
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016
1323

PAPER Special Section on Design Methodologies for System on a Chip

Asymmetric Leakage from Multiplier
and Collision-Based Single-Shot Side-Channel Attack∗∗

Takeshi SUGAWARA†a), Daisuke SUZUKI†, Members, and Minoru SAEKI††∗, Nonmember

SUMMARY The single-shot collision attack on RSA proposed by Han-
ley et al. is studied focusing on the difference between two operands of
multiplier. It is shown that how leakage from integer multiplier and long-
integer multiplication algorithm can be asymmetric between two operands.
The asymmetric leakage is verified with experiments on FPGA and micro-
controller platforms. Moreover, we show an experimental result in which
success and failure of the attack is determined by the order of operands.
Therefore, designing operand order can be a cost-effective countermeasure.
Meanwhile we also show a case in which a particular countermeasure be-
comes ineffective when the asymmetric leakage is considered. In addition
to the above main contribution, an extension of the attack by Hanley et al.
using the signal-processing technique of Big Mac Attack is presented.
key words: RSA, side-channel attack, collision attack, Montgomery multi-
plication

1. Introduction

Side-channel attack (SCA) is one of the main research sub-
jects in cryptography implementation. The attack exploits
side-channel information, such as power dissipation and
electromagnetic radiation, caused as a side-effect of cryp-
tographic operation. With the help of side-channel infor-
mation, attacker may successfully analyze cryptography [2].
The first attacks known as simple power analysis (SPA) and
differential power analysis (DPA) were presented by Kocher
et al. in 1999 [3]. Since then, new attack and countermea-
sure have been studied so far.

Kocher et al. presented the first SCA against RSA [3].
The basic concept of the attack is to directly decode a se-
cret exponent by distinguishing multiplication from squar-
ing in a common modular exponentiation algorithm. That
is a single-shot attack. In other words, a trace of single
RSA execution is sufficient to attack the cryptography. The
single-shot attack is feasible only when the difference be-
tween multiplication and squaring are easily observable e.g.,
there is a data-dependent conditional branch. In order to
counteract the attack, branch-less algorithms are developed.

Manuscript received September 11, 2015.
Manuscript revised January 6, 2016.
†The authors are with Mitsubishi Electric Corporation,

Kamakura-shi, 247-8501 Japan.
††The author is with Information-technology Promotion

Agency, Tokyo, 113-6591 Japan.
∗The research was conducted while the author was with

Mitsubishi Electric Corporation.
∗∗The paper is based on a preliminary version appeared at the

sixth international workshop on constructive side-channel analysis
and secure design (COSADE 2015) [1].

a) E-mail: Sugawara.Takeshi@bp.MitsubishiElectric.co.jp
DOI: 10.1587/transfun.E99.A.1323

The well-known multiply-always method in Alg. 1 falls in
this category.

Even after data-dependent branch is removed, there is
residual side-channel leakage correlated to the operands of
the multiplication and squaring [4]. The residual leakage is
small [5], but further research has been conducted in order
to exploit it. Using multiple traces is one direction of re-
search, however, there are efficient countermeasures against
multiple-shot attacks [6]. Therefore, improving single-shot
attack has become an important challenge. As a result of
improvements in measurement and signal processing, suc-
cessful single-shot attacks on FPGA implementations were
recently reported [7]–[9]. That means the residual leakage
should be suppressed for secure implementation.

Consequently, suppressing the residual leakage has be-
come a new challenge. Hanley et al. suggested to use
multiplier-level countermeasure [10]–[12] and that seems
to be a promising approach. For leakage suppression, deep
understanding of leakage from multiplier is needed. Since
multiplier is a core component in RSA implementation, it
has been extensively studied from arithmetic-circuit to ar-
chitectural levels. In contrast, there are quite few conven-
tional studies on the way how multiplier makes side-channel
leakage [10], [13], [14].

In this paper, leakage from multiplier is studied focus-
ing on difference between two operands. It is shown that
how leakage from integer multiplier and long-integer multi-
plication algorithm can be asymmetric between operands.
The asymmetric leakage is verified with experiments on
FPGA and micro-controller platforms. Moreover, the ex-
perimental results show that the order of operands signif-
icantly affect the success rate of a single-shot attack. Its
consequence is two folds: (i) designing operand order can
be a cost-effective countermeasure, while (ii) some counter-
measures become ineffective when the asymmetric leakage
is considered.

A1 It is shown that how leakage from integer multiplier
and long-integer multiplication algorithm can be asymmet-
ric between two operands.
A2 The asymmetric leakage is verified in FPGA and
micro-controller platforms. In the experiment, it is also
shown that the order of operands significantly affect the suc-
cess rate of a single-shot attack.
A3 It is shown that designing the order of operands can be
a cost-effective countermeasure.
A4 It is shown that a specific countermeasure becomes

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

1324
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

ineffective when the asymmetric leakage is considered.

In addition to the above main results, there are two ad-
ditional contributions.

B1 The single-shot attack by Hanley et al. [9] is extended
using the technique of Big Mac Attack [13].
B2 The first experimental result of successfully analyz-
ing an FPGA implementation of RSA with the multiply-
always method using single-shot internal-collision attack is
presented.

The paper is organized as follows. Its correspondence
to the contributions A1-A4 and B1-B2 is also described. In
Sect. 2, the related studies are reviewed followed by the pro-
posed extension of the attack by Hanley et al. (B1). In
Sect. 3, the way how leakage from integer multiplier and
long-integer multiplication algorithm can be asymmetric is
discussed (A1). Then, the asymmetric leakage is verified
with experiments in Sect. 4 (A1). In the section, the attack
in Sect. 2 is applied to an FPGA implementation with vari-
ous operand orders (B2). The experimental results are dis-
cussed in Sect. 5. It is shown that the asymmetry can be
used as a cost-effective countermeasure (A3) meanwhile it
can cause a problem in a certain countermeasure (A4). It
is also shown that the asymmetric leakage is measurable in
a microcontroller and thus the results in this paper are also
relevant to software implementation of cryptography (A2).
Sect. 6 is a concluding remark.

