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Item Response Theory for Peer Assessment
Masaki Uto, and Maomi Ueno, Member, IEEE

Abstract—As an assessment method based on a constructivist approach, peer assessment has become popular in recent years.
However, in peer assessment, a problem remains that reliability depends on the rater characteristics. For this reason, some item
response models that incorporate rater parameters have been proposed. Those models are expected to improve the reliability if the
model parameters can be estimated accurately. However, when applying them to actual peer assessment, the parameter estimation
accuracy would be reduced for the following reasons. 1) The number of rater parameters increases with two or more times the number
of raters because the models include higher-dimensional rater parameters. 2) The accuracy of parameter estimation from sparse peer
assessment data depends strongly on hand-tuning parameters, called hyperparameters. To solve these problems, this article presents
a proposal of a new item response model for peer assessment that incorporates rater parameters to maintain as few rater parameters
as possible. Furthermore, this article presents a proposal of a parameter estimation method using a hierarchical Bayes model for the
proposed model that can learn the hyperparameters from data. Finally, this article describes the effectiveness of the proposed method
using results obtained from a simulation and actual data experiments.

Index Terms—Peer assessment, rater characteristics, reliability, item response theory, hierarchical Bayes model

F

1 Introduction

A S an assessment method based on a constructivist
approach, peer assessment, which is mutual as-

sessment among learners [1], has become popular in
recent years [2]. Peer assessment presents the following
important benefits.

1) Learners take responsibility for their learning and
become autonomous [2], [3], [4].

2) Treating assessment as a part of learning, mistakes
can come to represent opportunities rather than
failures [3].

3) Giving rater roles to learners raises their motivation
[3], [4].

4) Transferable skills such as evaluation skills and
discussion skills are practiced [3], [5].

5) By evaluating others, raters can learn from others’
work, which induces self-reflection [2], [3], [5].

6) Learners can receive useful feedback even when
they have no instructor [5]. Feedback from other
learners who have similar backgrounds is readily
understood [2].

7) When the learners are mature adults, evaluation by
multiple raters is more reliable than that by a single
instructor [2].

8) Even when the number of learners increases ex-
tremely as in massive open online courses, peer
assessment can offer feedback for each learner [6],
[7].

Therefore, peer assessment has been adopted into
various learning processes. In addition, many peer as-
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sessment support systems have been developed [2], [8],
[9], [10], [11], [12], [13], [14].

This article specifically examines the benefit of peer
assessment to improve the reliability of assessment for
learners’ performance, such as essay writing. Although
the assessment of learners’ performance has become
important, it is difficult for a single teacher to assess
them when the number of learners increases. Peer as-
sessment enables realization of reliable assessment with-
out burdening a teacher when the number of raters is
sufficiently large [2]. However, it is difficult to increase
the number of raters for each learner because one rater
can only assess a few performances [6], [15]. Therefore,
the main issue of this article is to improve the reliability
of peer assessment for sparse data. In this article, the
reliability is defined as stability of learners’ ability esti-
mation [16]. The reliability reveals a higher value if the
ability of learners is obtainable with few errors when the
performance tasks or raters are changed.

The reliability of peer assessment is known to depend
on rater characteristics [2], [6], [7], [17], [18]. Therefore,
the reliability is expected to be increased if the ability
of learners is estimated considering the following rater
characteristics [6], [19], [20].

1) Severity: Because each rater has a different rating
severity.

2) Consistency: Because a rater might not always be
consistent in applying the same assessment criteria.

A similar problem has been described in essay testing
situations where multiple raters evaluate several essays
[21], [22]. To resolve the problem, some item response
models have been proposed that incorporate the rater
characteristic parameters [19], [23], [24]. For example,
Patz et al. [23] proposed a generalized partial credit
model (GPCM) [25] that incorporates a rater’s severity
parameter. Furthermore, Usami [19] has pointed out that
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raters might not always assess performance consistently.
Therefore, Usami [19] proposed a GPCM that incor-
porates rater consistency and severity parameters. The
models described above can be regarded as extensions
of the multi-facet Rasch model proposed by Linacre [24].

Ueno et al. [2] proposed a graded response model [26]
that incorporates a rater’s severity parameter for peer
assessment. The study also proposed a rating consistency
index that is calculable using the severity parameter. Fur-
thermore, an approximate parameter estimation method
for the model was proposed. However, higher estimation
accuracy would not be obtained using the estimation
method.

