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SUMMARY  The objective of this paper is to recognize and classify the
poses of idols in still images on the web. The poses found in Japanese idol
photos are often complicated and their classification is highly challenging.
Although advances in computer vision research have made huge contri-
butions to image recognition, it is not enough to estimate human poses
accurately. We thus propose a method that refines result of human pose
estimation by Pose Guide Ontology (PGO) and a set of energy functions.
PGO, which we introduce in this paper, contains useful background knowl-
edge, such as semantic hierarchies and constraints related to the positional
relationship between body parts. Energy functions compute the right po-
sitions of body parts based on knowledge of the human body. Through
experiments, we also refine PGO iteratively for further improvement of
classification accuracy. We demonstrate pose classification into 8 classes
on a dataset containing 400 idol images on the web. Result of experiments
shows the efficiency of PGO and the energy functions; the F-measure of
classification is 15% higher than the non-refined results. In addition to this,
we confirm the validity of the energy functions.

key words: ontology, semantic web, knowledge representation

1. Introduction

From the late 2000’s, a large number of idol groups have
appeared and gained tremendous popularity in Japan. The
fiercely competitive situation with regard to Japanese idols
is called “Idol Sengoku Jidai” (literally “Warring States Pe-
riod of Japanese Idol”). The number of idol photographs
on the web has increased explosively, but user preferences
about the poses of idols may vary. Thus, there seems to be
potential demand for searching for the idol photos by their
poses. Our goal is to automatically classify the idol pho-
tos according to their poses during web searches. This is
challenging due to uncontrolled conditions under the pho-
tos were taken with very cluttered background, for example,
idols appearing at a wide range of scales in dark illumina-
tion. Thus, search engines such as Google images* and Mi-
crosoft Bing images™ do not recognize the poses of people
in images. Our method has two phases; the first phase is to
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estimate the spatial layout of ten body parts (head, torso, up-
per and lower arms and legs) using Eichner’s Stickman Pose
Estimation. The second phase is to amend estimation result
based on PGO and to classify the poses of the idols using
Bayesian Network classifiers. In this paper, we focused on
the idols who are wearing swimsuits, since more than half
of the image search results for keywords related to the idols
are swimsuit images.

The remainder of this paper is organized as follows.
We first review of related works on human pose estimation
and ontology in Sect.2. Then, the overview of proposed
method in Sect. 3. In Sect. 4 and Sect. 5, we describe the de-
tails of proposed method including our pose estimation and
pose classification mechanism. In Sect. 6, we conduct ex-
periments to evaluate the proposed method, and refine Pose
Guide Ontology (PGO) based on the results of classification
in Sect. 7. Finally, we conclude this paper with a discussion
and future work in Sect. 8. Although we processed and eval-
uated the idol photos retrieved from the web, figures in this
paper are replaced with dolls due to publication restriction.

2. Related Work

For several decades, human pose estimation and classifica-
tion have been studied in order to deal with specific situ-
ation. For example, in the case of in-vehicle camera[1],
the pose classification aims to determine the orientation of
pedestrians and their movement. Also, in the case of surveil-
lance camera [2], it aims to detect a criminal act accord-
ing to poses such as punching and kicking from movies.
These studies, however, classify human poses into very few
classes, and handle simple poses. On the other hands, our
target poses are complicated and not in movies but still im-
ages. Also, we do not need the real-time estimation and
thus applied ontology constrained technique, which may
take time but high accuracy.

The main techniques proposed in this paper are human
pose estimation and amendment by ontology. Following 2
subsections review the existing studies related to these tech-
niques.

2.1 Related Work of Stickman Pose Estimation

A number of approaches to the human pose estimation have

*http://www.google.com/imghp
“http://www.bing.com/images
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been studied in recent years. For pose estimation, various
methods have been employed such as exploiting parallelism
of part boundaries from segmentation images [3] and track-
ing body contour using color and depth cue [4]. Our study
builds on Pictorial Structures Model [5], a popular frame-
work for human pose estimation in still images. Pictorial
Structures Model consists of articulated rectangular body
parts connected in a tree topology that encodes relative part
positions and orientations. In this framework, advancements
were made by Ramanan [6], who proposed image parsing al-
gorithm, which learns Pictorial Structures Model parameters
by using iterative estimation. Based on Ramanan’s parsing
algorithm, moreover, Eichner et al. proposed a technique for
estimating the human poses in highly challenging almost un-
controlled images, without prior knowledge of background,
clothing, lighting, or the location and scale of the person in
the image [7].

In Eichner’s approach, six body parts (head, torso, up-
per arms, and lower arms) are expressed as sticks of a fixed
size with position of location and orientation parameters,
and thus this approach is called Stickman Pose Estimation.
They estimates the spatial layout of body parts in a still im-
age of a television drama scene. The approach assumes
only the pose of a person who are standing upright, since
most people in TV shows or movies appear roughly up-
right. Our method follows the Stickman Pose Estimation,
but the idol photos do not necessarily have the upright pos-
ture. Therefore, we improved this work in order to deal with
non-upright postures.

