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Title: 1 
Computational study of depth completion consistent with human bi-stable perception 2 

for ambiguous figures. 3 
 4 

Abstract 5 
We propose a computational model that is consistent with human perception of depth 6 

in "ambiguous regions," in which no binocular disparity exists. Results obtained from 7 
our model reveal a new characteristic of depth perception. Random dot stereograms 8 
(RDS) are often used as examples because RDS provides sufficient disparity for depth 9 
calculation. A simple question confronts us: "How can we estimate the depth of a no-10 
texture image region, such as one on white paper?" In such ambiguous regions, 11 
mathematical solutions related to binocular disparities are not unique or indefinite. We 12 
examine a mathematical description of depth completion that is consistent with human 13 
perception of depth for ambiguous regions. Using computer simulation, we demonstrate 14 
that resultant depth-maps qualitatively reproduce human depth perception of two kinds. 15 
The resultant depth maps produced using our model depend on the initial depth in the 16 
ambiguous region. Considering this dependence from psychological viewpoints, we 17 
conjecture that humans perceive completed surfaces that are affected by prior-stimuli 18 
corresponding to the initial condition of depth. We conducted psychological experiments 19 
to verify the model prediction. An ambiguous stimulus was presented after a prior 20 
stimulus removed ambiguity. The inter-stimulus interval (ISI) was inserted between the 21 
prior stimulus and post-stimulus. Results show that correlation of perception between 22 
the prior stimulus and post-stimulus depends on the ISI duration. Correlation is positive, 23 
negative, and nearly zero in the respective cases of short (0–200 ms), medium (200–400 24 
ms), and long ISI (>400 ms). Furthermore, based on our model, we propose a 25 
computational model that can explain the dependence.  26 
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1 Introduction 1 

When binocular images include no visual disparity information, as shown in uniformly 2 
colored images, how does our visual system estimate the depth or surface structure of 3 
objects? Answering this question defines the main theme of this research. 4 
Using binocular visual information, the human visual system estimates the surface 5 

structure of objects (e.g. concave, convex, flat) in addition to those objects’ positional 6 
relation. Horizontal disparity embedded within right and left retinal images provides 7 
fundamental clues that support estimation of depth differences between objects. 8 
Therefore, an important task of visual systems is to calculate the horizontal disparities 9 
(signed disparities) of matching points at every location of two retinal images. Synthetic 10 
random-dot stereograms are widely used as input stimuli for stereo vision in such 11 
experiments and theoretical studies. For a synthetic random-dot stereogram, the degree 12 
of spatial disparity is defined uniquely at every spatial location of images. However, as 13 
non-textured images and periodic textures show, general images include many spatial 14 
areas for which no unique solution of disparity can ever be determined. The white paper 15 
you might now be viewing is one example of non-unique disparity. In this case, the 16 
number of the solutions of depth is infinite because the number of possible matching 17 
points is also infinite, although our visual system must determine an appropriate 18 
solution from an infinite number of solutions of depth. 19 
Such regions are designated herein as “ambiguous regions.” Fig. 1a depicts examples of 20 

images with an ambiguous region. As Fig. 1a shows, in a solid-figure stereogram, along 21 
the left and right line segments of the rectangle or trapezoid, unique solutions of 22 
horizontal disparities are determined by finding matching points (closed line in Fig. 1b). 23 
For example, the matching point of the lower left acute angle in the left image is the 24 
obtuse angle at the left-lower point of the right trapezoid. Nevertheless, no unique 25 
disparity solution exists in the black ambiguous region at any point. Periodic textured 26 
images and the half-occlusion area should also be categorized in ambiguous regions 27 
because these areas do not provide a unique solution of disparity. The analyses described 28 
in this report specifically examine the depth completion of regions in which no disparity 29 
information is available because of uniform luminance, and not other types of ambiguity. 30 
We do not address the half-occlusion problem. Problems related to periodic texture 31 
(periodic matching point) are also beyond the scope of this article. 32 
Completion from the disparity or depth that is determined for the non-ambiguous 33 

region (Fig. 1b) is one means of having a unique value of disparity in the ambiguous 34 
region. Computationally, “smoothness” has been used by many models as a criterion to 35 
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complete depth constrained by the determined disparity (Belhumeur, 1996; Marr & 1 
Poggio, 1976; Pollard, Mayhew, & Frisby, 1985). From a psychological perspective, 2 
Würger and Landy found that humans complete depth in ambiguous regions (Würger & 3 
Landy, 1989). Georgeson et al. investigated the fundamental algorithm of human depth 4 
completion for ambiguous regions (Georgeson, Yates, & Schofield, 2009). Based on their 5 
results, they reported that humans can implement depth completion by depth 6 
propagation from the determined region of depth into ambiguous regions. 7 
Some visual models use the depth propagation scheme. Fig. 1c presents one example of 8 

a depth solution determined using a propagation scheme of isotropic diffusion. The 9 
isotropic diffusion constrained with a boundary condition (depth determined from Fig. 10 
1b) generates as “smooth” a surface as possible. This “smoothness” criterion (energy 11 
function) defined by the first-order spatial derivative of the depth surface has been used 12 
for many computational models of stereopsis. For example, Nishina and Kawato (2004) 13 
propose a depth-completion model based on the heat conduction equation, which is 14 
isotropic-diffusion. In the resultant depth by isotropic-diffusion, the completed depth 15 
obligates a saddle shape. Mathematically, the saddle takes zeros of the mean curvature. 16 
Human perception differs from the “saddle” surface shown in Fig. 1c, but humans tend 17 

 

  

 

 Fig. 1 a. Stereogram used for the psychological experiment explained in Section 
3. Two figures show parallel view methods. b. Slanted lines of the depth value 
Z(x, y) calculated using binocular disparity in a. Z(x, y) is the depth at point 
(x, y). c. Example of depth propagation using a heat conduction equation: 
hyperbolic paraboloid (saddle; curvature of iso-depth line  𝜿𝜿� ≠ 𝟎𝟎 and curvature 
of flow line 𝝁𝝁� ≠ 𝟎𝟎. Details are presented in Section 2). d and e. Human percepts: 
flat depth maps. All depth contours are straight (𝜿𝜿� = 𝟎𝟎) and parallel (𝝁𝝁� = 𝟎𝟎) 
lines. 
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to recognize a “flat” surface, as depicted in Figs. 1d and 1e ( Ishikawa, 2007; Ishikawa & 1 
Geiger, 2006). Similar results were found in the case presented in Fig. 2a. From 2 
observing Fig. 1d and Fig. 2d (Fig. 1e and Fig. 2e), Ishikawa and Geiger (2006) reported 3 
that perceived depth has a common mathematical property: the Gaussian curvature is 4 
zero. No neural network model has yet reproduced human perception according to Figs. 5 
1d and 1e and Figs. 2d and 2e. The present study specifically examines the development 6 
of a neural network that completes depth in the ambiguous region by spatial propagation 7 
so that the Gaussian curvature is zero. 8 
This article is organized as follows. Section 2 presents our proposed model for depth 9 

completion, along with results obtained using numerical simulation with the proposed 10 
model. Section 3, with a psychological experiment, presents a new visual characteristic 11 
obtained by predictions from our model. Section 4 presents a model that is consistent 12 
with the experimentally obtained results presented in Section 3 from computational 13 
viewpoints. Section 5 includes discussion of our model from computational and 14 
physiological viewpoints. Section 6 explains our conclusions. 15 
 16 

