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Abstract: A compromised node in wireless sensor networks can be used to create false messages by generating them
on their own or by falsifying legitimate messages received from other nodes. Because compromised nodes that create
false messages can waste a considerable amount of network resources, we should detect them as early as possible. Ex-
isting studies for detecting such nodes can only be used in situations where sensor nodes do not move. However, it is
possible that nodes move because of wind or other factors in real situations. We improve existing studies for detecting
compromised nodes in mobile wireless sensor networks. In the proposed method, an agent exists on each node and it
appends its ID and a k-bit code to an event message and the sink detects a compromised node by a statistical method.
Our method can be used in static and dynamic environments. Simulations we conducted prove the effectiveness of our
method.
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1. Introduction

Wireless sensor networks (WSNs) can detect events such as
forest fires and intruders. An agent exists on each sensor node *1

in a WSN, and the agent creates an event message and delivers it
to the sink over multi-hop paths. Because WSNs are unattended,
an adversary could capture and compromise some of the sensor
nodes. In so doing, the adversary can extract all information such
as the secret keys stored in the nodes, and the adversary can insert
malicious agents into the nodes. Then, these nodes can be used
to create false messages, i.e., generate false messages on their
own and/or falsify legitimate messages they have received from
other nodes. They can waste a considerable amount of network
resources. Moreover, they can also generate network congestion
by creating many false event messages to prevent a legitimate
event message from being transmitted to the sink.

Although there are many works on detecting such false mes-
sages [1], [15], [28], [31], [34], they cannot detect malicious
agents that create false messages.

Studies on traceback in wireless sensor networks include
ones [29], [32] on detecting malicious agents that create false
messages. However, these methods can only be used in situations
where there is only one malicious agent and the routing path from
it to the sink is static. Although Authenticated K-sized Probabilis-
tic Packet Marking (AK-PPM) [25] can be used in environments
where the routing paths are changeable, it cannot identify mali-
cious agents that falsify messages. Light-weight Packet Marking
(LPM) [19] can be used in situations where there are many mali-
cious agents. However, LPM can only detect a suspicious node

1 Graduate School of Information Systems, The University of Electro-
Communications, Chofu, Tokyo 182–8585, Japan

a) sei@is.uec.ac.jp

group, which contains a suspicious node n, nodes that had sent
messages to node n, and nodes that had received messages from
node n. If nodes can move, the number of nodes in a suspicious
node group can be very large. Therefore, the effectiveness of
LPM goes away in this case.

We use the packet marking method to detect nodes that created
false messages, that is, the source nodes that generate false mes-
sages and the nodes that falsify messages. In our method, each
forwarding node appends its ID and a k-bit message authentica-
tion code (MAC) to the message. If the length of the bits of a
MAC is normal, such as 128 bits [5], there is a lot of communi-
cation traffic for forwarding a message. In our method, we can
set k to be small, e.g., only 1 bit. Of course, malicious agents can
generate a correct MAC with high probability if k is small. Even
so, we can detect malicious agents by using a statistical procedure
when some false messages reach the sink.

The rest of this paper is organized as follows. Section 2
presents the models of false messages and sensor networks. Sec-
tion 3 discusses the related methods and their problems. Section 4
presents the design of our algorithm. Section 5 presents the re-
sults of our simulations. Section 6 discusses several design issues
in our method. Section 7 summarizes this paper.

2. System Model

In this section, we define our assumed sensor network model
in this paper and the model of false message attacks.

2.1 Model of WSNs
We assume a WSN composed of many small sensor nodes.

Each sensor node has extremely limited computational power and
storage. We assume that sensor nodes are not equipped with

*1 We use the same meaning of “agent” and “node” in this paper.
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Fig. 1 Creating false messages by malicious agents.

tamper-resistant hardware.
The nodes can detect an event of interest. Each of the detecting

nodes reports the signal it senses to the sink. In our model, we
assume that the destination of messages is the sink. The sink has
high computational power and storage.

An agent exists on each node and the agent has a role of
controlling the node. Agent-based wireless sensor networks are
widely studied such as Refs. [2], [18]. We use “node” and “agent”
interchangeably.

These assumptions are fairly general in studies of wireless sen-
sor networks.

We also assume that sensor nodes can move because of wind
or reasons of applications. Many studies, such as Refs. [14], [24]
target mobile wireless sensor networks.

There are two kinds of messages in this paper: a legitimate
message and a false message. A legitimate message is a message
that reports a correct event. A false message is a message that
does not report a correct event.

2.2 Attack Model
Adversaries could compromise multiple sensor nodes in a

WSN. They can extract all information such as secret keys from
the compromised nodes. Then the adversaries can insert mali-
cious agents into the compromised nodes.

Malicious agents can create false messages. There are two
methods to create false messages. One is generating false mes-
sages on their own. The other is falsifying legitimate messages
they have received from other nodes.

In Fig. 1 (a), the malicious agent creates a false message by
generating it on the agent’s own. In Fig. 1 (b), the malicious agent
creates a false message by falsifying a legitimate message it has
received from another agent.

The main problem caused by false messages is the wasting of
network resources. Because sensor nodes are battery powered,
we should decrease the number of false messages as much as
possible. Many existing studies such as Refs. [1], [15], [28], [31],
[34] target this problem.

Moreover, if there are many malicious agents, we have a high
risk of DoS attacks to wireless sensor networks [1]. Because all
messages are delivered to the sink, the neighbor nodes of the sink
should receive these messages. When a lot of malicious agents
create many false messages in a short period of term, hundreds
of false messages are delivered to the neighbor nodes of the sink.
Because the computational power of each node is limited, net-
work congestion can occur.

