b)

1.5 Apache Hadoop

Apache Hadoop (Hadoop) [41], an open-source implementation of Google’s MapRe-

duce [42] framework, is a parallel-distributed processing framework that allows or-

8

1.5 Apache Hadoop

ganizations to efficiently process very large datasets using commodity hardware in

a realistic time. Hadoop has become the most popular parallel-distributed frame-

work for processing large-scale data because it hides the complexity of distributed

computing, scheduling, and communication while providing fault-tolerance. In

general, Hadoop clusters are made with tens to thousands of servers. Hadoop

makes use of inexpensive, industry standard commodity servers to store and pro-

cess data rather than relying on specially built proprietary servers. Thus, most

of the fortune 500 companies exploit Hadoop to process large-scale data within a

reasonable budget. Initially, Hadoop was used at large companies such as Yahoo,

Facebook, eBay etc., who already had large amounts of data and their Hadoop

clusters are usually deployed in on-premise physical clusters.

HDFS (Hadoop Distributed File System) is the distributed storage layer that

is responsible for storing data in Hadoop. Data in HDFS are broken into blocks

and stored as replicas in multiple (at least three), different servers for fault-

tolerance and availability purposes. Data processing tasks in Hadoop such as

MapReduce jobs, Hive queries or Spark jobs access data stored in HDFS as re-

quired by the task. HDFS is designed with write-once-read-many access model

[43, 44] to attain high throughput of data access. Write-once-read-many means

that once data is written to HDFS, that particular data will be read by processing

tasks many times over the time. Therefore, improving how data is read in HDFS

has a larger impact on the overall performance of HDFS compared to improving

how data is written.

Let us consider how HDFS fetches (this thesis uses fetch in similar meaning to

read since a client that wants to read data has to fetch data from a remote server)

a particular data block in a high level. As we described earlier, there are three

replicas of the same data block in three different servers. Therefore, HDFS has

the freedom to select one of those servers when reading a particular data block.

As shown in Figure 1.4, selecting one server is similar to selecting a path between

two servers; if Server #1 is selected it is similar to selecting Path 1, if Server #2 is

selected it is similar to selecting Path 2, and if Server #3 is selected it is similar to

selecting Path 3. When there are three choices to select from, how HDFS chooses

one among them is an interesting question. When fetching a data block, HDFS

finds the best server to fetch data from by only comparing the network distance of

9

1. INTRODUCTION

servers that hold a replica of the data block. The concept called “rack awareness”

is used to calculate the network distance. We will explain “rack awareness” and

how network distance is calculated in section 4.1 in detail. As we explained in

section 1.1, server load is a major factor that should be considered when path

selection decisions are made. However, HDFS does not consider the server load

when selecting a server to fetch data from.

Figure 1.4: Replica selection is equal to path selection

There are multiple studies in literature that studied on improving resource

management, job scheduling, and replica placement in Hadoop. Tan et al. studied

analytical models for scheduling jobs based on extensive measurements and source

code investigations [48]. Rasley et al. studied queue management techniques, such

as appropriate queue sizing, prioritization of task execution via queue reordering,

starvation freedom, and careful placement of tasks to queues [49]. Li et al. studied

novel predictive scheduling framework to enable fast and distributed stream data

processing [50]. Zaharia et al. addressed the problem of data locality while

keeping fairness during task execution [51]. Many improvements for enhancing

data placement (data write) in HDFS were studied in [70, 71, 72].

10

1.6 Problem formulation

1.6 Problem formulation

1.6.1 Path selection scheme considering traffic demand

and link failure uncertainty

OSPF is a widely used routing protocol in IP networks. OSPF requires link

weights to be assigned to each link to calculate the shortest paths between every

source-destination pair. In order to provide efficient routing to the users, these

link weights must be calculated according to the network topology and service

provider’s requirements. SO calculates an optimal set of link weights for a given

topology when the exact traffic demand is known (pipe model) that will reduce

a certain objective function, such as congestion ratio or energy consumption of

the network. However, apart form the difficulty of exactly knowing the traffic

demand, SO is weak against link failures and traffic demand fluctuations because

it only considers one topology and one traffic pattern at a time. A scheme ap-

plying the hose model, that can handle traffic demand fluctuations, on the other

hand, provides robustness against traffic demand uncertainty. Chu et al. studied

how to apply SO to the hose model. PSO on the other hand can calculate an

optimal link weight set which is robust against link failures at start time if the

traffic demand is exactly known. However, how to apply PSO for the hose model

has not been studied. Being able to handle traffic demand fluctuations while

guaranteeing robustness against link failure is desirable for network operators.

This is the objective of the first part of this thesis.

1.6.2 Path selection scheme considering node load uncer-

tainty

Hadoop is an open-source parallel-distributed processing framework. Hadoop can

efficiently use the resources of commodity servers that are connected to a network.

The storage layer of Hadoop, called HDFS, stores data as blocks and each block is

replicated to multiple servers for fault-tolerance and availability purposes. HDFS

is designed with write-once-read-many access model meaning every improvement

made to data reading mechanism contributes to improving overall performance

of the cluster. When a client reads a data block, it has the choice of selecting

11

1. INTRODUCTION

one server among the three servers that holds the same data block as replicas.

HDFS selects a server to fetch data from considering the network distance and

do not consider the server load of each server even though it affects the cluster

performance. Therefore, robustness against server load in HDFS is desirable for

Hadoop clusters. This is the objective of the second part of this thesis.

1.7 Contributions

This thesis proposes robust path selection schemes under uncertain network con-

ditions. It presents a path selection scheme considering traffic demand and link

failure uncertainty, and a path selection scheme considering server load uncer-

tainty.

In the first part, path selection problem considering link failure under un-

certain traffic conditions is studied. Robust optimization approach presented in

this part is based on the hose model. In the hose model, contrary to the pipe

model, the exact traffic matrix does not need to be specified by the network op-

erators. The network operators can however set bounds on the total ingress and

egress traffic at each node from their experience. Modeling the traffic for hose

model allows an optimization scheme to accommodate any traffic matrix that fits

within the bounds at each node. Link failures in a network can be considered

as a topology change as we explained in section 1.3. We introduce a link weight

optimization model for OSPF that takes traffic matrix and topology as variables.

Usually, routing decisions are made to satisfy network operator’s objectives

such as reducing the network congestion, reducing the energy consumption, sat-

isfying the target link utilization of each link etc. We formulate mixed integer

linear programming (MILP) problems to reduce worst-case network congestion

and to reduce worst-case energy consumption by putting unnecessary links into

sleep mode. Due to the complexity of solving the MILP formulations, we present

heuristics to calculate a link weight set that achieves satisfactory performance in

practical time. The heuristics consider the worst-case traffic matrix and worst-

case link failure topology to calculate a link weight set in practical time. Sim-

ulation results observe that the presented schemes, while being robust to link

12

1.8 Organization of the thesis

failure and traffic demand fluctuation, is able to reduce the worst-case network

congestion and worst-case energy consumption.

In the second part, a robust path selection problem considering node load is

studied. In HDFS, rack information is used to calculate the network distance

between servers notwithstanding the server load. This thesis presents a path

selection scheme based on the delay distribution between servers for Hadoop

clusters. This scheme calculates the round-trip time between all server pairs pe-

riodically. The presented scheme selects a server comparing the delay distribution

between server pairs. In order to achieve this, changes are made to source code of

HDFS. Using the changed source code, we rebuilt Hadoop software packages and

configured multiple Hadoop clusters to do experiments. The experiment results

observe that the presented scheme, while being robust to server load, is able to

dynamically select the best server resulting shorter data fetch time compared to

conventional Hadoop.

1.8 Organization of the thesis

The organization of the thesis is shown in Figure 1.5. Path selection schemes

considering traffic demand and link failure uncertainty is presented in chapter

2 to 3. Chapter 4 to 5 present path selection scheme considering server load

uncertainty. Chapter 6 concludes the thesis.

A scheme to calculate a link weight set that is robust against link failure

and traffic demand fluctuation, minimizing the worst-case network congestion is

presented in chapter 2. Chapter 2 also includes the MILP formulation and simu-

lation results. A scheme to calculate a link weight set that is robust against link

failure and traffic demand fluctuation minimizing the worst-case network energy

consumption is presented in chapter 3. It also includes the MILP formulation

and simulation results.

A scheme to select paths considering server load is presented in chapter 4.

Since experimental results have more impact than simulation results, experimen-

tal environment information and results are introduced in chapter 5.

13

1. INTRODUCTION

Figure 1.5: Organization of the thesis

14

Chapter 2

Path selection scheme for

congestion reduction with link

failure and traffic uncertainty

Traffic engineering is the process of predetermining the paths through the network

that various flow of data will travel. Link weight is used to introduce traffic

engineering in OSPF routing model. A link weight calculation scheme that is

optimized to achieve the objective(s) of network service providers is required. In

this chapter, a path selection scheme that is robust against link failure and traffic

demand fluctuation with the objective of reducing the worst-case congestion is

presented. In section 2.1, network congestion and the importance of reducing

network congestion is introduced. Terminologies used in the later sections are

defined in section 2.2. In section 2.3, the MILP formulation to reduce the worst-

case congestion ratio is introduced and the heuristic algorithm is introduced in

section 2.4. Section 2.5 presents the simulation results.

2.1 Network congestion

Network congestion is the result of a route in the network being heavily utilized.

Network congestion can deteriorate network service quality, resulting in queuing

delay, data packet loss and the blocking of new connections [56]. Since, in OSPF,

15

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

routes are determined by link weights, link weights can be optimized so that each

route in the network maintains a manageable congestion level.

One useful approach to enhance routing performance is to minimize the max-

imum link utilization rate, network congestion ratio, of all links in the network.

Reducing the congestion ratio in the network is a common objective of network

service providers [1]. Also, they must be prepared for the worst-case scenario,

worst-case congestion ratio, to maintain a satisfying service. Therefore, network

service providers configure routes in the network to minimize the worst-case con-

gestion ratio [57] increasing the admissible traffic [56].

2.2 Terminologies

The network is described as a directed graph G(V,E), where V is the set of nodes

and E is the set of links. v ∈ V , where v = 1, 2, . . . , N , indicates an individual

node and a link from node i ∈ V to node j ∈ V is denoted as (i, j) ∈ E. N is the

number of nodes and L is the number of links in the network, or L = |E|. cij is the
capacity of link (i, j) ∈ E. The traffic volume on link (i, j) ∈ E is denoted as uij.

Since the probability of concurrent multiple link failures is much less than that of

single link failures [17, 18], only single link failures in the network are considered

in this study. F is the set of link failure indices l, where l = 0, 1, 2, · · · , L and

F = E ∪ {0}. The number of elements in F is |F | = L + 1. l = 0 indicates no

link failure and l(̸= 0) indicates the failure of link (i, j) = l(̸= 0). The network in

which lth (̸=0) link failed is described as a directed graph Gl(V,El). As G0(V,E0)

indicates no link failure, G0(V,E0) = G(V,E) and let G̃ be the set of network

topologies. clij is the capacity of (i, j) ∈ El. If (i, j) = l, clij = 0. W = {wij} is

the link weight matrix of network G, where wij is the weight of link (i, j). Let

{1, . . . , wmax} be the set of possible link weights. xpqij is the portion of traffic

from node p ∈ V to node q ∈ V routed through (i, j) ∈ E. xpqij (W, l) is used to

represent the load distribution variables under link weights setW and link failure

on node l.

Since an OSPF-based network uses the shortest path routing, load distribution

xpqij (W, l) and routing are determined if link weights are known. In this study, it

is assumed that equal-cost multi-path (ECMP) routing is employed, where traffic

16

2.2 Terminologies

is evenly split among equal-cost paths [66]. Let ap, bp represent the maximum

amount of ingress and egress traffic allowed to enter and leave the network at

node p, respectively. Given the ingress and egress traffic constraints specified

by H = [(a1, b1), . . . , (an, bn)], there are many traffic matrices that satisfy the

constraints imposed by H. A traffic matrix T = {dpq}, where dpq represents the

traffic rate from node p to node q, is called a valid traffic matrix if it does not

violate the constraints imposed by H. Let D̃ be the set of all valid T s.

The network congestion ratio r refers to the maximum value of all link uti-

lization ratios in the network. r is defined by,

r = max
(i,j)∈E

uij
cij
, (2.1)

where 0 ≤ r ≤ 1.

Let ψpqbe the length of the shortest path from p to q, δijq be a set of binary

variables such that δijq = 1 if link (i, j) is on a shortest path to node q, and 0

otherwise. πij(p) and λij(p) are introduced variables to solve the dual explained

in section 2.3. Let

f i
pq =

the portion of traffic from p to q that arrives at i

m
(2.2)

where m is the number of outgoing links incident from i that are on the shortest

paths to node q.

The target of this chapter is to find the most appropriate set of link weights,

Wmin, for network G that minimizes the worst-case congestion ratio over link

failure index l ∈ F and traffic matrices T ∈ D̃. Wmin is defined by,

Wmin = arg min
W∈w

max
Gl∈G̃

max
T∈D̃

r(Gl, T,W). (2.3)

The traffic matrix T ∈ D̃ that maximizes the congestion ratio against all the

single link failure scenarios of Gl ∈ G̃ is searched followed by the finding of the

link weight set that minimizes the worst-case congestion ratio.