  17 

 

 

 

 Fig. 2 a. Another stereo pair used in our psychological experiment. b. The 
closed curve represents the depth obtained by binocular disparity. c. Example 
of depth completion (saddle;𝜿𝜿� ≠ 𝟎𝟎,𝝁𝝁� ≠ 𝟎𝟎) using a heat conduction equation. d 
and e. Surfaces perceived by humans (flat; 𝜅̅𝜅 = 0, 𝜇̅𝜇 = 0). The depth contours 
are parallel and straight lines. 
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2 Depth Completion by Propagation Scheme 1 

2.1 Minimizing the First Order derivatives of surfaces 2 
The following energy function 𝐸𝐸smooth[𝑍𝑍] presents a simple evaluation of the surface 3 

“smoothness” as quantified using the first order differentiation of a depth 4 
function 𝑍𝑍(𝑥𝑥,𝑦𝑦). 5 

 
𝐸𝐸smooth[𝑍𝑍] =

1
2
�‖∇𝑍𝑍(𝑥𝑥, 𝑦𝑦)‖2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
B

 (1) 

In that equation, 𝐵𝐵 represents an ambiguous region of depth. Applying the steepest 6 
descent method (or the Euler–Lagrange equation) to Eq. (1) to obtain an iterative update 7 
rule for 𝑍𝑍(𝑥𝑥,𝑦𝑦) that minimizes 𝐸𝐸smooth, one obtains the diffusion equation shown below. 8 

 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = �

𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
�𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = Δ𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) (2) 

Therein, 𝑡𝑡  represents the step time during the diffusion process starting with the 9 
initial condition of  𝑍𝑍(𝑥𝑥,𝑦𝑦, 0) . A converging 𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)  is the final result of depth 10 
completion by the diffusion process. The resultant surfaces by Eq. (2) 11 
(converged 𝑍𝑍; 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0) are saddles which are not the expected ones presented in Figs. 12 
1c and 2c. 13 

 14 

2.2 Minimizing Gaussian curvature 15 
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We discuss naïve deviation of the dynamics to obtain a “flat” surface by minimizing the 1 
Gaussian curvature. The following evaluation function 𝐸𝐸flat[𝑍𝑍]  using Gaussian 2 
curvature 𝐾𝐾 would be more suitable to obtain “flat” surfaces ( 𝐾𝐾(𝑥𝑥,𝑦𝑦) = 0 at each point 3 
of 𝐵𝐵) reflecting human perception for the ambiguous region. 4 

 
𝐸𝐸𝐾𝐾[𝑍𝑍] =

1
2
�𝐾𝐾(𝑥𝑥,𝑦𝑦)2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐵𝐵

 (3) 

For that equation, the following definition is used. 5 
 

𝐾𝐾(𝑥𝑥,𝑦𝑦) =
𝑍𝑍𝑥𝑥𝑥𝑥𝑍𝑍𝑦𝑦𝑦𝑦 − 𝑍𝑍𝑥𝑥𝑥𝑥2

�1 + 𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑦𝑦2�
2  (4) 

Subscripts of 𝑍𝑍 denote partial derivatives, e.g., 𝑍𝑍𝑥𝑥 ≝ 𝜕𝜕𝜕𝜕 ∕ 𝜕𝜕𝜕𝜕 and 𝑍𝑍𝑥𝑥𝑥𝑥 ≝ 𝜕𝜕2𝑍𝑍 ∕ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕. 6 
Similarly, 𝑍𝑍𝜉𝜉  represents the directional derivative in the direction of 𝜉𝜉 , which is 7 
perpendicular to the depth contour. Our purpose is finding the dynamics minimizing the 8 
energy function (3). Next we apply the steepest descent method to Eq. (3). Thereby, we 9 
obtain the overly complicated dynamics shown in the equation in Appendix A, which 10 
comprises 129 terms including the fourth-order derivatives of 𝑍𝑍. Generally, accurate 11 
calculation of higher-order derivatives is difficult because of the quantized 12 
representation of images by the square lattice. Using complicated dynamics, we failed to 13 
obtain stable solutions of depth completion in our preliminary numerical experiments. 14 
Moreover, it is difficult to represent and understand the 129 terms as a neural network 15 

 

 

 

 Fig. 3 Schematic explanation of curvature-related quantities. a. Solid 
curves represent iso-depth lines (contour of the depth). Dashed curves are 
flow lines, which are perpendicular to iso-depth lines. The gradient vector 
𝜵𝜵𝜵𝜵 gives the direction of the largest spatial change of  𝑍𝑍(𝑥𝑥,𝑦𝑦). Furthermore, 
𝛻𝛻⊥𝑍𝑍 is perpendicular to 𝛻𝛻𝛻𝛻. b. The white rectangle of the left image is the 
region to be completed. Applying our model, the resultant depth map shows 
small curvatures of iso-depth and flow lines. 
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model. 1 
To overcome these difficulties, we specifically examined a substitute energy function 2 

that does not compose the Gaussian curvature. The Gaussian curvature is not the only 3 
option to represent the “flatness” of the depth surface. 4 
 5 

2.3 Minimizing Curvatures of Depth Contour 6 
Here we emphasize that we have no need to restrict ourselves to the use of the Gaussian 7 

curvature to represent the surface flatness. Other curvature-related quantities 8 
representing surface shapes are the mean curvature  𝐻𝐻(𝑥𝑥, 𝑦𝑦), curvature of the level-set 9 
𝜅𝜅(𝑥𝑥, 𝑦𝑦), and curvature of the flow curve 𝜇𝜇(𝑥𝑥, 𝑦𝑦) as described below (Lindeberg, 1993). The 10 
computational model proposed in this paper is based on our new theorem of the relation 11 
between the condition of 𝜅𝜅2 + 𝜇𝜇2 = 0 and 𝐾𝐾2 = 0. We then derive a dynamics for depth 12 
completion from a new energy function composed of  𝜅𝜅 and 𝜇𝜇. 13 
Fig. 3 presents a schematic explanation of 𝜅𝜅 and 𝜇𝜇. Those curvatures are defined as  14 

 𝜅𝜅(𝑥𝑥,𝑦𝑦) =
𝑍𝑍𝑦𝑦2𝑍𝑍𝑥𝑥𝑥𝑥 − 2𝑍𝑍𝑥𝑥𝑍𝑍𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑥𝑥2𝑍𝑍𝑦𝑦𝑦𝑦

�𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑦𝑦2�
3∕2 ,  (5) 

 𝜇𝜇(𝑥𝑥,𝑦𝑦) =
�𝑍𝑍𝑥𝑥2 − 𝑍𝑍𝑦𝑦2� 𝑍𝑍𝑥𝑥𝑥𝑥 − 𝑍𝑍𝑥𝑥𝑍𝑍𝑦𝑦�𝑍𝑍𝑦𝑦𝑦𝑦 − 𝑍𝑍𝑥𝑥𝑥𝑥�

�𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑦𝑦2�
3∕2 .  (6) 