Malicious agents can mount other attacks such as sinkhole at-
tacks [9] and wormhole attacks [11], [12]. These attacks are be-
yond the scope of this paper. We can use existing studies such as
Refs. [17], [23], [30] for these attacks.

3. Related Work

3.1 Overview
In this section, we describe related works on detecting mali-

cious agents and their problems. There are currently three ways
of detecting malicious agents: verifying the integrity of code im-
age, monitoring conducted by the nodes themselves, and trace-
back from the sink.
3.1.1 Verifying the Integrity of the Code Image on a Node

Code attestation mechanisms have been proposed [8], [20],
[27] to verify the integrity of code image on a node. These
mechanisms are usually used only after the detection of a sus-
picious node by using other mechanisms, and they can also check
whether or not the suspicious node is a compromised node. This
is because the verification process requires a large amount of
communication traffic and computation cost. The authors of
the attestation methods mentioned this and recommended using
their proposal with other mechanisms that can detect a suspicious
node.

In our proposal, the sink can detect a malicious agent with high
probability, i.e., it can detect a suspicious node. Therefore, veri-
fying the integrity of the code image, and the use of our proposal
can coexist.
3.1.2 Monitoring Conducted by the Nodes Themselves

Mechanisms to overhear neighboring communications have
also been proposed. Watchdog [16] focuses on message forward-
ing misbehavior. In this scheme, the sender node of a message
watches the behavior of the neighbor node. If the neighbor node
drops or falsifies the message, the sender reports it as a compro-
mised node to the sink. Other works [3], [22] have proposed a
collaborative intruder identification scheme.

These mechanisms are based on monitoring by participating
nodes. These mechanisms are vulnerable to collusion attacks,
because the detector nodes may also be compromised [33]. For
example, assume that the sender of a message is malicious. If the
next hop node of that message is also malicious, and this node
falsifies the message, the sender node will probably not announce
it. We cannot trust any agents completely because each agent
might be malicious. We would need to use these kinds of mech-
anisms if we wanted to send and receive messages within only
the sensor nodes without a sink. However, we take into account a
situation where the destination of the messages from the nodes is
the sink. Therefore, we can assign the task of detecting compro-
mised nodes to the sink, not to the nodes. We propose a method
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resilient to collusion attacks, because we assume the detector, i.e.,
the sink, is not compromised.
3.1.3 Traceback from the Sink

Related works of traceback from the sink are given below.
Probabilistic Nested Marking (PNM) [29] modified a packet
marking algorithm [4], [21] used on the Internet into one for wire-
less sensor networks. In PNM, each forwarding node appends its
message authentication code (MAC) as well as its ID with some
probability. Because several nodes append their MACs, PNM can
detect falsified messages. The sink constructs an attack graph
from false messages in the same way as a probabilistic packet
marking algorithm on the Internet.

However, the sink can only construct the attack graph in situ-
ations where there is only one source node of messages and the
routing path is static.

Contact-Based Traceback (CBT) [32] can detect the source
node that generated the false messages from fewer false messages
than PNM. However, it cannot detect the node that falsified a
message. It also cannot be used in environments where the rout-
ing paths are changeable.

Authenticated K-sized Probabilistic Packet Marking (AK-
PPM) scheme was proposed for packet traceback in mobile ad
hoc networks [25]. This method can be used in environments
where the routing paths are changeable. Although AK-PPM can
identify the source node that creates a message, it cannot identify
malicious agents that falsify messages.

In Refs. [25], [32], the source node of a message must append
its node ID to the message. However, each forwarding node can
choose whether to append its node ID to the message. If a mali-
cious agent falsifies the message and it does not append its node
ID, the sink cannot determine that the agent is malicious.

The authors of Ref. [33] assume that the routing path from the
node to the sink is static. Therefore, it cannot be used in environ-
ments where the routing paths are changeable.

Light-weight Packet Marking (LPM) [19] can detect the source
node that generated false messages and also can detect the mali-
cious agents that falsify messages. However, LPM assumes that
the positions of nodes are static. Therefore, we cannot use these
methods or other related work in situations where sensor nodes
can move because of wind or other factors.

3.2 LPM
The algorithm of LPM consists of two parts: marking at nodes

and verification at the sink. The algorithm of marking at nodes
is the same as our proposed Probabilistic Marking for Mobile
WSNs (PM4M) in this paper.

In LPM, every forwarding node appends its ID and a k-bit

MAC to messages. The basic scheme is shown in Fig. 2. We
express a stream concatenation as |.
3.2.1 Marking at the Nodes

Each node nu has a unique ID u and shares a unique secret key
Ku with the sink. H represents a secure hash function, and it is
shared among all the nodes and the sink. HKu [k](m) means the
k-bit MAC of message m calculated from a shared hash function
H and node nu’s secret key Ku. The initial message M may con-
tain the event type detected at node na, the detected time, and the

Fig. 2 Base algorithm of LPM and PM4M.

location among other things. After creating an initial message
M, node na calculates the MAC of M|a by using its key Ka and
creates the message Ma = M|a|HKa [k](M|a). The next node nb

receives message Ma. Node nb calculates the MAC of Ma|b by
using its key Kb and creates message Mb.
3.2.2 Verification at the Sink

When the sink receives the final message Mnr =

Mnr−1 |nr |HKr (Mnr−1 |nr), it starts a verification process. The
sink has the shared hash function H and all the secret keys shared
by the nodes. First, the sink calculates the MAC of Mnr−1 |nr

by using key Kr. If this value is the same as the one included
in message Mnr , the sink extracts the node ID of the previous
hop r − 1 and verify the value of HKr−1 (Mnr−2 |nr−1). The sink
repeats this verification process until it finds an incorrect MAC
or verifies all the MACs. The last node passing the verification
is called the Last Verified Node (LVN). A malicious agent (the
node that created false messages and/or the forwarding node that
falsified legitimate messages) is the LVN or the neighbor nodes
of the LVN if k is sufficiently large.

