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Location Anonymization with Considering Errors
and Existence Probability

Yuichi Sei and Akihiko Ohsuga, Member, IEEE

Abstract—Mobile devices that can sense their location using
GPS or Wi-Fi have become extremely popular. However, many
users hesitate to provide their accurate location information
to unreliable third parties if it means that their identities or
sensitive attribute values will be disclosed by doing so. Many
approaches for anonymization, such as k-anonymity, have been
proposed to tackle this issue. Existing studies for k-anonymity
usually anonymize each user’s location so that the anonymized
area contains k or more users. Existing studies, however, do
not consider location errors and the probability that each user
actually exists at the anonymized area. As a result, a specific
user might be identified by untrusted third parties. We propose
novel privacy and utility metrics that can treat the location and
an efficient algorithm to anonymize the information associated
with users’ locations. This is the first work that anonymizes
location while considering location errors and the probability
that each user is actually present at the anonymized area. By
means of simulations, we have proven that our proposed method
can reduce the risk of the user’s attributes being identified while
maintaining the utility of the anonymized data.

Index Terms—ubiquitous computing, privacy, location infor-
mation, anonymization.

I. INTRODUCTION

Many research studies have analyzed mobile users’ con-
sumer behavior by connecting the users’ location information
and their attributes such as gender and age. As a result,
organizations can create good marketing programs and yield
optimized advertisement delivery.

In this paper, we consider two types of organizations. The
first type includes organizations that collect users’ attributes
and location data directly. We call these organizations “data
holders.” We assume that the data holder can be trusted and
wants to anonymize and publish users’ information to other
organizations. The other type includes organizations that do
not collect user attributes and location data by themselves but
want to analyze this type of data. We call these organizations
“data analyzers.” Data analyzers may not be trusted, but they
receive users’ data from the trusted organizations if the data is
anonymized. The anonymized data need not contain explicit
identifiers such as name and address.

In this paper, our goal is not only to protect location data but
also to protect other sensitive attribute values such as diseases
associated with location data. We provide an example of such
data in Table I. Our goal is to protect sensitive attribute values,
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even if adversaries are aware of the fact that a particular user
is included in the anonymized database and they know the
exact location data of the user.

Even if the anonymized data does not contain any explicit
identifiers, the data analyzers have the possibility of identi-
fying a specific user’s attribute values. For example, let us
assume that a data analyzer knows that Alice is present in a
location (x1, y1) at time t and receives information that an
anonymous user has an attribute value such as “disease is
cancer” located at (x1, y1) at time t. In this case, the data
analyzer can very easily identify that Alice has cancer.

To tackle this problem, several research studies on the
anonymization of location data have been proposed. The k-
anonymity [1] is one of the most popular privacy metrics.
Many studies on the anonymization of location data have
considered k-anonymity (e.g., [2]–[4]). They claim that they
can create an anonymized area that contains k or more users.

However, most of these studies do not consider location
errors. Even if we use GPS localization, the error range can
be over 80 meters in urban canyons [5]. Moreover, there are
many other methods for estimating the user’s location since the
GPS function consumes a lot of energy. If we use these other
methods, the error range can include hundreds or thousands
of meters [6], [7].

If we use existing methods of k-anonymity for anonymizing
location data, the resulting anonymized areas may contain
less than k users. Moreover, there is the possibility that
the anonymized areas contain no users or only one user
in the worst case. A few studies, such as NWA [8], [9],
have considered location errors, but have not considered the
existence probability of users and the attacker’s knowledge. As
a result, if we assume that attackers can have knowledge about
a user’s location, NWA does not satisfy k-anonymity [10],
[11]. Our previous paper, written in Japanese [12], considered
location errors, but the anonymization cost was large, and the
evaluation was not sufficient.

Moreover, there is another issue related to location error.
The existing studies on the k-anonymity of location data use
the average size of the anonymized areas as a utility metric.
However, this is not sufficient. Suppose that a data analyzer
received information that Alice, Bob, and Charlie were located
at an anonymized area L1 at time t1. There is a possibility
that no one existed at L1. In this case, the data analyzer
will perform an incorrect analysis. Therefore, we should use
another utility metric that can consider location error. In this
paper, we also propose a novel utility metric that considers the
probability of users being present at each anonymized area.

Our contributions are as follows:
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TABLE I
AN EXAMPLE OF RAW INFORMATION THAT A DATA HOLDER KNOWS.

Name Location Time Attr1-Salary Attr2-Disease
Alice (x1, y1) t1 3,200 Cancer
Bob (x2, y2) t1 750 Sty

Charlie (x3, y3) t1 470 Cold
Dave (x4, y4) t1 20 HIV
Eric (x5, y5) t1 530 Cut
Flora (x6, y6) t1 500 Fever

• We clarify the problems of current studies for k-
anonymity of location data.

• We propose a novel privacy metric and a utility metric
that can treat the location error.

• We propose an efficient anonymization algorithm for the
proposed metrics.

The rest of the paper is organized as follows. Section II
presents the models of applications and attacks. Privacy and
utility, as used in this paper, are defined in Section III. Section
IV presents the design of our algorithm. The results of our
simulations are presented in Section V. Section VI discusses
several design issues in our method. Section VII discusses the
related methods. Finally, Section VIII concludes the paper.