2.2 Related Work of Guide Ontology

Several approaches combining computer vision and ontol-
ogy to understand images have been proposed. Marszalek
and Schmid proposed to use lexical semantic networks to
extend object recognition techniques [8]. They employed
WordNet [9] to integrate background knowledge about hi-
erarchies of real world objects into visual appearance of de-
tected objects in images. Nwogu et al. studied the scene
recognition of still images using ontology that contains
semantic hierarchies of both object classes and relation
classes [10]. Their ontology contains information such as
“Scene has a sky”, “Sky above land”, and “land has a per-
son”. Then, it transfers these entities and their relations to
their location relations in still images. However, location
information is not enough to understand the real world.

We gave special attention to the scene recognition
method using Guide Ontology (GO) proposed by Chen et
al.[11]. GO does not contain location relations of object
classes, but also it supports various semantic constraints.
They employed the GO as a semantic source of background
knowledge, and proposed Object Relation Network to trans-
fer rich semantics in the GO to the detected object and their
relations in the image. Figure 1 shows that the Object Rela-
tion Network represents three person nodes labeled “Soccer
Player”, a ball node labeled “Soccer Ball”, and two relation
nodes labeled “kick”. These nodes are labeled temporarily
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based on visual features such as size, color, relative position
of each object, not considering the semantics of the objects
and their relations. Inappropriate Object Relation Network
(e.g., Basket Ball Player Kick Soccer Ball) can be generated
when temporary labeling fails. In order to amend this se-
mantic failure, the Guide ontology is used, which contains
semantic constraints (e.g., given Object Relation Network as
Soccer Player Kick Ball, Ball node should be labeled Soccer
Ball).

We employed PGO in order to estimate and classify hu-
man pose in still image. Both PGO and GO help to recog-
nize still image, but their purposes are different. While GO
corrects the result of labeling based on visual features after
the classification, PGO corrects the estimation results of the
parts location before the classification. To correct the clas-
sification results like GO, it is necessary to increase classes
and properties for constraints according to the number of
classified poses. On the other hand, since PGO corrects each
body part and generates feature vectors for the classification.
Thus, the classes and properties are limited to the number of
body parts.

3. Proposed Method for Pose Classification

Overview of our method is illustrated in Fig. 2. Our method
can be separated into the pose estimation and the pose clas-
sification phase. The pose estimation phase estimates the lo-
cation, orientation, and size of the body parts, and the pose
classification phase classifies the photos by the poses based
on parts information obtained by the pose estimation. These
phases are described in Sect. 4 and Sect. 5, respectively. Our
method first takes the idol images, which are not annotated
by any text as input, and then employs a face detector to ob-
tain the information about the rough position and scale of
a human body in the image (Sect.4.1.1). Next, our method
segments foreground parts from background parts based on
Grabcut [12] and the skin color phase (Sect.4.1.2). Then,
we obtain the information of location, orientation, and the
size of body parts at the parsing stage (Sect.4.1.3). To im-
prove the parts information, we use PGO, which contains
useful background knowledge such as semantic hierarchies
and constraints related to the orientation and positional re-
lationship between the body parts (Sect. 5.2). PGO amends
the location, orientation, and the size of body parts obtained
by the pose estimation. We will describe PGO in Sect. 5.1.
Finally, Bayesian Network classifier outputs the result of
pose classification (Sect. 5.3).
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4. Pose Estimation Phase
4.1 Approach to the Pose Estimation

4.1.1 Face Detection

First, our method uses a face detector to find an approximate
position of a person in a photo. This process removes part
of the background clutter and constrains the search space in
a rectangle. Eichner’s method employs an upper-body de-
tector, which has excellent accuracy on the related task of
rigid object detection [13]. However, an upper-body detec-
tor cannot detect a non-upright person.

Therefore, we employed a face detector in OpenCV
face detector. Our method first detects a face, more pre-
cisely a face with the neck and part of the shoulder, mainly
to obtain the difference between the colors of a person and
of the background. Then, by using those color information
the method explores in an image and extend a rectangle to
include the whole body. Especially, arms should start from
the shoulder, and the torso starts from the neck and has the
legs on the opposite side, so that the method can set the start-
ing points there. Thus, slant/lying poses can be included in
the rectangle.

4.1.2 Foreground Highlighting Using Grabcut and Skin
Color

The pose estimation aims to localize the spatial layout of
human body parts. The foreground area is likely to con-
tain human body parts, but the background is not. Thus,
the foreground highlighting helps estimating the layout of
body parts. Eichner employs Grabcut algorithm [12] for
highlighting the foreground. Grabcut algorithm requires
the prior input and learning of initial foreground and back-
ground color models from regions, where the person is
likely to be there. The foreground color model is learnt
from a region, where the foreground-template (green con-
vex region in Fig. 3 (a)) covers. But, in Eichner’s work, the
accuracy of foreground highlight for non-upright postures is
low, since the foreground-template is specialized in the up-
right posture. In Fig. 3 (a), the foreground-template partially
covers the background area, since a person is inclining to the
right side. As a result, the background area in Fig. 3 (b) is
mistakenly highlighted as the foreground area (green region
is highlighted as the foreground area).

