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Abstract—In this paper, we propose a new polarimetric syn- be unique, complete, and physical, simultaneously. For exam-
thetic aperture radar data interpretation method based on locally ple, the H/A /o decomposition [6], uniquely and completely
averaged Stokes vector. We first propose a method to extract 4ocomposes the T matrix. However, since it is a mathematics

discriminators from all the three components of the averaged . o .
Stokes vector. Based on the extracted discriminators, we build based algorithm, the decomposition results are not convenient

four physical interpretation layers with ascending priorities: the ~ for the understanding with direct physical meanings [5]. On
basic structure layer, the low coherence targets layer, the man- the contrary, the model-based decompositions decompose the
made targets layer, and the low back scattering targets layer. T/C matrix into several elements corresponding to physical
An intuitive final image can be generated by simply stacking scattering models [5], [7], [10]. However, since the models

the four layers in priority order. We test the performance of the . . -,
proposed method over ALOS-PALSAR data. The experimental &€ not totally independent, such physical decompositions are

results show that the proposed method has high interpretation usually not unique or complete [3], [7], [11].

performance, especially for skew aligned or randomly distributed In this paper, we propose a new PoISAR data interpretation

buildings, and isolated man-made targets such as bridges. method based on locally averaged Stokes vector. The averaged
Index Terms—polarimetric SAR, Stokes vector, data interpre- Stokes vector describes the partially polarized scattered wave

tation. directly [13], [20]. In comparison with C/T matrix, it is

a more powerful parameter for dealing with depolarization
information. According to the well-known Born-Wolf wave
decomposition [21], a partially polarized wave can be uniquely

Polarimetric synthetic aperture radar (PolSAR) system calecomposed as the sum of a completely polarized wave and
lects scattering information of observed targets. For classifiGa-completely unpolarized wave. Further, the decomposition
tion applications, a high performance relies on reasonable dsdexpressed by three physical components of the averaged
effective interpretation of POISAR data. Interpretation methoditokes vector: the total scattered intensiy the degree
with the potential to characterize generally existing partiallyf polarization (DoP)p, and the completely polarized wave
polarized scattered wave [1]-[18] are widely used. AmongobmponentG¥°. Note that decomposition here means the
them, decompositions based on coherency/covariance (Chigve decomposition which obeys the general physical laws.
matrix have aroused active discussions the most [1], [2], [4ltavoids the conflict among physical meaning, unigueness,
[7], [10], [11], [14]-[18]. and completeness. The classification potentialsAoand p

Although the C/T matrix based decompositions are effectiveave been proved in many works [13], [22]. In our previ-
in many cases, there are still two main factors restrictimgus works [23]-[25], we have introduced componesit®
their performances. Firstly, the C/T matrix cannot be usexto supervised classification process and obtained successful
for extracting depolarization information of partially polarizedesult. In this paper, we first propose the method to extract
scattered wave. Important depolarization information not ondliscriminators from all the three components. Based on the
relates to the target features represented by the C/T matrix, butracted discriminators, we propose four physical interpreta-
also relates to the polarization state of the incident wave [13pn layers with ascending priorities: the basic structure layer,
To consider also such depolarization information from C/fhe low coherence targets layer, the man-made targets layer,
matrix, in model-based decomposition methods, researcharsl the low back scattering targets layer. On each layer, only
introduced a volume scattering model. The expression tfrgets with certain features are identified. Finally, an intuitive
the model is switched according to the values of practictihal image can be generated by simply stacking the four
data to ensure high adaptability for various land situationgyers in priority order. We test the proposed method over
Nevertheless, depolarization phenomenon is caused in so maWpDS-PALSAR data. The experimental results for Suruga
cases that finite number of volume models are not enoughy area, Ebetsu city area, and Tokyo harbor area, show
for all the situations. Thus, sometimes, the depolarizatiahat the proposed method has high interpretation performance,
information cannot be reasonably estimated [19]. Secondéspecially for skew aligned or randomly distributed buildings,
in C/T matrix based decompositions, the averaged scattergngd isolated man-made targets such as bridges.
mechanism described by the C/T matrix is decomposed as the
sum of several elements. Such decomposition processes cannot Il. AVERAGED STOKESVECTOR
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I. INTRODUCTION



A. Concept of Averaged Stokes Vector
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where H andV represent horizontal and vertical polarization T, .03 T, , 0
directions of antennas. In the case of backscattering in & ¢l 05 ¢l 05 0

reciprocal mediumSgy = Sy g. @ ®)

Scattering matrix relates the incident wave and scattered L. (@) Total scattered intensity and (b) DoP for th e window dat
: : . 1. (a) lotal scattered Intensity an OP Tor the sample window data

wave. It is a parameter for ob§erved target. .C0|_1trarlly, tt&ﬁ’h all the orientation angles and aperture angle.

averaged Stokes vector describes the polarization state of

electromagnetic radiation. It is a parameter for wave. There-

fore, to calculate the averaged Stokes vector for scatteighce J is a complex Hermitian positive semidefinite matrix,

wave from PoISAR data, a certain incident wave needs itofollows g2 + g2 + g% < g2. So that,0 < p < 1.