17

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

2.3 MILP formulation for congestion reduction

In the hose model the traffic is specified as only the total outgoing/incoming

traffic (ap, bp) from/to node p is expressed as,

ap =
∑
q∈V

dpq, bp =
∑
p∈V

dpq. (2.4)

Since the traffic matrix can vary within ap and bp, one way to deal with the

hose model is to consider the worst-case scenario [39]. In this case, using the

given routing paths, the worst-case traffic matrices are generated under the hose

boundary, ap and bp.

The problem formulation for generating the worst-case traffic matrices is as

follows.

max
∑
pq

xpqij (W)dpq (2.5a)

s.t.
∑
q∈V

dpq ≤ ap,∀p ∈ V (2.5b)∑
p∈V

dpq ≤ bq,∀q ∈ V (2.5c)

dpq ≥ 0,∀p, q ∈ V (2.5d)

With the constraints (2.5b)-(2.5c) a solution to this problem covers the hose model

worst-case scenario. Also, since this problem has the same optimal solution as its

dual problem, it can be replaced by the latter formulated in Equation (2.6). πij(p)

and λij(p) are introduced variables to replace the infinite number of variables dpq

in Equation (2.5) [39].

min
∑
p∈V

apπ
ij(p) +

∑
p∈V

bpλ
ij(p) (2.6a)

s.t. xpqij (w) ≤ πij(p) + λij(q),

∀p, q ∈ V, (i, j) ∈ E (2.6b)

πij(p), λij(p) ≥ 0,

∀p ∈ V, (i, j) ∈ E (2.6c)

Using the dual formulation we can derive the mixed-integer programming

formulation of network optimization for minimizing the worst-case congestion

18

2.3 MILP formulation for congestion reduction

ratio, rij, in case of link failure under the hose model traffic as shown in Equation

(2.7).

min r (2.7a)

s.t.
∑

j:(i,j)∈El

xpqij (W, l)−
∑

j:(j,i)∈El

xpqji (W, l) = 1,

∀p, q ∈ V, i = p, l ∈ F (2.7b)∑
j:(i,j)∈El

xpqij (W, l)−
∑

j:(j,i)∈El

xpqji (W, l) = 0,

∀p, q ∈ V, i(̸= p, q), l ∈ F (2.7c)∑
p∈V

apπ
ij(p) +

∑
p∈V

bpλ
ij(p) ≤ rclij,

∀(i, j) ∈ El, l ∈ F (2.7d)

xpqij (W, l) ≤ πij(p) + λij(q),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (2.7e)

0 ≤ f i
pq(l)− xpqij (W, l) ≤ 1− δijq (l),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (2.7f)

xpqij (W, l) ≤ δijq (l),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (2.7g)

0 ≤ ψjq(l) + wij − ψiq(l) ≤ (1− δijq (l))U,

∀q ∈ V, (i, j) ∈ El, l ∈ F (2.7h)

1− δijq (l) ≤ ψjq(l) + wij ≤ ψiq(l),

∀q ∈ V, (i, j) ∈ El, l ∈ F (2.7i)

πij(p), λij(p) ≥ 0, ∀p ∈ V, (i, j) ∈ E (2.7j)

f i
pq(l) ≥ 0, ∀p, q, i ∈ V, l ∈ F (2.7k)

δijq (l) ∈ {0, 1}, ∀q ∈ V, (i, j) ∈ El, l ∈ F (2.7l)

1 ≤ wij ≤ wmax, ∀(i, j) ∈ El, l ∈ F (2.7m)

The objective of the above mixed-integer programming formulation is to find

the optimal set of link weights in order to minimize the worst-case congestion

ratio under single link failure. Equations (2.7b)-(2.7c) represent the traffic flow

19

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

constraints. For a given set of hose model traffic, the worst-case scenario is

considered as in fixed routing; we maximize the traffic flow over the active link

with constraints (2.7d)-(2.7e) and (2.7j). Constraints (2.7f) and (2.7g) are the

flow splitting constraints such that traffic is split to the shortest paths according

to the even distribution rule. Constraints (2.7h) and (2.7i) are the shortest path

constraints. If link (i, j) does not lie on any shortest path to node q (i.e., δijq (l) =

0), ψjq(l)+wij−ψiq(l) ≥ 1 must hold because wij ≥ 1. This is stated by Equation

(2.7i). On the other hand, constraint (2.7h) implies that ψjq(l)+wij−ψiq(l) = 0 if

link (i, j) is on one of the shortest paths to node q. In addition, when δijq (l) = 0,

Equation (2.7h) becomes redundant if U (an artificial constant) is sufficiently

large [39]. Constraints (2.7j)-(2.7m) provide the ranges for the variables.

Unfortunately, this mixed-integer program is NP-Hard and limits its applica-

bility to only small networks. Therefore, in the following section, we present a

heuristic approach to optimize the link weights in case of link failure under the

hose model traffic. The presented heuristic approach has been found to yield

good performance on all the sample networks tested in this study.

2.4 Heuristic approach

The heuristic scheme considers the worst-case traffic matrix and one link failure

topology to decrease the congestion ratio by changing link weights. It uses tabu

search [60] and an efficient objective function in the optimization process to reduce

the computation time. The presented heuristic approach is divided into three

stages.

At Stage 1, we generate the traffic matrices that lead to the maximum load

on each link (i, j) ∈ E in the allowable traffic bound (ap, bp).

At Stage 2, we calculate the congestion ratios for all the traffic matrices against

single link failure and find which link failure topology gives the maximum conges-

tion ratio. Within all of the traffic matrices against single link failure topologies,

the traffic matrix that maximizes the congestion ratio is chosen. Then we try to

reduce that congestion ratio by changing the link weight of the most congested

link. We continue updating the link weights until all the link weights reach the

maximum link weight.

20

2.4 Heuristic approach

At Stage 3, the improvement of the new link weight set is evaluated. If the

link weight set is accepted, the algorithm terminates. If not, it returns to Stage

1.

The description of the presented heuristic approach is as follows.

Stage 1: Generating traffic matrices

• Step 1: Set initial link weights

At first, the link weights are generated randomly. Once link weights are

known, the shortest paths and routing xpijq(W) are determined.

• Step 2: Generate traffic matrices

For each link (i, j), the linear programming formulation in Equation (2.5)

is used to find the worst-case traffic matrix T ij that leads to the maximum

load appeared on link (i, j).

The traffic matrix T ij that achieves the maximum link utilization for each

link (i, j) will be added to the set D̃ if it is not in D̃ already.

Stage 2: Searching for an optimal link weight set

The updated set D̃ produced at Stage 1 is used to search for new link weights

that reduce an objective function. The objective function considerably affects the

efficiency of the algorithm. Let r̃ denote the congestion ratio for set D̃. Let rT

be the maximum link utilization ratio for a specific traffic matrix T . Therefore,

r̃ = max
T∈D̃

{rT}. Although our goal is to minimize r̃, we find that r̃ is not a

suitable objective function in the optimization process because changing a link

weight reduces one rT but also often increases a different rT ′ . This means that

the improvement of r̃ cannot be done in any iteration.

A better objective function, as used in [39], should include rT for all traffic

matrices in D̃. The sum of individual cost function ϕ(rT) of rT is chosen as the

objective function F (D̃) of the presented scheme. F (D̃) is defined as,

F (D̃,Gl)|for given weights = max
Gl∈G̃

∑
T∈D̃

ϕ(rT), (2.8)

where ϕ(rT) increases with rT . Inspired by [39], we adopt the following convex

21

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

piecewise linear cost function for ϕ(rT).

ϕ(rT) =



rT , 0 ≤ rT <
1
3

3rT − 2
3
, 1

3
≤ rT <

2
3

10rT − 16
3
, 2

3
≤ rT <

9
10

70rT − 178
3
, 9

10
≤ rT < 1

500rT − 1468
3
, 1 ≤ rT <

11
10

5000rT − 16318
3
, 11

10
≤ rT <∞.

(2.9)

In [39], it is stated that they have tried different convex objective functions and

they all have similar performances in terms of network congestion ratio minimiza-

tion. Thus, the presented scheme also uses the same convex objective function.

• Step 1: Initialize

Variable Fmin, which is used to store the value of the objective function, is

set to infinite. The repetition counter Ic, which is used to stop the oscillation

of the objective function, is also set to zero.

• Step 2: Choose a traffic matrix

At first the repetition counter Ic is checked. If it is greater than the allowed

repetition number, go to Step 1 of Stage 3. If not, the traffic matrix Tmax

that maximizes the cost function defined in Equation 2.9 against all the

single link failure instances is selected.

• Step 3: Find the most congested link

By using the traffic matrix Tmax, which was selected in Step 2 of Stage 2,

the most congested link, (i, j)cong, in the network against single link failures

is selected.

• Step 4: Update the link weight

The link weight of the most congested link, selected in the previous step

is increased by the minimum value that changes at least one route passing

through the link for all single link failure scenarios. Therefore, the conges-

tion of the most congested link is decreased. The updated link weight set

is inserted into the tabu list. If the updated link weight exceeds the upper

limit of the feasible link weight, wmax, go to Step 1 of Stage 3.

22

2.5 Simulation results

• Step 5: Evaluate the objective function

For the updated traffic distribution obtained in Step 4 of Stage 2, the ob-

jective function of Equation 2.8 is calculated and compared with that of the

old weight set. If the value of Equation 2.8 for the new weight set is greater

than that of the old weight set, repetition counter Ic is reset to zero and

the new weight set is set as Wmin and go to Step 2 of Stage 2. Otherwise,

repetition counter Ic is increased by one and go to Step 2 of Stage 2.

Stage 3: Choosing an optimal link weight set

• Step 1: The congestion ratio r for Wmin is calculated and, if r differs from

r̃ by a predefined ϵ, the algorithm terminates. If not, go to Step 2 of Stage

1 and start from the calculation of traffic matrices. Wmin is an optimal

link weight set for the given network against single link failure under traffic

demand fluctuations.

Since the traffic matrices play an important role in the effectiveness of the

presented scheme, we randomly use a significantly large number of independent

initial link weight sets (different initial weight sets may give different worst-case

congestion ratios). The link weight set that gives the minimum congestion ratio

against single link failure is selected as an optimal link weight set.

2.5 Simulation results

The simulation environment that we used are described as follows. In order to

compare the results of MILP formulation and heuristic algorithm, four relatively

small scale sample networks are used as shown in networks 1-4 of Figure 2.1.

To determine the basic characteristics of the presented heuristic approach, eight

sample networks are used as shown in networks 5-12 of Figure 2.1. Networks 5-11

mirror the typical backbone networks used to evaluate the routing performance

in [61]. Network 12 is a random network generated using the BRITE topology

generator [62] and the Waxman’s Probability model was used to create it. Table

2.1 summaries the basic characteristics of the sample networks in Figure 2.1. The

link capacities of the sample networks were randomly generated with uniform

23

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Figure 2.1: Sample networks used in the simulations

distribution in the range of (10Uc, 100Uc), where Uc[Gbit/s] is given a constant

integer value. The maximum link weight, wmax, is set at 100. We confirmed that

wmax > 100 provides the same results as wmax = 100 in our examined networks.

Ic is set to 1000 after observing the trend of the worst-case congestion reduction

of the presented scheme. The simulation program is coded in C language and

executed on a Linux computer with 20GB of RAM. The linear programming

problem in Equation (2.5) is solved using the IBM ILOG CPLEX Optimization

Studio 12.4.

First, the performance of the presented heuristic approach is compared with

the MILP formulation, which gives the optimal link weight set.

Let R denote the worst-case network congestion ratios of the sample networks

1-4 shown in Figure 2.1. The normalized worst-case network congestion ratio of

the MILP is denoted as RMILP and the normalized worst-case network congestion

ratio of the presented heuristic approach is denoted as RPSO−C . The worst-case

network congestion ratios are normalized using the results of MILP. The calcu-

lated worst-case network congestion ratios are shown in Table 2.2 and following

24

2.5 Simulation results

Table 2.1: Characteristics of the sample networks used to compare the heuristic

and conventional schemes

Network No. of nodes Average node degree No. of links (bidirectional)

1 3 2.00 3

2 4 2.50 5

3 5 2.80 7

4 6 2.33 7

5 5 3.60 9

6 11 2.54 14

7 12 3.00 18

8 11 4.73 26

9 18 3.00 27

10 23 2.78 32

11 10 5.60 28

12 20 3.70 37

relationship is observed from the results.

RMILP = RPSO−C (2.10)

This indicates that the link weight set calculated using the heuristic approach is

able to provide similar performance as compared to the MILP for relatively small

scale networks. This is related to the fact that the paths between node pairs in

small scale networks are substantially fixed. Therefore, the path selected by both

MILP and the heuristic are the same. Network 4 is the largest network we are

able to solve due to computation complexity of the MILP formulation.

Then, the performance of the presented heuristic approach is compared with

that of SO and RO via simulations. Network congestion ratio r is the performance

measure of the evaluation.

The congestion ratio of SO without any link failure is used to normalize the

calculated network congestion ratios of the sample networks. Let r(l) denote the

network congestion ratio for link failure index l ∈ F . The normalized network

25

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Table 2.2: Comparison of worst-case network congestion ratios of MILP and the

heuristic

Network RMILP RPSO−C

1 1.00 1.00

2 1.00 1.00

3 1.00 1.00

4 1.00 1.00

congestion ratio of SO is denoted as rSO(l), the normalized congestion ratio of

RO is denoted as rRO(l), and the normalized congestion ratio of the presented

approach, PSO − C is denoted as rPSO−C(l).