2. Single-Shot Collision Attack

Conventional attacks are briefly reviewed. Then, the two
most relevant attacks namely (i) the multiple-shot attack by
Witteman et al. [15] and (ii) the single-shot attack by Han-
ley et al. [9] are described in detail. Finally, the proposed
extension of the attack by Hanley et al. is described.

2.1 Conventional Single-Shot Attacks

Simple Power Analysis (SPA) [3] As described in the
introduction, Kocher et al. proposed the first single-shot at-
tack on RSA. The attack exploits binary method used for
modular exponentiation. In binary method, there is a condi-
tional branch between multiplication and squaring depend-
ing a secret bit. The idea of the attack is to directly decode a
secret exponent by distinguishing multiplication from squar-
ing by inspecting a side-channel trace.
Big Mac Attack (BMA) [13] Walter proposed BMA
to attack another modular exponentiation algorithm called
the window method [13]. In the attack, two distinct parts of
a trace are compared to find collision. Information of pres-
ence (or equivalently absence) of collision can be used to
attack cryptography. Along with the attack, a sophisticated
signal-processing technique is introduced in order to effi-
ciently find the collision. Firstly, a segment to be compared
is split into multiple sub-segments. Then the sub-segments

Algorithm 1 Multiply-Always Method with Left-To-Right
Scanning
Input: Message M, Modulo N, Secret exponent d = (dt−1, · · · , d0)2
Output: Ciphertext Md

1: R0 ← 1
2: for j = t − 1 downto 0 do
3: d j ← 1 − d j
4: R0 ← R2

0 mod N
5: Rd j

← R0 × M mod N
6: end for
7: Return R0

are averaged together and an averaged segment is obtained.
Finally, two averaged segments are compared to detect col-
lision. Since signal-to-noise ratio (SNR) of the averaged
segments are higher because of the averaging, collision is
efficiently detected. Feasibility of the attack is proved with
simulation [13]. However, no practical result has been re-
ported as described by Clavier et al. [16].
Horizontal Correlation Power Analysis (HCPA) [10]
HCPA proposed by Clavier et al. is a successor of BMA
[10]. In the attack, a single trace is split into many sub-
traces in the same manner as BMA. Then, a multiple-shot
attack is mounted to the virtual multiple traces. There are
experimental results successfully attacking software imple-
mentations [10].
Clustering-based attack [7] Heyszl et al. proposed an
attack using the k-means clustering algorithm [7]. In the at-
tack, traces are classified into two clusters that supposedly
correspond to the value of a secret bit. In addition, high-
quality electromagnetic traces are measured and used for the
analysis. The attack is then improved by Perin et al. [8]. As
a result of the improvements both in distinguisher and mea-
surement, successful attack on FPGA platform is reported
[7], [8]. Notably, Perin et al. succeeded in attacking an
FPGA implementation with a multiplier-level countermea-
sure called the leak resilient arithmetic [12] by exploiting
the remaining first-order leakage.

2.2 Multiple-Shot Internal-Collision Attack by Witteman
et al. [15]

Witteman et al. proposed a new multiple-shot attack which
exploits collision between consecutive operations i.e., inter-
nal collision [15]. The attack on the multiply-always method
(Alg. 1) is described.

The consecutive multiplication and squaring in Alg. 1
are considered. For clarity they are rewritten as

R′
d j
← R0 × M mod N, (1)

R′′0 ← R′20 mod N. (2)

If d j = 1, the memory R0 is not updated in Eq. (1) and
thus R0 = R′0. Therefore, the consecutive multiplication and
squaring have the same input i.e., there is collision. Alter-
natively when d j = 0, R0 , R′0 and there is no collision.
As a result, a secret bit is revealed every single time pres-
ence/absence of collision is observed.

SUGAWARA et al.: ASYMMETRIC LEAKAGE FROM MULTIPLIER AND COLLISION-BASED SINGLE-SHOT SIDE-CHANNEL ATTACK
1325

The collision is detected using correlation-coefficient
matrix. Suppose L different messages are encrypted with the
same exponent. Traces for multiplication and squaring for
the i-th message are denoted by mi

t and si
t, respectively. Note

that the subscript t is time index. The correlation coefficient
matrix Cx,y is calculated as follows:

Cx,y = F j[m
j
x, s

j
y]. (3)

Here, F j is the correlation-coefficient operator defined by

F j[m j, s j] :=
1
L

L−1∑
j=0

(m j − E j[m j]) · (s j − E j[s j])√
V j[m j] · V j[s j]

, (4)

E j[m j] :=
1
L

L−1∑
j=0

m j (5)

V j[m j] := E j[(m j)2] − E j[m
j]2. (6)

If there is a collision, Cx,y contains a non-zero value.
Therefore, the collision can be found by inspecting the ma-
trix.

2.3 Single-Shot Internal-Collision Attacks by Hanley et al.
[9]

Hanley et al. proposed a single-shot attack against various
addition-chain algorithms. The attack uses internal collision
similarly to the one by Witteman et al. but it uses only a sin-
gle trace. That enables the new attack to defeat the blinding
countermeasure [6]. In the following description, the attack
for the multiply-always method is described.

The attack by Witteman et al. cannot be used for the
single-shot setting because Eq. (4) is useless for L = 1†.
Instead, Hanley et al. proposed to compare the traces m0

x
and s0

x in time domain. Two different ways are proposed
for measuring the similarity: the Euclidean distance and the
time-domain correlation coefficient given by Fx[m0

x, s
0
x].

Hanley et al. applied the attack to a software implemen-
tation and successfully recovered 99% of the exponent bits.
They also applied the attack to an FPGA implementation,
however, the attempt was unsuccessful for the multiply-
always method. The result can be reasoned by lower SNR in
side-channel information from FPGA. SNR has a big impact
on the success rate of single-shot attack.

The attack uses multiple points of interest. That is the
advantage of the attack over the clustering-based attacks [8].
Therefore, the multiply-always method can be defeated even
if there is no first-order leakage [8]. In addition, the attack
is advantageous to HCPA on the point that is feasible with
unknown message. In other words, the attack by Hanley et
al. defeats the message-blinding countermeasure [6].