Most of the idols in photos do not have the upright pos-
ture. Therefore, the approach only using the foreground-
template is not suitable for our purpose, and thus we used
the hue of skin in addition to Grabcut algorithm by the tem-
plate. Figure 3 (c) is a skin color detection image. Skin
area is extracted using a skin color model based on the hue
of pixel. Finally, we obtain the foreground highlight im-
age (Fig.3(d)), which is the intersection of Fig.3 (b) and
Fig.3 (c). This simple technique increased the accuracy of
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(a) Template (b) Result of Grab-

cut

(c) Skin detec- (d) Grabcut +
tion Skin detection

Fig.3  Foreground highlighting using Grabcut and skin color

Fig.4  Image parsing

foreground highlight.
4.1.3 Image Parsing

At this stage, image parsing employs Pictorial Structure
Model [14], which is a general body model. In the Pictorial
Structure Model, the locations of body parts are estimated
based on parameters such as appearance and spatial infor-
mation. In the first estimation, the model considers only
image edges restricted to the foreground area. This process
temporarily estimates the body part position, which are used
to build appearance models of the body parts. Then, we con-
sidered image-specific appearance models based on the first
estimation, and the model becomes more accurate. As a re-
sult of the estimation, the location information of ten body
parts is obtained.

"We tried both process flows, that is, Grabcut — Skin and
Skin — Grabcut, and then selected the current flow, since it had
generally high accuracy.
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5. Pose Classification Phase

In this phase, the idol photos are classified based on the
location information obtained in Sect.4.1.3. Although our
method employs the face detector and the foreground high-
light based on the skin color information, the accuracy of
location information is not reliable enough, and it is difficult
to classify the poses of idols based on the incorrect location
information. Therefore, we propose the approach to amend
the location information of body parts using PGO.

5.1 Pose Guide Ontology

An example of PGO is shown in Fig. 5. PGO has three lay-
ers; root layer, pose layer, and parts layer. Root layer con-
tains general classes like Object and Relation. Pose layer
contains pose classes such as Standing upright, and Lying,
which is output of our method. Parts layer is the most im-
portant layer, which contains semantic background knowl-
edge about the relations between the body parts. Each ob-
ject class at this layer must be a part of the pose classes
in the Pose layer and each relation class must be a sub-
class of Parts Relation class. Parts Relation class is divided
into Torso Relation, Arm Relation, and Leg Relation class.
These classes have individual properties. In Fig.5, proper-
ties are described under each class. The properties which
have “Con” sign are used as constraints for amendment, and
the properties which have “Cla” sign are used to generate
features for classification. PGO amends the location infor-
mation based on these constraints (Sect.5.2). These prop-
erties are defined in each part class and inter-parts class,
and then the properties in parent classes are effective also in
child classes. For example, the Torso Relation class has the
Cla:DisOfEnd2End property used for Feature 2. This prop-
erty is also applicable to a child class of the Torso Relation
class, the Torso_Upper leg Relation. Thus, the representa-
tion of PGO using class inheritance of ontology has high
extensibility and maintainability e.g., in the case that new
properties are added. Currently, PGO has been manually
created. In the near future, we plan to address the automatic
creation of the PGO.

The following procedure illustrates how PGO is used
for the pose classification.

1. First the pose estimation is conducted.

2. Then, the estimation result is compared with con-
straints in properties in PGO (the properties which have
“Con” sign in Fig.5). The constraints provided by
PGO are desricibed in the following subsections.

3. If parts violate the constraints, the amendment proce-
dure is executed as described in Sect. 5.2.4.

4. According to properties for feature generation (the
properties which have “Cla” sign in Fig. 5), feature vec-
tors are generated from amended parts positions.

5. Bayesian Network classifies the poses based on the fea-
ture vectors.
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Fig.5 Anexample of PGO. Each Object class and Relation class has individual properties, which are
described under the classes. The ones described in red letters are added in Iteration 2(7.1), and green

letters are added in Iteration 3(7.3)

5.1.1 Constraints on the Angles between the Parts

A person has an appropriate joint range of motion, which
defines appropriate angles between the body parts. For ex-
ample, the head and the torso are in the same direction in
many cases, and it cannot be assumed that head-torso an-
gle is 30° (torso angle defaults to 0°). Therefore, PGO has
a constraint such as “head-torso angle should be in a range
from 100° to 260°” (Fig. 5: Head-Torso Angle).

5.1.2 Constraints on Relative Position between the Parts

When the location of a body part is considered as inappro-
priate based on the relative position to other body parts, this
location information should be amended. For example, PGO
has constraints such as “when upper legs lie at lower than
torso, lower legs also should lie in lower than torso” (Fig. 5:
U.leg-L.leg-Torso Relative Position).

5.1.3 Constraints on the Links between the Parts

The link represents a joint of human body parts connect-
ing the parent part (e.g. upper arms) and the child part (e.g.
lower arms). When the location information of the body
parts is estimated correctly, the lengths of links are relatively
short. Therefore, PGO has a constraint such as “the length
of upper legs and lower legs should be longer than one of
the legs-links” (Fig. 5: U.leg-L.leg Link-Length).