The worst-case network congestion ratios, max
l∈F

rSO(l), max
l∈F

rRO(l), and

max
l∈F

rPSO−C(l) of the sample networks 5-12 presented in Figure 2.1 for all single

link failure scenarios are calculated as shown in Table 2.3. For the worst-case net-

work congestion ratio for single link failure, the following relationship is observed.

max
l∈F

rRO(l) ≤ max
l∈F

rPSO−C(l) ≤ max
l∈F

rSO(l) (2.11)

This indicates that the presented scheme is able to reduce the worst-case network

congestion ratio as compared with SO. It also avoids the run-time link weight

changes, which would cause network instability. As expected RO gives the optimal

performance when a link failure occurs even though RO may lead to network

instability. The achieved reduction rate of the worst-case congestion ratio, α, is

defined as,

α =
max
l∈F

rSO(l)−max
l∈F

rPSO−C(l)

max
l∈F

rSO(l)
. (2.12)

α is also shown in Table 2.3.

The normalized congestion ratios of no link failure are shown in Table 2.4.

For the case of no link failure,

rRO(0) = rSO(0) ≤ rPSO−C(0) (2.13)

26

2.5 Simulation results

Table 2.3: Comparison of worst-case network congestion ratios of the heuristic

and conventional schemes for single link failure scenarios

Network max
l∈F

rSO(l) max
l∈F

rRO(l) max
l∈F

rPSO−C(l) α

5 1.68 1.32 1.36 0.19

6 1.45 1.14 1.20 0.17

7 1.81 1.54 1.54 0.15

8 2.09 1.57 1.62 0.23

9 1.65 1.12 1.17 0.29

10 2.88 2.13 2.20 0.21

11 1.94 1.56 1.56 0.20

12 3.00 1.90 2.10 0.30

is observed. When there is no link failure, the congestion ratio of the link weight

set obtained using PSO-C may be higher than that of SO or RO. This is because

the objective of PSO-C is to reduce the worst-case network congestion ratio when

link failure occurs. β is the deviation between rPSO−C(0) and rSO(0). β is defined

as,

β =
rPSO−C(0)− rSO(0)

rSO(0)
. (2.14)

β is also shown in Table 2.4. When there is no link failure, β is the “penalty”

PSO-C has to “pay” to reduce the worst-case network congestion. The non-

normalized simulation results show that the worst-case congestion ratios under

single link failure is significantly larger compared to no link failure scenario.

The worst-case congestion ratios of several random networks are calculated to

understand the relationship between the worst-case congestion ratio and network

topology. These random networks are generated using the BRITE [62] internet

topology generator by changing the number of nodes N and the number of ad-

jacency nodes m of the network. The Waxman’s probability model is used for

interconnecting the nodes of the topology, which is given by,

P (u, v) = A exp(− d

BL
), (2.15)

27

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Table 2.4: Comparison of network congestion ratios with no link failure

Network rSO(0)(= rRO(0)) rPSO−C(0) β

5 1.00 1.03 0.03

6 1.00 1.15 0.15

7 1.00 1.07 0.07

8 1.00 1.12 0.12

9 1.00 1.05 0.05

10 1.00 1.10 0.10

11 1.00 1.04 0.04

12 1.00 1.17 0.17

where, 0 < A, B ≤ 1, d is the Euclidean distance from node u to node v, and L is

the maximum distance between any two nodes. A and B are set to 0.15 and 0.2,

respectively. The number of nodes, N , is set to 8, 10, 12, 14, 15 and the number of

adjacency nodes m is set to 3, 4, 5, 6. The characteristics of the generated random

network topologies are shown in Table 2.5 and the networks are shown in Figure

2.2.

The dependency of α on N and m is shown in Figure 2.3. This result shows

that α is increasing with N for higher values of m (m = 5, 6). It means the dif-

ference between the worst-case congestion ratios of SO and the presented scheme

is increasing. This may relate to the increase in routing flexibility as N and m

become higher. On the other hand, α fluctuates for smaller values of m. Smaller

values of m or smaller number of neighbor nodes limits the selection of paths

between source-destination pairs. This limited number of paths restricts the flex-

ibility of the routing, causing α to fluctuate when links fail.

Figure 2.4 shows the dependency of β against N and m. Figure 2.4 indicates

that the presented scheme is able to achieve the same result as SO for no link

failure when the network becomes larger. This may occur because there is a wider

number of routes to chose from when the network is larger.

In order to further show the effectiveness of the presented scheme, the worst-

case congestion ratios of the presented scheme are compared with those of the

two following link weight setting schemes. One is a scheme in which a link weight

28

2.5 Simulation results

Table 2.5: Characteristics of the random sample networks

N m Average node degree No. of links (bidirectional)

8 3 4.50 18

8 4 5.00 20

8 5 3.50 14

8 6 2.75 11

10 3 5.00 25

10 4 5.80 29

10 5 5.60 28

10 6 4.80 24

12 3 5.83 35

12 4 6.83 41

12 5 7.00 42

12 6 7.17 43

14 3 6.00 42

14 4 7.43 52

14 5 7.86 55

14 6 8.29 58

15 3 6.00 45

15 4 7.33 55

15 5 8.67 65

15 6 8.93 67

is inversely proportional to its capacity [31]. We call it the IPC scheme. The

other scheme is the one in which all the link weights are set to one. As a result,

minimum-hop routing is achieved. We call it the min-hop scheme. Table 2.6

shows the worst-case congestion ratios of the three schemes, which are normalized

by that of the presented scheme. Table 2.6 indicates that the presented scheme

reduces the worst-case congestion ratio, compared to the IPC scheme and the

min-hop scheme. This is because the presented scheme determines link weights

considering any single link failure so as to minimize the worst-case congestion

ratio.

29

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

N=8, m=3 N=8, m=4 N=8, m=5 N=8, m=6

N=10, m=3 N=10, m=4 N=10, m=5 N=10, m=6

N=12, m=3 N=12, m=4 N=12, m=5 N=12, m=6

N=14, m=3 N=14, m=4 N=14, m=5 N=14, m=6

N=15, m=3 N=15, m=4 N=15, m=5 N=15, m=6

Figure 2.2: Random networks generated using BRITE

The allowable number of iterations to reduce the worst-case network conges-

tion ratio is controlled by Ic. It is decided by considering the allowable computa-

tion time, network size, and quality of the solution desired. A larger Ic increases

30

2.5 Simulation results

Figure 2.3: α’s dependency on number of nodes and adjacency nodes

the chance of getting a solution closer to the optimal one while the computation

time increases. Our thorough examination on the effect of Ic suggests that the

performance of the presented scheme remains unchanged after Ic reaching an am-

ple high value. Table 2.7 shows the effect of Ic for network 5, as shown in Figure

2.1. The results indicate that the performance of the presented scheme does not

change after 1000 even if Ic is increased. It suggests that, 1000 is large enough to

converge the solution. We also confirmed the same tendency for other networks

in Figure 2.1.

The results in Section 2.5 considers equal-cost multi-path (ECMP) [66] routing

is employed. In non-ECMP routing networks, traffic is always routed over a single

path, which often results in substantial network resources. On the other hand,

ECMP routing distributes the traffic among several equal cost paths instead of

routing all the traffic along a single best path. Fundamentally, ECMP routing can

be more efficient compared to single path routing protocols because it can reduce

31

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Figure 2.4: β’s dependency on number of nodes and adjacency nodes

congestion in “hot-spots”, by deviating traffic to unused network resources, thus

providing load balancing.

In order to confirm the effectiveness of ECMP routing, the worst-case con-

gestion ratios of ECMP routing are compared with that of single path routing

for sample networks 5-12 shown in Figure 2.1. Table 2.8 summarizes the worst-

case congestion ratios of ECMP routing and single path routing. The worst-case

congestion ratios of ECMP routing is expressed as rPSO−ECMP while rPSO−single

expresses the worst-case congestion ratios of single path routing. The worst-case

congestion ratios in Table 2.8 are normalized by rPSO−ECMP .

ECMP routing’s ability to distribute the traffic among several equal cost paths

is confirmed from Table 2.8. It is observed that the difference between ECMP

routing and single path routing increases with average node degree. Higher av-

erage node degree increases the number of paths between nodes, thus raising the

possibility of multiple equal cost paths in the network. As a result, ECMP rout-

32

2.5 Simulation results

Table 2.6: Comparison of worst-case congestion ratios with different link weight

setting schemes

Network Presented scheme IPC scheme min-hop scheme

5 1.00 1.82 2.05

6 1.00 2.45 2.76

7 1.00 3.16 3.74

8 1.00 2.35 2.69

9 1.00 1.83 2.21

10 1.00 3.42 3.52

11 1.00 2.70 2.72

12 1.00 1.58 2.19

Table 2.7: Comparison of presented scheme’s performance related to Ic

Value of Ic Worst-case congestion

100 0.553

200 0.411

300 0.403

400 0.403

500 0.359

600 0.260

700 0.224

800 0.183

900 0.183

1000 0.183

1200 0.183

1500 0.183

ing is able to distribute traffic among these multiple equal cost paths and reduce

the congestion.

33

2. PATH SELECTION SCHEME FOR CONGESTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Table 2.8: Comparison of worst-case congestion ratios of ECMP routing and

single path routing

Network Average node degree rPSO−ECMP rPSO−single

5 3.60 1.00 1.02

6 2.54 1.00 1.02

7 3.00 1.00 1.03

8 4.73 1.00 1.08

9 3.00 1.00 1.02

10 2.78 1.00 1.02

11 5.60 1.00 1.08

12 3.70 1.00 1.04

34

Chapter 3

Path selection scheme for energy

consumption reduction with link

failure and traffic uncertainty

3.1 Energy saving routing

How to reduce the energy consumption has recently become a major concern

for industries due to economic and environmental reasons. The core network

equipments currently occupy 20% of the total energy consumption and it is not

showing any sign of slowing down [63]. Therefore, saving energy has also become

one of the objectives of network service providers.

In present high speed networks, the link capacities of backbone networks are

often over-provisioned in order to permit re-routing when links fail. If the back-

bone network is already optimized considering link failures, it is possible to reduce

the network energy consumption by switching off unused resources or putting

them into sleep mode. In today’s backbone networks, pairs of nodes are typi-

cally connected by multiple physical cables to accommodate more traffic or for

future extension purposes. These links are usually over-provisioned only con-

sidering network reliability reducing network energy efficiency. Previous studies

[64, 65] show that less than 40% of network link capacity is utilized on average,

suggesting 60% of the energy consumed by links are wasted on average. Accord-

ingly, shutting down individual unused bundled cables can achieve energy saving

35

3. PATH SELECTION SCHEME FOR ENERGY CONSUMPTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

in backbone networks. Thus, achieving energy saving by only switching on the

minimum number of bundled cables needed for routing in each link even a link

failure occurs [38].

It has also become crucial to select efficient link protection mechanisms to

limit the impact of failures beside from reducing the power consumption of net-

works. Present transmission rate of backbone networks exceed 10 Gbits/s and

any link failure can adversely affect many systems that rely on the network. As

we explained in previous chapters, traffic demand fluctuation is another major

problem network service operators worry about.

A path selection scheme that reduces the network energy consumption in the

face of link failure and traffic demand fluctuation is needed [38]. In this chapter,

we consider how to extend the link weight optimization scheme we presented in

Chapter 2 to reduce network energy consumption.

The presented scheme in Chapter 2 reduces the worst-case congestion ratio

against any single link failure by finding the most utilized link in the network

under single link failure and try to reduce the traffic on that link by re-routing

traffic. The network congestion ratio does not express the total resource usage of

the whole network, which is more connected to the network energy consumption.

We assume that the network energy consumption is expressed as a value that is

proportional to the sum of bandwidth used over all the links. Since our goal is to

minimize the network energy consumption by minimizing the number of bundled

cables used for routing, we set our objective to minimize the sum of bandwidth

used over all the links. The objective of the scheme presented in Chapter 2 is

to minimize the worst-case congestion ratio which is relatively easy because it

is easier to find the most congested link in the network. By increasing the link

weight of the most congested link in the network, we can change the worst-case

congestion ratio. However, when network energy consumption is considered, we

cannot rely on reducing only one link’s utilization. We need to change the link

weight of the most suitable link which will minimize the sum of bandwidth used

over all the links.

36

3.2 MILP formulation for energy consumption reduction

3.2 MILP formulation for energy consumption

reduction

To reduce the network energy consumption under the hose model traffic, unused

cables are deactivated while keeping enough cables to guarantee the routing of

all traffic demands. By solving the optimization problem of minimizing the total

number of active cables in the network, we can minimize the network energy

consumption. The same network model that is considered in section 2.2 with the

following additional notations is used in this section. nij is the number of routers

used for routing data from node i to node j. Each link consists of B cables that

can be shut down independently. We consider that the traffic is routed among

several equal cost paths, also known as Equal Cost Multi-Path (ECMP) routing.

The target of this section is to find the most appropriate set of link weights,

Wmin, for network G that minimizes the worst-case network resource usage over

link failure index l ∈ F and traffic matrices T ∈ D̃. Wmin is defined by,

Wmin = arg min
W∈w

max
Gl∈G̃

max
T∈D̃

R(Gl, T,W), (3.1)

where R(G, T,W) is the total resource usage for given G, T , l.