Intuitively, one can infer that 𝜅𝜅2and 𝜇𝜇2 respectively stand for the “straightness” and 15 
“parallelness” of depth contours. For example, 𝜅𝜅2(𝑥𝑥,𝑦𝑦)  being zero indicates the 16 
existence of a straight line of depth contours at (𝑥𝑥, 𝑦𝑦); also, 𝜇𝜇2(𝑥𝑥, 𝑦𝑦) being zero means 17 
that adjacent depth contours are parallel. The flatness of a surface might be evaluated 18 
by zeros of 𝜅𝜅2 + 𝜇𝜇2. Therefore, we can think of an energy function for depth completion 19 
using 𝜅𝜅2 + 𝜇𝜇2. Actually, the depth contours of Figs. 1d and 1e, and of Figs. 2d and 2e are 20 
straight and parallel. 21 
One might note that the numerators of Eq. (5) and Eq. (6) are sufficient to evaluate the 22 

zeros of 𝜅𝜅2 and 𝜇𝜇2. Those numerators are expressed as shown below. 23 
𝜅̅𝜅 = 𝜅𝜅 ⋅ ‖𝛻𝛻𝛻𝛻‖ 24 
𝜇̅𝜇 = 𝜇𝜇 ⋅ ‖𝛻𝛻𝛻𝛻‖ 25 

We substitute  𝜅̅𝜅2 + 𝜇̅𝜇2 = 0 using the curvature of the iso-depth line and flow line for 26 
Gaussian curvature 𝐾𝐾 for an evaluation index of flatness if we are able to prove the 27 
following relation mathematically. 28 

 𝜅̅𝜅 = 𝜇̅𝜇 = 0 ⟹𝐾𝐾 = 0 (7) 
We proved the relation above between {𝜅̅𝜅, 𝜇̅𝜇} and 𝐾𝐾. Details are presented in Appendix 29 

B. Therefore, 30 
 𝜅̅𝜅2 + 𝜇̅𝜇2 = 0 ⟹𝐾𝐾2 = 0. (8) 
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By spatial integration in ambiguous region 𝛣𝛣, the following relation is derived. 1 
 

� (𝜅̅𝜅2 + 𝜇̅𝜇2)
 

Β
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 ⟹�𝐾𝐾2

𝛣𝛣
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (9) 

We propose the following energy function of depth 𝑍𝑍. 2 

 𝐸𝐸flat[𝑍𝑍] = � (𝜅̅𝜅2 + 𝜇̅𝜇2) ⋅ ‖𝛻𝛻𝛻𝛻‖2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐵𝐵

 (10) 

An iterative method that decreases 𝐸𝐸flat[𝑍𝑍] as time progresses is also formulated by 3 
application of the following steepest descend method. 4 

 𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 = ∇(Δ𝑍𝑍) ⋅ ∇⊥𝑍𝑍 + λ𝜅̅𝜅 (11) 

In that equation, 𝛻𝛻⊥𝑍𝑍 is perpendicular to 𝛻𝛻𝛻𝛻. 5 
Depth information 𝑍𝑍  is propagated spatially by Eq. (11) because it is a kind of 6 

convection–diffusion equation. The time constant is 𝜏𝜏 = 10  ms and λ = 0.02  for 7 
numerical simulations. Although Eq. (11) is mathematically identical to the technique 8 
proposed by (Satoh and Usui 2008), they did not note the relation between {𝜅̅𝜅, 𝜇̅𝜇} and 9 
 𝐾𝐾. 10 
 11 

2.4 Reproduction of a bi-stable solution of depth surface 12 
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  Fig. 4 Depth completion by numerical simulations starting from two initial 
conditions restricted with boundary conditions of two kinds, as presented in Fig. 
1 and Fig. 2. The time step progresses from left to right. Boundary conditions of 
a. and b. (c. and d.) are the same. Depth maps converge to concave or convex flat 
surfaces depending on the initial conditions. 
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We next examine whether our model formulated by Eq. (11) for depth completion 1 
reproduces human perception, or not. Numerical simulations of Eq. (11) were executed 2 
starting from different initial values of ambiguous regions to be completed, restricted 3 
with boundary conditions of two kinds. Fig. 4 presents the initial values (𝑡𝑡 = 0) and the 4 
steady states of 𝑍𝑍 (𝑡𝑡 = 500 ms) by iterative updating. The depth maps converge to flat 5 
surfaces. Our model presented herein also generates two solutions: A convex flat surface 6 
and a concave surface. The differences of solutions are attributable to the different initial 7 
values of depth in the ambiguous region. For example, Fig. 4a presents the transition 8 
from the initial value of 𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 0)  =  −1.0 to the concave surface. Furthermore, 9 
Fig. 4b presents the transition from the initial value of 𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) =  +1.0 to the 10 
convex surface. As an apparent case, a concave (convex) completed surface is obtained if 11 
the initial condition is concave (convex). 12 
The theoretical explanations for the strong correlation found between the shape of 13 

initial surface and completed one are the energy function to be minimized and the update 14 
method. The concave and convex flat surfaces give the same minimum value of the 15 
energy given by Eq. (10). Therefore, the initial concave or convex flat surface is trapped 16 
in one of possible wells of the energy function. In other words, when an initial value of 17 
Eq. (11) is similar to that of one of those two flat surfaces, the change of initial values is 18 
slight because of application of Eq. (11). 19 
 20 

3 Psychological Property of Depth Completion 21 
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Depth completion by our model depends on the initial condition, as presented in the 1 
previous section. Considering the initial-value-dependence of the completed surface, we 2 
conjecture that human perception within ambiguous regions is also affected by prior 3 
stimuli that correspond to the initial condition of depth. One might infer that humans 4 
would perceive a completed convex (concave) depth if they were exposed to a 5 
deterministic convex (concave) depth in advance. 6 
This section presents an investigation of the plausibility of this conjecture from 7 

psychological experiments. Fig. 5a presents an example of prior stimuli presented to 8 
human subjects. Drawing slanted lines in black regions is expected to affect the depth 9 
completion in the black regions because the horizontal disparities along the lines are 10 
determined uniquely. In the case of 45 deg lines, humans would perceive a convex surface 11 
as a result of depth completion if the line captures the surface, as illustrated in Fig. 5b 12 
and Fig. 5d. By contrast, white lines slanted to 135 deg are expected to produce a concave 13 
shape of perception. Post stimuli are bi-stable surfaces similar to those of Fig. 1a and 14 
Fig. 2a. We insert the interstimulus interval (ISI) between the prior and post stimulus 15 
to assess the correlation between the shape of prior stimuli and the completed surfaces 16 

 

 

 

 Fig. 5 Prior stimuli used in our experiment. a. R-boundary stimulus. Left and 
right panels respectively show left and right eye images. When these images 
are fused divergently, observers tend to perceive a convex surface as shown 
panel b. c and d. C-boundary stimulus and perceived surface from the stereo 
pair in panel c. Percentages are ratios of perception of convex surfaces (see the 
text for details). 
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of post stimulus. Humans will perceive a convex (concave) surface if the prior stimulus 1 
is convex (concave) if an ISI is short. Consequently, we would observe a positive 2 
correlation between the surface shape of post and prior stimuli. Longer ISI is expected 3 
to show no correlation between stimuli because of attenuation of the effects of prior 4 
stimuli. 5 