However, the malicious agent and its one-hop neighbor node
do not always become an LVN if k is small. Consider the situa-
tion shown in Fig. 2. When node nc falsifies a message, the LVN
is node nc if k is sufficiently large. Otherwise, the candidates of an
LVN are all the nodes between the source node and the malicious
agent, i.e., nodes na, nb, nc in this example.
3.2.3 Problem of LPM

A malicious agent can choose to append a legitimate MAC or
a false MAC to a false message after it has created the false mes-
sage. In the example of Fig. 2, node nc changes message Mb into
a false message M′b, then it appends to string M′b|c a legitimate
MAC HKc [k](M′b|c). We call this attack a legitimate MAC at-
tack. On the other hand, node nc can append a false MAC to a
falsified message M′b after it changes message Mb to M′b. We call
this attack a false MAC attack. In this case, the LVN is always
node nd. In LPM, it is assumed that malicious agents always ap-
pend a legitimate MAC. Even if this assumption is incorrect, we
can detect malicious agents within a one-hop neighbor node in
situations where the positions of nodes are static. However, if
the number of neighbor nodes of a malicious agent is large, the
number of attacks the malicious agent can mount without being
detected becomes large.

In LPM, the sink detects a suspicious node when a node be-
comes an LVN many times (e.g., 10 times). When a malicious
node mounts a false MAC attack, the next forwarding node be-
comes an LVN. Therefore, a malicious node can mount false
MAC attacks 9 times maximum if the routing path from the ma-
licious node to the sink is static.

However, a malicious node can choose a routing path. There-
fore, if the malicious node has 10 neighbor nodes, the node can
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mount false MAC attacks for each node. Therefore, the mali-
cious node can mount attacks 90 times maximum without being
detected.

To make matters worse, if the malicious node can move, it can
choose the message forwarding node from a lot of nodes.

4. PM4M: Probabilistic Marking for Mobile
WSNs

4.1 Notations
We describe notations used in this paper. The main notations

are presented in Table 1.
4.1.1 Logical Node

Let the routing path of a false message be pi = 〈{a, b, ...}〉
(here, a, b... represents the node IDs). A set of all the routing
paths of the false messages the sink has received is represented
by P = {p1, ..., pd}. The value d is the number of times the sink
received false messages.

We call a node which is located downstream of nu (that is, situ-
ated nearer the sink in relation to nu) and is i-hop away from node
nu a logical node nu[i] (i > 0). Examples are shown in Fig. 3.
We call a node which is located upstream of nu and is i-hop away
from node nu a logical node nu[−i] (i > 0).

The node ID of an LVN in routing path pi is represented by
L[pi]. The order of node nu appearing in path pi is represented by
Mu[pi] (the order of the source node is 1.) The order of the LVN
appearing in path pi is represented by ML[pi] = ML[pi][pi].

We define

bu[i] = |{ j|p j ∈ P ∧ u ∈ p j ∧ ML[p j] − Mu[p j] = i}|. (1)

bu[i] represents the number of times that the number of hops from
node nu to the LVN is i. Furthermore, let us define

bu = bu[0]. (2)

That is, bu represents the number of times node nu became an

Table 1 Notations.

nu Sensor node whose ID is u
Ku nu’s key

k Bit length of a MAC
nu[i] nu’s logical node situated nearer the sink

in relation to nu and is i-hop away from node nu

nu[−i] nu’s logical node situated further from sink
in relation to nu and is i-hop away from node nu

bu[i] Number of times that nu[i] becomes an LVN
bu[i]〈S 〉 Number of times that nu[i] becomes an LVN

as a result of legitimate MAC attacks of {nu[s] |s ∈ S }
bu[i]( j, v) Number of times that nu[i] becomes an LVN

of a message passed at nv which is j-hop away from nu

PNu {v|bu(−1, v) ≥ 1}
NNu {v|bu(1, v) ≥ 1}

Fig. 3 Logical nodes.

LVN.
Let us introduce the notation bu[i]〈S 〉 to represent the number

of times logical node nu[i] became an LVN as a result of legiti-
mate MAC attacks on logical nodes {nu[s]|s ∈ S }. Of course, the
sink cannot know this value. For example, imagine a situation
where logical node nu[5] of node nu mounted legitimate MAC at-
tacks several times and logical node nu[1] became an LVN twice.
In this case, bu[1]〈{5}〉 = 2. Suppose further that logical node nu[6]

mounted legitimate MAC attacks several times and logical node
nu[1] became an LVN three times. In this case, bu[1]〈{6}〉 = 3 and
bu[1]〈{5, 6}〉 = 5.

Let us introduce another notation bu[i]( j, v) to represent the
number of times logical node nu[i] became an LVN of a message
passed at nv which is j hops away from nu. That is,

bu[i]( j, v) = |{s|ps ∈ P ∧ u ∈ ps ∧ ML[ps] − Mu[ps] = i

∧ v ∈ ps ∧ Mv[ps] − Mu[ps] = j}| (3)

For example, focus on node nu. We show an example how the
values of bu[i] (i = . . . ,−1, 0, 1, . . .) are calculated by using Fig. 4.

In this example, logical node nu[−1] represents node nb in rout-
ing path 1, node nd in routing path 2, and node nb in routing path
3. In a similar way, logical node nu[1] represents node nc in rout-
ing path 1, node nb in routing path 2, and node nb in routing path
3.