Since we are considering the hose model, the problem formulation for generat-

ing the worst-case traffic matrices, Equation 2.5, and its dual problem, Equation

2.6, are also true here. Using the dual formulation we can derive the mixed-integer

programming formulation of network optimization for minimizing the number of

active cables, nij, in case of link failure under the hose model traffic as shown in

Equation 3.2.

min
∑

(i,j)∈El

nij (3.2a)

s.t.
∑

j:(i,j)∈El

xpqij (W, l)−
∑

j:(j,i)∈El

xpqji (w, l) = 1,

∀p, q ∈ V, i = p, l ∈ F (3.2b)∑
j:(i,j)∈El

xpqij (W, l)−
∑

j:(j,i)∈El

xpqji (w, l) = 0,

∀p, q ∈ V, i(̸= p, q), l ∈ F (3.2c)

37

3. PATH SELECTION SCHEME FOR ENERGY CONSUMPTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

∑
p∈V

apπ
ij(p) +

∑
p∈V

bpλ
ij(p) ≤ nij

clij
B
,

∀(i, j) ∈ El, l ∈ F (3.2d)

xpqij (W, l) ≤ πij(p) + λij(q),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (3.2e)

0 ≤ f i
pq(l)− xpqij (W, l) ≤ 1− δijq (l),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (3.2f)

xpqij (W, l) ≤ δijq (l),

∀p, q ∈ V, (i, j) ∈ El, l ∈ F (3.2g)

0 ≤ ψjq(l) + wij − ψiq(l) ≤ (1− δijq (l))U,

∀q ∈ V, (i, j) ∈ El, l ∈ F (3.2h)

1− δijq (l) ≤ ψjq(l) + wij ≤ ψiq(l),

∀q ∈ V, (i, j) ∈ El, l ∈ F (3.2i)

nij ≤ B, ∀(i, j) ∈ E (3.2j)

f i
pq(l) ≥ 0, ∀p, q, i ∈ V, l ∈ F (3.2k)

δijq (l) ∈ {0, 1}, ∀q ∈ V, (i, j) ∈ El, l ∈ F (3.2l)

1 ≤ wij ≤ wmax, ∀(i, j) ∈ El, l ∈ F (3.2m)

nij = 0, 1, 2, · · · , ∀(i, j) ∈ El, l ∈ F (3.2n)

The objective of the above mixed-integer programming formulation is to find

the optimal set of active cables in order to minimize the total network energy

consumption. The meanings of the constraints are as same as we explained in

section 2.3.

Section 3.3 presents the heuristic scheme to reduce energy consumption by

deactivating unused cables. Since our goal is to minimize the network energy

consumption by minimizing the number of bundled cables used for routing, we

set our objective to minimize the sum of bandwidth used over all the links.

38

3.3 Heuristic approach

3.3 Heuristic approach

The heuristic to reduce the total network energy consumption by deactivating

unused cables is similar to the heuristic that is explained in section 2.4. However,

the objective function of the heuristic must be changed to a one that considers

energy consumption of the network. The sum of individual cost function ϕ(uij(T))

of uij and T over (i, j) ∈ E and T ∈ D̃ is chosen as the objective function F (D̃)

to reduce the worst-case energy consumption. F (D̃) is defined as,

F (D̃,Gl)|for given weights = max
Gl∈G̃

∑
T∈D̃

∑
(i,j)∈E

{ϕ(uij(T))cij}, (3.3)

where ϕ(uij) increases with uij. For the reasons mentioned in [39], we adopted

the following convex piecewise linear cost function for ϕ(uij).

ϕ(uij) =



uij

cij
, 0 ≤ uij

cij
< 1

3

3
uij

cij
− 2

3
, 1

3
≤ uij

cij
< 2

3

10
uij

cij
− 16

3
, 2

3
≤ uij

cij
< 9

10

70
uij

cij
− 178

3
, 9

10
≤ uij

cij
< 1

500
uij

cij
− 1468

3
, 1 ≤ uij

cij
< 11

10

5000
uij

cij
− 16318

3
, 11

10
≤ uij

cij
<∞.

(3.4)

3.4 Simulation results

The effectiveness of reducing the worst-case energy consumption of the presented

heuristic is evaluated through simulations. The performance of the presented

heuristic is compared with that of SO, minimum-hop (min-hop) routing, and

IPC. The min-hop routing is a simple, conventional routing scheme which is

achieved by setting all the link weights to one. In IPC, the link weights are set so

that they are inversely proportional to its capacity. The total network resource

usage, R, for routing the data is the performance measure of the evaluation. The

sample networks 5-12 in Figure 2.1 are used to determine the characteristics of the

presented heuristic. The same simulation conditions that is explained in section

2.5 are used for this simulation, too.

39

3. PATH SELECTION SCHEME FOR ENERGY CONSUMPTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Let R(l) be denoted as the total resource usage for link failure index l ∈ F .

The total resource usages of SO, PSO, min-hop, and IPC are denoted as RSO(l),

RPSO(l), Rmin−hop(l), and RIPC(l), respectively.

The worst-case total resource usages, max
l∈F

RPSO(l), max
l∈F

RSO(l), and

max
l∈F

Rmin−hop(l) of the sample networks 5-12 presented in Figure 2.1 for all the

single link failure scenarios are as shown in Table 3.1 and they are normalized

by max
l∈F

RSO(l). For the worst-case network resource usage for single link failure,

the following relationship is observed,

max
l∈F

RPSO(l) < max
l∈F

RSO(l) < max
l∈F

Rmin−hop(l). (3.5)

This indicates that the proposed scheme can reduce the worst-case network re-

source usage as compared with SO and min-hop. The achieved reduction rate of

the worst-case resource usage, α, is defined as,

α =
max
l∈F

RSO(l)−max
l∈F

RPSO(l)

max
l∈F

RSO(l)
. (3.6)

α is also shown in Table 3.1.

Table 3.1: Comparison of worst-case network resource usage for any sin-

gle link failure scenario

Network max
l∈F

RSO(l) max
l∈F

RPSO(l) max
l∈F

Rmin−hop(l) max
l∈F

RIPC(l) α

5 1.00 0.52 1.03 1.02 0.48

6 1.00 0.76 1.12 1.29 0.24

7 1.00 0.68 1.05 1.11 0.32

8 1.00 0.82 1.21 1.05 0.18

9 1.00 0.77 1.52 1.63 0.23

10 1.00 0.82 1.78 2.33 0.18

11 1.00 0.64 1.31 1.85 0.36

12 1.00 0.84 1.24 1.42 0.16

The total resource usages, normalized by RSO(0), for no link failure scenario

is shown in Table 3.2. For the case of no link failure,

RSO(0) ≤ RPSO(0) ≤ Rmin−hop(0) (3.7)

40

3.4 Simulation results

is observed. When there is no link failure, the total resource usage of the link

weight set obtained using PSO may be higher than that of SO. This is because

the objective of PSO is to reduce the worst-case network resource usage when a

link failure occurs. β is the deviation between RPSO(0) and RSO(0). β is defined

as,

β =
RPSO(0)−RSO(0)

RSO(0)
. (3.8)

β is also shown in Table 3.2. When there is no link failure, β is the penalty PSO

has to pay to reduce the worst-case network resource usage under any single link

failure. The non-normalized simulation results show that the worst-case resource

usage of single link failure scenario is significantly larger compared to no link

failure scenario.

Table 3.2: Comparison of network resource usage for no link failure scenario

Network RSO(0) RPSO(0) Rmin−hop(0) RIPC(0) β

5 1.00 1.21 1.77 1.51 0.21

6 1.00 1.08 1.82 1.89 0.08

7 1.00 1.10 1.90 2.50 0.10

8 1.00 1.16 2.41 1.68 0.16

9 1.00 1.14 1.84 1.91 0.14

10 1.00 1.07 2.15 1.82 0.07

11 1.00 1.11 1.98 1.98 0.11

12 1.00 1.04 1.51 2.04 0.04

In order to understand the relationship between the worst-case resource usage

and network topology, the same random network topologies described in Table 2.5

are used. The dependency of α on N and m is shown in Figure 3.1. This re-

sult shows that α is increasing with N when m is higher (m = 5, 6). It means

the difference between the worst-case resource usages of SO and and the pre-

sented scheme is increasing. This may relate to the fact that routing flexibility is

increased as N and m become higher.

Figure 3.2 shows the dependency of β against N and m. Figure 3.2 indicates

that the presented scheme is able to reduce the gap between SO for no link

41

3. PATH SELECTION SCHEME FOR ENERGY CONSUMPTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Figure 3.1: α’s dependency on number of nodes and adjacency nodes

failure when the network becomes larger. This may occur because there is a

wider number of routes to chose from when the network is larger.

As explained in Section 2.5, the value of Ic plays an important role when

reducing the worst-case network resource usage. The worst-case network resource

usage of network 5 is measured for different Ic values and the results are shown

in Table 3.3. The results show that the worst-case network resource usage of the

presented scheme is unchanged after 900.

In order to confirm the effectiveness of ECMP routing, the worst-case net-

work resource usages of ECMP routing are compared with that of single path

routing for the sample networks 5-12 shown in Figure 2.1. Table 3.4 summarizes

the worst-case resource usages of ECMP routing and single path routing. The

worst-case resource usages of ECMP routing is expressed as RPSO−ECMP while

RPSO−single expresses the worst-case resource usages of single path routing. The

results in Table 2.8 are normalized by RPSO−ECMP . Table 2.8 shows that the

42

3.5 Summary

Figure 3.2: β’s dependency on number of nodes and adjacency nodes

ECMP routing uses less network resources compared to single path routing in

the worst-case scenario.

3.5 Summary

The first part of this thesis presents mathematical formulations to calculate opti-

mal link weight sets that reduce worst-case congestion ratio and worst-case net-

work resource usage by considering the uncertainty of single link failure and traffic

demand. The hose model, which relaxes the constraint of network operators to

know the exact traffic matrix, is used in this study. This thesis also, presented a

heuristic approach to solve the MILP formulations. The worst-case performance

of the link weight set calculated using the presented heuristic is equivalent to that

of MILP formulation. Numerical results via simulation show that the presented

schemes find suitable link weight sets to reduce the worst-case congestion ratio

43

3. PATH SELECTION SCHEME FOR ENERGY CONSUMPTION
REDUCTION WITH LINK FAILURE AND TRAFFIC
UNCERTAINTY

Table 3.3: Comparison of presented scheme’s performance related to Ic

Value of Ic Worst-case congestion

100 0.325

200 0.319

300 0.294

400 0.201

500 0.181

600 0.174

700 0.152

800 0.129

900 0.108

1000 0.108

1200 0.108

1500 0.108

Table 3.4: Comparison of worst-case resource usages of ECMP routing and single

path routing

Network RPSO−ECMP RPSO−single

5 1.00 1.14

6 1.00 1.07

7 1.00 1.12

8 1.00 1.06

9 1.00 1.08

10 1.00 1.12

11 1.00 1.16

12 1.00 1.08

and network resources used in all cases. The presented schemes has to pay a

penalty of β for the no link failure scenario. However, if the network admin-

istrators want to reduce the worst-case congestion ratio or worst-case network

resource usage for any single link failure, presented schemes are better choices.

44

3.5 Summary

It is observed that the presented schemes outperform SO for larger networks.

45

Chapter 4

Path selection scheme for

networks with imbalanced node

load

The load of nodes is an important factor that affects the overall performance

of networks. An overloaded node may decrease the network throughput due to

packet queuing. This chapter presents a path selection scheme that is robust

against node load. In section 4.1, an overview of Hadoop and its key concepts are

introduced. The path selection scheme under node load uncertainty is presented

in section 4.2.

4.1 Overview of Hadoop

Hadoop is an open-source implementation of Google’s Mapreduce framework and

Google File System (GFS). It provides a framework to do parallel-distributed

computing with ease thus has become the de-facto platform for processing large-

scale data sets, also known as Big Data [44, 67]. A Hadoop cluster generally

consists with hundreds to thousands of servers. When considering such a large

number of servers, even with today’s low level of failure, hardware failures occur

on a daily basis [44]. Therefore, Hadoop is designed with mechanisms to provide

high level of fault-tolerance while hiding the complexity of distributed computing,

scheduling, and communication. All these factors made Hadoop very popular

47

4. PATH SELECTION SCHEME FOR NETWORKS WITH
IMBALANCED NODE LOAD

both in industry and academia. Many companies that hold large amounts of

data exploit Hadoop to retrieve valuable information from those data. Having

access to large amounts of data has become the next big thing in the 21st century

making such companies so powerful just because of the future value of the data

they hold. Companies like Facebook, Amazon, Yahoo! including Google are early

adopters of Hadoop that use Hadoop to process data. Hadoop has grown to be

an ecosystem composed of several applications ranging from data warehousing to

data flow oriented programming language. Hadoop is used to store, manipulate

and extract information from large-scale data sets in many ways.

Although Hadoop has become the de-facto product for large-scale data pro-

cessing and grown to become an eco-system full of new products being released

frequently, it still has room for improvement [68]. Many research efforts are

focused on improving data placement, job scheduling, reducing network commu-

nication, stage pipelining, in-memory store of intermediate data etc., leaving data

read improvement considering server load behind.