(b) amended

(a) before amend-
ment

Fig.6 sticks color, pink: head, red: torso, green: upper arms, yellow:
lower arms, blue: upper legs, light blue: lower legs

5.2 Amendment by PGO and Energy Functions

A result of Stickman Pose Estimation is shown in Fig. 6: (a),
and the amended result by PGO is shown in Fig. 6: (b). The
constraints of PGO move the body parts from inappropriate
positions to right ones. In order to compute right positions
of body parts, we introduced a set of energy functions to take
three kinds of knowledge into account: (I) skin color infor-
mation, (II) symmetry of the human body, and (IIT) con-
straints of the PGO.

E = Egin + Esym + Econ (D

Equation (1) represents a sum of the skin color energy, the
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symmetry energy, and the constraint energy; which are de-
tailed in the following subsections respectively. When the
energy function E is minimized, location of the body parts
is optimized.

5.2.1 Energy: Skin Color Information

The appropriate positions of body parts are expected by the
skin color. Upper arms and legs, and lower arms and legs
have the skin color in the case of a person wearing a swim-
suit, and thus we consider this energy is important. The
energy is applied to Partsg, = {right upper arm, left upper
arm, right lower arm, left lower arm, right upper leg, left
upper leg, right lower leg, left lower leg}. The skin color
information based energy is defined as:

S kinPixel;
E gin = —Wgii _ 2
skin Wiskin ‘ AllPlxel, ( )
i€Parts gy
, where wg, is a weight, AllPixel; is the total number
of pixels around candidates for the location of part i, and

S kinPixel; is the number of skin-colored pixels in AllPixel;.
5.2.2  Energy: Symmetry of Human Body

There are many asymmetry poses in images, but starting
points of upper arms and upper legs would be mostly ar-
ranged symmetrically with a torso as a center, due to the
structure of the human body. Therefore, we applied the en-
ergy for the symmetry to Partsg,,, = {right upper arm, left
upper arm, right upper leg, left upper leg}. We define the
symmetry of the human body based energy as:

Esym = Wsym Z d(x; — X;) 3

iePartsgym

, where wg,,, is a weight. Xi and xi stand for horizontal
pixel points in an image, but Xi is a tentative starting point
of left upper arm, right upper arm, left upper leg, and right
upper leg, arranged symmetrically with a torso as a center.
Also, xi is a candidate point, from which each part starts.
d(x; — X;) is a distance between a candidate for a start point
x; and a tentative start point X;. Thus, Eq. (3) represents that
if the candidate points are arranged symmetrically, then the
energy gets lower, and the points have properly estimated
positions.

For example, when the left or right upper leg violates
constraints in PGO, the tentative starting point Xi of the right
or left leg is arranged symmetrically across the torso with
another leg. If both upper legs violate the constraints, then
they are arranged from the end of the torso with the fixed
angle (45° on either side) and the fixed length (a quarter
of the torso). These procedures correspond to third item in
Sect.5.2.4 and (2), (3) in Fig.7. Xi is a blue point in the
figure.

To evaluate this energy, we conducted experiments in
Sect. 6.4.
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Fig.7 Amendment procedure

5.2.3 Energy: Constraints of PGO

This energy is applied to all body parts, Parts.,, = {torso,
right upper arm, left upper arm, right lower arm, left lower
arm, right upper leg, left upper leg, right lower leg, left lower
leg, head}. We define this energy function based on back-
ground knowledge in PGO.

. 0 if part i satisfies constraints
ewn(l) = . (4)
oo otherwise
Econ = Z econ(i) (5)

i€Partsqon

Following Chen’s energy function [11], E,, adds a big
penalty to candidates of body parts when any of the con-
straints is violated. Therefore, the candidates of body parts
which violate the constraints are not adopted. We are con-
sidering a soft decision for the constraints of PGO in Eq. (4)
or even a parameter to be learned.

5.24 Amendment Procedure Based on Energy Functions

Amendment procedure is detailed below with Fig. 7.

1. Evaluate the result of Stickman Pose Estimation, and
detect constraints violation (Fig. 7 (1)).

2. If any limbs violated the constraints provided by PGO,
amendment procedure is executed (Upper arms or legs,
which do not violate, are amended only if lower arms
or legs violated).

3. The designated area of possible parts location are ar-
ranged symmetrically across the torso (Fig. 7 (2)).

4. 5x5 grid points, which are candidates for start points of
the upper arms or legs, are arranged in the designated
area. The width and height of the area are set as the
same as half length of torso (Fig. 7 (3)).

5. Upper parts are located around each grid point at 10 de-
grees interval, and the color information of surrounding
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pixels is taken at each location (Fig. 7 (4)). For reduc-
ing calculation cost, lower 50% of parts location with
relatively small skin-color pixels are removed.

6. Also, lower parts are located around each end point of
upper parts, and the color information of surrounding
pixels is taken at each location.