II. BACKGROUND AND PROBLEM DEFINITIONS

We will first describe the scenarios considered in this paper,
the representation of the location error, and the problem we
will tackle.

A. Background

A data holder has a database that contains user data
consisting of each user’s attribute and corresponding loca-
tion data. Location data may be trajectory data. To simplify
our discussion, we anonymize a snapshot of trajectory data.
Anonymizing trajectory data will be reserved for future work,
but we can, nevertheless, use the results of this paper to
anonymize trajectory data.

We assume that the data holder wants to publish the
database for collaboration with data analyzers. Owing to
privacy concerns, the data holder wants to anonymize the
database in order to ensure that any adversaries cannot identify
each individual’s attribute values. We assume that the data
holder is an honest entity, but the data analyzers are semi-
honest entities, which means they might try to identify the
sensitive values of arbitrary users.

Operating systems such as iOS, Android, and Windows
Phone OS express location by latitude, longitude, and accuracy
[13]–[15]. Accuracy means a radius of a circle centered at the
location’s latitude and longitude, and the user might exist in
the circle. Following these operating systems, we assume that
the data holders have each user’s central coordinates and the
radius of the circle, where the user may exist at each time.
Let (xu, yu) denote the central coordinates of the circle, where
user u may exist, and let ru denote the radius of the circle
(Figure 1). We call this circle an “existence probability circle.”

(xu, yu)

ru

Fig. 1. Raw location data of user u.

TABLE II
AN EXAMPLE OF ANONYMIZED INFORMATION GENERATED BY EXISTING

STUDIES OF k-ANONYMITY FOR LOCATION DATA.

Location Time Attr1-Salary Attr2-Disease
L1 t1 3,200 Cancer
L1 t1 750 Sty
L1 t1 470 Cold
L2 t1 20 HIV
L2 t1 530 Cut
L2 t1 500 Fever

B. Problem

Suppose that a data holder has the information contained
in Figure 2(a). If the data holder provides this information
directly to a data analyzer, the data analyzer can specify
each user’s location and attribute values. Even if the data
holder removes the user names, the problem will not be
solved completely (Figure 2(b)). The reason behind this fact
is described here. Suppose the data analyzer knows that Alice
existed at (x1, y1). In this case, the location data related to
the provided information can be used in identify users even if
the provided information does not have any explicit identifiers
that specify Alice.

Many studies described in Section VII generate
“anonymized areas” that contain k or more users. Figure 2(c)
represents the resulting anonymized area named L1 where
we set k = 3. The data holder provides the information that
k users exist in anonymized area L1 to the data analyzer. The
data analyzer cannot know exactly which of the k users is
Alice.

However, in reality, the data holder’s location data has
errors. For example, there is the possibility, in reality, that
only Alice exists (Figure 2(d)).

Suppose that the data analyzer knows, from another data
source, that only Alice exists in the area L1. If the data
analyzer concludes that, in the information provided by the
data holder, some user attribute values have a relatively high
probability of being owned by users existing in area L1, the
data analyzer can determine with high probability that Alice
owns the attribute values.

For example, Table I shows the raw information that the
data holder knows. Table II gives an example of anonymized
information generated by existing studies where k = 3.
Suppose that Alice existed in an exclusive shop, where only
rich people tend to go, and suppose that the anonymized area
L1 is part of that shop. If the raw information, which the data
holder believes, is correct, Alice, Bob, and Charlie must be in
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Alice

Bob Dave

(x1, y1)

(x2, y2)

(x3, y3)

A!r 2

A!r 1

A!r 3

(a) Sensed data

(x2, y2)

(x3, y3)

A!r 2

A!r 1

A!r 3

(x1, y1)

(b) Inadequate anonymization

L1

A r 2

A r 1

A r 3

(c) k-anonymization based on
sensed data by existing studies

L1

A r 1

Alice

Bob

A r 2

A r 3

Dave

(d) True information

Fig. 2. An example of anonymization.

that shop at time t1. In this case, even if the data analyzer,
who knows that Alice existed in the shop at time t1, receives
the anonymized information, the data analyzer cannot know
what Alice’s salary is and cannot know whether Cancer, Sty,
or Cold is her disease.

Let us consider that the raw information, which the data
holder believes, is not true. Suppose that only Alice existed
in the exclusive shop at time t1 in reality, and the data
analyzer knows the fact. When the data analyzer receives
the anonymized information shown in Table II from the data
holder, the data analyzer can consider that the user, whose
salary is 3,200, has a relatively high probability of existing in
the exclusive shop. As a result, the data analyzer can consider
that Alice has a relatively high probability of existing in the
shop. Therefore, the data analyzer can conclude that the first
record of Table II represents Alice, and Alice’s salary is 3,200
and her disease is Cancer.

If we consider k-anonymized information, the data analyzer
must not identify each user’s record with a probability greater
than 1/k. However, if the data holder’s information contains
some errors, and the data analyzer knows more correct infor-
mation about the specific user, the data analyzer can identify
the user’s record with a probability greater than 1/k.

In this paper, we propose a novel privacy metric (k,w)-
anonymity, which requires that k or more users exist in an
anonymized location with probability greater than or equal to
w.

Moreover, we should propose a novel utility metric while
considering the location error. If the anonymized information
indicates that users exist in the anonymized area, the proba-
bility that the information is true should be high.