4.1.1 Components of Hadoop

Hadoop provides components to store, manipulate and extract information from

large-scale data sets efficiently. The Storage layer of Hadoop is called, Hadoop

Distributed File System (HDFS) and data manipulation and extraction layer is

called, Yet Another Resource Negotiator (YARN). Distributed processing frame-

works such as MapReduce, Spark [75], Tez [76] run jobs on top of YARN and

HDFS. Typically, both layers are co-located in the same servers. HDFS and

YARN both are designed with master-slave architecture to ensure scalability while

providing high throughput.

HDFS is responsible for storing data in Hadoop and providing those data

to applications when necessary. It is designed for storing very large files with

streaming data access patterns running on clusters of commodity hardware [44].

A file in HDFS is broken into blocks and stored dispersedly among servers. Since

Hadoop is designed to process large volumes of data, the size of a block is typi-

cally large,128MB by default, to reduce disk seeks during data read. A block is

replicated to different multiple servers (by default three) for fault-tolerance and

48

4.1 Overview of Hadoop

availability purposes. The consistency of replicas is not considered because files

in HDFS are assumed to be append-only and the blocks are written once and read

many times. Write-once-read-many means that once data is written to HDFS,

that particular data will be read by various processing tasks many time over the

time. Therefore, improving how data is read in HDFS has a larger impact on the

overall performance of HDFS compared to improving how data is written.

Data locality is the property that defines whether data and processing task

are co-located on the same server. Hadoop tries to co-locate data and processing

tasks so that data access is fast because data is local [44]. This is one of the

revolutionary concepts that was introduced in Hadoop: “taking calculation to

where data is” rather than “taking data to the calculation”. Unfortunately, it

is not always possible to co-locate data and processing tasks due to resource

unavailability. Experiments done by Ibrahim et al. [69] show that approximately

23% of the map tasks are non-local map tasks. This means 23% of the map

tasks read or fetch non-local data from a remote server that holds a copy of

the data before starting to process the data. Many improvements for enhancing

data placement (data write) [70, 71, 72] in HDFS were presented. However all of

these are focused on optimizing replica placement, which means writing data into

HDFS, while paying no attention to data read improvement, that occurs more

often compared to data write.

HDFS has two daemons operating in a master-slave architecture. The master

components is a NameNode and the slave component is a DataNode. The Na-

meNode oversees and manages data storage. It is responsible for storing the file

system tree, and the metadata of all the files and directories in HDFS. It also

maintains information about the locations of the blocks of a specific file in the

memory for faster response of block locations. DataNodes store and retrieve data

blocks when requested by clients or the NameNode, and they periodically report

the blocks list they store to the NameNode.

YARN is responsible for managing cluster resources and scheduling jobs in the

cluster. It provides APIs for requesting and working with cluster resources for

distributed processing systems. Figure 4.1 shows the relationship of distributed

processing systems, YARN, and HDFS.

49

4. PATH SELECTION SCHEME FOR NETWORKS WITH
IMBALANCED NODE LOAD

Figure 4.1: Components of Hadoop and their relationship

YARN also consists with two daemons, a ResourceManager and a NodeMan-

ager. ResourceManager is the master component and it manages the resources

within the cluster and schedule jobs. The slave component of YARN, NodeMan-

ager, launches and monitor tasks which are run within containers. The master

daemon of HDFS, NameNode, and the master daemon of YARN, ResourceMan-

ager, are usually co-located in the same servers called master servers. The slave

daemons of HDFS, DataNode, and the slave daemons of YARN, NodeManager,

are also co-located in slave servers.

4.1.2 MapReduce framework

The MapReduce framework [42] is a distributed processing system that utilizes a

set of servers to process large volume of data. It employs the data flow program-

ming model that data flow through map phase, shuffle phase, and reduce phase.

Map task executes a map function defined in a program and read a data block

as input data which contains data in key-value pairs. The map task combines

the key-value pair records with the same key as a tuple and write the output to

an intermediate file in the local file system. The shuffle phase sort the tuples in

the intermediate files and transfer the data to a reduce task. After receiving all

intermediate data by the reduce task, it applies the reduce function defined in

the program to all the intermediate data. The result of the reduce task is written

to an output file in HDFS.

50

4.1 Overview of Hadoop

4.1.3 Rack awareness

Typically, large clusters with hundreds of servers are organized in hierarchical

multi-path networks [77]. Fat-tree topology [78] is a widely used topology for

such networks. Figure 4.2 shows a typical Hadoop cluster, that is configured in

fat-tree topology with rows of racks. Each rack contains 20-40 servers and the

servers are connected to a top-of-rack switch. Furthermore, multiple paths and

different host counts between two servers can exist making path selection a critical

factor in communication between servers. The top-of-rack switches connect to one

or more core switches, creating multiple paths between two servers. Traffic that

go from one rack to another, also called cross-rack traffic, travels through the

core layer links, making them a bottleneck. The links which connect core layer

and edge layer become a bottleneck because they are shared by more servers at

the same time.

Hadoop is designed to reduce cross-rack traffic and utilize in-rack resources as

much as possible. Hadoop uses a concept called called “rack awareness” to achieve

this. Unfortunately, Hadoop is not able to understand the network topology

by itself without any human help. Cluster administrators have to assign rack

locations of each server, especially slave servers, so that Hadoop is able to utilize

in-rack resources to the max. When rack information is not configured, Hadoop

considers the cluster topology as flat and all the servers are in a single rack.

Hadoop calculates the static network distance or the closeness between slave

servers using this rack information. Two servers in the same rack are closer

compared to two servers in separate racks. The calculated network distance using

rack information will be static as long as the rack layout and rack information

are not changed. Additionally, the calculated network distance does not consider

server load since it is calculated by using static rack configuration information

only.

4.1.4 Data read procedure in HDFS

Rack configuration information is utilized in many parts of Hadoop, task schedul-

ing, replica placement, data read etc. When a client reads data from HDFS, it

has the choice of selecting one DataNode among the three DataNodes that hold

51

4. PATH SELECTION SCHEME FOR NETWORKS WITH
IMBALANCED NODE LOAD

Figure 4.2: Fat tree topology based Hadoop cluster

the replicas. This selection of DataNode is done by the NameNode using rack

configuration information, which is transparent to the client. The data reading

procedure of HDFS is explained below.

1. The client that wants to read data contacts the NameNode to determine

the block locations.

2. The NameNode finds the addresses of the DataNodes that hold requested

data using metadata and block reports from DataNodes. Then the Na-

meNode sorts the addresses of DataNodes according to the proximity to

the client using rack information and sends the sorted list of addresses to

the client which requested block locations.

52

4.2 Path selection scheme under node load uncertainty

3. If the client is itself a DataNode and holds a replica of the data, it reads data

from the local disk directly. Otherwise, the client connects to the closest

DataNode (first DataNode in the list) according to the sorted addresses it

received from NameNode and fetches data over the network.

Hadoop only considers the rack configuration information when selecting a

DataNode. Rack configuration information does not reflect the server load. This

static behavior can lead to longer data read time compared to a dynamic behavior

[79]. Consider the case where the closest DataNode decided by the NameNode

is overloaded with processing other tasks and other two DataNodes that hold

the same data block is relatively free. Then, the data fetch request by the client

to the overloaded DataNode will be queued making the data read time longer.

Therefore, DataNode selection scheme which can take account of the server load

is desirable. Selecting one DataNode among three DataNodes can be interpreted

as selecting a path from three paths as we explained in section 1.5.

4.2 Path selection scheme under node load un-

certainty

This section presents the path selection scheme under server load uncertainty

for Hadoop clusters. We use the term “server” to represent a “node”. The

presented scheme is based on delay distribution between servers and we assume

that the delay time of a server represents the server load (queuing delay). In order

to calculate the delay distribution between servers, we periodically measure the

round-trip time (RTT) between DataNodes. The delay distributions between

DataNode pairs are compared when selecting a DataNode to fetch data from.

The presented scheme adds two changes to Hadoop.

1. Adds a new feature to DataNode process to measure round-trip time be-

tween DataNodes.

2. Extends HDFS data reading procedure to use RTT-based delay distribution.

53

4. PATH SELECTION SCHEME FOR NETWORKS WITH
IMBALANCED NODE LOAD

Conventional Hadoop calculates a network distance between servers by using

the physical rack layout information only. Even if the “static” physical distance

such as hop count is used, we still have a problem. Since server load fluctu-

ates frequently, it is necessary to dynamically calculate the best server according

to the state of the server’s load. That is why we use delay distribution which

can be calculated by using commonly available/obtainable information in any

environment. Instead of using a static metric such as hop count, the presented

scheme uses RTT-based delay distribution to calculate the logical distance be-

tween servers [73, 74]. Authors in [80, 81, 82, 83, 84] have used RTT for server

selection by considering the server load. In [84], it is stated that RTT is perhaps

the best metric to measure server load and network delay. We adopt RTT not

only for these reasons but also it is relatively easy and inexpensive to use in any

environment. Using RTT to measure the delay distribution requires its periodic

measurement. RTT measurement can be done using an active approach (i.e.

sending probe packets) or with a passive approach (i.e. trying to calculate RTT

based on existing traffic). In theory, the passive approach is preferable since it

does not introduce any additional traffic into the network. On the other hand,

measuring RTT based on existing traffic can be more complex and CPU intensive

[85]. Additionally, results in [86] indicate that the overhead added by periodic

RTT measurement was less than 1% in terms of additional network traffic. There-

fore, we decided to focus on the active approach.

The procedure of measuring RTT between servers is explained below.

1. At startup, each DataNode gets a list of DataNodes connected to the cluster.

2. Each DataNode sends an echo request of Internet Control Message Protocol

(ICMP) to all the other DataNodes periodically.

3. All the DataNodes record the time it takes to get an ICMP echo reply

(RTT) from other DataNodes since sending the echo request.

RTT can suddenly change depending on the network traffic and server work-

load. In order to minimize the impact of the sudden changes of RTT, the distri-

bution of RTT, or delay distribution that shows the probability characteristic of

54

4.2 Path selection scheme under node load uncertainty

the delay is used [73, 74]. Delay distribution between DataNodes can be calcu-

lated by using the periodically measured RTT. Multiple measurements of RTT is

required to represent the actual delay characteristic between servers. Therefore,

the RTT is measured right from the start of the cluster and the delay distribution

is updated periodically, whenever the RTT is measured. We update the delay dis-

tribution by using exponential smoothing technique [87, 88, 89] as shown in Eq.

(4.1). Exponential smoothing technique is often used for time-series data and it

can be easily applied for making some determination based on prior observations.

Let t be the measured RTT between two servers and pτ (t) be the measured RTT

distribution at time τ . fτ (t) is the smoothed RTT distribution at time τ , fτ−1(t)

is the smoothed RTT distribution calculated at time τ−1, and α is the smoothing

factor.

f0(t) = p0(t), τ = 0 (4.1a)

fτ (t) = αpτ (t) + (1− α)fτ−1(t), τ > 0 (4.1b)

0 ≤ α ≤ 1 (4.1c)

In other words, the smoothed RTT distribution fτ (t) is a simple weighted av-

erage of the current measurement of RTT distribution and the previous smoothed

RTT distribution. It is required to have multiple RTT measurements to under-

stand the actual delay distribution between server pairs. The value selected for

α determines how fτ (t) is updated. Larger values of α have less of a smooth-

ing effect and give greater weight to recent changes in the measured data. In

the limiting case with α = 1 the output series is same as the RTT distribution.

Smaller values of α have more of a smoothing effect and give greater weight to

measurements from the more distant past.

Delay distribution can be used as a metric to compare server load. However, it

is necessary to compare similar points of the delay distributions. As the compar-

ison point of delay distribution, we can select the average time, maximum time,

minimum time, or a randomly selected point of the delay distribution. This study

uses the minimum, average, maximum, ϵ, and 1− ϵ (for a given ϵ) as comparison

policies. tmin is the minimum delay time, tmax is the maximum delay time, and

55

4. PATH SELECTION SCHEME FOR NETWORKS WITH
IMBALANCED NODE LOAD

tavg is the average delay time. ϵ is the percentile of delay distribution and it is

defined as,

ϵ =

∫ tmax

tϵ

fτ (t)dt. (4.2)

By using Equation (4.2) for a given ϵ, we can calculate the tϵ. Similarly, t1−ϵ is

defined as Eq. (4.3) and t1−ϵ can be calculated for a given ϵ.

ϵ =

∫ t1−ϵ

tmin

fτ (t)dt (4.3)

The relationship between tmin, tavg, tmax, tϵ, and t1−ϵ are shown in Figure 4.3.

Figure 4.3: Relationship between delay distribution comparison policies

The modified data reading procedure of HDFS utilizing the delay distribution

is explained below.

1. A client contacts the NameNode to determine the locations of the data.

2. The NameNode sends the addresses of the DataNodes that have a replica

of requested data to the client.

3. If the client is itself a DataNode and holds a replica of the data, it reads

data from the local disk directly. Otherwise, the client sorts DataNodes list

according to the delay distribution comparison policy and connects to the

DataNode with the least delay to fetch non-local data.

56

4.2 Path selection scheme under node load uncertainty

The selected remote DataNode for a particular comparison policy can be

expressed as,

DataNode(i) = arg min
i′∈M

t(i
′). (4.4)

57

Chapter 5

Experimental results of path

selection scheme for networks

with imbalanced node load

This chapter presents the experimental results of path selection scheme for net-

works with imbalanced node load. The results in this chapter are not numerical

simulation results but experimental results obtained running sample jobs on real

Hadoop clusters. Experimental results are closer to real-world situations com-

pared to numerical simulations. Thus, they are presented as a separate chapter.