Therefore, we get bu[−1] =1 and bu[1] = 2 because the node sit-
uated further from the sink in relation to nu and 1 hop away from
nu (that is, logical node nu[−1]) becomes an LVN once and the
node situated nearer the sink in relation to nu and 1 hop away
from nu (that is, logical node nu[1]) becomes an LVN twice. Note
that we do not consider the actual node IDs. For example, nb be-
comes an LVN twice but one of the cases increments the value of
bu[1] (in routing path 2) and the other case increments the value
of bu[−1] (in routing path3). In other words, logical nodes do not
consider the actual node IDs, therefore, we can treat the change
of the routing path by introducing logical nodes.

When we focus on another node nx, values of bx[i] are different
from bu[i]. For example, when we focus on node nc in the example
of Fig. 4, bc[−1] = bc[0] = bc[1] = 1.
4.1.2 Previous Nodes of a Node That Became an LVN

The sink manages a previous node set PNu for each node nu.
PNu includes IDs of nodes that transmitted a message to nu and
nu became an LVN of the message. That is,

Fig. 4 bu[−1] = 1, bu = 0, and bu[1] = 2.
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Fig. 5 Observational results when nu mounts legitimate/false MAC attacks
many times.

PNu = {v|bu(−1, v) ≥ 1}. (4)

We also define the function PNu.get(v). This function returns
bu(−1, v).
4.1.3 Next Nodes of a Node That Became an LVN

The sink manages a next node set NNu for each node nu. NNu

includes IDs of nodes that received a message from nu and nu

became an LVN of the message. That is,

NNu = {v|bu(1, v) ≥ 1}. (5)

We also define the function NNu.get(v). This function returns
bu(1, v).

4.2 Concept of Determining Malicious Agents in PM4M
Although our method does not consider the node mobility

clearly, our method can treat the node mobility. First, our method
considers the change of the routing path by introducing logical
nodes. We do not limit the degree of change. Our method can
be used even if the routing path changes greatly. Moreover, our
method can be applied to the situation where each node has many
neighbor nodes as the results of the experiments show.

When a node moves, the neighbor nodes of the node and the
routing path change. If a method can treat the significant change
of the routing path and the method can be used in the situation
where the number of neighbor nodes of each node is large, we
can consider that the method can be used in the situation where
nodes can move.

Many existing studies cannot treat the change of the routing
path. Although LPM considers the change of the routing path, the
performance decreases substantially when the number of neigh-
bor nodes of each node is large.

In Fig. 2, node nc mounts a legitimate MAC attack. In this case,
one of the nodes that transmitted the message to node nc, that is
node na, nb, or nc, becomes an LVN. The probability that node nc

becomes an LVN is 1 − 2−k. The probability that nc[−i] becomes
an LVN is 2−k·i · (1 − 2−k). Therefore, node nc is most likely to
become an LVN.

On the other hand, if node nc mounted a false MAC attack,
nc[1], that is node nd in this example, always becomes an LVN.

Therefore,
• When nu mounts legitimate MAC attacks many times,

( 1 ) The result bu >> bu[1] will be observed (Fig. 5 (a)).
• When nu mounts false MAC attacks many times,

( 2 ) The result bu[1] >> bu[2] and
( 3 ) bu[1] >> bu will be observed (Fig. 5 (b)).

Then, we consider the reasons for the observed results just
mentioned above.

Fig. 6 Indistinguishable situations from observed effects.

Situation 1 : The reasons why bu >> bu[1] are,
a. nu mounted legitimate MAC attacks,
b. PNu mounted false MAC attacks, or
c. nu[i](i ≥ 1) mounted legitimate MAC attacks

and it just happened that way.
Situation 2 : The reasons why bu[1] >> bu[2] are,

a. nu mounted false MAC attacks,
b. NNu mounted legitimate MAC attacks, or
c. nu[i](i ≥ 2) mounted legitimate MAC attacks

and it just happened that way.
Situation 3 : The reason why bu[1] >> bu is,

a. nu mounted false MAC attacks, or
b. nu[i](i ≥ 1) mounted legitimate MAC attacks

and it just happened that way.
If we can eliminate the possibility of c. in Situation 1, we can

cut the list of candidates of suspicious nodes to nu and nodes of
PNu. In the same way, we can cut the list of candidates of sus-
picious nodes to nu and nodes of NNu if we can eliminate the
possibility of c. in Situation 2. We can cut the list of candidates
of suspicious nodes to only nu if we can eliminate the possibility
of b. in Situation 3.

To do this, we propose the detection method PM4M for legiti-
mate/false MAC attacks. PM4M can identify a suspicious node,
but its identification is not always correct because it is a prob-
abilistic method. To confirm whether a node is actually com-
promised or not requires another more costly method such as a
method of verifying the integrity of the code image on a node de-
scribed in Section 3.1.1. The use of PM4M enables us to restrict
this more costly determination to the set of identified suspicious
nodes.

The value of bu becomes larger than bu[−1] when nu mounts le-
gitimate MAC attacks many times, and bu[1] becomes larger than
bu when nu mounts false MAC attacks many times.

Even when nu mixes legitimate MAC attacks and false MAC
attacks, at least one of the above cases holds. If bu is larger than
bu[−1], and bu[1] is not larger than bu, that is, nu mounted legit-
imate MAC attacks many times, the sink can determine that nu

is the malicious node. If bu is not larger than bu[−1], and bu[1] is
larger than bu, that is, nu mounted false MAC attacks many times,
the sink can determine that nu is the malicious node.