Therefore, our goal is to ensure that k or more users exist
in each anonymized area with a probability greater than or
equal to w. We want to then try to minimize the size of
each anonymized area and, at the same time, increase the
probability that the users exist in the anonymized area in
reality. We will define the privacy and utility metrics more
specifically in Section III.

III. METRICS

We propose a privacy metric and a utility metric while
considering the location error.

A

B

C

D

Anonymized area L

Fig. 3. (1, 0.99)-anonymity, (2, 0.91)-anonymity, (3, 0.55)-anonymity, and
(4, 0.027)-anonymity when the existence probability of A, B, C, and D within
L is 0.9, 0.75, 0.8, and 0.05, respectively.

A. Privacy Metric

We propose (k,w)-anonymity as follows:

DEFINITION III.1 ((k,w)-anonymity). The database satis-
fies (k,w)-anonymity if and only if more than or equal to k
users exist in each anonymized area in the database with a
probability greater than or equal to w.

For example, in Figure 3, there are four users and an
anonymized area. The circles in Figure 3 represent the ex-
istence probability circles of these users. Suppose that the
probability that users A, B, C, and D exist in the anonymized
area is 90%, 75%, 80%, and 5%, respectively. In this case,
the probability that all four users exist in the anonymized
area is 0.9 × 0.75 × 0.8 × 0.05 = 0.027. Therefore, the
anonymization satisfies (4, 0.027)-anonymity. In a similar
way, the anonymization also satisfies (2, 0.91)-anonymity and
(3, 0.55)-anonymity.

Although existing studies that do not consider the errors
of location data indicate that the anonymization satisfies 3-
anonymity, the probability that more than or equal to three
users exist in the anonymized area is only 0.55.

B. Utility Metric

Let U denote the set of users the data holder has, and let
L(u) represent the anonymized area where user u existed at
the specific time. Let pu,L denote the probability that user u
existed in area L at the specific time, and let gu represent the
existence probability circle of user u. That is, the central point
of gu is (xu, yu) and the radius is ru.
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TABLE III
LIST OF NOTATIONS

Notation Description
N Number of users in the database the data holder has

(xu,yu) Observed central point where the data holder believes user
u exists

gu Circle where user u may exist (existence probability circle
of u)

ru Radius of gu
L(u) Anonymized area where user u may exist
|L| Size of area L
UL Set of users who may exist in anonymized area L
α Degree of importance of existence probability

Let L ∩ gu represent the overlapped area of L and gu. The
value of pu,L is calculated by

pu,L =
|L ∩ gu|
|gu|

,

where |S| represents the size of area S.
We define the utility with the following equation:

Utility =
∑
u∈U

(pu,L(u))
α

|L(u)|
, (1)

where the parameter α is used for adjusting the weight of
the size of the anonymized areas and the possibility of users
existing in the corresponding anonymized area. The parameter
α has a value greater than or equal to 0, and we set α to a
larger value if we think that the existence probability is more
important.

IV. ANONYMIZATION ALGORITHM

We describe the anonymization algorithm by considering
the proposed privacy and utility metrics. Main notations are
shown in Table III.

First, we analyze the characteristics of the location data
to be considered in anonymization, and then we describe the
outline of the anonymization algorithm. We will then, explain
the details of the algorithm.

A. Overview

We introduce two characteristics of location data. First,
users are unevenly distributed in the area. In some locations,
users are densely located, but, in other locations, users may
be sparsely located. If the borderline of the anonymized areas
is set in the area where many users exist, the existence
probability that many users exist near the borderline decreases.
Second, the accuracy of each person is different. We can
increase the utility by giving priority to users measured with
high accuracy.

Based on this analysis, the proposed method consists of
three phases: the area division phase, the area expansion phase,
and the area reduction phase.

In the area division phase, we use Mondrian algorithm
[16], which is widely used in existing studies, as a base-
line method. Our proposed method first generates a full-
anonymized area where all users exist, and then recursively

divides the anonymized area until the resulted anonymized
areas do not satisfy (k,w)-anonymity.

Then, the proposed method tries to increase the utility by
expanding the anonymized area.

Our proposed method repeats the area division phase and
the area expansion phase until the resulted anonymized areas
do not satisfy (k,w)-anonymity. Our proposed method then
executes the area reduction phase once.

We describe the details of these three phases in the following
subsections.

B. Area Division Phase

We divide the full-anonymized area iteratively. Each itera-
tion chooses the longer dimension to be divided and divides
the chosen dimension so that each divided area contains half
of the users. For example in Figure 4, we try to divide Area
L by the line A0 and get Areas L1 and L2. In this figure, the
black points represent the observed points of users, and the
circles represent the existence probability circles of the users.
We divide each anonymized area only when the resulted areas
satisfy (k,w)-anonymity. If we cannot divide an anonymized
area at the longer dimension, we try to divide the anonymized
area at the other dimension.

Let UL denote the set of users who exist in area L with
probability greater than 0. The probability P (L, k) that k or
more users exist in area L is calculated by

P (L, k) = 1−
∑

{S|S∈P(UL)∧|S|<k}[ ∏
u∈S

pu,L ·
∏

u/∈S∧u∈UL

(1− pu,L)

]
,

(2)

where P(UL) represents a power set of UL.
Here, the amount of calculation becomes very heavy when

the size of UL is large. For example, the number of possible S
that satisfies {S ∈ P(UL) ∧ |S| < k} is about 3 billion when
UL = 50 and k = 10. The algorithm that can be calculated
faster is described in IV-E.