The experiments were done using Hadoop clusters created on a cloud platform.

In section 5.1, the environment used for experiments is explained. Section 5.2

introduces the results followed by the summary in section 5.3

5.1 Experiment environment

The experiments are done using Hadoop clusters created on AWS EC2 instances

[91]. Public cloud environments, such as AWS, are designed as highly-multiplexed,

shared environments with virtual servers and tasks from numerous tenants co-

existing in the same physical server to achieve cost effectiveness and on-demand

scaling. This shared nature of resources make the load of servers unpredictable

thus a suitable platform to confirm the effectiveness of the presented path selec-

tion scheme. In order to implement the presented scheme, a new Java class is

59

5. EXPERIMENTAL RESULTS OF PATH SELECTION SCHEME
FOR NETWORKS WITH IMBALANCED NODE LOAD

added to the DataNode daemon to measure the delay time between DataNodes

and DFSClient class is improved to compare the delay distribution.

Six clusters, one cluster for each policy described in section 4.2, are used for

the experiments and their configurations are described as follows. All the clusters

are based on CDH (Cloudera’s Distribution including Apache Hadoop) 5.11.1 [92]

and deployed on AWS EC2. Each cluster consists of seven compute optimized

c4.4xlarge [91] instances (virtual servers) with one master server and six slave

servers. The master server contains the NameNode and the ResourceManager

daemons while each slave server containing the DataNode and the NodeManager

daemons. Each instance has 16 vCPUs, 30 GiB of memory with EBS storage and

they are summarized in Table 5.1. CentOS 7.3 is installed as the operating sys-

tem. CDH 5.11.1 includes Hadoop-2.6 with backports of latest patches. Default

scheduler of CDH, FairScheduler [93], is used without configuring any additional

queues. 2GB of memory and one virtual CPU for each map and reduce task is

configured. The maximum memory allocated for YARN containers in each node-

manager is 28GB, leaving 2GB of memory for the operating system. Similarly, 15

virtual CPUs are allocated for YARN containers in each nodemanger leaving one

virtual CPU for the operating system tasks. A total of 168GB of memory and

90 virtual CPUs are available in the cluster. Rack assignment is not configured

for any of the servers since we do not have any physical rack layout information

of the public cloud environment. Hence, Hadoop assumes that all the servers are

in one rack named default. For performance evaluation, we create random text

data using Hadoop’s randomtextwriter program. All the jobs are executed at the

same time from six clusters to limit the impact of load imbalance and network

delay depending on the time. Each job is executed ten times and the averaged

results are shown section 5.2.

5.2 Results and discussions

This study compares the HDFS data read performance of the presented scheme

with conventional Hadoop by fetching data in HDFS and running MapReduce

jobs. The total time took to fetch data from HDFS and MapReduce job run time

are the performance measures of the evaluation.

60

5.2 Results and discussions

Table 5.1: Virtual server specifications

Resource type Value

vCPU 16 cores

CPU Intel Xeon E5-2666 v3

Clock speed (GHz) 2.9

Memory (GiB) 30

Disk (GB) 300

In this experiment, the value of α is set to 0.5 in order to consider both new

and old probabilities of RTT. RTT between DataNode pairs is measured every

second. ϵ is set to 0.15 after comparing data fetch times for different values of ϵ.

Measured data fetch times for different values of ϵ are shown in Table 5.2. Data

fetch times are average values of ten data fetches and the deviation of the results

were under 10%.

Table 5.2: Data fetch times of different ϵ values

Value of ϵ Data fetch time [sec]

0.00 5.3203

0.05 5.1034

0.10 4.8923

0.13 4.2532

0.15 4.2450

0.17 4.3429

0.20 4.8624

0.25 4.7432

0.30 4.8432

First, the time it takes to fetch data from HDFS using the presented scheme

and conventional Hadoop is measured. The averaged results are shown in Table

5.3. A 1GB file (eight data blocks) from HDFS is fetched to one of the DataNodes

61

5. EXPERIMENTAL RESULTS OF PATH SELECTION SCHEME
FOR NETWORKS WITH IMBALANCED NODE LOAD

using the built in hdfs dfs command. For this experiment, we select the DataNode

that has the least number of replicas of the 1GB file so that Hadoop can fetch

more replicas from remote DataNodes. In this experiment, there are only one

replica stored at the particular DataNode and seven replicas are fetched from

remote DataNodes. Data fetch time for two scenarios are measured: without any

background jobs running and with background jobs running.

To simulate a real-world multi-user cluster, data fetch time while running

background jobs are measured. Three wordcount MapReduce jobs [50, 69, 77],

each counting words in separate 20GB files are used as background jobs. Wordcount

is selected because it achieves a balance in both map and reduce stages. Each

map task of the wordcount job reads the input file, line by line and breaks it into

words with key/value pair of the word and 1. Each reduce task sums the counts

of each word and creates a single key/value with the word and sum as the result

of the job.

Conventional Hadoop is expressed as Tcon. Tpolicy, policy ∈ {avg,max,min, ϵ, 1−
ϵ} shows which policy is used as the delay distribution comparison policy. Tavg

expresses that tavg is used as the delay distribution comparison policy, Tmax ex-

presses that tmax is used as the delay distribution comparison policy, etc.

Table 5.3: HDFS data fetch times

Policy
Time [sec]

Without background jobs With background jobs running

Tcon 4.3988 5.7020

Tavg 4.2700 5.0283

Tmax 4.3587 5.5263

Tmin 4.3454 5.5682

Tϵ 4.2366 5.1521

T1−ϵ 4.3131 5.3139

When there are no background jobs,

Tϵ < Tavg < T1−ϵ < Tmin < Tmax < Tcon (5.1)

62

5.2 Results and discussions

is observed. For the scenario with background jobs running,

Tavg < Tϵ < T1−ϵ < Tmax < Tmin < Tcon (5.2)

is observed. In the case that there are background jobs running, all the policies

including conventional Hadoop take longer time to fetch data compared to the

result of no background jobs. When there are background jobs running, three

jobs process 60GB of data. It means that the server load is higher compared to

the scenario where no background jobs are running and there are more traffic

(non-local data fetch of map tasks, shuffle data etc.) transferred between the

DataNodes. The higher server load in DataNodes and large traffic in the network

from the background jobs causes the data fetches to take longer time compared

with no background jobs scenario.

Hadoop’s conventional data fetch mechanism is used in Tcon. Therefore, when

fetching non-local data from remote DataNodes, it randomly selects a remote

DataNode to fetch data from. This randomly selected DataNode server (or the

physical server that hosts the virtual server) might be overloaded or free depend-

ing on the workload at that time. Equations (5.1) and (5.2) both show that

this randomly selected remote DataNode is not the best DataNode to fetch data

from. On the other hand, Tpolicy, policy ∈ {avg,max,min, ϵ, 1 − ϵ} respectively

uses tavg, tmax, tmin, tϵ, and t1−ϵ of delay distribution as a unit to measure the

server load and selects the server with least server load, resulting shorter data

fetch time.

When there are no background jobs running,only a small number of remote

data fetching from the same DataNode will occur. Therefore, reducing the worst-

case delay time, tmax, will finish the data fetch in the least amount of time.

However, tmax and tmin are the two extremes of delay distribution and they do not

accurately represent the delay characteristic of the cluster. Additionally, tmax and

tmin are relatively unstable and sometimes contain abnormal delay times due to

sudden server load or network traffic fluctuations in the cluster which is deployed

on a public cloud environment. Therefore, a policy that is robust against sudden

server load fluctuations while reducing the worst-case delay is desirable. Tϵ is

more suitable since it reduces the delay times that are ϵ% from the worst-case

delay, which is relatively stable compared to tmax or tmin. The experimental

63

5. EXPERIMENTAL RESULTS OF PATH SELECTION SCHEME
FOR NETWORKS WITH IMBALANCED NODE LOAD

results also show that Tϵ is able to fetch data in a shorter time compared to

conventional Hadoop and other policies when there are no background jobs.

When there are background jobs running, background jobs also fetch data in

addition to the data fetch command that we run, leading to multiple data fetches

from the same remote DataNode. When there are multiple data fetches from the

same remote DataNode, reducing one data fetch does not shorten the total data

fetch time. This is because it is difficult to estimate which data fetch should be

reduced. A policy that reduces the total time of multiple data fetches at the same

time is more suitable. Tavg is more suitable since it reduces the average delay time

of multiple data fetches. The experimental results also show that Tavg is able to

fetch data in a shorter time compared to conventional Hadoop and other policies

when there are jobs running in the background.

Table 5.4 shows the averaged results of wordcount MapReduce job, processing

10GB file without any jobs running in the background. Rack-local map tasks

are the map tasks that fetch data from other DataNodes. In this experiment,

only data-local and rack-local map tasks exist. The reason for that is, Hadoop

considers as all servers in a single rack since rack locations are not configured. The

number of rack-local map tasks are verified from the job counters information.

Table 5.4: Job completion time without background jobs running

Policy Time [sec] Average ratio of rack-local map tasks [%]

Tcon 85.294 19.89

Tavg 80.551 19.89

Tmax 83.966 20.00

Tmin 84.880 20.11

Tϵ 80.053 20.00

T1−ϵ 82.851 20.11

From Table 5.4,

Tϵ < Tavg < T1−ϵ < Tmax < Tmin < Tcon (5.3)

64

5.2 Results and discussions

is observed. Equation (5.3) shows that the presented scheme is able to reduce

the wordcount job run time compared to conventional Hadoop even though the

average ratio of rack-local map tasks is slightly higher. In the case that there are

no background jobs running, wordcount job is finished in the shortest time when

Tϵ is used. This is similar to what we observed in Equation (5.1). We can say that

a policy which reduces the worst-case delay time while being robust to sudden

traffic changes is preferable when there are only a few data fetches occurring in

the cluster.

Table 5.5 shows the averaged results of wordcount job, processing 10GB file

while background jobs are running. Three wordcount jobs are executed in back-

ground, processing separate 50GB files. Table 5.5 also shows the average rack-

local map task ratio.

Table 5.5: Wordcount job completion time without background jobs running

Policy Time [sec] Average ratio of rack-local map tasks [%]

Tcon 167.931 30.40

Tavg 152.293 30.00

Tmax 159.902 31.32

Tmin 159.591 30.04

Tϵ 153.417 30.00

T1−ϵ 156.081 30.32

From Table 5.5,

Tavg < Tϵ < T1−ϵ < Tmin < Tmax < Tcon (5.4)

is observed. This shows that the presented scheme is able to reduce the job

runtime even when there are background jobs running. The average job run time

compared to Table 5.4 increases for all the policies including conventional Hadoop.

This is related to the fact that there are more tasks running in the cluster causing

more load on each DataNode and more traffic in the cluster. Equation (5.4) shows

that Tavg finishes in the shortest time. This is similar to what we observed in

Equation (5.2). Therefore, the policy that reduces the average delay time is most

65

5. EXPERIMENTAL RESULTS OF PATH SELECTION SCHEME
FOR NETWORKS WITH IMBALANCED NODE LOAD

suitable for real-world workloads where there are multiple non-local data fetches

occurring at the same time.

In real-world Hadoop clusters, there are multiple jobs running at the same

time. From the above experimental results it is confirmed that reducing the aver-

age of the delay distribution is most effective in such clusters. In order to further

investigate the effectiveness of the policy that compares average delay distribu-

tions, data fetch times are measured while changing the number of background

jobs. Table 5.6 shows the data fetch times of conventional Hadoop and the most

effective policy in the proposed scheme, which reduces the average delay time.

A 1GB file is fetched from HDFS to measure the data fetch times. Wordcount

MapReduce jobs that process a 20GB file each are used as background jobs.

Table 5.6: HDFS data fetch time with changing the number of background jobs

Number of Data fetch time [sec] Data fetch time

background jobs Tcon Tavg reduction rate

0 4.3988 4.2700 0.029

1 4.9221 4.6842 0.048

3 5.7020 5.0283 0.118

5 9.7285 87344 0.102

8 10.7371 9.5494 0.111

10 11.9826 10.8118 0.098

Tavg < Tcon (5.5)

is observed from Table 5.6. These results further prove that the proposed scheme

is effective and continues to outperform conventional Hadoop with the number of

background jobs increasing. However, the gap between conventional Hadoop and

proposed scheme stops increasing after three background jobs. This is mainly

related to the network throughput reduction (network delay increase) due to the

increase in number of background jobs. More background jobs cause more traffic

in the network, reducing the network throughput. As a result, the time it takes

66

5.3 Summary

to transfer data over the network (network delay) increases similarly for both

conventional Hadoop and the proposed scheme. However, the block locations

and the number of blocks of the 1GB file are fixed and the time to fetch non-

local data of the 1GB file becomes identical. Therefore, the effectiveness of the

proposed scheme peaks irrespective of the number of background jobs.

Furthermore, data fetch time is measured while changing the size of the fetched

data. Three wordcount jobs are used as background jobs. In real-world clusters

there are multiple jobs running at the same time and from the above experimental

results it is confirmed that reducing the average of the delay distribution is most

effective in such clusters. Therefore, we only utilize the policy that compares

the average delay distribution. Table 5.7 summarizes the data size, data fetch

time, and data fetch time reduction rate of the proposed scheme and conventional

Hadoop. Results from Table 5.7 show that the presented scheme becomes more

effective as the fetched data size increases. The number of data blocks that

needs to be fetched from remote DataNodes increases with the data size. More

data blocks provide more opportunities for the proposed scheme to expand the

difference with conventional Hadoop.