be supposed. This incident wave is expressed by a unit Joneaccording to (6), the averaged Stokes vector carries both

vector [E% Ei]T which is given by of the completely polarized, and completely unpolarized wave
Ei . information. The averaged Stokes vector is a powerful param-
| | cosp —sing COST . . . .
[ i } [ : ] [ o, } ) (2) eter to describe a partially polarized scattered wave in PoISAR
v sing  cos¢ jsinT -
observation.
where¢ € [-%,Z] andr € [—Z, %] are orientation angle
\ellvr;t\j/:perture angle describing polarization state of the |nC|d<]3.Dn_t Analysis of Averaged Stokes Vector
The scattered waviF;, E]T is obtained by The averaged Stokes vector has three independent compo-
. ; nents: total scattered intensity, degree of polarizatiorp,
[ Elg } - { Sum  Snv } { EtZ?I } ) (3) and completely polarized wave pa@”®. They are vari-
Ly Svi  Svv by ables related to the polarization state of the incident wave.
The Jones coherency matrikis defined as Mathematically, according to (2), these three components are

R S variables of orientation angleé and aperture angle. To
J= [ <E§Eﬁ*> <E§E}{*> } = { JunJnv } ., (4) illustrate the features ofd, p, and G"°, we show these
(EVEY) (EVEY) Jvu vy three components for a sample window of ALOS-PALSAR
where(-) indicates spatial averaging process in a local windowata. Note that, window size for spatial averaging process in
From the Jones coherency matrix, the averaged Stokes veéfgrdirectly affects the calculation result of the corresponding
G is defined as Stokes vector. In our previous work [23], we showed that
the size of a square window should be at leask 5 to

Jag +J ) . ) : :
z (1) ng _ JZX obtain Stokes vector with reliable DoP information for ALOS-
G = ol Il I SR (5) PALSAR data. Considering the fact that larger window size
75 iy — Jvi) will lead to lower resolution after averaging process, we finally

choseb x 5 window in [23]. In this paper, keeping the total
Generally, this averaged Stokes vector expresses a partially gigel number around 25, we have further optimized the side
larized wave. According to the Born-Wolf wave decompositiogngths (in pixels) of the window. We have tested the window
[21], the averaged Stokes vector can be regarded as the sjifds (range directiorx azimuth direction)2 x 12, 3 x 8,
of a completely polarized wave and a completely unpolarized. 6, and5 x 5. We have found that the best window size
wave. Physically, the relationship between these two partsigf3 (range) x 8 (azimuth direction) in pixels. The values of
information is expressed as [3], [13], [20] scattering matrices in the sample window are shown i}rijTabIe

p N I. According to (1) to (6), we can calculaté, p, and G
G:A[pG C+-pG” } for this window.

1 1 Fig. 1 shows the values of total scattered intensitynd
) 7 1_ 0 ’ (6) degree of polarizatiop with various¢ and r calculated for
n p g2 +(L=p) 0 the sample window data. Therd, and p are scalars varying

g3 0 with the changes of andr. Normally, instead of considering

[P, PO UN all of these values, only several special values are used in
wheregi + g; + g3 = 1. G'~ and G™" represent Stokes ¢|assification processes. For example, in [13], the authors

vectors for completely polarized wave and completely unp@yngiryct discriminators for the classification process by using
larized wave, respectively is total scattered intensity, and e maximum and minimum values df.

is degree of polarization which can be calculated as Completely polarized wave compone’® is a 3 di-

/92 + g2 + g2 mensional vector. Th&”® for a certain polarization state
W (7)  of incident wave, i.e. , certain values gf and 7, can be



TABLE |
ALOS-PALSARDATAIN A 3 X 8 SAMPLE WINDOW

SuH data (><105)

0.11+0.55j | -0.31-1.77j | 1.28-0.03j 1.92+0.35j | -0.53-1.20j | 1.28-0.35j 1.62+0.89) | -2.36+1.73]
2.14-1.70j | -0.37+1.08j | 1.71+0.83j | 2.23-0.10j | -0.54+2.49j | -2.33+1.43j| -2.72-2.41j | -2.41-4.23]
-1.92-0.92j | 1.19-1.50j 1.97+0.40j | 0.14-0.39] | -0.48-0.02j | 7.25-4.56j 4.34-5.18] 1.34+4.23]
Syv = Sy g data (><105)
-0.76-0.88j | -1.32-0.10j | -1.19+0.31j| -1.05-0.08j | 0.76-0.85j 1.37-1.53j | -0.92-1.11j | -1.24-0.19j
0.27+0.25j | 1.92+0.01j | 0.87+0.06j | -0.91+0.33j| -0.68-1.84j | 0.29-1.10j 0.57-0.22] | -1.74+0.00j
0.16-0.39j | -0.91-0.59] | -0.66+0.55] | -0.49+1.58j| 0.43+2.92j | -0.75+1.23j| -2.23+2.79] | -0.14+1.59j
Syv data (><105)
0.57+3.64j 1.56-0.38j 0.20-2.48j | -1.47-0.62j | -1.19-1.66j | 1.00-1.47j 2.59-0.76j 0.19-1.18j
1.15+0.75] | -0.19+1.10j | 0.70+2.49j | -1.43+1.13j| -1.84+2.73j| 1.24+1.31j | -0.91-1.22j | -1.28-3.14j
-3.26+3.23j | -2.78+0.93j| -1.36-0.67] | -1.76+0.09j | -4.29+0.53j| 4.86-1.97| 6.27-0.31j | 3.35+11.18]