As another approach, a hierarchical rater model
(HRM) has been proposed [21], [27], [28]. The HRM
assumes that each learner’s work has an ideal rating. The
ideal ratings follow a polytomous item response model.
Furthermore, the raters’ actual ratings are assumed to
follow the function of the ideal ratings and rater charac-
teristic parameters.

In previously developed models, the ability of learn-
ers can be estimated considering rater characteristics.
Therefore, the peer assessment reliability is expected to
be improved if the model parameters can be estimated
accurately. However, when applying them to actual peer
assessment, the parameter estimation accuracy would be
reduced for the following reasons.

1) In previous models, the number of rater param-
eters increases with two or more times the num-
ber of raters because the models include higher-
dimensional rater parameters. The parameter esti-
mation accuracy is known to be reduced when the
number of parameters increases because the data
size per parameter decreases [29].

2) As the parameter estimation method for previ-
ous models, Bayes estimation has been generally
used. However, the accuracy of Bayes estimation
is known to depend strongly on hand-tuning pa-
rameters, called hyperparameters, especially when
the data are sparse [30]. Peer assessment data usu-
ally become sparse because each rater can assess
only a few works [6], [15]. Therefore, the accuracy
of parameter estimation would be reduced if the
hyperparameters were determined arbitrarily, as in
previous studies.

To resolve the problems, this article presents a pro-
posal of a new item response model for peer assessment
that incorporates rater consistency and severity param-
eters to maintain as few rater parameters as possible.
Furthermore, this article presents a proposal of a pa-
rameter estimation method using a hierarchical Bayes
model (HBM) for the proposed model that can learn
the hyperparameters from data. The proposed method
presents the following advantages.

1) The proposed model has fewer rater parameters
than previous models have. Therefore, the pro-
posed model can provide higher estimation ac-

curacy of the parameters and ability when the
number of raters increases.

2) The proposed parameter estimation method esti-
mates the hyperparameters from data. Therefore,
the accuracy of parameter estimation from sparse
peer assessment data is expected to be increased.

3) The reliability of peer assessment can be improved
because the ability of learners is estimated with
higher accuracy and considering the rater’s con-
sistency and severity characteristics.

In addition, this article demonstrates the effectiveness
of the proposed method through simulation and actual
data experiments.

2 e-Learning Environment
One author has developed a learning management

system (LMS) called Samurai [31] that is used with huge
numbers of e-learning courses. Here we describe the
LMS Samurai structure briefly. LMS Samurai presents
content sessions tailored for 90-min classes (the units
are called topics). Learners choose from the array of
topics and watch the topic lesson. Fifteen of these content
sessions for 90-min classes are produced, constituting a
two-unit course. Each content session provides instruc-
tional text screens, instructional images, instructional
videos, and a practice test. How learners respond to the
sessions and how long it takes them to complete the
lesson are stored automatically in LMS’s learning history
database. Those data are analyzed using various data
mining techniques. Learning is facilitated by an agent.
In addition, LMS Samurai has a discussion board system
that enables learners to submit reports, and enables them
to assess and discuss one another.

One author offered an e-learning course on statistics
from 2009 to 2011 using the LMS. This course was
taken by 91 learners (32 in 2011, 34 in 2010, and 25
in 2009). In this course, five report assignments were
provided and the learners should mutually peer assess
their works. The total number of submissions about
those assignments in the discussion board was 1554 (412
in 2011, 732 in 2010, and 410 in 2009). The learners
actively assessed and provided formative comments for
one another.

3 Peer Assessment
A main use of peer assessment in learning situations is

giving formative comments among learners [1]. Another
use of peer assessment is to improve the reliability
of assessment for learners’ performance, such as essay
writing and programming. The assessment of learners’
performance has become important because social con-
structivism, active learning, problem-based learning, and
project-based learning have become popular in actual
school education [32], [33].

Nevertheless, when the number of learners increases,
it is difficult for a single teacher to assess them. Peer
assessment enables realization of reliable assessment
without burdening the teacher when the number of
raters is sufficiently large [2]. However, it is difficult to
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Fig. 1. Peer Assessment System.
increase the number of raters for each learner because
one rater can only assess a few performances [6], [15].
Therefore, this article specifically examines improvement
of the reliability of peer assessment for sparse data.

In addition, peer assessment is justified as an appro-
priate assessment method because the ability of learners
would be defined naturally in the learning community
as a social agreement [34].