Table 5.7: Comparison of data fetch time with fetched data size

Data size [GB]
Data fetch time [sec] Data fetch time

Tcon Tavg reduction rate

1 5.7020 5.0283 0.118

3 14.8148 12.9987 0.123

5 20.5169 17.9520 0.125

10 57.9539 50.6240 0.127

15 105.3342 93.2251 0.127

5.3 Summary

We evaluated the performance of the presented path selection scheme for networks

with uncertain node load. The experimental results show that the presented

67

5. EXPERIMENTAL RESULTS OF PATH SELECTION SCHEME
FOR NETWORKS WITH IMBALANCED NODE LOAD

scheme, which uses delay distribution as an alternative to compare the server

load between servers, is able to fetch non-local data from remote DataNodes

efficiently compared to conventional Hadoop. This results in shorter job run

times, saving cluster resources which can be used for other data processing jobs.

Equations (5.2) and (5.4) resemble the results that are closer to real-world multi-

user clusters where there are tens or hundreds of jobs running simultaneously.

The number of non-local data fetches increases with the number of concurrent

jobs since it is harder to schedule processing tasks on the same server where

data is. Therefore, Tavg, which reduces the average delay time, is more suitable

for real-world clusters. Moreover, the results suggest that the data fetch time

difference between the above policy and conventional Hadoop widens as the data

size increases.

68

Chapter 6

Conclusions and future works

6.1 Conclusions

In order to provide a high quality service to customers, robust and efficient path

selection schemes are desired. This thesis presented robust path selection schemes

under traffic demand uncertainty, link failure uncertainty, and node load uncer-

tainty.

In the first part of the thesis, a path selection scheme for Internet Protocol

(IP) networks with traffic demand and link failure uncertainty is presented. Open

Shortest Path First (OSPF) is widely used as a routing protocol in IP networks

and it selects the shortest path between source and destination pairs. Shortest

paths are determined by link weights that are configured by network operators.

It is possible to calculate robust paths that satisfy an objective set by the network

operator by optimizing the link weights. There have been no studies that consider

both traffic demand uncertainty and link failure uncertainty in IP networks in

literature.

The presented scheme considers the hose model, which requires specifying

the total egress and ingress traffic at each node only, and PSO to optimize link

weights that can handle traffic demand fluctuation and link failure. Network

operators may have different objectives when setting paths. In order to ad-

dress these objectives, the link weight optimization scheme is applied to reduce

the worst-case congestion ratio and the worst-case network resource usage. The

network resource reduction is achieved by switching off unnecessary cables thus

69

6. CONCLUSIONS AND FUTURE WORKS

saving energy. The network congestion reduction and the network resource re-

duction problems are formulated as mixed integer linear programming (MILP)

problems that consider both traffic demand fluctuation and link failure. Due to

the difficulty of solving the MILP formulation for larger networks, heuristic ap-

proaches are also presented. The heuristics significantly reduces the computation

complexity as compared to the MILP formulations while keeping a comparable

performance. They efficiently selects the worst-case performance traffic matrix

and reduces the objective function as compared to a brute-force scheme that is

computationally expensive when searching the link weight space against all the

possible traffic matrices and topologies created by single link failures. Simula-

tions based on both real networks topologies and random networks show that the

presented heuristic schemes, while being robust to traffic demand fluctuations

and link failures, are able to reduce the worst-case network congestion ratio and

the worst-case network resource usage. The presented scheme uses random link

weights to generate initial traffic matrices in the first stage. Therefore, the worst-

case results may slightly change depending on the set of link weights generated

randomly in the first stage.

In the second part of the thesis, a path selection scheme considering node

load is presented. Overloaded node will queue requests by other nodes reducing

the overall system performance. Hadoop, a parallel-distributed framework, de-

pends on the network to run jobs among multiple servers efficiently. However, it

does not consider the server load when selecting a server to fetch non-local data.

This thesis presented a path selection scheme based on delay distribution between

servers for Hadoop clusters to select a DataNode when fetching non-local data. In

order to understand each server’s workload dynamically, it periodically calculates

the delay time between servers. Then it selects one server by comparing the delay

distributions between server pairs. The experiments done using real Hadoop clus-

ters deployed on a public cloud environment observe that the presented scheme,

while being robust to server load, is able to select the best path resulting shorter

data fetch time compared to conventional Hadoop. This reduction in data fetch

time will lead to the reduction in job runtime, especially in real-world multi-user

clusters where non-local data fetching can happen frequently.

70

6.2 Future work

6.2 Future work

The work presented in this thesis opens the ways to several directions for future

work.

In this thesis, the probability of a link failure is considered to be equal for all

the links in the network and given. However, in reality, the failure probability of

each link may vary and network operators can calculate the failure probability of

each link using historical data. This historical data can be fed to a Deep Learning

neural network to create a model, which learns the characteristics of the link fail-

ures. The created neural network model can be used to predict the probabilities

of each link failure and this work can be extended to optimize link weights us-

ing the calculated probability of link failures, called stochastic optimization [95],

considering traffic demand fluctuation.

The first part of this work considered traffic demand and link failure uncer-

tainties while the second part considered node load uncertainty. A path selection

scheme that considers both link failure and node load uncertainty is left as future

work.

Both parts in this work considered conventional networks. Software Defined

Networks (SDN) [96] is a promising topic studied by researches all over the world

in recent years. SDN technologies provide more insight into the operational status

of the network. This allows network operators to take quick actions depending

on the network status. Applying traffic demand, link failure, and node load

uncertainties to SDN is a topic we want to investigate in the future.

Malicious attacks can adversely affect the performance of a network. We want

to consider traffic demand uncertainty with malicious attacks as another future

work.

In the second part of this thesis, a path selection scheme for Hadoop clusters

under node load uncertainty is presented. There are three replicas of data in

HDFS. However, Hadoop only uses one of those replicas at a time when reading

data for processing. Expanding Hadoop to read data from multiple replicas in

different ratios at the same time can lead to better data read times. Investigating

how to implement this method can be an interesting research topic.

71

References

[1] D. Mehdi and K. Ramasamy, “Network Routing: Algorithms, Protocols, and

Architectures 2nd Edition,” Elsevier, Sep. 2017. 1, 2, 3, 4, 16

[2] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of Internet

stability and wide-area network failures,”in Proc. 29th Annual International

Symposium on Fault-Tolerant Computing, pp. 278-285, June 1999. 1, 3

[3] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math Oper.

Res., vol. 23, no. 4, pp. 769-805, 1998. 3

[4] S. Boyd, and L. Vandenberghe, “Convex Optimization, pp. 318-324, Cam-

bridge University Press, United Kingdom, 2005. 3

[5] J. M. Mulvey, R. J. Vanderbei, S. A. Zenios, “Robust optimization of large-

scale systems, Oper. Res. 43, pp. 264-281, 1995. 4

[6] A. L. Soyster, “Convex programming with set-inclusive constraints and ap-

plications to inexact linear programming, Oper. Res. 21, pp. 1154-1157, 1973.

4

[7] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”

IEEE/ACM Trans. on Networking, vol. 6, pp. 515-528, 1998. 1

[8] Ihsen A. Ouedraogo, “Optimization Models for Robust and Power Efficient

Networks,” http://id.nii.ac.jp/1438/00000789/, accessed Apr. 2018. 2

[9] S. Jordan, “Traffic Management and Net Neutrality in Wireless Networks,”

in IEEE Transactions on Network and Service Management, vol. 8, no. 4,

pp. 297-309, December 2011. 2

73

REFERENCES

[10] T. Bauschert, C. Busing, F. D’Andreagiovanni, A. C. A. Koster, M.

Kutschka, and U. Steglich, “Network planning under demand uncertainty

with robust optimization,” in IEEE Communications Magazine, vol. 52, is-

sue 2, pp. 178-185, Feb. 2014. 2

[11] E. Mulyana and U Killat, “Optimizing IP networks for uncertain demands

using outbound traffic constraints,” In Proc. INOC 2005 (2005) pp. 695-701.

2

[12] D. Mitra, Q. Wang, “Stochastic traffic engineering for demand uncertainty

and risk-aware network revenue management,” in IEEE/ACM Transactions

on Networking, vol. 13, issue 2, pp. 221-233, Apr. 2015. 2

[13] W. Ben-Ameur, H. Kerivin, “Routing of Uncertain Demands,” INFORMS,

2001. 2

[14] X. Liu, “Network Optimization with Stochastic Traffic Flows,” in Interna-

tional Journal of Network Management, vol. 12, pp.225-234, 2002. 2

[15] A. Altin, B. Fortz, and H. Umit, “Oblivious OSPF routing with weight

optimization under polyhedral demand uncertainty,” Networks, vol. 60, issue

2, pp. 132-139, Apr. 2012. 2

[16] Y. d’Halluin, P. A. Forsyth, and K. R. Vetzal, “Managing capacity for

telecommunications networks under uncertainty,” in IEEE/ACM Transac-

tions on Networking, vol. 10, no. 4, pp.579-588, 2002.

[17] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C.

Diot,“Analysis of link failures in a large IP backbone,”in Proc. 2nd ACM

SIGCOM Internet Measurement Workshop, pp. 237-242, Nov. 2002. 2, 7, 16

[18] A. Markopulu, G. Iannaccone, S. Bhattacharyya, C. Chuah, and C. Diot,

“Characterization of failures in an IP backbone,” in Proc. IEEE INFOCOM,

pp. 2307-2317, Mar. 2004. 2, 16

[19] S. N. Avci, X. Hu, and E. Ayanoglu, “Recovery from link failures in networks

with arbitrary topology via diversity coding,” IEEE Global Telecommunica-

tions Conference (GLOBECOM 2011), 2011. 2, 3

74

REFERENCES

[20] X. Zhao, B. Zhang, D. Massey, A. Terzis, and L. Zhang, “The Impacts of

Link Failure Location on Routing Dynamics: A Formal Analysis,” in ACM

SIGCOM Asia workshop, 2005. 3

[21] J. P. Vasseur, M. Pickavet, and P. Demeester, “Network Recovery: Pro-

tection and Restoration of Optical, SONET-SDH, IP, and MPLS, Elsevier,

2004. 2, 3

[22] J. Subhlok, P. Lieu, B. Lowekamp, “Automatic Node Selection for High

Performance Applications on Networks,” in ACM SIGPLAN symposium on

Principles and practice of parallel programming, pp.163-172, 1999. 3

[23] Y. Zhang, Z, M. Mao, and J. Wang, “A Firewall for Routers: Protect-

ing against Routing Misbehavior,” in 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN’07), pp. 20-29, 2007.

3

[24] D. Fang, R. Govindan, J. Heidemann, “An Empirical Study of Router Re-

sponse to Large BGP Routing Table Load,” ACM, Nov. 2002. 3

[25] H. Gredler, W. Goralski, “The Complete IS-IS Routing Protocol,” Springer,

2005.

[26] RFX 4593, “by one node to other nodes within the network,” https://

tools.ietf.org/html/rfc4593, 2006. 3

[27] J. Martin, “How to connect to your router to change settings,” http://www.

pcadvisor.co.uk/how-to/network-wifi/, accessed Jan. 2018.

[28] J. T. Moy, “OSPF Version 2. Network Working Group,”2004. 5

[29] A. Arora, Dijkstra’s algorithm, https://www.slideshare.net/ami_01/,

accessed May 2018. 5

[30] E. Oki, and A. Iwaki, “F-TPR: Fine two-phase IP routing scheme over short-

est paths for hose model”, IEEE Commun. Letters, Vol.13, No.4, Page: 277-

279, Apr. 2009.

75

REFERENCES

[31] CISCO, “Configuring OSPF,” https://www.cisco.com/c/en/us/td/

docs/security/asa/asa82/configuration/guide/config/route_ospf.

html, accessed May 2018. 5, 29

[32] L. S. Buriol, M. C. Resende, C. C. Ribeiro, and M. Thorup, “A hybrid

genetic algorithm for the weight setting problem in OSPF/IS‐ IS routing,”

Networks, 46(1):36-56, June 2005. 6

[33] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing world,”

IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 756-

767, May 2002. 6

[34] Reducing link failure and topology change notification times in is-is

networks, https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/

iproute_isis/configuration/xe-3s/irs-xe-3s-book/irs-fscnt.

html, accessed May 2018. 7

[35] I. M. Kamrul and E. Oki, “Optimization of OSPF link weights to counter

network failure,” IEICE Trans. on Commun., E94B, (7), pp. 1964-1972, July

2011. 7

[36] R. S. Ranaweera, I. M. Kamrul, and E. Oki, “Preventive start-time opti-

mization of OSPF link weights against link failure for hose model,” 18th

Asia-Pacific Conference on Communications (APCC 2012), Oct. 2012. 7

[37] R. S. Ranaweera, I. M. Kamrul, and E. Oki, “Preventive start-time optimiza-

tion of OSPF link weights for hose model,” IET Networks, IET Networks,

vol. 3, issue. 2, pp. 143-149, June 2014. 7

[38] R.S. Ranaweera, I.A. Ouédraogo and E. Oki, “Network Optimization for

Energy Saving Considering Link Failure with Uncertain Traffic Conditions,”

in IEICE Trans. Commun., vol. E97-B, no. 12, pp. 2729-2738, Dec. 2014. 7,

36

[39] J. Chu and C. Lea, “Optimal Link Weights for IP-Based Networks Support-

ing Hose-Model VPNs,” in IEEE/ACM TRANSACTIONS ON NETWORK-

ING, vol.17, no.3, pp. 778-788, June 2009. 2, 8, 18, 20, 21, 22, 39

76

REFERENCES

[40] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and

J. E. van der Merive, “A flexible model for resource management in virtual

private networks,” in ACM SIGCOMM Computer Communication Review,

29, pp. 95-108, 1999. 2, 8

[41] Apache Hadoop, http://hadoop.apache.org/, accessed May 2018. 8

[42] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in USENIX Symposium on Operating Systems Design and Imple-

mentation, San Francisco, CA, pp. 137-150, Dec. 2004. 8, 50

[43] https://hadoop.apache.org/docs/stable/hadoop-project-dist/

hadoop-hdfs/HdfsDesign.html, accessed May 2018. 9

[44] Hadoop The Devinitive Guide 4th Edition, Tom White, O’reilly, April 2015.