expressed by a point on the Poincare sphere. With the chaogentation route. The ideal routes determined by these five
of ¢ andr, a set of such points form particular routes on thgoints are shown by the pink and blue curves in Fig. 2c. Thus,
Poincare sphere. We can observe these routes in two ways:can use the ideal routes to express the features of the actual
for series of constant with continuously varyingr, and for routes. In detail, we can analyze the geometrical features of
series of constant with continuously varyingy. They are the orientation triangle and aperture triangle determined by
named orientation routes and aperture routes, respectively. Tihe give points, as shown in Fig. 2d, to get the information of
orientation routes and aperture routes for the sample wind@ © for the sample window.

are shown in Fig. 2a and b, respectively. The routes cover the
whole Poincare sphere. Similar to the situatiomadindp, it is
difficult and actually no need for us to consider all the routdd!-

in a classification process. We can only select special onesye yse ALOS-PALSAR 1.1 level data for Suruga bay
among them. Thus, we select two special routes. As shoyba in the following experiments. The color composite po-
in Fig. 2c, they are the orientation route for= 0 (red) and |arimetric image of the test area is shown in Fig. 3a. The
the aperture route for = 0 (green). They are named zerqest area mainly includes a sea area (right), an urban area
orientation route and zero ape_rtur.e rqute, res.pectively. Th?ﬁﬁddle), a forest area (left), and in the urban area, there is a
two routes carry plentiful polarization information. large farmland area. The window size for calculating averaged
The averaged Stokes vector in (6) represents a conc&pokes vector i$ x 8 in pixel. The window moving steps are
for partially polarized wave caused by incoherent target. pixel in both of the range and azimuth directions. From
Therefore, such an averaged Stokes vector cannot be reldted three components of the averaged Stokes veetpr,
to a certain scattering matrix which represents a conceptd G'°, we can construct various discriminators. In some
for coherent target. However, in ideal situation, completelyorks, such as [13], [22], authors focus on only the scalar
polarized wave component should be related to a certaismponentsi andp. In our previous work [19], we suggested
scattering matrix. That is to say, an actual route should beveral discriminators constructed by the vector component
approximated to an ideal route which can be perfectly relaté’ . Besides these proposed ones, we keep on constructing
to a certain scattering matrix. and testing many more discriminators. Finally, we selected five

In Appendix A, we prove that the ideal routes arémportant discriminators. .Th_ey are: gveraged intensity,
always circular arcs on the Poincare sphere. Mathemzii€raged degree of polarizatipn,, perimeter degree of zero
cally, circular arcs can be determined Iy non-collinear orientation routePD,,., inclination degree of zero aperture

points. We can use the ideal route determined by any thr&!t€/Dap, and arc asymmetry degree of zero aperture route

points on an actual route as the approximated route. Hov%—AD“P'
ever, to guarantee reliability and preserve most polarization
information, we useG"® for horizontal (¢ = 0,7 = 0),
left circular (¢ € [-7/2,7/2],7 = =/4), and right circular
(¢ € [-m/2,7/2],7 = —7/4) polarized incident wave, noted To make the total intensity componestconvenient for use,
asG12, GEC, andGEO, to determine an ideal zero orienirst we define the normalized intensity for ALOS-PALSAR
tation route. Similarly, the use o for horizontal, 45° data as
(p =m/4,7=0), and —45° (¢ = —w /4,7 =0) polarized 7 (8)
incident wave, noted a&h°, GL29, and GF%.., uniquely

determines an ideal zero aperture route. H&§C is always whereA"*"™ ¢ (0, 1), the coefficient 0! is chosen because
the cross point of the zero orientation and zero aperture routdse order of magnitude oft (which is proportional toS|?)

while G1° and GZ© are two terminal points of the zerofor ALOS-PALSAR Data is10''. The averaged intensity is

AVERAGED STOKESVECTORBASED DISCRIMINATORS

A. Averaged Intensity

Anorm — { _ 6710_1114



© (d)

Fig. 2. (a) Orientation routes; (b) aperture routes; (c) actual zero orientation route (red crosses) and zero aperture route (green circles) and the ideal zero
orientation route (pink curve) and zero aperture route (blue curve) determined by the five @lifts: G1L.C, GLO, GEQ, GT{.,; and (d) orientation
triangle (red) and aperture triangle (green), all for the sample window.