3.1 Method 6 
3.1.1 Setup 7 
Fig. 6 presents a schematic explanation of our psychophysical experiments. We 8 

designed our software for use with psychophysical experiments using MATLAB extended 9 

 

 

 

 Fig. 6 Procedure of our experiments. A prior stimulus is presented for 1000 
ms. After disappearance of the prior stimulus, the display is blacked out for 0–
1000 ms randomly (ISI). A bi-stable stimulus (post stimulus) is presented for 
1000 ms after the ISI phase. 
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with the Psychophysics Toolbox (Brainard, 1997; Kleiner & Brainard, 2007; Pelli, 1997). 1 
Visual stimuli were presented on a color display (XL2410T; BenQ Corp.) via a graphics 2 
card (GeForce GTX560; NVIDIA Corp.). The display refresh rate was 60 Hz for each eye 3 
with 1920 × 1080 pixels of resolution. Human participants wore liquid crystal shutter 4 
goggles (3D vision 2; NVIDIA Corp.) for stereo perception. Stereo stimuli were presented 5 
at the viewing distance of 1.5 m. Participants sat on a chair with a chin rest. After ISI, a 6 
post stimulus appeared. Then participants were asked to press a button on a keyboard 7 
according to their perception of the post stimulus, after selection from three candidates 8 
(concave, saddle, and convex surface; 3AFC). 9 
Nine participants (23–35 years) were examined in our experiments. All were naïve to 10 

the purpose of these experiments. All had normal or corrected-to-normal vision. This 11 
experiment, which was approved by the ethics committee of the University of Electro-12 
Communications, was conducted in accordance with approved guidelines. All 13 
participants gave informed consent before participation. 14 
 15 

3.1.2 Stimuli  16 
 We prepared boundary conditions of depths of two kinds. One is rectangular. Another 17 
is a circular boundary condition, as shown Fig. 5. We designate them respectively as R-18 
boundary and C-boundary conditions and stimuli. 19 
Prior stimuli were stereograms with white slanted lines by which mono-stable 20 

perception is expected to be obtained as depicted in black ambiguous regions (Fig. 5). We 21 
first examine if the white lines in Figs. 5a and 5c captured surfaces to ascertain whether 22 
these lines cause convex (not concave) perceptions, as shown in Figs. 5b and 5d. The 23 
luminances of black and white regions were, respectively, 0.23 cd/m2 and 171 cd/m2. The 24 
luminance of the grey background was 34.9 cd/m2. To support binocular fusion, four solid 25 
circles surrounded the stimulus. We collected 180 and 135 responses from the nine 26 
participants for the R-boundary condition (Fig. 5a) and C-boundary condition (Fig. 5c), 27 
respectively. Percentages in Fig. 5 are the answer ratios of convex surface perception. 28 
When Fig. 5a was viewed, eight participants always perceived a convex surface, although 29 
one participant occasionally perceived a concave surface twice with two popping up 30 
corners connected with the white line (the white line did not capture the surface, but 31 
separated from the surface). For the stimulus of Fig. 5c, perception of line-separated-32 
from-surface occurred only once. Similar results were obtained for the case of white lines 33 
slanted 135 degrees. We regarded the line-separated-from-surface perception as 34 
uncommon and inferred that the slanted lines certainly capture the surfaces as shown 35 
in Figs. 5b and 5d. 36 
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In the main experiment, a prior stimulus was presented for 1000 ms. Then the post 1 
stimulus was presented for 1000 ms after randomized duration of ISI (Fig. 6). We 2 
prepared eight conditions of stimuli: 2 (R-boundary and C-boundary conditions of 3 
stimuli) × 2 (orientation of slanted lines) × 2 (swapped left and right images). Stimuli of 4 
those conditions were presented in random order. Durations of ISIs were determined 5 
using the stochastically uniform distribution of 0–1000 ms. 6 
One session comprised 25 × 8 = 200 trials with random ISIs for the eight stimulus 7 

conditions. Each participant joined one session. Two of nine participants joined in an 8 
additional 400 trials. 9 

  10 

 

 

 

 Fig. 7 Statistical analysis of psychological experiments. a. p-value of each ISI 
bin. The dotted line shows the 5% significance level. p-values above the dotted 
line show 𝒑𝒑 < 𝟎𝟎.𝟎𝟎𝟎𝟎. b. Odds ratio of each bin for R-boundary stimuli. OR> 1 
signifies a positive correlation between a prior and post stimulus. OR= 0 
means a negative correlation. The dotted line is OR = 1, which signifies no 
correlation. For C-boundary stimuli, panels c and d respectively show the p-
value and OR. 
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3.2 Results 1 
We applied Fisher’s exact test against the following null hypothesis: the shapes of the 2 

prior stimuli and the post stimuli are independent. All responses from all participants 3 
are binned in 200 ms bins of ISI. Significant dependence was found between prior and 4 
post stimuli when 0≤ISI<600 ms for the R-boundary condition, and when 0≤ISI<400 ms 5 
for the C-boundary condition (p<0.05; Figs. 7a and 7c). 6 
To ascertain whether the correlation is positive or negative in the bins of 0<ISI≤200 7 

and 200≤ISI<400, we evaluated the odds ratio of data of each bin (Figs. 7b and 7d). An 8 
odds ratio (OR≥0) is calculated from a 2 × 2 contingency table. In our case, the 2 × 2 9 
tables were obtained by excluding the responses of “saddle.” The case of OR=1 signifies 10 
no correlation. OR>1 indicates a positive correlation between prior and post stimuli. 11 
Given such a result, human participants tend to perceive a convex (concave) surface in 12 
an ambiguous region if the prior is also convex (concave). Alternatively, OR=0 represents 13 
a negative correlation; the shape of completed surface is opposite to the prior stimulus. 14 
For 0<ISI≤200 ms, we found positive correlation, as we had expected. This phenomenon 15 

is apparently trivial because it is easily explained by our model, in which the steepest 16 
descent method is adopted. An initial value corresponding to a prior stimulus will be 17 
trapped by an energy well near the state of the initial value. 18 
An unforeseen and noteworthy negative correlation was found when 200≤ISI<400 ms. 19 

As a summary of the psychological experiments, we showed that a positive aftereffect 20 
appears if ISI is short (0≤ISI≤200), although middle ISIs (200≤ISI<400) cause negative 21 
aftereffects on surface completion in ambiguous regions. No significant evidence or trend 22 
was found in the case of longer ISI conditions (600≤ISI<1000 ms). 23 
The results described above rely on an assumption that the white slanted line induces 24 

unique perception, but that is not always true (see the percentages of Fig. 5). Future 25 
works shall include an investigation of the on-time evaluation of human perception for 26 
the prior stimuli during experiments. 27 
  28 
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4 Model of ISI-dependent perception 1 
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 Fig. 8 a, b, c. Examples of depth maps 𝒁𝒁(𝝓𝝓(𝒙𝒙,𝒚𝒚)) represented using a scalar 
parameter 𝝓𝝓(𝒙𝒙,𝒚𝒚). A concave, a flat depth of zero, a convex, and their 
intermediate depth maps are represented by the single scalar parameter 𝝓𝝓. d, 
e. The saddle surface and complex surface can be represented using 𝝓𝝓(𝒙𝒙,𝒚𝒚).  
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The model formulated by Eq.(11) in Section 2 successfully completes the “flat” surface 1 
of depth, but it does not account for the negative correlation between the perceived depth 2 
of the prior and post stimuli for ISI>200 ms. When a prior stimulus, which is the initial 3 
condition 𝑍𝑍(𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 0) of Eq. (11), is convex (concave), the resultant completed depth is 4 
also convex (concave) for any ISI. To reproduce the ISI-depending completion of depth, 5 
we develop an alternative model in this section. 6 
Although we considered improving the dynamics of Eq.(11) that obtain an opposite 7 