Let L1 and L2 denote the two areas generated by dividing
one area. When the condition P (L1, k) < w or P (L2, k) < w
holds, the division is canceled.

C. Area Expansion Phase

We get two anonymized areas as a result of the area division
phase. The process described below is executed for each area.
For example in Figure 4, we try to expand Areas L1 and L2

separately. We explain the detailed process for L1 here.
We call the boundary line between L1 and L2, which

obtained in the previous area division phase a “boundary side.”
Let A0 denote the position of the boundary side in Figure
4. The objective of this phase is to expand the boundary
side to the position that can obtain the maximum utility. As
the anonymized area L1 only expands, it will satisfy (k,w)-
anonymity if it satisfies (k,w)-anonymity before executing this
phase.

Initially, we consider the area that contains L1, and the
existence probability circles of all the users are included in
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Area L

Area L2

A0

Divide the longer dimension and get Areas L1 and L2

A1

Maximum size of Area L1

Area L1, max

Area L1

A2

Area L2, max

Maximum size of Area L2

Fig. 4. Area division and area expansion.

area L1. Let L1,max denote the expanded area and A1 denote
the position of the expanded boundary side. We then search
for the optimal position of the boundary side that maximizes
the utility. The search space is the range from A0 to A1.

The probability that each user actually exists in area L1

increases by expanding the boundary side. However, the rate of
increase decreases by expanding the boundary side more and
more. Therefore, the utility function, which has a parameter
that represents the position of the boundary side in the range
from A0 and A1, is a unimodal function. We can obtain the
maximum value of the unimodal function by using golden
section search [17], [18].

Then, we define the positions An1 and An2 as

An1 =
ϕ ·A0 +A1

ϕ+ 1
, An2 =

ϕ ·A1 +A0

ϕ+ 1
, (3)

where ϕ is the golden ratio, and ϕ = (1 +
√
5)/2.

Assume that the utility with position An1 is smaller than
that with position An2. In this case, the boundary side of L1

is updated from A0 to An1. If the utility with position An2

is smaller than that with position An1, the boundary side of
Lmax is updated from A1 to An2.

This process is repeated based on the updated L1 and
L1,max. Finally, we get the optimal position of the boundary
side that maximizes the utility.

The overall process is conducted also for L2. The optimal
position of the boundary side of L2 is determined between A0

to A2 in the same way.

D. Area Reduction Phase

The area division phase and the area expansion phase are
repeated until the resulting anonymized areas do not satisfy
(k,w)-anonymity, and the area reduction phase is executed
once at the end. The process of the area reduction phase is
executed for every anonymized area. Let L denote one of the
anonymized areas (Figure 5).

Let Lmin denote the minimum area that intersects the
existence probability circles of all users in L. The objective

Area L

Area L
min

Fig. 5. Area reduction.

of this phase is to obtain the optimized area that maximizes
the utility within the range of L to Lmin.

We can narrow the anonymized area L by moving one of
its four sides. We calculate two positions for golden section
search for each side and calculate P (L, k) and the utility
for each position of each side. We then adopt the position
that satisfies (k,w)-anonymity and maximizes the utility. This
process is repeated to get the optimal anonymized area that
maximizes the utility.

E. Semi-optimal Algorithm

The amount of calculation of (2) might become too heavy
to obtain the result in a realistic time period. In this subsec-
tion, we describe the semi-optimal algorithm that reduces the
amount of calculation greatly.

First, we can know immediately that (k,w)-anonymity is
not satisfied when |UL| < k.

Then, we count the number of probability existence circles
included completely in anonymized area L, and let m denote
the number. In this case, we can say that area L satisfies
(k,w)-anonymization when the probability that k−m or more
users, except for the m users, existing area L is greater than
or equal to w.

Furthermore, we introduce a semi-optimal algorithm that
can be calculated faster. We discretize the value range of
probability that each user actually exists in area L into d levels,
for example, from 0 to 0.1, from 0.1 to 0.2, and so on. As an
example, assume that d = 10 and the probability that a user
actually exists in area L is 0.223. We can consider that the
probability is not 0.223 but 0.2. Although we cannot maximize
the utility, as we underestimate the existence probability, we
can ensure the resulting anonymized area satisfies (k,w)-
anonymity.

Let cj represent the number of users for whom pu,L is
greater than or equal to j/d and less than (j + 1)/d. That
is, cj is calculated by

cj =

∣∣∣∣{u|u ∈ U ∧ j

d
≤ pu,L <

j + 1

d

}∣∣∣∣ . (4)

The probability P (L, k) that k or more users exist in area
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L has the condition:

P (L, k) ≥1−
k−m−1∑
q=0

Q(q), where Q(q) =

Λ̄(1)∑
i1=Λ(1)

·
Λ̄(2)∑

i2=Λ(2)

. . .

Λ̄(d−1)∑
id−1=Λ(d−1)

·
d−1∏
j=1

[
cjCij · (

j

d
)ij ·(1− j

d
)cj−ij

]
, (5)

Λ̄(s) = min(cs, q −
s−1∑
j=1

ij),

Λ(s) = max(0, q −
s−1∑
j=1

ij −
d−1∑

j=s+1

cj).