On the other hand, if bu is larger than bu[−1] and bu[1] is larger
than bu, the sink cannot determine which nu and bu[1] is the ma-
licious node. This situation is shown in Fig. 6 from observed
effects. In this case, we determine suspicious node group. In
Fig. 6, the suspicious node group includes nodes n2 and n3. We
randomly choose one node from the group (here, assume that we
choose n2) and determine that n2 is a suspicious node. Then the
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sink confirms whether n2 is actually compromised or not by an-
other more costly method such as a method of verifying the in-
tegrity of the code running on a node described in Section 3.1.1.
If n2 is a malicious agent, we eliminate the other node n3 from
the suspicious node group. Otherwise, the sink determines that
n3 is a suspicious node and confirms whether n3 is actually com-
promised or not by the costly method. Therefore, the theoretical
maximum successful detection rate is 2/3.

4.3 Determining Malicious Agents in PM4M
We propose PM4M which can determine that at least one of nu

and PNu is suspicious. Then we propose a method that can cut
the list of candidates of suspicious nodes to realize the situation
where the successful detection rate is higher than th.

4.4 Detection of a Suspicious Node Group
Let Bu[i] be the random variable of the number of times logical

node nu[i] became an LVN, and let Wu[i] be the random variable of
the number of times logical node nu[i] mounted a legitimate MAC
attack. The conditional probability of nu becoming LVNs bu − i

times as a result of legitimate MAC attacks of nu[ j] ( j ≥ 1) given
that nu[i] became LVNs bu[i] times is calculated by

ξ1(u, i) = P(Bu[0]〈1, . . .〉 = bu − i|Bu[1]〈1, . . .〉 = bu[1])

= P(Bu[0]〈1〉 = bu − i|Bu[1]〈1〉 = bu[1])

From Lemma A.1.1 described in Appendix,

= 2k+bu[1]k · (1 + 2k)−1−bu[1]−bu+i · bu[1]+bu−iCbu[1]

(6)

Let Ξ1(u, α) be the conditional probability of at least one of
nodes of PNu and nu mounting attacks α times given that nu be-
came LVNs bu times. We get from Eq. (6)

Ξ1(u, α) =
bu∑

i=α

ξ1(u, i). (7)

We consider that the set of nodes of PNu and nu is a suspicious
node group. The number of nodes of the suspicious node group
could be large. In the following subsection, we describe how to
reduce the number of the suspicious nodes.

4.5 Determination of Which Nodes of Node nu and Nodes
PNu are Suspicious Node

The sink can determine that at least one of nu and nodes PNu

is suspicious node by using the method described above. We
propose methods that can cut the list of candidates of suspicious
nodes.

Method 1. Ξ1(v, 1) where v ∈ PNu is the probability that nu

and nv mounted attacks one or more times. When this value is
larger than th, the probability that node nu mounted a legitimate
MAC attack or nv mounted a false MAC attack is higher than th,
therefore, the sink determines that nu and nv are the suspicious
node group.

Method 2. We assume that nu is legitimate. We calculate
ω = bu−maxv(PNu.get(v)) and Ξ1(u, ω+1). For example in Fig. 7,
maxv(PNu.get(v)) = 5. When Ξ1(u, ω + 1) is larger than th, the
probability that node nu mounted legitimate MAC attack or nodes
of PNu mounted false MAC attacks ω+ 1 times is higher than th.

Fig. 7 nv1 forwarded messages to nu and nu became LVNs five times as a
result of these messages, nv2 forwarded messages to nu and nu be-
came LVNs twice as a result of these messages, and nv3 forwarded
messages to nu and nu became an LVN once of these messages.

Even if all nodes of PNu except for nargmaxv(PNu .get(v)) are malicious
agents, they could mount false MAC attacks only ω times. That
is, the probability that one of nodes nu and nargmaxv(PNu .get(v)) is
compromised is higher than th. Therefore, the sink determines
that nu and nargmaxv(PNu .get(v)) are the suspicious node group. For
example in Fig. 7, if the probability that nodes of PNu mounted
attacks more than three times, we can determine that nv1 and/or
nu mounted attacks at least once.

Method 3. Assume that the probability that many nodes of
PNu are malicious agents is high. In this case, if the sink deter-
mines that all nodes of PNu are suspicious nodes, the successful
detection rate can be higher than th.

Here, the expected value of successful detection rate when nu is
confirmed to be legitimate and the sink determines that all nodes
of PNu are suspicious nodes is calculated by

Ξ3(u) =
bu∑
i=1

ξ1(u, bu − i) · Ψ(i), (8)

where

Ψ(i) = min
V

(|{v|V ⊆ PNu ∧
∑
v∈V

PNu.get(v) ≥ i}|)/(1 + |PNu|).

For example, see Fig. 7. In this case, Ψ(i) =

1, 1, 1, 1, 1, 2, 2, 3 (i = 1, ..., 8). Specifically,
( 1 ) The sink confirms that Ξ1(u, 1) ≥ th and Ξ3(u) ≥ th.
( 2 ) The sink determines that nu and nargmaxv(PNu .get(v)) are the sus-

picious node group and confirms whether each node is com-
promised or not.

( 3 ) If both of the two nodes are legitimate, the sink determines
that all nodes of PNu − {argmaxv(PNu.get(v))} are suspicious
nodes.

4.6 Procedures after Determining Suspects
Consider that the sink determines that node nu is a suspicious

node. An administrator of the sensor network may check the sus-
picious node physically. If the determination is wrong, i.e., the
suspicious node is not a compromised node, the sink resets bu[i]

for each i and deletes ID u from each PNv.