surface by adding acceleration term, no expected results were obtained. Then, for simple 8 
modeling, we limited the solution space of 𝑍𝑍(𝑥𝑥, 𝑦𝑦) and derived a new dynamics based on 9 
Eqs (10) and (11) as follows. Specifically, we represent depth maps 𝑍𝑍(𝑥𝑥,𝑦𝑦) by a single 10 
scalar parameter 𝜙𝜙(𝑥𝑥,𝑦𝑦) so that  𝑍𝑍(𝜙𝜙(𝑥𝑥,𝑦𝑦)) denotes a concave surface (𝜙𝜙 = −1), flat 11 
(𝜙𝜙 = 0), and a convex surface (𝜙𝜙 = +1), as shown in Fig. 8. The following equation 12 
formulates the parametric 𝑍𝑍(𝜙𝜙(𝑥𝑥,𝑦𝑦)). 13 

 𝑍𝑍�𝜙𝜙(𝑥𝑥, 𝑦𝑦)� = �
𝜙𝜙(𝑥𝑥,𝑦𝑦) ⋅ 𝑍𝑍∧(𝑥𝑥,𝑦𝑦), if 𝜙𝜙 > 0

0, if 𝜙𝜙 = 0
−𝜙𝜙(𝑥𝑥, 𝑦𝑦) ⋅ 𝑍𝑍∨(𝑥𝑥, 𝑦𝑦), otherwise.

 (12) 

Therein, the functions Z∨(𝑥𝑥,𝑦𝑦) and Z⋀(𝑥𝑥,𝑦𝑦) respectively produce a concave and a 14 
convex depth map. 15 

As shown in Fig. 8, 𝜙𝜙(𝑥𝑥,𝑦𝑦) = −1, 1 respectively represent 𝑍𝑍⋁(𝑥𝑥,𝑦𝑦), 𝑍𝑍∧(𝑥𝑥, 𝑦𝑦).  We can 16 
present not only concave and convex surfaces, but also a saddle surface and surfaces 17 
other than Z⋁(𝑥𝑥, 𝑦𝑦) and Z⋀(𝑥𝑥, 𝑦𝑦) by setting different values of 𝜙𝜙(𝑥𝑥, 𝑦𝑦) at each point 18 
(𝑥𝑥,𝑦𝑦), as shown in Figs. 8d and 8e. Noting that 𝑍𝑍(𝜙𝜙(𝑥𝑥,𝑦𝑦)) is a composite function of 19 
𝜙𝜙(𝑥𝑥, 𝑦𝑦), the left side of Eq. (11) can be rewritten as shown below. 20 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (13) 

Because of Eq.(12), we can obtain the following expression.  21 

 𝜏𝜏
𝜕𝜕𝜕𝜕(𝜙𝜙)
𝜕𝜕𝜕𝜕

= �
𝑍𝑍∧, if 𝜙𝜙 > 0
0, if 𝜙𝜙 = 0
−𝑍𝑍∨, otherwise.

 (14) 

Therefore, to obtain a new model for depth completion, the dynamics 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 plays a key 22 
role in reproducing the experimentally obtained results in Section 3. 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 represents 23 
state-transition of depth map during ISI. Hereinafter, we consider the transition of depth 24 
maps during ISI. 25 
First, we describe the energy function using 𝜙𝜙 to evaluate flatness. Figs. 8a and 8c of 26 

stable states respectively show 𝜙𝜙(𝑥𝑥, 𝑦𝑦) = −1  (concave surface) and 𝜙𝜙(𝑥𝑥,𝑦𝑦) = +1 27 
(convex surface). The constant flat depth 𝑍𝑍(𝑥𝑥,𝑦𝑦) = 0, which could be a completed depth 28 



19 
 

for long ISI>1000 ms, is obtained by setting 𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 0. Those representative “flat” 1 
depths are 𝜙𝜙(𝑥𝑥,𝑦𝑦) = const. Therefore, we define the energy function to evaluate flatness 2 
as (Fig. 9a): 3 

 𝐸𝐸1[𝜙𝜙] ≝
1
2
�‖∇𝜙𝜙(𝑥𝑥, 𝑦𝑦)‖2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐵𝐵

,  (15) 

because the following relation holds (Appendix C). 4 
 𝐸𝐸1[𝜙𝜙] = 0 ⟹𝐸𝐸flat[𝑍𝑍] = 0  

Second, we formulate energy function 𝐸𝐸2[𝜙𝜙]  as follows, so that the value is the 5 
minimum for 𝜙𝜙 = +1 or = −1. 6 

 𝐸𝐸2[𝜙𝜙] ≝
1
2
� (𝜙𝜙(𝑥𝑥, 𝑦𝑦) + 1)2(𝜙𝜙(𝑥𝑥,𝑦𝑦) − 1)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

𝛣𝛣
 (16) 

A flat concave or convex surface will be obtained by minimizing 𝐸𝐸1[𝜙𝜙] + 𝐸𝐸2[𝜙𝜙]. 7 
Finally, to reproduce alternation of surface from a concave (convex) to a convex 8 

(concave) surface, we formulate the effect of prior stimulus as shown below. 9 

 𝐸𝐸3[𝜙𝜙] ≝�
1
4
𝜙𝜙(𝑥𝑥,𝑦𝑦)(𝜙𝜙2(𝑥𝑥,𝑦𝑦) − 3)

 

𝛣𝛣
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 

 

     

 

 Fig. 9 
The landscape of the energy function at each point(𝑥𝑥, 𝑦𝑦). For simple presentation, 

(𝑥𝑥,𝑦𝑦) is omitted for 𝜙𝜙(𝑥𝑥, 𝑦𝑦). a. The double-well potential function represents two 
possible perceptions. The effect of the energy increase by adaptation to a pattern 
corresponding to the left well can be represented by the function b. An example of 
the total energy c. has two wells. The energy of the left well is greater than that 
of the right well. 
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  Fig. 10 Panels a, b, c, d, e, and f respectively show depth maps at the 
finishing times of ISI=0, 100, 300, 500, 700, and 900 ms. These maps are used 
as initial values of depth completion for ambiguous regions after ISI. 
Boundary conditions are 𝒁𝒁 = 𝟎𝟎 equivalent with 𝝓𝝓 = 𝟎𝟎. g. Horizontal and 
vertical axes respectively show ISI and 𝑪𝑪𝝓𝝓(𝒕𝒕). 𝑪𝑪𝝓𝝓(𝒕𝒕) is plotted every 5 ms of 
ISI.  
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The equation for 𝐸𝐸3[𝜙𝜙] above represents the elevation of potential for the concave 1 
surface of prior stimuli. It is noteworthy that 𝐸𝐸3[𝜙𝜙] takes its local maximum at 𝜙𝜙 = −1, 2 
which is the case of the concave surface of prior stimuli (see Fig. 9b). By contrast, −𝐸𝐸3[𝜙𝜙] 3 
represents the case of convex surface of prior stimuli. 4 
Consequently, the total energy function over space 𝛣𝛣 is formulated as shown below as 5 
 𝐹𝐹[𝜙𝜙] = 𝛽𝛽1𝐸𝐸1[𝜙𝜙] + 𝛽𝛽2𝐸𝐸2[𝜙𝜙] + 𝛽𝛽3𝐸𝐸3[𝜙𝜙] , (18) 