Here, we have the following theorem:

Theorem IV.1. When |UL| ≥ k, the following equation always
holds for Λ̄(s) and Λ(s) in (5);

Λ̄(s) ≥ Λ(s).

The proof of Theorem IV.1 is described in the Appendix A.
The part of

∏d−1
j=1 in (5) represents the probability that

ij users out of cj users exist in area L. The part of∑
i1

∑
i2
. . .

∑
id−1

represents the all combinations of ij (j =
1, . . . , d−1) that satisfy the summation of ij (j = 1, . . . , d−1)
is equal to q. The value q represents the number of users
who exist in area L, and we change the value of q from 0 to
k −m− 1.

We give an example for calculating P (L, k). Assume that
there are 10 users and the probability that each of the 10 users
exists in L is greater than 0, and assume that k = 7, c3 = 5,
c5 = 1, and c7 = 3. Assume that the existence probability
circle of one user is completely included in L. In this case,
we can calculate (5) as follows:

P (L, 7) ≥ 1−
7−1−1∑
q=0

min(5,q)∑
i3=max(0,q−(1+3))

min(1,q−i3)∑
i5=max(0,q−i3−3)

min(3,q−(i3+i5))∑
i7=max(0,q−(i3+i5))

[
5Ci3(

3

10
)i3(1− 3

10
)5−i3 ·

1Ci5(
5

10
)i5(1− 5

10
)1−i5 · 3Ci7(

7

10
)i7(1− 7

10
)3−i7

]
.

As a result, we get P (L, 7) ≥ 0.15.
We can determine whether or not the target area satisfies

(k,w)-anonymity based on (5) faster than the calculation
based on (2). Furthermore, we introduce two theorems in order
to terminate the calculation of (5) in the process of summing
Q(q).

Theorem IV.2. When the value of 1-(sum of Q(q) for q =
0, . . . , z) where z < k − m − 1 becomes less than w in the
process of summing Q(q), we can terminate the calculation of
the sum of Q(q) and conclude that the target area does not
satisfy (k,w)-anonymity.

Theorem IV.3. When the value of Q(z), where z < k−m−1,
is less than Q(z − 1) and 1-(sum of Q(q) for q = 0, . . . , z
plus Q(z) × (k − m − 1 − z)) is greater than or equal to

w, we can terminate the calculation of the sum of Q(q) and
conclude that the target area satisfies (k,w)-anonymity.

The proofs of Theorems IV.2 and IV.3 are described in the
Appendix B and C.

The overall algorithm for (k,w)-anonymity is shown in
Algorithm 1.

Algorithm 1 Anonymization for (k,w)-anonymity
Input: Privacy parameters k and w, Target area L, Set of

users U
Output: Set of anonymized areas L

1: L ⇐ division&expansion(k, w, L, U )
2: for L ∈ L do
3: L′ ⇐ areaReduction(k, w, L, U )
4: L ⇐ (L \ {L}) ∪ {L′}
5: end for
6: return L

Algorithm 2 division&expansion
Input: Privacy parameters k and w, Target area L, Set of

users U
Output: Set of anonymized areas L

1: L ⇐ ∅
2: dim ⇐ chooseDimension(L)
3: A0 ⇐ getMedianPoint(L, dim, U )
4: L1 ⇐ one of the two areas generated by deviding L at

A0

5: L2 ⇐ the other area
6: if both L1 and L2 satisfy (k,w)-anonymity then
7: L1 ⇐ areaExpansion(L1, U )
8: L2 ⇐ areaExpansion(L2, U )
9: L ⇐ L∪ division&expansion(k, w, L1, U )

10: L ⇐ L∪ division&expansion(k, w, L2, U )
11: else
12: L ⇐ {L}
13: end if
14: return L

V. EVALUATION

No existing studies have anonymized the location data while
considering location error and users’ existence probability. We
compared our proposed method with Mondrian [16]. Although
Mondrian is not the state-of-the-art method, a lot of studies
still use it as a baseline method. Therefore, the characteristics
of the proposed method can be easily understood by comparing
with Mondrian.

A. Data Set

We conducted an experiment using the data set generated
from the Siafu tool [19], which is used in many other studies
such as [20], [21]. The Siafu tool is an open-source simulator,
where the person behavior is modeled based on the typical
behavior of a living person. We prepared the location map
that has an 8.4km × 8.4km area (Figure 6 shows part of the
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Fig. 6. Snapshot of Siafu simulator.

map). The number of users was set from 1,000 to 10,000, and
they were programmed to go to their companies, restaurants,
and/or parks on foot or by car depending on the distance from
their houses to their destinations. We used the location data
obtained by the simulator with an interval of 5 minutes for 4
hours, which means there were 48 data sets.

As the location data obtained by the Siafu tool has no
errors, we added some errors to each location data randomly.
The amount of the errors, i.e., the radius of each existence
probability circle, was determined randomly with a range of
Rmin meters to Rmax meters.

All experiments were conducted on an Intel Xeon CPU E5-
2687W v2 @ 3.40GHz 3.40GHz workstation with 128 GB of
RAM.