5. Evaluation

5.1 Evaluation Index
Existing studies and our proposed method detect a suspicious

node which is thought to mount attacks of creating false messages
with high probability. Our proposed method is a statistical one,
that is, we cannot detect malicious agents without misdetection. It
is a costly task to determine whether or not the suspicious node is
actually compromised because we need to capture the suspicious

c© 2015 Information Processing Society of Japan 481



Journal of Information Processing Vol.23 No.4 476–487 (July 2015)

Fig. 8 Average number of false messages and successful detection rate vs. the average number of neigh-
bor nodes d.

node physically and check the physical memory of it. Therefore,
we want to reduce the number of occurrences of misdetection.

On the other hand, we want to detect malicious agents as soon
as possible because they can waste a considerable amount of net-
work resources by creating false messages.

Therefore, we use a successful detection rate and the number

of false messages to measure our proposed method and existing
studies. Let S s be the set of nodes that a sink determines as suspi-
cious nodes and let S c be the set of nodes that are actually mali-
cious agents within S s. The successful detection rate is calculated
by |S c|/|S s|. The number of false messages represents the num-
ber of false messages created by malicious agents until the sink
detects all malicious agents.

5.2 Evaluation Results
We conducted simulations to verify our analysis. The simula-

tor has the basic routing algorithm [10]. We set the length of the
bits of the node ID to 10 by default.

We compared our proposed PM4M with LPM. Again, note
that PMN described in Section 3 can be used in situations where
there is only one source node of messages and the routing path
is static, and AK-PPM and CBT cannot identify malicious agents
that falsify messages.

In the first experiment, we set the number of nodes to 10,000.
Let d denote the number of neighbor nodes of each node. We
set d from 10 to 30. One of the nodes was a malicious agent,
and we set th to 0.66. The malicious agent always falsified the
messages it received. We varied the ratio of legitimate MAC at-
tacks and false MAC attacks (L/F). L/F represents the ratio of
legitimate MAC attacks. The source node repeatedly generated
a message until the sink determined which node was the mali-
cious agent. We counted the number of false messages sent from
the malicious nodes. This process was repeated 100 times in each
parameter setting. Figure 8 shows the results. If malicious agents
always mount legitimate MAC attacks, LPM can detect them with

higher accuracy than PM4M. However, if we assume that mali-
cious agents are clever and they can mount false MAC attacks
in combination with legitimate MAC attacks, the successful de-
tection rate of LPM is very low. Moreover, the number of false
messages until the sink detects the malicious agent of PM4M is
less than that of LPM.

In the next experiment, we set d to 20 and we changed the
number of malicious agents from 10 to 100. Figure 9 shows the
results. When the number of malicious agents increases, the sink
needs relatively many false messages to detect a malicious agent.
However, the value of PM4M is still less than that of LPM in any
parameter settings.

We know from Fig. 9 that the number of false messages of LPM
and PM4M increases as the number of malicious agents increases.
However, we know from Fig. 8 that the number of false messages
of PM4M is independent of the value of d whereas that of LPM
increases as the value of d increases.

Finally, we conducted an experiment to verify whether our
method is resilient to changes in locations of nodes. The number
of sensor nodes was set to 1,000. One of them repeatedly gen-
erated a message. We set the number of malicious agents from
10 to 100. When a malicious agent received a message, the node
falsified the message with a random probability. Every time the
sink received a message, we randomly changed the locations of
all nodes. The neighbor nodes of each node also changed based
on the locations. L/F rate of each malicious agent was determined
at random. Figure 10 shows the results.

Figure 10 (a) shows the number of false messages needed until
the sink detected all malicious agents. The figure indicates that
the number of false messages needed per malicious agent until
the sink detected all malicious agents is relatively stationary even
if the number of malicious agents increases.

If the application allows relatively many false messages, we
set k to 1. However, if the application wants to avoid many false
messages, the application can set k to 3 or larger whereas larger k
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Fig. 9 Average number of false messages and successful detection rate vs. the number of malicious agents cn.

Fig. 10 Results of environments where nodes move.

increases network traffic even if there are no malicious agents.
For example, applications such as intruder detection want to

set larger k because network congestion should be avoided.
Figure 10 (b) indicates that the sink could determine malicious

agents around 66% of the time.

6. Discussion

In this section, we discuss cost overhead of our method.
Many works in WSNs set the default packet size to about

40 bytes [6], [7]. When the average number of hops from the
source node to the sink is 10 and the length of node ID is 10,
the average overhead is (

∑10
i (1 + 10) · i)/10 = 42 bits = 8 bytes if

we set k to 1. Therefore, the overhead rate is 20%. This overhead
is the same as that of LPM.

This value is less than that of existing works for packet trace-

back such as PNM. In PNM, three nodes append 64 bit MAC
per message on average. Therefore, the average overhead is
64 × 3/2 bits = 12 bytes. Therefore, the overhead rate is 30%.

Moreover, we may reduce the average overhead by combining
methods for detecting false messages. Although existing works of
detecting false messages [13], [26], [28], [31], [34] cannot iden-
tify the nodes that create false messages, they can notify the sink
of the existence of false messages. Only when the sink recog-
nizes the necessity to identify the malicious agent that creates
false messages, it floods a message to the network to start using
the PM4M protocol. When the sink identifies and removes the
malicious agent, it floods a message to stop using the PM4M pro-
tocol.

7. Conclusion

We described a method to detect a malicious agent that cre-
ated a false message and report it to the sink. Existing works can
only be used in situations where sensor nodes have fixed posi-
tions. The method described above uses a k-bit MAC algorithm
and a logical node to deal with changes in positions of nodes.
Mathematical analysis and simulations show that compared with
related methods, it needs fewer false messages to detect a mali-
cious agent.
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Appendix

A.1 Definition and Proof of Lemma A.1.1

Lemma A.1.1.