where 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 are positive scalars. These parameters signify the strength of the 6 
visual effect by prior stimuli. In the case of a convex surface being prior stimuli, the third 7 
term of the equation for +𝐸𝐸3 above is replaced with −𝐸𝐸3. Thereby, we introduce the 8 
effect of adaptation into the proposed model. 9 
We introduce time variable 𝑡𝑡  for 𝜙𝜙  to decrease the 𝐹𝐹[𝜙𝜙]  by application of the 10 

steepest decent method. Thereby, we obtain 11 

 𝜏𝜏
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛽𝛽1 ⋅ Δ𝜙𝜙 + 𝛽𝛽2 ⋅ 2𝜙𝜙(1− 𝜙𝜙2) + 𝛽𝛽3 ⋅
3
4

(1− 𝜙𝜙2),  (19) 

We perform numerical simulations of Eq. (13) substituting Eq.(14) and Eq.(19) in the 12 
case of presenting the R-concave surface as a prior stimulus signified by 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 0) =13 
−1 . Because no depth information is available at the ISI period, 𝛽𝛽2  and 𝛽𝛽3  are 14 
decreasing functions with respect to ISI duration t. We set the following. 15 

𝛽𝛽2(𝑡𝑡) = 𝛽𝛽3(𝑡𝑡) = 𝑒𝑒−
𝑡𝑡
20 16 

Other parameters are 𝜏𝜏 = 10, 𝛽𝛽1 = 0.0001. Time 𝑡𝑡 = 0  represents the start of ISI. 17 
Region 𝐵𝐵  is a rectangular region of |𝑥𝑥| < 1  and |𝑦𝑦| < 1 . The boundary condition 18 
𝑍𝑍(𝑥𝑥, 𝑦𝑦) = 0 is equivalent to 𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 0. 19 
Fig. 10 shows 𝑍𝑍 at 𝑡𝑡 = 0, 100, 300, 500, 700, and 900 ms. Equation (13) was applied in 20 

the inner rectangular region. Results show that the state of 𝑍𝑍 at 𝑡𝑡 =  0 ms (ISI=21 
0 ms) is similar to the concave initial state. Depth completion by Eq. (11) starting with 22 
the initial value of Fig. 10b converged to a concave depth surface. This result implies 23 
positive correlation between the prior stimulus and post stimulus for short ISI. 24 
Results show that the state at 𝑡𝑡 =  300 ms is now convex (Fig. 10c), which is the 25 

opposite state to the prior stimulus (concave). The change of state from  𝜙𝜙 = −1 to 𝜙𝜙 =26 
+1 occurred, although an energy barrier exists between them, as shown in Fig. 9c. 27 
Consequently, the positive/negative correlation dependent on the duration of ISI is 28 

explainable by an adaptation effect by prior stimuli. Longer ISI attenuates the effect of 29 
adaptation by prior stimuli, giving results of no correlation between prior and post 30 
stimuli because the state of 𝑍𝑍 converges to  𝜙𝜙 = 0, meaning that 𝑍𝑍 =  0 (Fig. 8b). 31 
Quantitatively equivalent results were obtained for the C-boundary condition.  32 
Subsequently, we compare odds ratio in Section 3 with the alternative model above by 33 
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calculating correlation between prior and post stimuli as follows. 1 

 𝐶𝐶𝜙𝜙(𝑡𝑡) = � 𝜙𝜙prior(𝑥𝑥, 𝑦𝑦) ⋅ 𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
 

Β
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (20) 

Therein, 𝜙𝜙prior(𝑥𝑥,𝑦𝑦) represents 𝜙𝜙 (= +1 or −1) of prior stimulus and 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑡𝑡) given 2 
by Eq.(19) represents an internal state of completed depth at each time of ISI. For 3 
example, in the case of ISI = 0 ms, 𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0) of Fig. 10a is identical to Fig. 8a. 4 
We assume that prior stimulus is a concave surface, that is 𝜙𝜙prior(𝑥𝑥,𝑦𝑦) = −1 . We 5 

calculated 𝐶𝐶𝜙𝜙(𝑡𝑡) every 5 ms for ISI=0–1000 ms. This result is presented in Fig. 10g. The 6 
result in Fig. 10g is qualitatively similar to the odds ratio in Fig. 7b. 7 
The odds ratio includes stochastic elements. By contrast, our model proposed in this 8 

paper is deterministic. Therefore, we must incorporate a stochastic perception of humans 9 
into the proposed model. 10 
  11 
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5 Discussion 1 

5.1 Physiological evidence for the proposed model 2 
We discuss whether our model is implementable as a neural network from the viewpoint 3 

of existing physiological evidence. We introduce a local coordinate system (𝜂𝜂, 𝜉𝜉)  as 4 
shown in Fig. 11a. Then, Eq. (11) is rewritten as shown below. 5 

𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 = (∇Δ𝑍𝑍) ⋅ ∇⊥Z + λ𝜅̅𝜅 = 𝑍𝑍𝜉𝜉 �

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑍𝑍𝜂𝜂𝜂𝜂 +
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍𝜉𝜉𝜉𝜉� + 𝜆𝜆𝜆𝜆𝜂𝜂𝜂𝜂 7 

Therefore, 6 
 

𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 = 𝑍𝑍𝜉𝜉

∂
𝜕𝜕𝜕𝜕

Δ𝑍𝑍 − Δ𝑍𝑍 + �Δ𝑍𝑍 + 𝜆𝜆𝜆𝜆𝜂𝜂𝜂𝜂�  

Let the surface 𝑍𝑍(𝑥𝑥, 𝑦𝑦) be represented approximately as a quadric surface, then ∂Δ𝑍𝑍 ∕8 
∂𝜂𝜂 = 0. Consequently, Eq. (11) can be described as 9 

 
𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍 ≃ −Δ𝑍𝑍 + �Δ𝑍𝑍 + 𝜆𝜆𝜆𝜆𝜂𝜂𝜂𝜂� (21) 

The dynamics up to the first term are implementable as a neural network using average 10 
of input from a four-neighbor neuron as an amount of change, as shown in Fig. 11b. 11 
Regarding the second term, the amount at origin point and Shape Index (Koenderink, 12 
1990) are proportional (see Fig. 11d). Katsuyama and his colleagues found that neurons 13 
in CIP respond selectively to Shape Index (Katsuyama, Naganuma, Sakata, & Taira, 14 
2006). Then, the possibility exists that the second term of Eq. (21) is encoded in CIP. 15 
Subsequently, we discuss the neural network diagram of the model in Section 4. For 16 

simple discussion, we describe the case without the effect of prior stimuli: 𝐸𝐸3[𝜙𝜙] = 0. In 17 
this case, because of 𝐸𝐸3[𝜙𝜙] = 0, 18 