defined as wherepg, pic, pres pase, andp_450 are the degree of polariza-
norm orm norm norm norm tion for horizontal, left circular, right circulag5°, and —45°
Am = ¢ (AR + AT+ AT+ AL + AYYEY) . polarized incident wave. The averaged degree of polarization

(9) for Suruga bay area is shown in Fig. 3c. The discriminator
where Azp"™, Ajer™, Ay, Ajge™, At are the normal- ) reflects coherence of the targets in an observing window.
ized intensity for horizontal, left circular, right circulat5°,  As shown in Fig. 3cp,, has high values for coherent targets,

and—45° polarized incident wave. The averaged intensity fafuch as the sea area, whereas low value for incoherent targets,

Suruga bay area is shown in Fig. 3b. The discriminatgr such as the forest area.

is very sensitive to the topography of the test area. Especially,

as shown in Fig. 3b, thd,,, shows low value in backlighting . . .

areas (one side of the mountains) and plane areas (the farmlgndD erimeter Degree of Zero Orientation Route

and the sea areas). According to Fig. 2d, the perimeter degree of zero orienta-
tion route PD,,. is defined by

B. Averaged Degree of Polarization a+
PD,,. = ) (11)
The averaged degree of polarization is defined as T
1 The PD,, is calculated from the approximated ideal zero
pm = = (pH + pic + pre + pase + p_aso), (10) orientation route. This ideal route can be related to a scattering

5
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Fig. 3. (a) The color composite polarimetric image for Suruga bay areé:lREH — Svvl|?, G=2|Suv |3, B:%ISHH + Syv|2, and (b)-(f) averaged
Stoke vector based discriminators.

matrix Sy given by PD,, by considering the relationship betwe&d,,. and.S.
a b We can first consider the reflection symmetry conditior: ¢
So = { ¢ d } , (12) andab* = db* =~ 0 [5] to find out the dominant relationship

which represents the main scattering mechanism in a local
observed window. We can understand the physical meaning of



which is given by where~ and # are shown in Fig. 2d. They are the interior
(dd* _ aa*) angles of the aperture triangle. The arc asymmetry degree of

1
PD,,. ~1— —arccos

- (13) zero aperture routelAD,, for Suruga bay area is shown in

Fig. 3(f). The discriminatotAAD,, describes the asymmetry
where aa* and dd* represent the scattered power in HHeature of the targets in an observing window. If the targets are
and VV channels forS,. If the medium is horizontal dipole almost symmetry with radar illumination, the value4fiD,,
dominant ga* > dd*), PD,, will be near to0. If it is will be near to0. Otherwise, the value will deviate much from
vertical dipole dominantda* < dd*), PD,, will be near to 0. As shown in Fig. 3f, very high value or very low value of
1. If horizontal dipole and vertical dipole are almost balancedAD,,, appears in highly randomly distributed targets area,
(aa* ~ dd*), PD,, will be around0.5. Thus, the value of such as the forest area and parts of the urban area.
PD,, indicates basic structure features of observed targets.
For the general situation (no limitation @b and |¢|), the
relationship in (13) becomes very complicated. However, the
physical meaning oD, is similar. The aboveA,,, pm, PD,,, ID,,, and AAD,, are five

The PD,, for Suruga bay area is shown in Fig. 3d. In thémportant Stokes vector based discriminators. These five dis-
figure, high values ofPD,, appear in forest area, whereagriminators are already the interpretation results which can
low values of PD,, appear in farmland area. Possibly, thée used in the further classification process, similar to that
reason for this phenomenon is that L band wave of ALO$ other works [26]-[29]. To show the interpretation results
PALSAR penetrates most of the branches, leaves, and crdpsuitively, normally, we also need to generate a final interpre-
For forest and farmland areas, the ALOS-PALSAR data mainigtion image. However, the conventional RGB presentation as
shows the information of trunks (vertical dipole dominant) anshown in [5], [7] is not suitable in our case. The first reason
furrows (horizontal dipole dominant). We need to note thais that we have five discriminators, more than three. The RGB
horizontal and vertical here are defined by antenna coordina¢é@resentation is not enough. The second reason is that, in
system, not the local coordinate system for the target. BetweeaR, all the discriminators are intensities. It is reasonable to
these two coordinate systems, there is usually a small rotat@wmbine them in one image by RGB representation. Whereas
angle difference. our discriminators have totally different physical meanings.
It is unreasonable to combine all of them in one image
simultaneously. Therefore, in this paper, we proposed physical

interpretation layers for generating final image.
The inclination degree of zero aperture route is defined as