2.4 Proposed Extension of the Attack by Hanley et al.

An extension of the attack by Hanley et al. is described. The
†Note that Clavier et al. proposed another single-shot extension

[16] which aim at distinguishing multiplication from squaring.

idea is to use the technique from BMA as a preprocessing
thereby improve SNR ††.

Multiplication and squaring found in modular expo-
nentiation algorithm is realized by long-integer multiplica-
tion. Hereafter, long-integer multiplication A × B is con-
sidered. A and B are composed of s words and denoted
by A = {as−1, · · · , a0} and B = {bs−1, · · · , b0} where a j
and bi are words. The long-integer multiplication comprises
partial-product generation namely a j × bi. The leakage of
a j × bi is denoted by l(j, i).

The trace l(j, i) is pre-processed as shown in Fig. 1.
l(j, i) is compressed into two s-dimensional vectors la(j) and
lb(i) defined by

la(j) =
1
s

s−1∑
i=0

l(j, i), (7)

lb(i) =
1
s

s−1∑
j=0

l(j, i). (8)

la(j) and lb(i) are called the compressed vectors. By the
compression, the effect of one operand is removed thereby
improving SNR of another. The compressed vectors la(j)
and lb(i) correlate to a j and bi, respectively. This is the same
approach as BMA.

Finally, the compressed vectors from multiplication
and squaring traces are compared in the same manner as
the original attack by Hanley et al. The measured traces of
multiplication and squaring are denoted by l(j, i) and l′(j, i),
respectively. The corresponding compressed vectors are de-
noted by la(j), l′a(j), lb(i), and l′b(i). The compressed vectors
are compared with correlation coefficient as follows:

F j[la(j), l′a(j)] ∈ [−1, 1], (9)
Fi[lb(i), l′b(i)] ∈ [−1, 1]. (10)

Either Eqs. (9) or (10) is used depending on which operand
has collision.

In order to conduct the attack, the attacker should know
the positions of l(j, i) in a raw trace. That is the same pre-
requisite as BMA and HCPA. Even if the prior knowledge
is unavailable, the attacker can possibly reverse-engineer the
points of l(j, i) by analyzing the correlation matrix in Eq. (3).
That is because patterns found in the matrix reflect the un-
derlying long-integer multiplication algorithm. That is ex-
plained in Sect. 4.2 with experimental results. Note that in
order to get a meaningful correlation matrix, the exponent
blinding should be disabled. There are some realistic sit-
uations in which the condition is satisfied. Firstly, the at-
tacker with an open sample can possibly profile the device
while disabling the countermeasure. Secondly, the same
co-processor for modular exponentiation may be used for
another purpose without the exponent blinding. One such
example is signature verification in which no secret is in-
volved.
††The method can be thought as a missing variant with “regular

algorithm + unknown message” in the categorization by Bauer et
al. [11].

1326
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

Fig. 1 The distinguisher based on Big Mac Attack.

3. Asymmetric Leakage

Difference between two operands of multiplier is discussed
in (i) integer multiplier and (ii) long-integer multiplication
(LIM) levels.

3.1 Asymmetry at Integer Multiplier Level

In the paper of BMA, Walter showed that two operands of
a simple integer multiplier are symmetric in terms of side-
channel leakage [13]. However, sophisticated multipliers
can be asymmetric as described below.

The Booth recoding is a common technique for partial
product generation † [17]. The technique enables to reduce
the total number of partial products thereby improving per-
formance. Figure 2 shows a circuit for generating one partial
product using the radix-4 Booth recoding. The word length
is denoted by w. Firstly, the multiplicand A is expanded to
{2A, A, 0, A, 2A}. The expansion is efficiently implemented
using arithmetic shift and NOT gates. Then, one out of five
candidates is selected at the 5:1 selector. The selector output
is the partial product. The selector is controlled by a 3-bit
chunk of the multiplier namely {xi+1, xi, xi−1}.

The circuit in Fig. 2 has asymmetry in terms of
operands. Leakage from a 32-bit integer multiplier with the
radix-4 Booth recoding is investigated with simulation. The
multiplier is synthesized and post-synthesis logic simulation
is conducted. During the simulation, the number of signal-
transition events i.e., toggles is counted and recorded.

Two testvectors namely A and B are examined. Firstly,
32-bit integers c and hi are generated for 0 ≤ i < 10, 000. In
the testvector A, c × hi is calculated. In this case, the circuit
is driven with fixed multiplier and variable multiplicand. In
the testvector B, hi × c is calculated wherein the circuit is
driven with variable multiplier and fixed multiplicand.

Histograms of the measured toggle counts are shown
†Note that Walter and Samyde noticed that leakage from the

Booth recoding does not obey by the Hamming-weight model [14].
However, the difference between operands was not mentioned.

Fig. 2 Partial-product generator for the radix-4 Booth recoding.

Fig. 3 Toggle counts of a 32-bit multiplier.

in Fig. 3. The black and white bars correspond to the result
by two sets of test-vectors. The result shows that histograms
distribute differently depending on the test-vector. As shown
in the histograms, more toggles are observed when the mul-
tiplicand is fixed. In other words, the number of signal-
transition events is more susceptible to the multiplier port
compared the multiplicand port. The result is explained
by an empirical fact that a selector signal has stronger ef-
fect on toggle counts. In Fig. 2, the 3-bit selector signal
{xi+1, xi, xi−1} drives the w-bit data path. Therefore, changes
in the 3-bit signal are amplified to w bits.