9, 47, 48, 49

[45] https://wiki.apache.org/hadoop/topology_rack_awareness_scripts,

accessed May 2018.

[46] https://docs.openstack.org/sahara/latest/, accessed Jan. 2018.

[47] https://issues.apache.org/jira/browse/HADOOP-8468, accessed Jan.

2018.

[48] J. Tan, X. Meng, and L. Zhang, “Delay Tails in MapReduce Scheduling,” in

SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 5-16, June 2012. 10

[49] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S. Rao,

“Efficient Queue Management for Cluster Scheduling,” in Proceedings of the

Eleventh European Conference on Computer Systems, pp. 36:1-36:15, 2016.

10

[50] T. Li, J. Tang and J. Xu, “Performance Modeling and Predictive Scheduling

for Distributed Stream Data Processing,” in IEEE Transactions on Big Data,

vol. 2, no. 4, pp. 353-364, Dec. 2016. 10, 62

77

REFERENCES

[51] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica,

“Delay Scheduling: A Simple Technique for Achieving Locality and Fairness

in Cluster Scheduling,” in Proceedings of the 5th European Conference on

Computer Systems, pp. 265-278, April 2010. 10

[52] H. Jin, X. Yang, X. H. Sun, and I. Raicu, “ADAPT:Availability-Aware

MapReduce Data Placement for Non-dedicated Distributed Computing,” in

IEEE International Conference on Distributed Computing Systems, Macau,

China, pp. 516-525, 2012. 10, 49

[53] W. Dai, I. Ibrahim, M. Bassiouni, “A New Replica Placement Policy for

Hadoop Distributed File System,” 2016 IEEE 2nd International Conference

on Big Data Security on Cloud (BigDataSecurity), New York, USA, pp.

262-267, 2016. 10, 49

[54] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and J. McPher-

son, “CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop,”

Proc. VLDB Endow., vol. 4, no. 9, pp. 575-585, Jun. 2011. 10, 49

[55] Sandvine, “Network Congestion Management: Considerations and Tech-

niques; An Industry Whitepaper,” 2015.

[56] E. Oki and A. Awaki, “Load-balanced ip routing scheme based on shortest

paths in hose model,” in IEEE Transactions on Communications, 58(7), pp.

2088-2096, March 2010. 15, 16

[57] B. Towles and W. J. Dally, “Worst-case traffic for oblivous routing func-

tions,” in IEEE Computer Architecture Letters, 1(1), 2002. 16

[58] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-

Hop Selection,” IETF RFC 2991, Nov. 2000. 17, 31

[59] D. S. Johnson et al., “Optimization by simulated annealing: An experimental

evaluation,” Operations Research, vol. 37, issure 6, pp. 865-892, Nov.-Dec.

1991.

78

REFERENCES

[60] F. Glover, “Tabu Search - Part 1 and Part 2,” ORSA Journal on Computing

1 and 2, 1989. 20

[61] M. Pioro and D. Medhi, “Routing, Flow, and Capacity Design in Commu-

nication and Computer Networks,” Elsevier, 2004. 23

in IEEE J. Selected Areas in Communications, vol. 14, no. 5, pp. 840-851,

June 1996.

[62] http://www.cs.bu.edu/brite/, accessed May 2018. 23, 27

[63] K. W. Roth and A. D. Little., “Energy consumption by office and telecommu-

nications equipment in commercial buildings volume I: energy consumption

baseline,” National Technical Information Service (NTIS), U.S. Department

of Commerce, Springfield, VA 22161, NTIS Number: PB2002-101438. 35

[64] M. Zhang et al., “GreenTE: Power-Aware Traffic Engineering,” in IEEE

International Conference on Network Protocols (ICNP), pp. 21-30, Oct. 2010.

35

[65] J. Guichard et al., “Definitive MPLS Network Designs,” Cisco Press, 2005.

35

[66] S. Iyer, S. Bhattacharyya, N. Taft, N. McKeoen and C. Diot, “A measure-

ment based study of load balancing in an IP backbone,” May 2002, Sprint

ATL technical report, TR02-ATL-051027. 17, 31

[67] P. Zikopoulos and C. Eaton, “Understanding Big Data: Analytics for Enter-

prise Class Hadoop and Streaming Data”, Mcgraw-hill, 2011. 47

[68] I. Polato, R. Re, A. Goldman, and F. Kon, “A Comprehensive View of

Hadoop Reseach - A Systematic Literature Review,” in Journal of Network

and Computer Applications, vol. 46, pp. 1-25, Nov. 2014. 48

[69] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, “Maestro: Replica-

Aware Map Scheduling for MapReduce,” in 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, Canada, pp. 435-442,

2012. 49, 62

79

REFERENCES

[70] H. Jin, X. Yang, X. H. Sun, and I. Raicu, “ADAPT:Availability-Aware

MapReduce Data Placement for Non-dedicated Distributed Computing,” in

IEEE International Conference on Distributed Computing Systems, Macau,

China, pp. 516-525, 2012. 10, 49

[71] W. Dai, I. Ibrahim, M. Bassiouni, “A New Replica Placement Policy for

Hadoop Distributed File System,” in IEEE 2nd International Conference on

Big Data Security on Cloud (BigDataSecurity), New York, USA, pp. 262-

267, 2016. 10, 49

[72] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and J. McPher-

son, “CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop,”

Proc. VLDB Endow., vol. 4, no. 9, pp. 575-585, Jun. 2011. 10, 49

[73] R.S. Ranaweera, E. Oki, and N. Kitsuwan, “Delay Distribution Based Re-

mote Data Fetch Scheme for Hadoop Clusters in Public Cloud,” in IEICE

Trans. Commun., vol. E102-B, No.8, Aug. 2019. 54, 55

[74] R.S. Ranaweera, E. Oki, and N. Kitsuwan, “Non-local Data Fetch Scheme

Based on Delay Distribution for Hadoop Clusters in Public Cloud,” The 4th

IEEE International Conference on High Performance and Smart Computing

(IEEE HPSC 2018), May 2018. 54, 55

[75] https://spark.apache.org/, accessed May 2018. 48

[76] https://tez.apache.org/, accessed May 2018. 48

[77] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-

berg, “Quincy: Fair Scheduling for Distributed Computing Clusters,” in

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems

Principles, ACM, pp. 261-276, 2009 51, 62

[78] C. E. Leiserson, “Fat-trees: Universal Networks for Hardware-efficient Su-

percomputing,” in IEEE Trans. Comput., vol. 34, no. 10, pp. 892-901, Oct.

1985. 51

80

REFERENCES

[79] R. Carter and M. Crovella, “Dynamic Server Selection Using Bandwidth

Probing in Wide-Area Networks,” in Technical Report, Boston University,

Boston, USA, 1996. 53

[80] H. Miura and M. Yamamoto, “Content routing with network support us-

ing passive measurement in content distribution networks,” in Proceedings.

Eleventh International Conference on Computer Communications and Net-

works, Miami, FL, USA, pp. 96-101, 2002. 54

[81] T. Mori, T. Hirata, and M. Yamamoto, “Content-oriented probabilistic rout-

ing with measured RTT,” in 2016 IEEE International Workshop Technical

Committee on Communications Quality and Reliability (CQR 2016), Steven-

son, WA, pp. 1-6, 2016. 54

[82] Y. Han, M. Kim, and H. Park, “A novel server selection method to achieve

delay-based fairness in the server palm,” in IEEE Communications Letters,

vol. 13, no. 11, pp. 868-870, November 2009. 54

[83] V. N. Padmanabhan, J. C. Mogul, “Improving HTTP latency,” in Computer

Networks and ISDN Systems, vol. 28, issues 1-2, pp. 25-35, 1995. 54

[84] D. Sanghi, P. Jalote, P. Agarwal, “Using Proximity Information for Load

Balancing in Geographically Distributed Web Server Systems,” in Informa-

tion and Communication Technology, EurAsia-ICT 2002, Lecture Notes in

Computer Science, vol. 2510, Springer, Berlin, Heidelberg, 2002. 54

[85] S. Salsano, F. Patriarca, F. L. Presti, P. L. Ventre and V. M. Gentile, “Accu-

rate and Efficient Measurements of IP Level Performance to Drive Interface

Selection in Heterogeneous Wireless Networks,” in IEEE Transactions on

Mobile Computing, vol. 17, no. 10, pp. 2223-2235, 1 Oct. 2018. 54

[86] M. E. Crovella and R. L. Carter, “Dynamic server selection in the internet,”

in Proc. of the 3rd IEEE Workshop on the Architecture and Implementation

of High Performance Communication Subsystems (HPCS 95), June 1995. 54

81

REFERENCES

[87] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted

moving averages,” (O.N.R. Memorandum No. 52), Carnegie Institute of

Technology, Pittsburgh USA, 1957. 55

[88] R. G. Brown, “Statistical forecasting for inventory control,” McGraw/Hill,

1959. 55

[89] “Forecasting Principles and Practice,” https://otexts.org/fpp2/

expsmooth.html, accessed November 2018. 55

[90] B. Huffaker, M. Fomenkov, D. Plummer, D. Moore, and K. Claffy, “Dis-

tance Metrics in the Internet,” in IEEE International Telecommunications

Symposium (ITS), pp. 200-202, 2002.

[91] https://aws.amazon.com/ec2/, accessed January 2018. 59, 60

[92] https://www.cloudera.com/documentation/enterprise/

release-notes/topics/cdh_vd_cdh_package_tarball.html, accessed

Sep. 2017. 60

[93] https://hadoop.apache.org/docs/r2.6.5/hadoop-yarn/

hadoop-yarn-site/FairScheduler.html, accessed Sep. 2017. 60

[94] S. Kaptchouang, I. A. Ouedraogo, and E. Oki, “Strengthened Preventive

Start-Time Optimisation that Reduces Congestion Ratio under No Failure

Scenario,” The Journal of Engineering, vol. 2016, issue 12, pp.441-332, 2016.

[95] G. B. Dantzig, Linear programming under uncertainty, Mgmt. Sci., 197-206,

1955. 71

[96] https://www.opennetworking.org/sdn-definition/, accessed Sep. 2017.

71

82

Publications

List of Publications related to the thesis

Journal Papers

1. R.S. Ranaweera, E. Oki, and N. Kitsuwan, “Delay Distribution Based Re-

mote Data Fetch Scheme for Hadoop Clusters in Public Cloud,” in IEICE

Trans. Commun., vol. E102-B, No.8, Aug. 2019 (paper accepted).

2. R.S. Ranaweera, I.A. Ouédraogo and E. Oki, “Network Optimization for

Energy Saving Considering Link Failure with Uncertain Traffic Conditions,”

in IEICE Trans. Commun., vol. E97-B, no. 12, pp. 2729-2738, Dec. 2014

(paper).

3. R.S. Ranaweera, I.M. Kamrul, and E. Oki, “Preventive start-time optimisa-

tion of open shortest path first link weights for hose model,” IET Networks,

vol. 3, issue. 2, pp. 143-149, June 2014 (paper).

International Conference Papers

1. R.S. Ranaweera, E. Oki, and N. Kitsuwan, “Non-local Data Fetch Scheme

Based on Delay Distribution for Hadoop Clusters in Public Cloud,” The 4th

IEEE International Conference on High Performance and Smart Computing

(IEEE HPSC 2018), May 2018.

2. R.S. Ranaweera, I.M. Kamrul, and E. Oki, “Preventive start-time opti-

mization of OSPF link weights against link failure for hose model,” 18th

Asia-Pacific Conference on Communications (APCC 2012), Oct. 2012.

83

REFERENCES

National Conference Papers

1. R.S. Ranaweera, I.A. Ouédraogo, and E. Oki, “Performance Evaluation

of Preventive Start-time Optimization for Energy Saving of Hose Model

against Link Failure,” IEICE Tech. Rep., vol. 113, no. 472, NS2013-236,

pp. 343-348, March 2014.

2. R.S. Ranaweera, I.M. Kamrul, and E. Oki, “Performance Evaluation of

Preventive Start-Time Routing Optimization for Hose Model,” IEICE Tech.

Rep, vol. 113, no. 91, PN2013-4, pp. 19-24, May. 2013.

84