le] o
ID.. — Gf5° (y) — Gf45° (y)
@ TGP _GPo |

dd* + aa*

IV. POLSAR DATA INTERPRETATION

D. Inclination Degree of Zero Aperture Route

(14) A. Physical Interpretation Layers

In the proposed method, we further analyze the discrim-
whereGL2 () andGF9.. (y) are the projections og-axis of inators to build four layers serving as interpretation results
GL2 and GPY,.. The discriminator/ D, describes attitude ©f & target area. In each layer, we focus only on targets with
of zero aperture route in the Poincare sphere space. Ag&Re certain physical feature. The information provided in each
considering the reflection symmetry conditioh:~ ¢ and layer has unequal priority. These four layers are elaborated as
ab* ~ db* ~ 0, we can find that the main relationship betweefpllows:
ID,, and components of; is given by 1) Basic Structure Layer (Layer 1)n this layer, we use the
discriminator PD,,. to show the basic structure information.
Re(ad”) (15) Such basic structure information is the most general informa-
lal|d] tion which can be provided by all the targets. So that, this layer
where Re(ad*) indicates the real part of the complex numbgpas the lowest priority in_aII the Igyer_s. The ba§ic structure
ad*. In [5], sign of Re(ad*) is used to decide whether Strondayerfor Suruga pay area is shown in F|g.'4a. BaS|caIIyz F|g.i4a
double bounce scattering exists. Similar§D,, is also a 'S the same as Fig. 3d_. However, to avoid coI(_)r confhct_ W|t_h
discriminator closely related to such a scattering mechanisfiler layers, we use different RGB code for Fig. 4a which is
Negative value ofID,, appears in strong double bouncéléfined as
scattering dominant areas. The inclination degree of zero(r G, B) =

aperture routd D,,, for Suruga bay area is shown in Fig. 3e. { (1—=2PD,,,1—2PD,,,2PD,,) if PDy < 0.5

1Dy, ~

In this figure,I D,,, shows negative value in farmland and part

0,2PD,, — 1,1 if PD,, > 0.5"
of the urban areas. (0, ) ~ 17)

where R, G, B € [0,1]. According to the color code in (17)

E. Arc Asymmetry Degree of Zero Aperture Route and the physical meaning d?DOT described in Section IllI-
. . C, we know that horizontal structure dominant medium will

The arc asymmetry degree of zero aperture route is deflnehd . . . .
as show yellow color, vertical structure dominant medium will

v—0 show aqua color, and surface/plane medium will show blue

AADyy = —, (16)  color on this layer.
v+ 0
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(a) Layer 1: Basic structure layer (b) Layer 2: Low coherence targets layer
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Fig. 4. Interpretation layers generated by ALOS-PALSAR data with threshéjds: 0.5, 5, = 0.3, 6., = 0.4, 64 = 0.2, and patch size of W15 x 60,
for Suruga bay area.

2) Low Coherence Targets Layer (Layer 2t Layer 1, we priority than Layer 1 since it shows more specific information.
only consider the discriminatd?D,,,. which is constructed by The color code is defined as
the completely polarized wave componéit© of Stokes vec- (0, Ay, 0) if o <0
tor. However, according to (6), for highly incoherent targets ( (R.G,B) = { trgm(:;arent it pZ N 5Z ~

is low), the weight of completely unpolarized wave component ]
GUN will be high. So that, the effect o”™ will be more FOr ALOS-PALSAR dataj, = 0.5 is used as the threshold.

significant thanG*©. The low coherence targets layer for Suruga bay area is shown
in Fig. 4b. In Fig. 4b, all the low coherence targets are colored
In low coherence targets layer, we identify low coherenaes green with different brightnesses, while the high coherence
targets by using the value of discriminajgy, as the criterion. targets p,, > 0,) remain transparent. The brightness of
We additionally use the discriminatot,,, to show topogra- green color indicates the topography information of the low
phy information for these identified low coherence targetsoherence target. The sheltered low coherence targets show
According to the topography information, we can understarmtérk green color, and illumination-faced low coherence targets
whether the low coherence targets are illumination-faced lbave light green color.
sheltered. Here, illumination-faced, and sheltered faced target8) Man-Made Targets Layer (Layer 3)n this layer, we
mean the targets with topographies corresponding to small, adeintify man-made targets. In comparison with Layer 1 and
large local incident angels, respectively. This layer has highlesyer 2, the information provided in Layer 3 is highly specific.

(18)



Thus, for a pixelw in the small local patcHV, we can

Layer 3 Man-Made Targets —>
stack define the RGB value as

with AAD,, values deviating much frori, which represent
Layer 4 Low Back Scattering Targets —>- possible man-made targets according to the analysis in Section
’ l-E.
Layer 2 Low Coherence Targets —> ”
/5

(R,G, B) = (1,0,0) if foias(W) > b andw € {hi} ’
transparent otherwise
(21)
where d,, € (0,1) is the threshold for determining whether

the small local patch can be determined as man-made targets

area.
Final Image > Note that, in (17) to (19), the operation unit is one pixel
on discriminator image as shown in Fig. 3. Differently, the

operation unit in (21) is a small local patch, i.e., for detecting
Fig. 5. Sketch of final image generating process B-type man-made targets, we consider not only the value of
AAD,,, but also its local distribution. The size of local patch
W need to be selected carefully. Too large size will lead to

Therefore, Layer 3 has higher priority than them. . . A
! low resolution, while too small size is not enough to show the
The first category of man-made targets are those orthogonal " L .
numerical distribution. In experiments, we found thatx 60

to radar illumination (A-type man-made targets). Such Malvange directionx azimuth direction) is the best for ALOS-