3.2 Asymmetry at Long-Integer Multiplication Level

Difference of operands at the LIM level is discussed. The
Montgomery multiplication [18] with the coarsely inte-
grated operand scanning (CIOS) [19] shown in Alg. 2 is

SUGAWARA et al.: ASYMMETRIC LEAKAGE FROM MULTIPLIER AND COLLISION-BASED SINGLE-SHOT SIDE-CHANNEL ATTACK
1327

Algorithm 2 Coarsely Integrated Operand Scanning [19]
Input: Word A = {as−1, · · · , a0} and B = {bs−1, · · · , b0}
Output: Product ti for i ∈ [0, s − 1]
1: for i = 0 to s − 1 do
2: C ← 0
3: for j = 0 to s − 1 do
4: (C, S)← t j + a j × bi +C
5: t j ← S
6: end for
7: (C, S)← ts +C
8: ts ← S
9: ts+1 ← C

10: C ← 0
11: m← t0 × n′0 mod W
12: for j = 0 to s − 1 do
13: (C, S)← t j + m × n j +C
14: t j ← S
15: end for
16: (C, S)← ts +C
17: ts ← S
18: ts+1 ← ts+1 +C
19: for j = 0 to s do
20: t j ← t j+1
21: end for
22: end for
23: Return t j

considered. Inputs are expressed as A = {as−1, · · · , a0} and
B = {bs−1, · · · , b0} where a j and bi are words. The core
operation is partial-product generation a j × bi at the line
4 of Alg. 2. Fig. 4 shows a common circuit architecture
for LIM using a w-bit multiply-and-accumulate (MAC) unit
[20]. The MAC unit operates (x, y, z) 7→ z+ x × y where z is
usually an accumulator. The words a j and bi are read from
the memory and fed to the MAC unit via w-bit temporal reg-
isters labelled regA and regB.

Suppose regA and regB store the long integers A and
B, respectively. Figure 4 also shows an operation sequence
describing the contents of the registers. As shown in the ta-
ble, regB is updated less frequently because bi is scanned at
the outer loop in Alg. 2. For s-word long-integer multipli-
cation, regA and regB are updated s2 and s times, respec-
tively.

In CMOS, a strong dynamic current is caused when
input is changed [2]. As a result, the operand scanned at
the inner loop (i.e., A) has stronger leakage. This LIM-level
asymmetry is verified through experiments in Sect. 4.

4. Experiments

The attack described in Sect. 2.4 is applied to an FPGA im-
plementation of the Montgomery multiplication. The ex-
periment is conducted for all the possible operand orders in
order to investigate how asymmetric leakage affect success
rate of the attack.

4.1 Setup

A circuit implementing the 1024-bit Montgomery multipli-
cation is examined. The circuit uses the MAC-based archi-

Fig. 4 Common circuit architecture for long-integer multiplication using
an multiply-and-accumulate unit.

Fig. 5 A de-packaged FPGA chip for measurement.

tecture in Fig. 4. The MAC unit has a 64-bit integer multi-
plier and thus the number of words s = 16 = 1024/64. The
words are scanned with the CIOS method in Alg. 2. The
MAC unit has a special 1-bit input with which operands to
the integer multiplier is swapped. The signal is used in order
to evaluate the asymmetry at the integer-multiplier level.

The design of the 1024-bit Montgomery multiplication
is implemented on Virtex-II Pro FPGA on SASEBO [21].
For preparation, the chip is de-packaged as shown in Fig. 5.
Then, traces are measured by putting a magnetic-field probe
on the die surface [22]. The probe is 0.1 mm in diameter.
Traces are captured using an oscilloscope with the band-
width of 12.5 GHz and the sampling rate of 25.0 GSa/s.

Test-vectors are designed to emulate RSA with the
multiply-always method (see Alg. 1). Firstly, 1024-bit ran-
dom numbers uk, vk, and wk are generated for k ∈ [0, 999].
For each triplet (uk, vk, wk), the Montgomery multiplica-
tion denoted by M(·, ·) is called in five ways: M(uk, vk),
M(uk, vk) with its integer operand swapped, M(uk, uk),
M(vk, vk), andM(wk, wk). The five Montgomery multiplica-
tions are called with identifiers namely (UV), (UV), (UU),
(VV), and (WW). (UV) and (UV) are different in the or-
der of operands to the 64-bit integer multiplier. That is re-
alized by the afore-mentioned special feature of the MAC
unit. Table 1 also summarizes the correspondence between

1328
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

Table 1 Test-vectors of the Montgomery multiplication.

Correspondence between (uk , vk , wk) and multiplier operand
LIM level integer-multiplier level

Identifier Operation Trace Inner loop (a j in Alg. 2) Outer loop (bi in Alg. 2) multiplier multiplicand
(UV) M(uk, vk) Tuv(k, t) uk vk vk uk

(UV) M(uk, vk) Tuv(k, t) uk vk uk vk
(UU) M(uk , uk) Tuu(k, t) uk uk uk uk
(VV) M(vk , vk) Tvv(k, t) vk vk vk vk
(WW) M(wk , wk) Tww(k, t) wk wk wk wk

Table 2 Examined pairs of traces.

Traces Colliding operand
Identifier Multiplication Squaring LIM-level integer-multiplier-level

(UV,UU) Tuv(k, t) Tuu(k, t) Inner loop (a j in Alg. 2) multiplicand
(UV,VV) Tuv(k, t) Tvv(k, t) Outer loop (bi in Alg. 2) multiplier
(UV ,UU) Tuv(k, t) Tuu(k, t) Inner loop (a j in Alg. 2) multiplier
(UV ,VV) Tuv(k, t) Tvv(k, t) Outer loop (bi in Alg. 2) multiplicand

(UV,WW) Tuv(k, t) Tww(k, t) — —
(UV ,WW) Tuv(k, t) Tww(k, t) — —

(uk, vk, wk) and the operands in the integer-multiplier and
LIM levels. The measured side-channel traces for the k-th
triplet are denoted by Tuv(k, t), Tuv(k, t), Tuu(k, t), Tvv(k, t),
and Tww(k, t) where t is time index.

The traces are examined in pair. Six pairs namely

{(UV), (UV)} × {(UU), (VV), (WW)}.

are evaluated as summarized in Table 2. The pair corre-
sponds to consecutive multiplication and squaring in the
multiply-always method: (UV), (UV) correspond to mul-
tiplication while (UU), (VV), and (WW) are squaring. The
pairs are referred by identifiers namely (UV,UU), (UV,VV),
(UV ,UU), (UV ,VV), (UV,WW), and (UV ,WW).