7. The candidate of part including most skin-color pixels
is selected (Fig. 7 (5)).

8. If the selected parts violate the constraints provided by
PGO, the second most skin-colored one is adopted.

5.3 Pose Classification Using Bayesian Network

After the location information of the body parts is amended,
our method generates input data (feature vectors) for
Bayesian Network by referring properties for feature gen-
eration in PGO (signed “Cla” in Fig.5). The Bayesian Net-
work outputs the probability of each pose based on angles
between two parts and distance between the torso and other
parts. In our experiments, a feature vector has 87 dimen-
sions of numerical features that represent human body lay-
out. We derived it from 400 training images. In this pa-
per, we employed weka.classifiers.bayes.BayesNet, which
is prepared in Weka'. Actual classification and feature se-
lection are detailed in the next section.

Since we conduct iterative PGO refinements in Sect. 7,
we need information about which feature contributes to the
accuracy improvement, that is, the importance of each fea-
ture. Therefore, a requirement of the classifier choice was
that it is easy to understand how the feature is used in the
classification process. As such classifiers, there are Random
Forest, Bayesian Network, and so on, but the classification
process of Bayesian Network can be visible, and also its ac-
curacy had higher than others in the following experiments.

6. Iterative Experiment

To evaluate the improvement of accuracy, we demonstrate
how our method classifies the idol photos in five different
scenarios for comparison. Figure 8 shows (a)~(e) scenar-
ios and purpose of them. First, we explain two scenarios
for evaluation of PGO: (a) using only Stickman Pose Esti-
mation improved in Sect.4.1.1 and Sect.4.1.2, and (b) us-
ing both Stickman Pose Estimation and the amendment by
PGO. We conducted experiments with 10-fold cross valida-
tion. Then, we also explain scenario (c) for evaluation of
the energy function in Sect. 6.4, and scenario (d) and (e) for
PGO refinement in Sect. 7.

6.1 Dataset

First, we introduce a dataset used to train and test the classi-
fiers in our method. We chose the following 8 poses which
are frequently found in Japanese idol photos, since more
than 70% images obtained by Google image search with
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For evaluation of
PGO(Section VI-C)

(@)
Stickman Pose Estimation

(b)
SPE & PGO
(Iteration1, including energy of symmetry)

(©
SPE & PGO
(excluding energy of symmetry)

For evaluation of the energy
function(Section VI-D)

(d)
Iteration2

(e)
Iteration3

Fig.8 Five different scenarios

queries of idol names are divided into the following 8 poses,
except for the images of the upper body only. Description
and criteria of each pose is explained below. We selected im-
ages which fit to the criteria as dataset for each category, and
three of the members in our laboratory confirmed if there is
no deviation in categories. Also, we made the example fig-
ures for each category open to the public on our website".

1. Standing Upright (Fig. 9 (a))
A person stands facing almost the front, or obliquely,
except for completely turning back. There is no limita-
tion on the arms and legs positions, including crossing
and/or bending the elbows and the knees.

2. Agura (Fig.9 (b))
A person sits crossing the legs in the front, facing the
front or obliquely, except for completely turning back.
There is no limitation on the arms positions.

3. Petan sitting (Fig. 9 (c))
A person sits bending the legs on either side, facing the
front or obliquely, except for completely turning back.
There is no limitation on the arms positions. The angles
of the knees should be under 90 degrees.

4. Kneeling (Fig. 9 (d))
A person puts the knees on the ground without bend-
ing the waist, facing the front or obliquely, except for
completely turning back. There is no limitation on the
arms positions and the direction of the lower legs.

5. Girl’s sitting (Fig. 9 (e), (f))
A person sits bending the legs on the right or left, fac-
ing the front or obliquely, except for completely turning
back. There is no limitation on the arms positions. The
angles of the knees should be under 90 degrees.

6. Lying (Fig.9 (g), (h))
A person puts the waist and the right or left knee on the
ground, making almost all the parts visible. There is no
limitation on the arms positions and the knees’s angles.

The dataset contains 400 photos. Each class has 50

Thttp://www.cs.waikato.ac.nz/ml/weka

TTwww.ohsuga.is.uec.ac.jp/ kawamura/poses.zip



TASHIRO et al.: ITERATIVE IMPROVEMENT OF HUMAN POSE CLASSIFICATION USING GUIDE ONTOLOGY

(a) Stand- (b) Agura (c) Petan sitting (d) Kneel-
ing up- ing
right

(g) Lying:Left

(h) Lying:Right
Fig.9 Dataset

images and all images contain a single person. We should
note that our method confirms whether there is a person in
an image by detecting a face. Thus, in the case of the face
detection failure, the method does not go to the next proce-
dure. However, in the case of a face in profile, if a face is de-
tected, the method can classify his/her poses. Images which
have no face (or head) are out of scope of our research.

6.2 Feature Selection

In this paper, we assumed that a pose is determined by
the relative position of each body part (Fig.10) and an-
gles between two parts (Fig. 11). Therefore, we selected
three kinds of features as input for the Bayesian Network
classifier. In the first experiment, we used a feature vector
which has 45 dimensions of numerial features. Feature val-
ues which represent the distances of parts are normalized by
dividing by the length of the torso, and feature values which
represent the angles are not normalized, since they have up-
per and lower bounds.

e Feature 1: Distance between torso and other parts
(Fig. 10), which has 18 dimensions.

e Feature 2: Direction from torso to other parts (Fig. 10),
which has 18 dimensions.

e Feature 3: Angle between two body parts that have a
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Fig.10  Feature 1 and 2: Distance and direction between Torso and other
parts. Feature 1 and 2 have 18 values for each, because 9 body parts, except
for torso, has a start point and an end point.
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Fig.11  Feature 3: Angle between two body parts that have the connec-

tion. Feature 3 has 9 values, because human body has 9 joints between
body parts.

connection (Fig. 11), which has 9 dimensions.