. I
made targets lead to strong double bounce scattering. We éﬂ
easily detect the targets with strong double bounce scatterin SAR data. It corresponds to roughly280mx 200m area

according to the physical meaning dfD,, described in orgground which is a scale enough to include several buildings.
ap

Section 1lI-D. Nevertheless, some natural targets also |e£He threshold, is used for detecting all the possible man-

. made target pixels. If the threshold is too high, we cannot

to strong double bounce scattering, such as farmland ar ; . TR )

. T o . etect all the possible pixels, while if it is too low, we will
orthogonal to radar illumination. To distinguish those two : . o
. . include many pixels which have too low possibilities to be
types of targets, we need to consider the scattered intensity. .
an-made targets. After testing many samples from B-type
Normally, A-type man-made targets cause much stronger :
X : an-made targets, we found that = 0.3 is the best. The

scattered intensity than natural targets. Thus, we can l{ﬁ

F'\esholdd is used for judging that whether the numerical
discriminator/ D, and 4., together to identity A-type man- i vion' of al the detected possible pixelslin is biased
made targets. The RGB code is defined as

_ enough to determin&/” as a B-type man-made targets area.
(R,G,B) = (1,0,1) if IDop <0andA,, >05  Also by testing for many samples, we found tifat = 0.4
T transparent otherwise " is the best. These parameters are available to all the ALOS-

(19). PALSAR data. Finally, the man-made targets layer for Suruga
The second category of man-made targets are skew allgrlﬁg, area is shown in Fig. 4c.

or randomly distributed ones (B-type man-made targets). B-4) Low Back Scattering Targets Layer (Layer 4F: the

type man-made targets cannot be identified by using (19}cx scattering intensity is very low, the received signal is
since observable double bounce scattering is very weak dfacteq by various noise. Thus, for such areas, the identified
such areas. An important feature of B-type man-made targgk it in Layer 1, Layer 2 and Layer 3 are not reliable. There-

is that it is asymmetrical to radar illumination. Thus, thgye in the layer with highest priority, we need to identify
discriminator AAD,, will show high absolute value for such,gets with low reflection by considering discriminatar, .
target. However, according to Fig. 3f, high absolute valueg,e RGB code for layer 4 is defined as

appear not only in man-made targets areas (Patch 1 and Patch

2), but also in natural low coherence area such as forest area (R,G, B) = (0,0,0) if A, <da
(Patch 3). Comparing Patch 1/2 and Patch 3, we can find that P transparent if A > 04 0

high absolute values in Patch 1 and Patch 2 are obviously i
biased, i.e., evenly positive, or evenly negative. Howeveror ALOS-PALSAR dataj, = 0.2 is used as the threshold.

Patch 3 shows the mixture of positive and negative values. liﬂge'low reflection targets layer for Suruga bay area is shown
distinguish between B-type man-made targets and natural I5WF'9: 4d. _ _
coherence targets, we define a bias detection fungiign for Note that the expressions (17) to (22) are available for all

Layer 1 Basic Structure

Y

(22)

a small local patchV as the fully PoISAR data. However, thresholdls 6y, 6.,, 44, and
N patch size ofi¥’ need to be calibrated for different POISAR
Foias (W) = 12 i1 AADap(hiﬂ’ (20) system. In Table Il we summarize all these thresholds and
‘ N patch size for ALOS-PALSAR data.
where fri.s € (0,1), the set{h;} is defined as{h; € W : The parameters in Table Il are available for general cases

|[AAD,,(h;)| > 6n}, AAD,,(h;) is the value of discriminator of ALOS-PALSAR application. The thresholds andd4 can
AAD.,,, for point h;, IV is the total number of elements in thebe also slightly adjusted for certain application purposes. For
set{h;}, andd, € (0,1) is a threshold for selecting pixelsexample, if we need to pay significantly more attention to



TABLE II shows higher performance on detecting man-made targets as

THRESHOLDS AND PATCH SIZE FORALOS-PALSAR DATA follows.
50 —05 ] 0r=03 We can zoom in Patch A, a city area, shown in Fig. 6a. The
=04 | 94=02 Google satellite photo and the interpretation results obtained
patch size ofV: 15 x 60 by the proposed method and Y4R method for Patch A are

shown in Fig. 7a, b, and c, respectively. Color codes for
Fig. 7 are the same as those shown in Fig. 6. In Fig. 7b,
structure information than low coherence information in sonige city area can be correctly and clearly identified, whereas,
applications, we can make the threshéjdlower than0.5.  in Fig. 7c, most pixels in the city area are interpreted as
volume scattering dominant area (green). This interpretation
B. Intuitive Final Interpretation Image is_ ba_lsically r_easonat?le, since s_uch skew aligned or_randomly
o ) distributed city area is a highly incoherent target which leads
We can generate an intuitive final image by stacking the fopy high volume scattering power. However, such scattering
layers according to priority order. A layer with higher priorityyechanism (volume dominant) is evidently different from the
is stacked on a layer with lower priority. The sketch of thg o) scattering mechanism for a city area (double bounce),
stacking process is shown in Fig. 5. According to the skettjyt reqlly close to that for a forest area (volume dominant).
we can find that, if a pixel is identified (colored) on severad, s in further classification process, it is very difficult to
layers, the color in an upper layer will cover the color in Jjsinguish between such skew aligned or randomly distributed
lower layer. It means that, only the information with highest,;n-made targets and forest targets.