B. Evaluation Measurements

We evaluated the utility based on (1). Moreover, we intro-
duced a privacy measurement; k-Persons Ratio (KPR). Let
AL denote the number of anonymized areas. Let pos(u)
denote the true position of user u ∈ U . Note that the true
value of pos(u) is unknown to the data holder because the
locations of the data holder’s database contain some errors.
Let A denote the set of anonymized areas, and let U(a)
represent the true set of users who exist in a ∈ A; that is,
U(a) = {u|u ∈ U ∧ pos(u) is included in a}. We define A′

L

as |{a|a ∈ A ∧ |U(a)| ≥ k}|.
The KPR is defined as

KPR = A′
L/AL. (6)

C. Results

In this evaluation, the default values for parameters were
d = 10, k = 10, w = 0.9, α = 1, N = 5000, Rmin = 5m,
and Rmax = 500m.

The results of 4-hours data at 5-minute intervals are shown
in Figure 7. The average KPR represents the average of KPR
of each anonymized area, and the minimum KPR represents
the minimum value of KPR of all the anonymized areas.

The utility values of the proposed method are smaller
than that of Mondrian. However, the average KPR and the
minimum KPR of the proposed method are greater than those

of Mondrian. In particular, the minimum KPR of Mondrian is
almost 0.

The averages KPR of our proposed method are greater than
the value of w. This is because we have used the semi-optimal
algorithm based on (5), which underestimates the existing
probability of each user, and the utility function defined by
(1) considers the existence probability of users.

We then conducted experiments with varying parameters of
k, α, N , and Rmax.

Figure 8 shows the average results for varying the value
of k. The larger k becomes, the smaller the utility becomes.
The reason is that the size of an anonymized area narrows
according to k. On the other hand, the larger k becomes, the
larger the minimum KPR becomes. As the minimum KPR
measures the minimum value, it tends to increase when the
number of anonymized areas is small.

Figure 9 shows the average results for varying the value of
α. The larger α becomes, the more the value of (1) tends to
be reduced, and the utility values of both methods decrease
according to α. Although the average KPR of each method
does not change significantly according to α, the minimum
KPR of our proposed method has improved significantly. As
the size of each anonymized area tends to be large when the
value of α is large, the probability that many users actually
exist in the anonymized area becomes high.

Next, we conducted simulations for varying the value of N ,
and the average results are shown in Figure 10. The larger N
becomes, the larger the utility values of both methods become.
On the other hand, the larger N becomes, the smaller the
average and minimum KPR and the minimum KPR become.
As the population density is high when N is large, the impact
of the location error is relatively large.

The average results for varying the value of Rmax are shown
in Figure 11. We know from the figure that the values of
the utility, the average KPR, and the minimum KPR decrease
when the location error is large.

Finally, the average results of the anonymization time are
shown in Figure 12. The anonymization time of the proposed
method increases exponentially with k. This is because the
time complexity of (5) increases exponentially with k. How-
ever, many existing studies assume that k ranges from about
3 to 20. We think that our proposed method can anonymize
an area in a realistic period if we set k within this range. The
anonymization time increases linearly with N .

On the other hand, the anonymization time of Mondrian
is less than one second. Mondrian is better in terms of
the anonymization time. However, Mondrian and all existing
studies do not consider the location error, although the utility
and privacy measures do consider the location error. Therefore,
we think that it is difficult for existing studies to increase
the utility and privacy values even if we give existing studies
much more time for anonymization. Of course, if we give
the existing studies the mechanisms that consider the location
error like this study, the performance should be improved.
Existing studies can use the proposed method to obtain such
a mechanism.
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VI. DISCUSSION
A. Performance Analysis

Equation 5 has the biggest impact on the time complexity.
The part of

∏d−1
j=1 repeats multiplication O(d) times. The part

of
∑k−m−1

q=0 repeats summation O(k) times and the part of∑
i1
· · ·

∑
id−1

repeats summation O(kd) times.
The number of repetitions of calculating the entire (5) for

anonymizing one area is proportional to the number of users.
Therefore, the time complexity of the proposed method is
O(dkdN).

B. Validity of Our Scenarios

• A malicious data analyzer might know the actual location
of a user.

We give some examples of reasons why a malicious data
analyzer knows that Alice existed in area L1 at a certain time.

1) The malicious data analyzer saw Alice physically in area
L1 at that time.

2) The malicious data analyzer received the location in-
formation of Alice being in area L1 at that time from
another data holder.

In the future, many organizations will share personal data
among them. Therefore, the risk that malicious data analyzers
combine several personal data and then the privacy information
is leaked will increase.

• Location has some error, and the amount of error varies
largely.

We can get the precise location data of persons when they
pass through ticket gates or buy items in shops. However, the
GPS localization error ranges from a few meters to over 80
meters [5], and the error ranges over 500 m [22] with Wi-Fi
based localization.



9

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000 10000

U
 

lit
y

N

Mondrian Proposal (w=0.8) Proposal (w=1)

(a) Utility

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

A
v

e
ra

g
e

 K
P

R

N

Mondrian Proposal (w=0.8) Proposal (w=1)

(b) Average KPR

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

M
in

im
u

m
 K

P
R

N

Mondrian Proposal (w=0.8) Proposal (w=1)

(c) Minimum KPR

Fig. 10. Average results with varying N .