Table 2 also summarizes colliding operand both at
the integer-multiplier and LIM levels. In (UV,UU) and
(UV ,UU), the operand scanned at the inner loop of Alg. 2
has collision at the LIM-level. On the other hand, the
operand scanned at the outer loop has collision in (UV,VV)
and (UV ,VV). At the integer-multiplier level, multiplicand
collides in (UV,UU) and (UV ,VV). Meanwhile multiplier
collides in (UV,VV) and (UV ,UU). There is no collision in
(UV,WW) and (UV ,WW).

The pairs are compared under the multiple- and single-
shot attacks in the following sections.

4.2 Application of the Multiple-Shot Attack by Witte-
man et al.

As a preliminary experiment, the pairs of the traces are an-
alyzed using the attack by Witteman et al. For the pairs
(UV,UU), (UV,VV), (UV ,UU), and (UV ,VV), correlation
matrices are obtained as follows:

C(UV,UU)
x,y = Fk[Tuv(k, x),Tuu(k, y)], (11)

C(UV,VV)
x,y = Fk[Tuv(k, x),Tvv(k, y)], (12)

C(UV ,UU)
x,y = Fk[Tuv(k, x),Tuu(k, y)], (13)

C(UV ,VV)
x,y = Fk[Tvv(k, x), Tvv(k, y)], (14)

where Fk[·, ·] is the correlation-coefficient operator in
Eq. (4).

The matrices are shown as bitmap images in Fig. 6. The
bitmap images show different patterns depending on the col-
liding operands at the LIM level. There are repeated slash
lines on Fig. 6-(i) and -(iii) in which there are collisions at
the inner loop. On the other hand, collision at the outer loop
makes rectangle patterns as shown in Fig. 6-(ii).

The bitmap images also show the difference caused by
the asymmetry at the integer-multiplier level. The multi-
plier (cf. the multiplicand) shows higher correlation as ex-
pected in Sect. 3.1. The slash lines are brighter in Fig 6-(iii)
compared to the ones in Fig. 6-(i). Similarly, the rectangle
patterns are more distinct in Fig. 6-(ii). Quantitative com-
parison is conducted in the next section.

In Sect. 2.4, the way how to find points of interest
namely l(j, i) is discussed. The discussion is revisited con-
sidering the experimental result. In Fig. 6, a bright pixel
corresponds to integer multiplications with collision. There-
fore, their time indices can be used as the points of interest.
Figure 7 shows how the slash lines in Fig. 6 is sampled as
points of interest (for the number of words s = 4).

4.3 Application of the Proposed Single-Shot Attack

The proposed attack described in Sect. 2.4 is applied to the
traces. That is applied to all the six pairs in Table 2. Con-
sidering colliding operands, Eq. (9) is used for (UV,UU)
and (UV ,UU) while Eq. (10) is used for (UV,VV) and
(UV ,VV).

Correlation coefficients are obtained by applying the
attack to the pairs. Since there are 1, 000 traces, 1, 000 cor-
relation coefficients are obtained for each pair. They are

SUGAWARA et al.: ASYMMETRIC LEAKAGE FROM MULTIPLIER AND COLLISION-BASED SINGLE-SHOT SIDE-CHANNEL ATTACK
1329

Fig. 6 Correlation-coefficient matrices C(UV,UU)
x,y , C(UV,VV)

x,y , C(UV ,UU)
x,y , and C(UV ,VV)

x,y shown as bitmap
images. (i)-(iv) correspond to different operand orders.

Fig. 7 Determining points of interest from correlation matrix.

shown as histograms in Fig. 8. Figure 8-(i) to -(iv) cor-
respond to the pairs (UV,UU), (UV,VV), (UV ,UU) and
(UV ,VV), respectively. The no-collision pairs (UV,WW)
and (UV ,WW) are also shown in each sub-figure for com-
parison. In each sub-figure, black and white bars represent
correlation coefficients in cases with and without collision.
The figure shows that correlation coefficients distribute sep-
arably in some pairs.

Distinguishability between distributions with and with-
out collision is evaluated. The black and white bars in Fig. 8
are composed of 1, 000 samples each. A mix of them com-
prising 2, 000 samples is considered. The performance is
evaluated by classifying the mix without using prior knowl-
edge.

In this experiment, the following simple classification
is used. Firstly, the 2, 000 samples are sorted. Then, 1, 000
samples with highest correlation coefficients are decided to

have collision. The remaining 1, 000 samples are decided to
have no collision. The above classification is made consid-
ering the following attack on RSA. Suppose the RSA uses
t-bit exponent. By applying the proposed attack, t corre-
lation coefficients are obtained. The exponent is expected
to have t/2-bit zeros and t/2-bit ones. Therefore, the at-
tacker divides the correlation coefficients into upper and
lower halves.

As a result of the thresholding, the success rates are
98.3%, 93.0%, 99.5%, and 52.7% in Fig. 8-(i) to -(iv), re-
spectively. More than 99% is achieved with (UV ,UU). That
is the first successful single-shot internal-collision attack of
the multiply-always method on FPGA. In contrast, the at-
tack is unsuccessful in (UV ,VV). The result clearly shows
that operand order has a significant impact on the success
rate of the attack.

5. Discussion

The experimental results show that the operand order has
significant impact on side-channel leakage. In this section,
consequences of the results are discussed from three differ-
ent perspectives. Firstly from circuit designer’s perspective,
leakage can be efficiently reduced by appropriately design-
ing the order of operands. Secondly from attacker’s perspec-
tive, the asymmetry can be exploited as a new type of infor-

1330
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

Fig. 8 Histograms of correlation coefficients for the single-shot attack. Sub-figures (i)-(iv) correspond
to different operand orders.

mation leakage to attack a countermeasure. Finally from
software engineer’s perspective, it is shown that the asym-
metry is measurable from microcontroller and thus it is also
relevant to software implementation of cryptography.

5.1 Leakage Reduction by Designing Operand Order

The experimental results show that operand order can di-
vide success and failure of the attack. That means that
leakage can be reduced by appropriately designing the or-
der of operands. In the previous experiment, The pair
(UV ,VV) is the best option in terms of leakage suppres-
sion (see Fig. 8-(iv)). The operand order can be changed
at almost no cost. In addition to the cost effectiveness, the
proposed method can easily be combined with other conven-
tional countermeasures (e.g., the randomized operand scan-
ning [10], [11]).