𝐹𝐹[𝜙𝜙] = 𝛽𝛽1𝐸𝐸1[𝜙𝜙] + 𝛽𝛽2𝐸𝐸2[𝜙𝜙]. 19 
To simplify our discussion, let 𝛽𝛽1 = 𝛽𝛽2 = 1, then the dynamics Eq.(19) is 20 

𝜏𝜏
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
= Δ𝜙𝜙 − 2𝜙𝜙(𝜙𝜙2 − 1). 21 

We show a neural network diagram representing the dynamics explained above in Fig. 22 
11c. The dynamics up to the first term is implementable as a neural network using the 23 
average of input from a four-neighbor neuron as an amount of change, as shown in Fig. 24 
11c. 25 
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 Fig. 11  a. Local coordinate system (𝝃𝝃,𝜼𝜼) is defined at each spatial position 
of (𝒙𝒙,𝒚𝒚). Direction 𝝃𝝃� is parallel with 𝛁𝛁𝒁𝒁; 𝜼𝜼� is perpendicular to 𝝃𝝃�. b. Neural 
network diagram of the model in Section 2. Circles present neurons. 𝒁𝒁(𝒊𝒊, 𝒋𝒋) 
represents depth at spatial position (𝒊𝒊, 𝒋𝒋). −𝚫𝚫𝚫𝚫 at (𝒊𝒊, 𝒋𝒋) is calculable using 4-
neighbors of neuron. 𝒁𝒁(𝒊𝒊, 𝒋𝒋) is updated iteratively using output from 4-
neighbors and neurons in CIP. c. Neural network diagram of the model in 
Section 4. d. Relation between our model and the Shape Index (SI) for each 
shape. The vertical axis represents the value of the second term in Eq. (21) at 
the origin point. The horizontal axis represents − 𝐒𝐒𝐒𝐒.  
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Regarding the second term, when a surface is concave (Fig. 8a), flat (Fig. 8b), or convex 1 
(Fig. 8c), the amount is equal to zero at any point. However, when a surface is a saddle 2 
(Fig. 8d), the amount is not equal to zero. Katsuyama and his colleagues reported that 3 
neurons in CIP respond selectively to the saddle shape (Katsuyama, Naganuma, Sakata, 4 
& Taira, 2006). Then, it is possible that the second term represents a signal from a saddle 5 
selective neuron. Consequently, the proposed models of the present study are 6 
implementable as a neural network. 7 
 8 

5.2 Comparison between a Second-Order differential Model 9 
and Isotropic-diffusion for one-dimensional surface completion 10 
To provide information about the generality of proposed model, we compare results 11 

between a second-order differential model and isotropic diffusion for simpler one-12 
dimensional surface completion. In the case of isotropic diffusion, Nishina & Kawato 13 
(2004) proposed a depth completion model based on the heat conduction equation for one 14 
dimension. 15 
To apply our model for one-dimensional surface completion, because curvature 16 

information is described with spatial second order differential, we define the energy 17 
function as follows. 18 

 
𝐸𝐸flat−1[𝑍𝑍] = � �

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝑍𝑍(𝑥𝑥)�

2

𝑑𝑑𝑑𝑑
 

𝛣𝛣
.  (22) 

Applying the steepest descent method to Eq. (22) to obtain an iterative update rule for 19 
𝑍𝑍(𝑥𝑥) that minimizes 𝐸𝐸flat−1[𝑍𝑍], one obtains the diffusion equation shown below. 20 

 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑍𝑍(𝑡𝑡, 𝑥𝑥) = −

𝜕𝜕4

𝜕𝜕𝜕𝜕4
𝑍𝑍(𝑡𝑡, 𝑥𝑥). (23) 

Fig. 12 presents results of numerical simulation using Eq. (23) and isotropic diffusion. 21 
Isotropic diffusion completes the flat surface, but continuity is not maintained around 22 

the boundary. However, Eq. (23) completes the smooth surface but continuity is 23 
maintained around the boundary. Spline interpolation yields similar results to those of 24 
Eq. (23). 25 
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6 Conclusions 1 

Our proposed computational model for depth completion is consistent with human 2 
perception: it completes the depth values as a “flat” surface quantified as 𝐾𝐾2 =  0 in the 3 
ambiguous region using an information-propagation scheme. Comparing our model with 4 
the model proposed by Ishikawa, although there is no difference aspect to completed 5 
depth, our model as the expression is extremely simple and implementable as a neural 6 
network using existing neurons. Our model described by Eq. (11) is mathematically 7 
equivalent to the model proposed by Satoh and Usui. We expect that Eq. (11) is a general 8 
formula for completion of visual information. 9 
Moreover, two solutions (concave and convex surfaces) were obtained using the model. 10 

The solutions depend on the initial values necessary for numerical simulation of the 11 
steepest descent method. 12 
A new characteristic of depth perception was revealed in completion of the ambiguous 13 

region. Completed surfaces on the ambiguous region depend on the ISI duration and the 14 
shape of prior stimuli. Short ISIs show a positive correlation of perception between the 15 
prior and post stimuli, but longer ISIs show an opposite phenomenon. We present a 16 
mathematical model to account for the unforeseen phenomena. However, we have not 17 
reproduced temporal perceptual alternation using our model because we expect to 18 
introduce adaptation effects and the dynamics of Z among ISI for original energy 19 
function without using 𝜙𝜙(𝑥𝑥,𝑦𝑦). 20 
Future works include reproduction of perceptual alternation in a certain ISI using our 21 

model and investigation of the physiological evidence supporting our model. 22 
 23 

  

 

 

 Fig. 12 Comparison for the one-dimensional case between isotropic diffusion 
and the fourth derivative model. Black thin line: Isotropic diffusion. Grey bold 
line: Diffusion based on the second order differential. Dotted line: Boundary 
Condition. Left: Initial state. Center: Middle state. Right: Stable State. 
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7 Appendix 1 

Appendix A 2 
The update rule of decreasing ∬ 𝐾𝐾(𝑥𝑥, 𝑦𝑦)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑B  is derived using the steepest descent 3 

method as the following complex equation. 4 

∂𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= �−4𝑍𝑍𝑦𝑦𝑦𝑦 𝑍𝑍𝑥𝑥𝑥𝑥4 + 36𝑍𝑍𝑦𝑦2𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥4 − 4𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥4 + 80𝑍𝑍𝑦𝑦𝑍𝑍𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥5 − 32𝑍𝑍𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥3 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥5 