6.3 Result and Analysis

Table 1 (a) and (b) shows precision, recall and F-measure
of each pose in two scenarios. As shown in the table, the
F-measure of the classification is about 9% higher than the
non-amendment. Amended by the PGO, the accuracy of al-
most all the poses has been improved. Although the amend-
ment by the PGO improves the accuracy of the classifica-
tion, the F-measure of Agura, Petan sitting, and Kneeling
are relatively low, about 60%, and there is room for further
improvement. Therefore, we propose an iterative ontology
refinement procedure. Table 2 shows the results of classifi-
cation on Iteration 1 (the experiment that use both Stickman
Pose Estimation and the amendment by PGO).

Also, these poses have some common shapes of the
body parts, which make harder to distinguish them. Espe-
cially, 13 out of 50 images of Petan sitting are incorrectly
labeled as Agura.

6.4 Experiment on Evaluation of the Energy Function

We also conducted experiments for evaluation of the energy
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Table 1  Precision, Recall, and F-measure of each pose
(a) SPE (Iteration 1)
\ \ Pose | Precision | Recall | F-measure |
Standing upright 96.1% 98.0% 97.0%
Agura 47.1% 48.0% 47.5%
Petan sitting 44.0% 44.0% 44.0%
SPE Kneeling 58.5% 62.0% 60.2%
Iteration 1 | Girl’s sitting:Left 77.3% 68.0% 72.3%
Girl’s sitting:Right 68.6% 70.0% 69.3%
Lying:Left 97.9% 94.0% 95.9%
Lying:Right 94.2% 98.0% 96.1%
Average 73.0% 72.8% 72.8%

(b) SPE&PGO (Iteration 1, including energy of symmetry)

| | Pose | Precision | Recall | F-measure |
Standing upright 92.5% 98.0% 95.1%
Agura 60.0% 66.0% 62.9%
SPE Petan sitting 76.9% 60.0% 67.4%
& Kneeling 59.3% 64.0% 61.5%
PGO Girl’s sitting:Left 87.5% 84.0% 85.7%
Iteration 1 | Girl’s sitting:Right 85.4% 82.0% 83.7%
Lying:Left 98.0% 98.0% 98.0%
Lying:Right 94.3% 100.0% 97.1%
Average 81.7% 81.5% 81.4%

(c) SPE&PGO (excluding energy of symmetry)

| | Pose | Precision | Recall | F-measure |
Standing upright 92.6% 100.0% 96.2%
Agura 45.7% 42.0% 43.7%
SPE Petan sitting 55.0% 44.0% 48.9%
& Kneeling 60.7% 74.0% 66.7%
PGO Girl’s sitting:Left 60.8% 62.0% 61.4%
excluding | Girl’s sitting:Right 61.7% 58.0% 59.8%
symmetry Lying:Left 100.0% 96.0% 98.0%
Lying:Right 94.3% 100.0% 97.1%
Average 71.3% 72.0% 71.5%

(d) Iteration 2

| Pose | Precision | Recall | F-measure |
Standing upright 98.0% 98.0% 98.0%
Agura 80.4% 74.0% 77.1%
Petan sitting 70.6% 72.0% 71.3%
Iteration 2 Kneeling 63.3% 62.0% 62.6%
Girl’s sitting:Left 91.8% 90.0% 90.9%
Girl’s sitting:Right 83.3% 90.0% 86.5%
Lying:Left 98.0% 98.0% 98.0%
Lying:Right 98.0% 100.0% 99.0%
Average 85.4% 85.5% 85.4%

(e) Iteration 3

| Pose | Precision | Recall | F-measure |
Standing upright 100.0% 100.0% 100.0%
Agura 83.3% 80.0% 81.6%
Petan sitting 76.8% 86.0% 81.1%
Iteration 3 Kneeling 69.0% 58.0% 63.0%
Girl’s sitting:Left 88.7% 94.0% 91.3%

Girl’s sitting:Right 84.3% 86.0% 85.1%

Lying:Left 100.0% | 98.0% 99.0%
Lying:Right 98.0% 100.0% 99.0%
Average 87.5% 87.8% 87.5%

function detailed in Sect.5.2. In the above section, we as-
sumed the experiment using the energy function E in Eq. (1),
but in this section, we use the energy function, excluding
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Table 2  Iteration 1: Result of classification. The first column contains
the 8 poses for classification and the last eight columns show how images
of dataset are classified. The numbers of images correctly classified are
described in bold type.

| |a[bfcld]e[f]e]h]
a.Standing upright 49 | 0 1 0 0 0 0
b.Agura 0|33 1 9 3 3 0 1
c.Petan sitting 1 13130 5 1 0 0 0
d.Kneeling 2 8 3132 1 4 0 0
e.Girl’s sitting:Left 1 1 3 2 |42 0 1 0
f.Girl’s sitting:Right | 0 0 2 5 0 |41 | 0 2
g.Lying:Left 0 0 0 0 1 0|49 O
h.Lying:Right 0 0 0 0 0 0 0 | 50

symmetry energy in Eq.(3) for comparison. This makes
difference in amending procedures between two scenarios.
The former procedure is showed in Sect. 5.2.4, and the latter
is showed as follows.