The ability of learners obtained from peer assessment
is generally used for feedback to the learners as grades
or numerical scores. Furthermore, they have been used
recently for recommending learners’ works that obtained
high scores [35], predicting rater reliability [15], selecting
peer raters for each learner [36], and assigning weights
to formative comments [6]. Consequently, the accuracy
of peer assessment has become important.

3.1 Peer Assessment System

In LMS Samurai [31], peer assessment can be con-
ducted using a discussion board system. The system
enables learners to post their works and helps other
learners to post ratings and comments for the posted
works. Fig. 1 portrays a system interface by which a
learner submitted a report. The lower half of Fig. 1
presents hyperlinks for other learners’ comments. By
clicking the hyperlink, detailed comments are displayed
in the upper right of Fig. 1. The five buttons shown
at the upper left are used for peer assessment. The
buttons include −2 (Bad), −1 (Poor), 0 (Fair), 1 (Good),
and 2 (Excellent). The learner who submitted the report
can take the ratings and comments into consideration
and rework it. The averaged rating score of the report
is calculated from the peer assessment and stored in
the system. This score is used to recommend excellent
reports to the other learners in this system. This article
attempts to improve the reliability of this rating score.

The rating data U obtained from the peer assessment
system consist of categories k (k = 1...,K) given by
each rater r (r = 1, · · · , R) to each work of learner j
(j = 1, · · · , J) for each assignment i (i = 1, · · · , I). In
this article, the categories of the rating buttons [−2, 1, 0,
1, 2] are transformed into [1, 2, 3, 4, 5]. Here, let xijr be
a response of rater r to learner j’s work for assignment
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Fig. 2. Item characteristic curves of the graded response
model for five categories.

i. The data U are described as

U = {xijr|xijr ∈ {1, · · · ,K}}
(j = 1, · · · , J, i = 1, · · · , I, r = 1, · · · , R). (1)

The data U consist of three-way data, which are
learners × raters × assignments. This article assumes
application of an item response model to the three-way
data.

4 Item Response Theory
The item response theory (IRT) [37], which is a test

theory based on mathematical models, has been used
widely with the widespread use of computer testing.
Reports of the literature describe that IRT offers the
following benefits [2].

1) It is possible to assess ability while minimizing the
effects of heterogeneous or aberrant items that have
low estimation accuracy.

2) The learner’s responses to different items can be
assessed on the same scale.

3) Missing data can be estimated easily.
Traditionally, IRT has been applied to test items of

which the responses can be scored automatically as
correct or wrong, such as multiple-choice items. In re-
cent years, however, applying polytomous item response
models to performance assessments, such as essay test
and report assessment, has been attempted [20], [27],
[38].

The following subsections describe the two represen-
tative polytomous item response models: the Graded
Response Model (GRM) [26] and Generalized Partial
Credit Model (GPCM) [25].

4.1 Graded Response Model
The GRM gives the probability that learner j responds

in category k for item i as follows.

Pijk = P ∗
ijk−1 − P ∗

ijk, (2)
P ∗
ijk = 1

1+exp (−αi(θj−bik))
k = 1, · · · ,K − 1,

P ∗
ij0 = 1,

P ∗
ijK = 0.

(3)

In those equations, K represents the number of response
categories, αi is a discrimination parameter of item i, bik
is a difficulty parameter that denotes the upper grade
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Fig. 3. Item characteristic curves of the generalized
partial credit model for five categories.

threshold parameter for category k of item i, and θj is the
latent ability of learner j. Here, the order of the difficulty
parameters is restricted by bi1 < bi2 < · · · < biK−1.

Fig. 2 portrays item characteristic curves of the GRM
for five categories with αi = 1.0, bi1 = −3.0, bi2 = −1.5,
bi3 = 0.0, bi4 = 3.0 and K = 5. Its horizontal axis
shows the learner’s ability θj ; the vertical axis shows the
probability of the learner’s response in each category. It
is apparent from Fig. 2 that a learner who has lower
ability tends to respond in a lower category. A learner
who has a higher ability tends to respond in a higher
category.

4.2 Generalized Partial Credit Model
The GPCM gives the probability of a response in

category k of item i as follows.

Pijk =
exp

∑k
m=1 [αi(θj − βim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βim)] ,
(4)

where, βik is a step difficulty parameter that denotes
a difficulty of transition between category k − 1 and
category k of item i. Here, βi1 = 0 for each i is given
for model identification.

By decomposing the step difficulty parameter βik to
βi − dik, the response function of the GPCM is often
described as follows.