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1])

= 2k+bu[1]k · (1 + 2k)−1−bu[1]− j · bu[1]+ jCbu[1] .
(A.1)

Proof. From Lemma A.1.2, we get

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1])

=

∞∑
w=0

[P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

· P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1] ∧Wu[1] = w)]

(A.2)

From Lemma A.1.3, we get

(A.2) =
∞∑
w=0

[
P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

· P(Bu[0]〈1〉 = j ∧ Bu[1]〈1〉 = bu[1]|Wu[1] = w)

P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)

]
.

(A.3)

From Lemma A.1.4, we get

P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

=
P(Wu[1] = w) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)∑∞

w′=0 P(Wu[1] = w′) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w′)
,

(A.4)

where P(Bu[1]〈1〉 = bu[1]|Wu[1] = w) represents the conditional
probability of node nu[1] becoming an LVN bu[1] times by itself
given that nu[1] created false messages w times.

The verification succeeds with probability 2−k for each node
situated further from the sink in relation to a malicious node when
the malicious node mounted a legitimate MAC attack.

Assume that node nu[1] mounted a legitimate MAC attack and
the sink detects that the message is a false one. If the verification
of nu fails, nu[1] becomes an LVN. This probability is 1 − 2−k.
If the verification of nu succeeds, nu[1] does not become an LVN.
This probability is 2−k. Therefore,

P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)

= wCbu[1] (1 − 2−k)bu[1] (2−k)w−bu[1] .
(A.5)

Again, assume that node nu[1] mounted a legitimate MAC at-
tack and the sink detects that the message is a false one. If the
verification of nu fails, nu[1] becomes an LVN. This probability is
1 − 2−k. If the verification of nu succeeds, but the verification of
nu[−1] fails, nu becomes an LVN. This probability is 2−k · (1−2−k).
Therefore, we get

P(Bu[0]〈1〉 = j ∧ Bu[1]〈1〉 = bu[1]|Wu[1] = w)

= wCbu[1] · w−bu[1]C j · (1 − 2−k)bu[1] (2−k(1 − 2−k)) j

·(1 − (1 − 2−k) − 2−k(1 − 2−k))w−bu[1]− j

= wCbu[1] · w−bu[1]C j · (4−k)−bu[1]− j+w(1 − 2−k)bu[1] (4−k(−1 + 2k)) j.

(A.6)
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P(Wu[1] = w
′) in Eq. (A.4) represents the probability that nu[1]

created false messages w′ times. Since the number of times that
nu[1] became an LVN by itself is bu[1], the number of times that
nu[1] created w′ should be greater than or equal to bu[1]. Therefore,
when w′ < bu[1], P(Wu[1] = w

′) = 0. When w′ ≥ bu[1], we can
assume that every P(Wu[1] = w

′) has the same value, because a
malicious agent can create false messages an arbitrary number of
times. Therefore, we get from Eqs. (A.4) and (A.5).

P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

=
P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)∑∞

w′=bu[1]
P(Bu[1]〈1〉 = bu[1]|Wu[1] = w′)

=
wCbu[1] (1 − 2−k)bu[1] (2−k)w−bu[1]∑∞

w′=bu[1] w
′Cbu[1] (1 − 2−k)bu[1] (2−k)w′−bu[1]

From Lemma A.1.5,

=
wCbu[1] (1 − 2−k)bu[1] (2−k)w−bu[1]

(1 − 2−k)−1

= wCbu[1] (1 − 2−k)bu[1]+1(2−k)w−bu[1] .

(A.7)

From these equations, we get

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1])

=

∞∑
w=0

[
wCbu[1] (1 − 2−k)bu[1]+1(2−k)w−bu[1]

· wCbu[1] · w−bu[1]C j · (4−k)−bu[1]− j+w(1 − 2−k)bu[1] (4−k(−1 + 2k)) j

wCbu[1] (1 − 2−k)bu[1] (2−k)w−bu[1]

]

= (1 − 2−k)1+bu[1] (4−k(2k − 1)) j(4−k)−bu[1]− j

·
∞∑
w=0

[(4−k)w · wCbu[1] · w−bu[1]C j]

From Lemma A.1.6,

= (1 − 2−k)1+bu[1] (4−k(2k − 1)) j(4−k)−bu[1]− j

· (1 − 4−k)−1−bu[1]− j(4−k)bu[1]+ j
bu[1]+ jCb

= 2k+bu[1]k · (1 + 2k)−1−bu[1]− j · bu[1]+ jCbu[1] .

(A.8)

�
Lemma A.1.2.

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1])

=

∞∑
w=0

[P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

· P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1] ∧Wu[1] = w)]

(A.9)

Proof. Let Ω be a discrete sample space. Let Z0, . . . ,Z∞ be a
partition of the sample space Ω, that is,
• Z0 ∪ . . . ∪ Z∞ = Ω
• Zi ∩ Zj = ∅ for all i, j

From the law of total probability theorem, for any event X of
the same probability space:

P(X) =
∞∑
w=0

[P(Zw)P(X|Zw)] . (A.10)

Therefore, for any event Y of the same probability space:

P(X|Y) =
∞∑
w=0

[P(Zw|Y)P(X|Y ∩ Zw)] . (A.11)

By plugging in (Bu[0]〈1〉 = j) for X, plugginig in (Bu[1]〈1〉 =
bu[1]) for Y , and plugging in (Wu[1] = w) for Zw, we get

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1])

=

∞∑
w=0

[P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

· P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1] ∧Wu[1] = w)]

(A.12)

�
Lemma A.1.3.