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800

U
 

lit
y

Rmax

Mondrian Proposal (w=0.8) Proposal (w=1)

(a) Utility

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

A
v

e
ra

g
e

 K
P

R

Rmax

Mondrian Proposal (w=0.8) Proposal (w=1)

(b) Average KPR

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

M
in

im
u

m
 K

P
R

Rmax

Mondrian Proposal (w=0.8) Proposal (w=1)

(c) Minimum KPR

Fig. 11. Average results with varying Rmax.

As mobile phones are battery-powered, mobile phone users
usually obtain the location at a very low frequency. Therefore,
the data holder should estimate the location of users by
location estimation methods, such as [6], [7], if the data holder
and the data analyzer want to analyze the location data in
detail. In this case, the amount of error would be increased.

The accuracy of location data will be improved in the future,
but the variation of the amount of the error will still exist.

C. Parameter Setting

We set k from 5 to 20, which covers the range of k in
existing studies [23]–[25]. Determining the appropriate value
of k is our future work, but out of the scope of this paper.

Determining the appropriate values of α and w is also our
future work.

Moreover, we can modify the proposed privacy metric and
the proposed method so that we can set several values of w.
For example, by introducing k′ (k′ < k), the modified method
would be able to ensure that k′ or more users exist in an
anonymized area with probability 1, and k or more users exist
in the area with probability w. Although we should extend
our proposed method, we can realize this by changing only the
check process that determines whether or not the area satisfies
the required privacy condition.

D. Application to Other Privacy Metrics

Although k-anonymity can protect individual identities,
there are times when it still cannot protect the sensitive
attributes of these individuals. The l-diversity [26] ensures that

the probability of identifying an individual’s sensitive attribute
is less than or equal to 1/l 1.

For example, we can define (l, w)-diversity as follows:

DEFINITION VI.1 ((l, w)-diversity). The database satisfies
(l, w)-diversity if and only if more than or equal to l users
exist in each anonymized area, and the relative frequency of
each of the sensitive attribute values does not exceed 1/l for
each anonymized area, with probability greater than or equal
to w.

Differential privacy [27], [28] is another privacy metric, and
it makes user data anonymous by adding noise to a dataset so
that an attacker cannot determine whether or not a particular
point of user data is included.

Although existing studies for differential privacy also do not
consider the location error, we can extend it as follows:

DEFINITION VI.2 (differential privacy considering the er-
ror). Let D represent all users’ actual location, which is
unknown, even to the data holder. Let D′ be database differing
on, at most, one record. A randomized mechanism A satisfies
ϵ-differential privacy considering the error if and only if for
all sets Y of outputs, the following equation holds:

P (A(D) ∈ Y ) ≤ eϵP (A(D′) ∈ Y ) for all D,D′.

This definition is similar to the original one. The difference
is that D is known to the data holder, that is, the data holder
has D, in the definition of the original differential privacy,
wheras D is unknown in the definition of the defferential

1There are several definitions of l-diversity.
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privacy considering the error. The definition of differential
privacy considering the error has nothing to do with the
database that the data holder has.

Proposing an algorithm to realize differential privacy con-
sidering the error is our future work.

VII. RELATED WORK

Many studies on the anonymization of location data have
used k-anonymity [29] as a privacy metric. When the original
position of Alice is (x, y), an anonymized area that contains
(x, y) is generated. Each anonymized area should contain k
or more users.

Minimizing the size of the anonymized areas is a common
objective of existing studies on the anonymization of location
data (e.g., [2]–[4]). Due to the fact that finding an optimal
k-anonymity is NP-hard [30], many existing algorithms for k-
anonymity search for better anonymization through heuristic
approaches. Mondrian [16], which is an efficient top-down
greedy approach, is widely used in many other studies as a
base method [8], [25].

Research studies on the anonymization of trajectory data
such as [31] also have been proposed. Each trajectory data
of a user consists of several location data represented by
{(x1, y1, t1), (x2, y2, t2), . . .} where xi and yi represent longi-
tude and latitude, respectively, and ti represents the observed
time. These studies aim at preventing data analyzers, who
know Alice existed in a specific location at time t, from
identifying where Alice existed at other times. Many studies
have conducted k-anonymization for each specific time; hence,
the results of our study, in this paper, can be used by these
existing studies to anonymize trajectory data that contain the
location error.

Abul et al. considered the location error and proposed a
method called NWA for k-anonymity of the location data [8],
[9]. NWA ensures that k or more users are located within
the circle with the radius δ, which represents the uncertainty
threshold. However, [10], [11] proved that NWA does not offer
k-anonymity if location data has errors and the data analyzer
knows the true location of the user.

Many algorithms [32], [33] for protecting location data and
attributes of users other than previously mentioned research
studies have been proposed, but they have not considered the
location error.

The k-anonymity does not protect a location’s privacy
in many cases, as shown in [34], and we should consider
the inference attack addressed in [35] to protect location
privacy. These studies are important for protecting location
data. However, it should be noted that the main goal of our
proposed method is to protect sensitive attributes such as a
disease and a salary associated with the location data, even
if the attacker knows the true location of a user. To the best
of our knowledge, this is the first work that protects sensitive
attributes associated with location data by considering location
errors.

Because several organizations have started collecting loca-
tion data associated with sensitive attributes [36], we believe
that algorithms for protecting the location data and the sensi-
tive attributes associated with the location data have become
important. In our future work, we plan to combine our study
with other studies on protecting location privacy, such as [34],
[35], to protect location data and sensitive attribute values
while at the same time considering location errors.