1. Evaluate the result of Stickman Pose Estimation, and
detect constraints violation.

2. If any limbs violated the constraints provided by PGO,
amendment procedure is executed (Upper arms or legs,
which do not violate, are amended only if lower arms
or legs violated).

3. 5x5 grid points, which are candidates for start points
of the upper arms or legs, are arranged in the desig-
nated area. The width and height of the area are set as
the same as length of torso. The area is placed at just
beside a start point of torso when arms are amended.
When legs are amended, it is placed at diagonal down-
ward from an end point of torso.

4. Upper parts are located around each grid point at 10 de-
grees interval, and the color information of surrounding
pixels is taken at each location. For reducing calcula-
tion cost, lower 50% of parts location with relatively
small skin-color pixels are removed.

5. Also, lower parts are located around each end point of
upper parts, and the color information of surrounding
pixels is taken at each location.

6. The candidate of part including most skin-color pixels
is selected.

7. If the selected parts violate the constraints provided by
PGO, the second most skin-colored one is adopted.

Table 1(c) shows precision, recall and F-measure of
each pose on this experiment. As shown in the table, the
F-measure of the classification is not only 10% lower than
SPE & PGO including energy of symmetry, but also lower
than just SPE. Amendment excluding the energy of sym-
metry caused inappropriate computation of position, since
it depends only on skin-color information in a large area for
start points of parts. As Fig. 12 (b) shows, a leg is mistakenly
amended as an arm, and thus the result becomes Girl’s sit-
ting in many cases, although the pose is Agura. This typical
failure occurs frequently, leading to decrease the accuracy
of Girl’s sitting. This result shows that the energy of sym-
metry correctly amends the start points of upper parts and
effects the accuracy of classification.
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(a) Including energy
of symmetry

(b) Excluding

Fig.12  Estimation results of experiments, including energy of symmetry
and excluding it.

7. PGO Refinement Procedure

In the above section, we assumed that the human pose is
determined by the relative position of each part and an-
gle between two parts, and thus PGO generates the above-
mentioned three kinds of features. In the following sections,
we repeatedly refine the PGO by confirming the classifica-
tion results.

7.1 Feature Selection for Iteration 2

From Iteration 1 results and analysis, we derived the Feature
4 (Fig. 13), following additional features, that could con-
tribute to discriminate the three poses of low accuracy.

o Feature 4: Absolute angle of body parts (Fig.13),
which has 10 dimensions.

The absolute angle of lower legs obviously distin-
guishes Agura and Petan sitting (Fig. 13), and will con-
tribute to improve the accuracy of classification. The ad-
ditional features, absolute angle of body parts are described
in red as “Cla:AbsAngle” in Fig. 5.

7.2 Experiment for Iteration 2

Table 1 (d) shows precision, recall and F-measure of each
pose on Iteration 2. As shown in the table, the F-measure of
the classification is 4% higher than Iteration 1.

Table 3 shows the results of the classification on Iter-
ation 2. The number of images of Petan sitting which are
incorrectly labeled as Agura, decreased from 13 in Iteration
1 to 3 in Iteration 2. This result suggests that Feature 4 has
been effective in the pose classification.

7.3 Feature Selection for Iteration 3

Considering the result of Iteration 2, we further refine PGO
for the next experiment (Iteration 3) to improve the accuracy
of the classification. In Iteration 3, we derived Feature 5 and
6 (described in Fig. 14), that represent the relative positions
of upper legs and lower legs in the same way as Iteration 2.
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Fig.13  Feature 4: Absolute angle of body parts, obviously distinguishes
Agura and Petan sitting

Table 3  Iteration 2: Result of classification
| |a[bf[c[d[e[f[eg]h]
a.Standing upright 49 | 0 0 1 0 0 0 0
b.Agura 0|37 | 4 7 0 2 0 0
c.Petan sitting 0 3 36 8 1 2 0 0
d.Kneeling 1 5 7 31| 2 4 0 0
e.Girl’s sitting:Left 0 1 2 0 | 45 1 1 0
f.Girl’s sitting:Right | 0 0 2 2 0 | 45 0 1
g.Lying:Left 0 0 0 0 1 0 (49| O
h.Lying:Right 0 0 0 0 0 0 0 | 50
Distance/
Direction
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Fig.14  Feature 5 and 6: distance and direction between the start and
the end points of the left and right upper and lower legs. They have 16
values respectively, because left and right legs have 4 points. Feature 5, 6
obviously distinguishes Agura and Petan sitting

e Feature 5: Distance between the start and the end
points of the left and right upper and lower legs
(Fig. 14), which has 16 dimensions.

e Feature 6: Direction between the start and the end
points of the left and right upper and lower legs
(Fig. 14), which has 16 dimensions.