Although a specific design using the Montgomery mul-
tiplication with CIOS is discussed in this paper, the same
idea can be easily extended to many other methods. That is
because the causes of asymmetry, the partial-product gen-
eration and operand scanning, are common in long-integer
multiplication. On the other hand, an exceptional case is
worth noting. The Finely Integrated Operand Scanning
(FIOS) [19] falls in such a case. In FIOS, the register con-
taining the variable scanned at the outer cannot be kept while
the outer loop. That is because another word-wise multipli-
cation, needed for the Montgomery reduction, should be in-
terleaved. As a result, the leakage from the operand scanned
at outer loop is not necessarily smaller.

It is also worth mentioning that toggle simulation can
be used to determine a good operand order. As shown in
Sect. 3.1, the asymmetry at the integer-multiplier level can
be simulated. The LIM-level asymmetry is not simulated in
the paper, however, the frequency of register update can be
covered by the toggle simulation.

5.2 Attack on Montgomery Powering Ladder

In contrast to the previous result, the asymmetric leakage
can make some countermeasures ineffective. Algorithm 3
shows the Montgomery powering ladder (MPL) [23]. We
focus on collisions between inputs†.

In MPL, consecutive operations always collides as fol-
low:

Ra ← R0 × R1 mod N, (15)
Ra ← Ra × Ra mod N. (16)

Therefore, the presence of collision does not leak k j. How-
ever, the colliding operand depends on k j. There is collision
at the first and second operand when k j = 0 and k j = 1,
respectively. Therefore, attacker can recover a secret bit by
distinguishing the collisions in different operands.

Interestingly, the attack is no longer effective when
Eq. (15) and Eq. (16) are replaced with the following state-
ments found in [9].

†Hanley et al. considered more general cases considering a col-
lision between input and output. However, the input-output colli-
sion was very weak in our setup.

SUGAWARA et al.: ASYMMETRIC LEAKAGE FROM MULTIPLIER AND COLLISION-BASED SINGLE-SHOT SIDE-CHANNEL ATTACK
1331

Algorithm 3 Montgomery Powering Ladder [23]
Input: Message M, scalar k = (kt−1, · · · , k0)2
Output: Ciphertext Md

1: R0 ← 1; R1 ← M
2: for j = t − 1 downto 0 do
3: a← k j; a← 1 − a
4: Ra ← R0 × R1 mod N
5: Ra ← Ra × Ra mod N
6: end for
7: Return R0

Fig. 9 Assembly code loaded on ARM Cortex-M0 core.

Table 3 Test vector to muls instruction.
Trace name Operands to muls
Tαβ(k, t) αk × βk
Tαα(k, t) αk × αk
Tββ(k, t) βk × βk
Tγγ(k, t) γk × γk

Ra ← Ra × Ra mod N, (17)
Ra ← Ra × Ra mod N. (18)

Now, collision unconditionally occurs at the first operand.
Therefore, collision becomes independent of k j. This is an-
other example showing the importance of designing operand
order.

5.3 Asymmetric Leakage in Software Implementation

So far, asymmetric leakage is discussed for hardware im-
plementation. It would be natural to ask if it is relevant to
software implementation. Since the Booth recoding is com-
monly used in commercial logic synthesizers [24], integer
multiplier on processor likely has asymmetric leakage. That
is investigated with experiment.

NXP LPC1114 [25] with ARM Cortex-M0 [26] core is
chosen as a target chip. That chip is selected because ARM
Cortex-M series is frequently used as an evaluation platform
for software implementation of cryptography [27].

Figure 9 shows a small program used for the experi-
ment. The registers r0 and r1 are initialized with input val-
ues to the multiplier before entering to the program. Then,
the multiplication instruction muls is called with r0 and
r1. The target instruction is surrounded by nop instructions
in order to reduce perturbation by neighboring instructions
processed simultaneously in a pipeline.

While executing the program in Fig. 9, side-channel
trace is measured. The LPC1114 chip is de-packaged in the
same manner as the FPGA shown in Fig. 5. Then, the chip
is measured by putting the magnetic-field probe on the die
surface.

Input to the instruction is designed similarly to

Sect. 4.3. 16-bit random integers αk, βk, and γk are gener-
ated. For each triplet (αk, βk, γk), four multiplications are ex-
ecuted as summarized in Table 3. The four cases are: αk×βk,
αk × αk, βk × βk, and γk × γk. The measured traces for the
k-th triplet are denoted by Tαβ(k, t), Tαα(k, t), Tββ(k, t), and
Tγγ(k, t) wherein t is time index. Note that αk, βk, and γk
are limited to 16 bits in order to avoid overflow in the 32-bit
multiplier.

The traces are analyzed using the approach by Witte-
man et al. Correlation-coefficient matrices are evaluated for
the following three combinations:

C(αβ,αα)
x,y = Fk[Tαβ(k, x),Tαα(k, y)], (19)

C(αβ,ββ)
x,y = Fk[Tαβ(k, x),Tββ(k, y)], (20)

C(αβ,γγ)
x,y = Fk[Tαβ(k, x),Tγγ(k, y)]. (21)

The notation follows Eq. (4). C(αβ,αα)
x,y and C(αβ,ββ)

x,y have col-
lision in different operand. Meanwhile C(αβ,γγ)

x,y has no colli-
sion.

Bitmap images of matrices C(αβ,αα)
x,y , C(αβ,ββ)

x,y , and
C(αβ,γγ)

x,y are shown in Fig. 10 (1), (2), and (3), respectively.
The figures involve a single clock cycle in which muls is
executed.

The time when the correlation coefficients are maxi-
mized is indicated by dashed lines. For clarity, cross-section
of the matrices at the dash lines are shown in Fig. 10 (1’),
(2’), and (3’). There are spikes in C(αβ,αα)

x,y and C(αβ,ββ)
x,y as

expected. There is difference in the strengths of the cor-
relation coefficients. The peak of correlation coefficient in
C(αβ,αα)

x,y is around 0.2 while that is about 0.8 in C(αβ,ββ)
x,y . The

result clearly shows that the second operand (argument) has
stronger correlation compared to the first operand. The re-
sult shows that asymmetric leakage is observable in micro-
controller.