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1] ∧Wu[1] = w)

=
P(Bu[0]〈1〉 = j ∧ Bu[1]〈1〉 = bu[1]|Wu[1] = w)

P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)
.

(A.13)

Proof. In general, we get

P(X|Y ∩ Z) =
P(X ∩ Y ∩ Z)

P(Y ∩ Z)

=
P(X ∩ Y |Z)P(Z)

P(Y |Z)P(Z)
=

P(X ∩ Y |Z)
P(Y |Z)

(A.14)

By plugging in (Bu[0]〈1〉 = j) for X, plugging in (Bu[1]〈1〉 =
bu[1]) for Y , and plugging in (Wu[1] = w) for Z, we get

P(Bu[0]〈1〉 = j|Bu[1]〈1〉 = bu[1] ∧Wu[1] = w)

=
P(Bu[0]〈1〉 = j ∧ Bu[1]〈1〉 = bu[1]|Wu[1] = w)

P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)
.

(A.15)

�
Lemma A.1.4.

P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

=
P(Wu[1] = w) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)∑∞

w′=0 P(Wu[1] = w′) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w′)
.

(A.16)

Proof. From Bayes’ theorem, we get

P(Zw|Y) =
P(Zw)P(Y |Zw)

P(Y)
(A.17)

Let Ω be a discrete sample space. Let Z0, . . . ,Z∞ be a partition
of the sample space Ω, that is,
• Z0 ∪ . . . ∪ Z∞ = Ω
• Zi ∩ Zj = ∅ for all i, j

From the law of total probability theorem, for any event Y of
the same probability space:

P(Y) =
∞∑
w′=0

[P(Zw′ )P(Y |Zw′ )] (A.18)

From Eqs. (A.17) and (A.18), we get

P(Zw|Y) =
P(Zw)P(Y |Zw)∑∞

w′=0 [P(Zw′ )P(Y |Zw′ )] (A.19)

By plugginig in (Bu[1]〈1〉 = bu[1]) for Y , plugginig in (Wu[1] =

w) for Zw, we get
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P(Wu[1] = w|Bu[1]〈1〉 = bu[1])

=
P(Wu[1] = w) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w)∑∞

w′=0 P(Wu[1] = w′) · P(Bu[1]〈1〉 = bu[1]|Wu[1] = w′)
.

(A.20)

�
Lemma A.1.5.

∞∑
w′=bu[1]

w′Cbu[1] (1 − 2−k)bu[1] (2−k)w
′−bu[1] = (1 − 2−k)−1 (A.21)

Proof. From the formula for a geometric series, we get

n∑
w′=0

xw
′
=

1 − xn

1 − x
(A.22)

where x � 1 is the common ratio and n is a positive integer.
When 0 < x < 1, by plugging in∞ for n, we get,

∞∑
w′=0

xw
′
=

1
1 − x

(A.23)

By differentiating both sides bu[1] times with respect to x, we
get

∞∑
w′=0

w′Pbu[1] x
w′−bu[1] = bu[1]!(1 − x)−bu[1]−1 (A.24)

By plugging in 2−k for x, we get

∞∑
w′=0

w′Pbu[1] (2
−k)w

′−bu[1] = bu[1]!(1 − 2−k)−bu[1]−1 (A.25)

By multiplying both sides by (1 − 2−k)bu[1]/bu[1]!, we get

∞∑
w′=0

w′Cbu[1] (1 − 2−k)bu[1] (2−k)w
′−bu[1] = (1 − 2−k)−1 (A.26)

Because w′Cbu[1] = 0 when w′ < bu[1], we get

∞∑
w′=bu[1]

w′Cbu[1] (1 − 2−k)bu[1] (2−k)w
′−bu[1] = (1 − 2−k)−1 (A.27)

�
Lemma A.1.6.

∞∑
w=0

(4−k)w ·wCbu[1] ·w−bu[1]C j = (1−4−k)−1−bu[1]− j(4−k)bu[1]+ j
bu[1]+ jCb

(A.28)

Proof. From the formula for a geometric series, we get

n∑
w=0

xw =
1 − xn

1 − x
(A.29)

where x � 1 is the common ratio and n is a positive integer.
When 0 < x < 1, by plugging in∞ for n, we get,

∞∑
w=0

xw =
1

1 − x
(A.30)

By differentiating both sides bu[1] + j times with respect to x,
we get

∞∑
w=0

w!
(w − bu[1] − j)!

xw−bu[1]− j = (1 − x)−1−bu[1]− j(bu[1] + j)!

(A.31)

By plugging in 4−k for x, we get

∞∑
w=0

w!
(w − bu[1] − j)!

(4−k)w−bu[1]− j = (1 − 4−k)−1−bu[1]− j(bu[1] + j)!

(A.32)

By multiplying both sides by (4−k)bu[1]+ j/(bu[1]! j!), we get

∞∑
w=0

w!
(w − bu[1] − j)!bu[1]! j!

(4−k)w

= (1 − 4−k)−1−bu[1]− j(4−k)bu[1]+ j (bu[1] + j)!

bu[1]! j!

(A.33)

Here, in general,

w!
(w − bu[1] − j)!bu[1]! j!

=
w!

(w − bu[1])!bu[1]!
· (w − bu[1])!

(w − bu[1] − j)! j!

= wCbu[1] · w−bu[1]C j

(A.34)

and,

(bu[1] + j)!

bu[1]! j!
= bu[1]+ jCbu[1] . (A.35)

From Eqs. (A.33), (A.34), and (A.35), we get

∞∑
w=0

(4−k)w · wCbu[1] · w−bu[1]C j

= (1 − 4−k)−1−bu[1]− j(4−k)bu[1]+ j
bu[1]+ jCb

(A.36)

�
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