priority is shown in final image. In this way, we obtain final \1,reover, we can zoom in Patch B, an area include bridges,
interpretation image for S_uruga _bay area as _shown N Fig. G@own in Fig. 6a. The Google satellite photo and the inter-

We can understand Fig. 6a in the following way. If the o iaiion results obtained by the proposed method and Y4R
color for basic structure layer is shown in a pixel, it meang o qq for Patch B are shown in Fig. 7d, e, and f, respectively.
that the targets in this pixel does not have obvious featurﬁ.§ Fig. 7e, the bridges can be correctly identified as man-
considered in thg upper layers (low cohe'rence, man-made "?‘Hgde targets, whereas, in Fig. 7f, the bridges show a volume
low back scattering). Thus, targets are interpreted as nat%ahinant scattering mechanism. Since the main scattering

high coherence targets such as farmland and the sea. Similamgchanism for bridges should be double bounce dominant,
if the color for low coherence targets layer is shown, .uch a volume dominant result is not reasonable

indicates the targets are natural low coherence targets suc|t_;ig 7 indicates the high performance of the proposed

as forest. If the color for man-made targets layer is Showrt?‘iethod for skew aligned or randomly distributed man-made
it clearly represents the man-made targets. If the color f&

) . ; rgets and isolated man-made targets in Suruga bay area.
low back scattering targets layer is shown, it corresponds

ist p th surf ; ‘ h ful have done the comparison for many areas to verify the
existence of smooth surtace targets such as peacetul sea. performance of the proposed method. We take results for

Ebetsu city area and Tokyo harbor area as examples. The
V. DiscUssION Ebetsu city area, shown in Fig. 8a, includes a forest park and a

To show the classification potential of the proposed methaglty area adjacent to each other. In comparison with the result
we choose the four-component scattering power decompasi-Y4R, shown in Fig. 8c, the result of the proposed method,
tion with rotation of coherency matrix described in [10] (notedhown in Fig. 8b, shows high performance on distinguishing
as Y4R in the following text) for comparison. An importanthe forest area (green) and the city area (red and pink).
common point of these two methods is that both of them ame Tokyo harbor area shown in Fig. 9a includes a large
physical interpretations for PoISAR data. The Y4R methaglty area with many isolated man-made targets (bridges).
provides four discriminators which present scattering inteffhe result of the proposed method, shown in Fig. 9b can
sities of surface, double bounce, volume, and helix modelgterpret this area significantly informatively compared with
Our proposed method provides five discriminators shown ihe result of Y4R shown in Fig. 9c. In Fig. 9c, large areas of
(9), (10), (11), (14), (16). These five discriminators describ@ndomly distributed buildings and isolated man-made targets
different physical meanings of the targets. For generatigow volume scattering which is near to that of some natural
intuitive final interpretation image, in Y4R method, RGRargets such as forests. The proposed method, in contrast, the
representation is employed, where the scattering intensitigis/ areas are identified clearly. The origin of the strength of
of double bounce, volume, and surface models are usedtfie proposed method for detecting man-made targets lies in
correspond R, G, and B values, respectively. In our metha#le fact that it focuses on target structures rather than only
we proposed physical layers for generating final interpretatiggattering mechanisms themselves.
image. Though basic ideas of our proposed method and that
of Y4R are different, they are still comparable.

The decomposition result of YAR method for Surugabay
area is shown in Fig. 6b. This image is generated with theWe have proposed a new PoISAR data interpretation method
same process and parameter set described in [10]. Compabiaged on averaged Stokes vector. First, we have extracted five
Figs. 6a and 6b, we find that both of the methods have hidiscriminators from the averaged Stokes vector to describe
interpretation performance. Especially, the proposed methtb& structure and scattering mechanism information of the

VI. CONCLUSION



10

- low back scattering -- man-made
P i e

(@ (b)

Fig. 6. Interpretation results generated by ALOS-PALSAR data of (a) the proposed method with thre$hetds.5, 6, = 0.3, 6 = 0.4, 4 = 0.2, and
patch size of W15 x 60, and (b) the Y4R method, for Suruga bay area.