To simplify the figure, Feature 5 and 6 are described
as the relations between the end point of left lower leg and
both the end points of right legs. However, in the actual
calculation, they mean relations between both the end points
of left leg and the ones of right leg.

Figure 14 expresses that distance and direction between
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Table 4  Iteration 3: Result of classification

| [a[b[cf[dfe]f]e[h]
a.Standing upright 50| 0 0 0 0 0 0 0
b.Agura 0 |40 | 3 6 0 1 0 0
c.Petan sitting 0 1 443 | 5 1 0 0 0
d.Kneeling 0 6 4 129 | 4 7 0 0
e.Girl’s sitting:Left 0 1 1 1 47 | 0 0 0
f.Girl’s sitting:Right | 0 0 5 1 0|43 | 0 1
g.Lying:Left 0 0 0 0 1 0|49 ] O
h.Lying:Right 0 0 0 0 0 0 0 | 50

the end point of left lower leg and both the end points of
right leg obviously distinguishes Agura and Petan sitting.
The new features, such as distance and direction between the
start points and the end points of the left and right upper and
lower legs, are described in green as “Cla:DisOfEnd2End”
and “Cla:DirOfEnd2End” at Leg Relation class in Fig. 5.

7.4 Experiment for Iteration 3

Table 1 (e) shows precision, recall, and F-measure of each
pose on Iteration 3. As shown in Table 1 (e), the F-measure
of the classification is 2.25% higher than Iteration 2.

7.5 Evaluation

In Iteration 3, the classification accuracy of Agura and Petan
sitting is improved as expected. On the other hand, the recall
of Kneeling decreased during the above iterative processes.
A reason for this result is that the classifier cannot capture
the features of Kneeling and learn them. Kneeling may have
left, right, or front direction, so that the feature of Kneeling
has become a mixture of these three directions.

Especially, Girl’s sitting: left and right have features
similar to those of Kneeling: left and right. While the clas-
sifier cannot capture the feature of Kneeling, that of Girl’s
sitting is learned correctly. Consequently, the number of im-
ages of Kneeling that are incorrectly labeled as Girl’s sitting,
increased in each Iteration (Table 4).

8. Conclusion and Future Work

Although we estimated and classified human poses from a
2d- still image, most of the recent researches on pose clas-
sification handle moves and more depth images, and then
there is little research for the a single still image. However,
since 2d- still images are most popular formats in the In-
ternet, we consider that handling of the still images has the
significance in the CV area. Then, the research we used
as reference is Eichner’s work [7], which achieved around
80% accuracy depending on background settings for esti-
mation of body parts, assuming that the target images have
a front or rear upper half of the body. On the other hand, we
achieved more than 80% accuracy of pose classification. We
have no limitation on the background settings, and the target
images can have the whole body from several angles, which
are collected from the Internet. Although we assume that
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an image has a single person, by splitting an image per per-
son in a pre-process, we can extend our method to an image
with multiple persons. In terms of the problem of various
textures, we are considering to solve it with a method pro-
posed by the related works to [7]. Thus, although we could
not directly compare the referenced work due to different
conditions, we consider that our contribution with differ-
ent (ontological) approach is similar to the top research in
a meaningful research topic. Detailed contributions of this
paper include:

1. We improved the stickman pose estimation method, in
order to deal with Japanese idol poses.

2. We proposed and exploited Pose Guide Ontology and
energy functions to amend the result of stickman pose
estimation. PGO contains constraints and semantic hi-
erarchies related to the orientation and positional rela-
tionship between the body parts. The spatial layout of
the body parts are optimized so that energy functions
are minimized.

3. We also proposed an iterative procedure for further
refinements of PGO to effectively classify the poses.
Considering the results of experiments, we added prop-
erties to PGO, which are features that distinguish the
poses. The final results indicated that F-measure of
the classification has become 15% higher than non-
amended results.

In order to further improve the proposed method, we
plan to subdivide the pose types and define the new con-
straints. As described in Sect. 7.5, the dataset in the exper-
iment did not divide Kneeling into three poses (right, left,
and front). As a result, the features of Kneeling has become
a mixture of these three directions. Therefore, by further
division of the pose types, the classifier could capture the
features and learn the poses correctly.

Also, the constraints which are currently defined by
PGO do not amend all the (incorrect) parts information ob-
tained by the pose estimation. However, too strict con-
straints tend to amend the right result of estimation incor-
rectly. So that, we will define the effective constraints and
integrate them into the existing ones instead of single strict
constraints.

Currently, our method takes about 40 (sec) to process
an image. The breakdown of that is image loading and face
detection: 25%, foreground highlighting: 35% and parts es-
timation: 40%. When the result of parts estimation requires
correction of PGO, it further takes 20—40 (sec). We intend
to address the reduction of the processing time as a future
work, although the classification should be offline.

In the near future, we would like to challenge more
complex, and socially significant problems like image anal-
ysis of security cameras and for rehabilitation exercises of
patients. We plan to further extend this research, and con-
tribute the situations, to which the conventional methods
cannot be applied.
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