6. Conclusion

Side-channel leakage from multiplier is asymmetric in terms
of its two operands. The asymmetry can be reasoned and
predicted when arithmetic-circuit and micro-architecture
levels are considered. Therefore, designing operand order
can be a cost-effective countermeasure. On the other hand,
some countermeasure can be defeated if the leakages from
first and second operands are distinguishable.

There are a lot of interesting problems yet to be solved.
Notably, the attack using input-to-output collision is an in-
teresting challenge. Another important open problem is on
incomplete exponent recovery. The successful rate more
than 99% is clearly dangerous. The ideal goal is 50.0%,
however, it could possibly be relaxed.

Acknowledgement

The authors would like to thank the anonymous reviewers at
COSADE 2015 for their valuable comments. The study was

1332
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.7 JULY 2016

Fig. 10 Correlation-coefficient matrices C(αβ,αα)
x,y , C(αβ,ββ)

x,y , and C(αβ,γγ)
x,y in sub-figures (1)–(3). Their

cross sections at dashed lines are in (1’)–(3’).

conducted as a part of the CREST Dependable VLSI Sys-
tems Project funded by the Japan Science and Technology
Agency.

References

[1] T. Sugawara, D. Suzuki, and M. Saeki, “Two operands of multi-
pliers in side-channel attack,” Constructive Side-Channel Analysis
and Secure Design, Lecture Notes in Computer Science, vol.9064,
pp.64–78, 2015.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Re-
vealing the Secrets of Smart Cards, Springer-Verlag, 2007.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Ad-
vances in Cryptology, CRYPTO’99, Lecture Notes in Computer Sci-
ence, vol.1666, pp.388–397, 1999.

[4] F. Amiel, B. Feix, M. Tunstall, C. Whelan, and W.P. Marnane, “Dis-
tinguishing multiplications from squaring operations,” Selected Ar-
eas in Cryptography, Lecture Notes in Computer Science, vol.5381,
pp.346–360, 2009.

[5] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir,
“Collision-based power analysis of modular exponentiation using
chosen-message pairs,” CHES 2008, LNCS, vol.5154, pp.100–112,
2008.

[6] J.-S. Coron, “Resistance against differential power analysis for ellip-
tic curve cryptosystems,” Cryptographic Hardware and Embedded
Systems, Lecture Notes in Computer Science, vol.1717, pp.292–
302, 1999.

[7] J. Heyszl, A. Ibing, S. Mangard, F. De Santis, and G. Sigl, “Cluster-
ing algorithms for non-profiled single-execution attacks on exponen-
tiations,” Smart Card Research and Advanced Applications, Lecture
Notes in Computer Science, pp.79–93, 2014.

[8] G. Perin, L. Imbert, L. Torres, and P. Maurine, “Attacking ran-
domized exponentiations using unsupervised learning,” Construc-
tive Side-Channel Analysis and Secure Design, Lecture Notes in

Computer Science, vol.8622, pp.144–160, 2014.
[9] N. Hanley, H. Kim, and M. Tunstall, “Exploiting collisions

in addition chain-based exponentiation algorithms using a sin-
gle trace,” Cryptography ePrint Archive: Report 2012/485,
http://eprint.iacr.org/2012/485

[10] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil,
“Horizontal correlation analysis on exponentiation,” Information
and Communications Security, Lecture Notes in Computer Science,
vol.6476, pp.46–61, 2010.

[11] A. Bauer, E. Jaulmes, E. Prouff, and J. Wild, “Horizontal and verti-
cal side-channel attacks against secure rsa implementations,” Topics
in Cryptology, CT-RSA 2013, Lecture Notes in Computer Science,
vol.7779, pp.1–17, 2013.

[12] J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia, “Leak resis-
tant arithmetic,” Cryptographic Hardware and Embedded Systems,
CHES 2004, Lecture Notes in Computer Science, vol.3156, pp.62–
75, 2004.

[13] C.D. Walter, “Sliding windows succumbs to big mac attack,” Cryp-
tographic Hardware and Embedded Systems, CHES 2001, Lecture
Notes in Computer Science, vol.2162, pp.286–299, 2001.

[14] C.D. Walter and D. Samyde, “Data dependent power use in multipli-
ers,” 17th IEEE Symposium on Computer Arithmetic (ARITH’05),
pp.4–12, 2005.

[15] M.F. Witteman, J.G.J. van Woudenberg, and F. Menarini, “Defeat-
ing RSA multiply-always and message blinding countermeasures,”
Topics in Cryptology, CT-RSA 2011, Lecture Notes in Computer
Science, vol.6558, pp.77–88, 2011.

[16] C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Roussellet, and
V. Verneuil, “ROSETTA for single trace analysis: Recovery of se-
cret exponent by triangular trace analysis,” Progress in Cryptology,
INDOCRYPT 2012, Lecture Notes in Computer Science, vol.7668,
pp.140–155, 2012.

[17] I. Koren, Computer Arithmetic Algorithms 2nd Ed., A K Peters/
CRC Press, 2001.