Red: double bounce scattering
Green: volume scattering
Blue: surface scattering

Fig. 7. (a) Google satellite photo for patch A; (b) interpretation result of the proposed method for patch A; (c) interpretation result of the Y4R method; (d)
Google satellite photo for patch B; (e) interpretation result of the proposed method for patch B; (f) interpretation result of the Y4AR method for patch B.

targets. Based on the extracted discriminators, we have built APPENDIXA
four physical interpretation layers with ascending priorities: PROOF OF THESTATEMENT THAT IDEAL ROUTES ARE
the basic layer, the low coherence targets layer, the man-made CIRCULAR ARCS

targets layer, and the low back scattering targets layer. An

intuitive final image have been generated by simply stackingAn ideal route can be perfectly related to a scattering matrix.

the four layers in the priority order. The experiments havQote the scattering matrix as

been done over ALOS-PALSAR data. The results for Suruga

bay area, Ebetsu city area and Tokyo harbor area have shown a b

that the proposed method has high interpretation performance, So = [ ¢ d } ; (23)

especially for skew aligned or randomly distributed man-made

targets as well as isolated man-made targets. The origin,@fa e a, b, ¢, and d are complex numbers. Take the ideal

the strength of the proposed method for detecting man-maglg, anerture route as an example. The zero aperture route is

targets lies in the_ fact that it f_ocuses on target structures rat'&%?nposed by all the polarization state points for linearly po-

than only scattering mechanisms themselves. larized incident wavegos¢, sing]” . For a certain polarization
angle¢, the coordinate of the corresponding point in the zero

aperture route i$g1/g0, 92/90, 93/90), Wherego, g1, g2, and
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(©
Fig. 8. (a) Google satellite photo, and interpretation results generated by

ALOS-PALSAR data of (b) the proposed method with threshodds= 0.5,
6p, = 0.3, 6w = 0.4, 64 = 0.2, and patch size of W15 x 60, and (c) the
Y4R method, for Ebetsu city area. Fig. 9. (a) Google satellite photo, and interpretation results generated by
ALOS-PALSAR data of (b) the proposed method with threshofgs= 0.5,
6p = 0.3, 54 = 0.4, 64 = 0.2, and patch size of W15 x 60, and (c) the

gs are calculated as Y4R method, for Tokyo harbor area.

g0 = (lal® + |c[?) cos®¢ + (|b|* + |d|?) sin¢
+ (ab® + a*b + cd* + ¢*d) singcosg

g1 = (lal* = |c[*) cos®¢ + (|b]* — |d[*) sin*¢ i = (60— 6®) x (60 - )
+ (ab® + a*b — cd* — ¢*d) singcosd

determined by these three points is calculated as

24 yaley) (2) (2) (3) (3 (€]
g2 = (ac" + a*c) cos? + (bd* + b*d) sin (24) =G . CUHGET XTI+ G XG (26)
+ (ad* + a*d + bC* =+ b*C) Sil’l(bCOSd) ’ = W (fll, ’fLQ, ’ng) s
g3 =7 (ac* — a*c) cos®¢ + j (bd* — b*d) sin’¢ 9090 9o
+j (ad* — a*d + bc* — b*c) singcosd where x indicates the outer product of two vectors, and
We can simplify the expression as Ay = Z (gg”ggj) _ géi)géj)) g(()k)7
go = Aot + Bop + Coq, (6.3:k)
~ ] j i j k
g1 = Ait + Bip+ Cig, (25) iy = Z (95)95’) - gﬁ”gé”) 9", 27)
g2 = Aot + Bap + Cag, (i,5.k)
~ : j i j k
g3 = Ast + Bsp + Csq, ng = Z (9?)99) — g5 )99)) o
N
where A;, B;,C;,i = 0,1,2,3 are constants determined by (30
the scattering matrix, and = cos®¢, p = sin’¢, andq = Equation (27) shows that;, no, andng have similar expres-
singcos¢ are variables of. sions. Note that{(s, j, k) is an ordered group which can be

Thus, for three different pointsz(", G, and G®, in  (1,2,3), (2,3,1), or (3, 1,2). First, we focus o . According
the zero aperture route, the normal vectorof the plane to (25) and (27), the final expansion of is



[11]
=Y [(A2B3Co — A3B>Co) (tu)p(j)q(k) _ p@)t(j)q(k))
)

o o [12]
+ (A9 ByCy — A3BoCh) (tmq(;)p(k) - q(Z)t(J)p(k))

[13]
+ (AgByCs — AgBsCh) (pmqu)t(m _ qmp(j)t(m) ]

:Klfd)v
(28)

whereK; = (AQBgCO — AgBQCO)*(AQBOCg — A3BOC2)+
(AgByC5 — AgBsCs) is only determined by the scattering!*®
matrix. fy = 32 ; ) ((7pPg®) — pllg®) is only de-
termined by, $(2), and¢®). Similarly, we can prove that [16]
ny = Kafs, andns = Ksfe. Thus, according to (26), the

(14]

norm vectorn can be expressed as [17]
. 1
n = m(Klf¢7K2f¢aK3f¢) [18]
gO gO gO (29)
fo
= o m KK k).
90 90 90 [19]

Equation (28) shows that, the direction #fis determined
by K,, K5, and K3. It means that, the direction af is
independent of. Therefore, for any different three points in(20]
the ideal zero aperture route, the norm vector of the surface
determined by them has identical direction determined by tha
scattering matrix. It is proved that, all the points in the ideal
zero aperture route are in the same plane. Similarly, we
also prove that all the points in ideal zero orientation rouCPe
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