− 32𝑍𝑍𝑦𝑦3𝑍𝑍𝑥𝑥𝑥𝑥3 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥 − 32𝑍𝑍𝑦𝑦𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥3 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥 + 8𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 − 72𝑍𝑍𝑦𝑦2𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥6 
+ 16𝑍𝑍𝑦𝑦𝑍𝑍𝑦𝑦𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 + 16𝑍𝑍𝑦𝑦3𝑍𝑍𝑦𝑦𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 + 8𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 + 16𝑍𝑍𝑦𝑦𝑍𝑍𝑦𝑦𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥7 
− 160𝑍𝑍𝑦𝑦𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥3 𝑍𝑍𝑥𝑥𝑥𝑥 − 4𝑍𝑍𝑥𝑥𝑥𝑥4 𝑍𝑍𝑥𝑥𝑥𝑥 − 4𝑍𝑍𝑦𝑦2𝑍𝑍𝑥𝑥𝑥𝑥4 𝑍𝑍𝑥𝑥𝑥𝑥 + 36𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥4 𝑍𝑍𝑥𝑥𝑥𝑥8 
+ 32𝑍𝑍𝑦𝑦𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥 + 32𝑍𝑍𝑦𝑦3𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥 + 32𝑍𝑍𝑦𝑦𝑍𝑍𝑦𝑦𝑦𝑦𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥9 
+ 16𝑍𝑍𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥 + 16𝑍𝑍𝑦𝑦2𝑍𝑍𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥 + 16𝑍𝑍𝑥𝑥3𝑍𝑍𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑍𝑍𝑥𝑥𝑥𝑥 − 2𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥10 
− 4𝑍𝑍𝑦𝑦2𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 − 2𝑍𝑍𝑦𝑦4𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥2 𝑍𝑍𝑥𝑥𝑥𝑥 + ⋯+ (𝟏𝟏𝟏𝟏𝟏𝟏 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭) + 2𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥11 

+ 2𝑍𝑍𝑦𝑦2𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥2𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑦𝑦𝑦𝑦2 𝑍𝑍𝑥𝑥4𝑍𝑍𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥� ∕ �1 + 𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑦𝑦2�
6 12 

 13 
Appendix B 14 
We prove the proposition of Eq. (7). Here, 𝐾𝐾 and 𝜅̅𝜅, 𝜇̅𝜇 are rotation invariant. Therefore, 15 

we can calculate them on the local coordinate system (𝜉𝜉, 𝜂𝜂) so that 𝐼𝐼𝜂𝜂 = 0 (see Fig. 11a). 16 
First, we prove the case of 𝑍𝑍𝑥𝑥(𝑥𝑥, 𝑦𝑦) ≠ 0,𝑍𝑍𝑦𝑦(𝑥𝑥, 𝑦𝑦) ≠ 0. Curvature is rotation invariant. 17 
Gaussian curvature can be formulated as shown below. 18 

 
𝐾𝐾(𝑥𝑥,𝑦𝑦) =

𝑍𝑍𝜂𝜂𝜂𝜂(𝑥𝑥,𝑦𝑦)𝑍𝑍𝜉𝜉𝜉𝜉(𝑥𝑥,𝑦𝑦)− 𝑍𝑍𝜂𝜂𝜂𝜂
2 (𝑥𝑥,𝑦𝑦)

�1 + 𝑍𝑍𝜉𝜉
2(𝑥𝑥,𝑦𝑦) + 𝑍𝑍𝜂𝜂2(𝑥𝑥,𝑦𝑦)�

2  (B.1) 

𝜅̅𝜅, 𝜇̅𝜇 is defined as follows using the local coordinate system (𝜉𝜉, 𝜂𝜂) in this paper. 19 
 𝜅̅𝜅(𝑥𝑥,𝑦𝑦) = 𝜅𝜅(𝑥𝑥, 𝑦𝑦)Z𝜉𝜉(𝑥𝑥, 𝑦𝑦) = 𝑍𝑍𝜂𝜂𝜂𝜂(𝑥𝑥, 𝑦𝑦) (B.2) 

 𝜇̅𝜇(𝑥𝑥, 𝑦𝑦) = 𝜇𝜇(𝑥𝑥, 𝑦𝑦)Z𝜉𝜉(𝑥𝑥, 𝑦𝑦) = 𝑍𝑍𝜂𝜂𝜂𝜂(𝑥𝑥, 𝑦𝑦) (B.3) 
Consequently, if 𝜅̅𝜅(𝑥𝑥,𝑦𝑦) = 𝜇̅𝜇(𝑥𝑥, 𝑦𝑦) = 0, then 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 0. If 𝑍𝑍𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 𝑍𝑍𝑦𝑦(𝑥𝑥,𝑦𝑦) = 0, then 20 

Z𝜉𝜉(𝑥𝑥,𝑦𝑦) = 0. It is readily apparent. 21 
 22 
Appendix C 23 
To describe the energy function proposed in Section 2 using 𝜙𝜙(𝑥𝑥,𝑦𝑦), we give a proof of 24 

the following relation. 25 
 𝐸𝐸1[𝜙𝜙] = 0 ⟹𝐸𝐸flat[𝑍𝑍] = 0 (C.1) 
First, the following propositions are clearly true. 26 

 𝐸𝐸1[𝜙𝜙] = 0 ⟺∀(𝑥𝑥, 𝑦𝑦) ∈ 𝛣𝛣; ‖∇𝜙𝜙(𝑥𝑥, 𝑦𝑦)‖2 = 0 (C.2) 
  ∀(𝑥𝑥, 𝑦𝑦) ∈ 𝛣𝛣;‖∇𝜙𝜙(𝑥𝑥,𝑦𝑦)‖2 = 0 ⟺∀(𝑥𝑥,𝑦𝑦) ∈ 𝛣𝛣;𝜙𝜙(𝑥𝑥, 𝑦𝑦) = const (C.3) 
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Therefore, it suffices to show the following proposition. 1 
 ∀(𝑥𝑥, 𝑦𝑦) ∈ 𝛣𝛣;𝜙𝜙(𝑥𝑥, 𝑦𝑦) = const⟹𝐸𝐸flat[𝑍𝑍] = 0 (C.4) 

∂𝑍𝑍(𝑥𝑥,𝑦𝑦)/𝜕𝜕𝜕𝜕 was described by 2 
 

∂Z
𝜕𝜕𝜕𝜕

= �
𝑍𝑍∧(𝑥𝑥, 𝑦𝑦)

0
𝑍𝑍∧(𝑥𝑥, 𝑦𝑦)

if 𝜙𝜙 > 0
if 𝜙𝜙 = 0

otherwise
.  (C.5) 

In the case of 𝜙𝜙 > 0, 𝑍𝑍𝑥𝑥(𝑥𝑥,𝑦𝑦) is described by 3 

𝑍𝑍𝑥𝑥(𝑥𝑥,𝑦𝑦) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑍𝑍∧(𝑥𝑥, 𝑦𝑦) ⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 4 

Now, because of 𝜙𝜙(𝑥𝑥, 𝑦𝑦) = const, 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦)/ 𝜕𝜕𝜕𝜕 = 0. Then, 𝑍𝑍𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 0. 5 
Similarly, 𝑍𝑍𝑦𝑦(𝑥𝑥, 𝑦𝑦) = 0. 6 
Then, 𝜅̅𝜅(𝑥𝑥, 𝑦𝑦) = 𝜇̅𝜇(𝑥𝑥, 𝑦𝑦) = 0. 7 
The case of 𝜙𝜙 < 0 is proved similarly. In the case of 𝜙𝜙 = 0, it is readily apparent. 8 
Therefore, if 𝜙𝜙(𝑥𝑥,𝑦𝑦) = const, then 9 

𝐸𝐸flat[𝑍𝑍] = �(𝜅̅𝜅2 + 𝜇̅𝜇2) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
B

) = 0. 10 

Consequently,  11 
𝐸𝐸1[𝜙𝜙] = 0 ⟹ 𝐸𝐸flat[𝑍𝑍] = 0 12 
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