http://dx.doi.org/10.1007/978-3-319-21476-4_5
http://dx.doi.org/10.1007/978-3-319-21476-4_5
http://dx.doi.org/10.1007/978-3-319-21476-4_5
http://dx.doi.org/10.1007/978-3-319-21476-4_5
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-04159-4_22
http://dx.doi.org/10.1007/978-3-642-04159-4_22
http://dx.doi.org/10.1007/978-3-642-04159-4_22
http://dx.doi.org/10.1007/978-3-642-04159-4_22
http://dx.doi.org/10.1007/978-3-540-85053-3_2
http://dx.doi.org/10.1007/978-3-540-85053-3_2
http://dx.doi.org/10.1007/978-3-540-85053-3_2
http://dx.doi.org/10.1007/978-3-540-85053-3_2
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/978-3-319-14123-7_6
http://dx.doi.org/10.1007/978-3-319-14123-7_6
http://dx.doi.org/10.1007/978-3-319-14123-7_6
http://dx.doi.org/10.1007/978-3-319-14123-7_6
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://eprint.iacr.org/2012/485
http://eprint.iacr.org/2012/485
http://eprint.iacr.org/2012/485
http://eprint.iacr.org/2012/485
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-540-28632-5_5
http://dx.doi.org/10.1007/978-3-540-28632-5_5
http://dx.doi.org/10.1007/978-3-540-28632-5_5
http://dx.doi.org/10.1007/978-3-540-28632-5_5
http://dx.doi.org/10.1007/3-540-44709-1_24
http://dx.doi.org/10.1007/3-540-44709-1_24
http://dx.doi.org/10.1007/3-540-44709-1_24
http://dx.doi.org/10.1109/arith.2005.14
http://dx.doi.org/10.1109/arith.2005.14
http://dx.doi.org/10.1109/arith.2005.14
http://dx.doi.org/10.1007/978-3-642-19074-2_6
http://dx.doi.org/10.1007/978-3-642-19074-2_6
http://dx.doi.org/10.1007/978-3-642-19074-2_6
http://dx.doi.org/10.1007/978-3-642-19074-2_6
http://dx.doi.org/10.1007/978-3-642-34931-7_9
http://dx.doi.org/10.1007/978-3-642-34931-7_9
http://dx.doi.org/10.1007/978-3-642-34931-7_9
http://dx.doi.org/10.1007/978-3-642-34931-7_9
http://dx.doi.org/10.1007/978-3-642-34931-7_9

SUGAWARA et al.: ASYMMETRIC LEAKAGE FROM MULTIPLIER AND COLLISION-BASED SINGLE-SHOT SIDE-CHANNEL ATTACK
1333

[18] P.L. Montgomery, “Modular multiplication without trial division,”
Math. Comput., vol.44, no.170, pp.519–519, 1985.

[19] C.K. Koç, T. Acar, and B.S. Kaliski, Jr., “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol.16, no.3,
pp.26–33, 1996.

[20] A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic de-
sign of RSA processors based on high-radix montgomery multipli-
ers,” IEEE Trans. VLSI Syst., vol.19, no.7, pp.1136–1146, 2011.

[21] AIST, “Side-channel attack standard evaluation board,” http://
www.risec.aist.go.jp/project/sasebo/

[22] T. Sugawara, D. Suzuki, M. Saeki, M. Shiozaki, and T. Fujino,
“On measurable side-channel leaks inside ASIC design primitives,”
Cryptographic Hardware and Embedded Systems, CHES 2013, Lec-
ture Notes in Computer Science, vol.8086, pp.159–178, 2013.

[23] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” Cryp-
tographic Hardware and Embedded Systems, CHES 2002, Lecture
Notes in Computer Science, vol.2523, pp.291–302, 2003.

[24] Synopsys DesignWare Technical Bulletin Article, “2007.03 de-
signware library datapath and building block IP — DesignWare li-
brary introduces 19 new building block IPs in the 2007.03 release,”
http://www.synopsys.com/dw/dwtb.php?a=dwbb 0701

[25] NXP Semiconductors, “LPC1110/11/12/13/14/15 Product Data
Sheet,” http://www.nxp.com/documents/data sheet/LPC111X.pdf

[26] ARM, “Cortex-M0 Technical Reference Manual Revision r0p0,”
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI04
32C cortex m0 r0p0 trm.pdf

[27] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede,
“Ultra low-power implementation of ECC on the ARM cortex-
M0+,” Proc. The 51st Annual Design Automation Conference on
Design Automation Conference — DAC’14, pp.1–6, 2014.

Takeshi Sugawara received the B.E.,
M.Is., and Ph.D. degrees from Tohoku Univer-
sity, Japan, in 2006, 2008 and 2011, respec-
tively. He is currently a researcher at Mitsubishi
Electric Corporation since 2011 and is involved
in the research and development on information
security. His research interests involve high-
performance implementation and side-channel
security of cryptographic hardware.

Daisuke Suzuki received the B.E. and
M.E. degrees from Tokyo University of Science,
Japan, in 1999 and 2001. In 2001, he joined
Mitsubishi Electric Corporation. He received
the Ph.D. degree from Yokohama National Uni-
versity, Japan, in 2011. His research interests in-
clude implementation of cryptosystems. He was
awarded the SCIS 2005 paper prize.

Minoru Saeki received the B.E. degree
from the University of Tokyo in 1988. In 1988,
he joined Mitsubishi Electric Corporation. He
is currently with Information-technology Pro-
motion Agency, Japan since 2015. His re-
search interests include computer architecture,
anti-tamper design, and security architecture.

http://dx.doi.org/10.2307/2007970
http://dx.doi.org/10.2307/2007970
http://dx.doi.org/10.1109/40.502403
http://dx.doi.org/10.1109/40.502403
http://dx.doi.org/10.1109/40.502403
http://dx.doi.org/10.1109/tvlsi.2010.2049037
http://dx.doi.org/10.1109/tvlsi.2010.2049037
http://dx.doi.org/10.1109/tvlsi.2010.2049037
http://www.risec.aist.go.jp/project/sasebo/
http://www.risec.aist.go.jp/project/sasebo/
http://dx.doi.org/10.1007/978-3-642-40349-1_10
http://dx.doi.org/10.1007/978-3-642-40349-1_10
http://dx.doi.org/10.1007/978-3-642-40349-1_10
http://dx.doi.org/10.1007/978-3-642-40349-1_10
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-36400-5_22
http://www.synopsys.com/dw/dwtb.php?a=dwbb_0701
http://www.synopsys.com/dw/dwtb.php?a=dwbb_0701
http://www.synopsys.com/dw/dwtb.php?a=dwbb_0701
http://www.synopsys.com/dw/dwtb.php?a=dwbb_0701
http://www.nxp.com/documents/data_sheet/LPC111X.pdf
http://www.nxp.com/documents/data_sheet/LPC111X.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf
http://dx.doi.org/10.1145/2593069.2593238
http://dx.doi.org/10.1145/2593069.2593238
http://dx.doi.org/10.1145/2593069.2593238
http://dx.doi.org/10.1145/2593069.2593238