In regard to utility metrics for location anonymization, a lot
of existing studies, such as [24], [37], use the utility metric
that increases as the sizes of anonymized areas decrease. This
utility metric does not consider the location error.

VIII. CONCLUSION
We showed that data analyzers might identify a specific

user from a k-anonymized location database with a probability
greater than 1/k, if the location has an error. Hence, it is un-
clear how the existing studies for k-anonymity protect against
untrusted third parties. To tackle this problem, we proposed
a novel privacy metric (k,w)-anonymity, which ensures that
more than or equal to k users exist in each anonymized area
with probability greater than or equal to w. Moreover, we
proposed a novel utility metric, which can consider not only
the anonymized area size but also the probability that each
user actually exists in the area.

We proposed an anonymization algorithm based on the pro-
posed metrics. We have proved that our algorithm can realize
(k,w)-anonymization in a realistic time period, although the
utility became less than that of existing studies.

Future work will include the evaluation of other real data-
sets. We also plan to apply our approach to other state-of-the-
art methods. The main contributions of this paper are algo-
rithms of area division, area expansion, and area reduction. As
these algorithms can be performed after using other existing
anonymization methods, we think that it is not difficult to
combine our proposed method with them.
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APPENDIX A
PROOF OF THEOREM V.1

Proof. From |UL| ≥ k, we get

m+
∑d−1

j=1 cj >= k. (7)

We will prove that Theorem IV.1 holds by mathematical
induction when (7) holds.

1) We show that it is true for s = 1.
When s = 1, the values of Λ̄(s) and Λ(s) are expressed by

Λ̄(1) = min(c1, q),

Λ(1) = max(0, q −
∑d−1

j=2 cj).
(8)

Put

H1 = q −
∑d−1

j=2 cj . (9)

Because q ≥ 0 and cj ≥ 0 for all j (j = 1, . . . , d− 1), we
can prove that Theorem IV.1 holds when s = 1 by proving
that

H1 ≤ c1 (10)

always holds.
The maximum value of q is q = k−m− 1 because of (5).

Therefore, we get from (9),

H1 ≤ k −m− 1−
∑d−1

j=2 cj . (11)

Because ∑d−1
j=2 cj =

∑d−1
j=1 cj − c1, (12)

we get

H1 ≤ k −m− 1−
∑d−1

j=1 cj + c1. (13)

From (7) and (13), we get

H1 ≤ c1 − 1. (14)
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Therefore, (10) always holds. Hence, Theorem IV.1 holds
when s = 1.

2) We show that it is true for s = s′ + 1 when we assume
it is true for s = s′.

When s = s′, the values of Λ̄(s) and Λ(s) are expressed by

Λ̄(s′) = min(cs′ , q −
∑s′−1

j=1 ij),

Λ(s′) = max(0, q −
∑s′−1

j=1 ij −
∑d−1

j=s′+1 cj).
(15)

Put

Hs′ = q −
∑s′−1

j=1 ij −
∑d−1

j=s′+1 cj . (16)

Because we assume that the theorem IV.1 holds when s =
s′, the following equation

Hs′ ≤ cs′ (17)

always holds.
When s = s′+1 the values of Λ̄(s) and Λ(s) are expressed

by

Λ̄(s′+1)=min(cs′+1, q −
∑s′

j=1 ij),

Λ(s′+1)=max(0, q −
∑s′

j=1 ij −
∑d−1

j=s′+2 cj).
(18)

Put

Hs′+1 = q −
∑s′

j=1 ij −
∑d−1

j=s′+2 cj . (19)

Because q ≥ 0 and cj ≥ 0 for all j (j = 1, . . . , d − 1),
we can prove that Theorem IV.1 holds when s = s′ + 1 by
proving that

Hs′+1 ≤ cs′+1 (20)

always holds.
From (16) and (19), we get

Hs′+1 = Hs′ − is′ + cs′+1. (21)

From (17), we get

Hs′+1 ≤ cs′ − is′ + cs′+1. (22)

Because of (5), we get is′ ≤ cs′ . Therefore

Hs′+1 ≤ cs′+1. (23)

Hence, (20) always holds. Therefore, Theorem IV.1 holds
when s = s′ + 1.

Based on mathematical induction, Theorem IV.1 holds.

APPENDIX B
PROOF OF THEOREM V.2

Proof. Because the value of Q(q) for q > 0 has a positive
value, the sum of Q(q) for q = 0, . . . , z+1 is always greater
than the sum of Q(q) for q = 0, . . . , z.

Therefore, the value of 1-(sum of Q(q) for q = 0, . . . , k −
m−1) is always smaller than the value of 1-(sum of Q(q) for
q = 0, . . . , z) where z < k −m− 1.

APPENDIX C
PROOF OF THEOREM V.3

Proof. The function Q(q) is a unimodal function with respect
to q. Therefore, if the value of Q(z+1), where z < k−m−1
is less than Q(z), the value of Q(z+ i) for all i = 1, . . . , k−
m− 1− z is less than the value of Q(z).

Hence, the sum of Q(q) for q = 0, . . . , k − m − 1 is less
than the sum of Q(q) for q = 0, . . . , z plus Q(z)× (k−m−
1− z).
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