Pijk =
exp

∑k
m=1 [αi(θj − βi − dim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βi − dim)] ,
(5)

where, βi is called a positional parameter; dik is a
threshold parameter. Here, di1 = 0 and

∑K
k=2 dik = 0

for each i are given for model identification.
The partial credit model (PCM) [39] is a special case

of the GPCM when αi = 1.0 for all items. Moreover, the
rating scale model [40] is a special case of PCM when
dik has the same value over all items.

Fig. 3 depicts item characteristic curves of the GPCM
for five categories with αi = 1.0, βi2 = −2.5, βi3 = 0.5,
βi4 = 0.0, βi5 = 2.5, and K = 5. Its horizontal axis
shows the learner’s ability θj ; the vertical axis shows
the probability of the learner’s response in category k. A
feature of the GPCM is that the step difficulty parameters
are not restricted in ascending order, in contrast to
the difficulty parameter of the GRM. When the step
difficulty parameters in the GPCM are not ordered in

ascending order, some response curves sink under the
other curves, such as the category 3 in Fig. 3.

4.3 Comparison between GRM and GPCM
Both the GPCM and GRM are applicable to polyto-

mous response data and have item parameters of similar
kinds. Several studies that have compared the GPCM
with the GRM have reported that the GRM is more
useful than the GPCM. Baker et al. [41] applied the
GRM and the GPCM to a psychological questionnaire.
They have reported that the GRM demonstrated higher
goodness of fit to the data and higher reliability than
the GPCM. Moreover, Shojima [42] reported that the
cases in which the GRM fit the data generated from
the GPCM could be observed more frequently than the
opposite case. Furthermore, Samejima [43] has proposed
four criteria in evaluating polytomous item response
models, and claimed that the GRM holds the following
two desirable characteristics: 1) additivity and 2) gener-
alizability to a continuous response model.

As the other salient feature, the GRM has less com-
putational complexity of parameter estimation than the
GPCM. In the parameter estimation method for the
polytomous item response models (e.g., the generally
used EM algorithm or the Markov Chain Monte Carlo
[44], [45]), the likelihood must be calculated iteratively.
The computational complexity of the likelihood in the
GRM for one response datum is O(1). It is much less than
the complexity in the GPCM, which is O(k+

∑K
l=1 l). The

parameter estimation of the GRM is much faster than in
the GPCM.

Based on the considerations presented above, employ-
ing the GRM is expected to be more desirable than using
the GPCM.

5 Item Response Models that Incorporate
Rater Parameters

As described in Section 3.1, the peer assessment data
U consist of three-way data, which are learners × raters
× assignments. The basic item response models, such as
the GRM and the GPCM, are not applicable for the three-
way data. To resolve the problem, some item response
models that incorporate the rater parameters have been
proposed.

5.1 GPCM Incorporating Rater Parameters
Patz et al. [23] proposed a rater parameter ρir, which

denotes rater r’s severity for assignment i. A GPCM
that incorporates ρir provides the probability that rater r
responds in category k to learner j’s work for assignment
i as follows.

Pijrk =
exp

∑k
m=1 [αi(θj − βim − ρir)]∑K

l=1 exp
∑l

m=1 [αi(θj − βim − ρir)] ,
(6)

where, ai is a discriminant parameter of assignment i; βik
is a step difficulty parameter that denotes the difficulty
of transition between category k−1 and k in assignment
i. Here, βi1 = 0 and ρi1 = 0 for each i are given for model
identification.
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Usami [19] has proposed a GPCM that incorporates
a rater’s consistency and severity parameters to resolve
the difficulty that raters might not be consistent. The
response probability of the model is defined as described
below.

Pijrk =
exp

∑k
m=1 [αiαr(θj − (βi + βr)− dimdr)]∑K

l=1 exp
∑l

m=1 [αiαr(θj − (βi + βr)− dimdr)] ,
(7)

where, αr reflects the consistency of rater r, βi is a
positional parameter of assignment i, βr is a positional
parameter of rater r, dik is a threshold parameter of
assignment i for category k, and dr is a threshold pa-
rameter of rater r. For model identification, Πrαr = 1,∑

r βr = 0, Πrdr = 1, di1 = 0 and
∑K

k=2 dik = 0 for each
i are given.

The models presented above are regarded as exten-
sions of the multi-facet Rasch model [24]. The multi-facet
Rasch model defines the log odds ratio ln(Pijrk/Pijrk−1)
as a linear combination of each facet like θj − bi − βr.

5.2 GRM that Incorporates Rater Parameters
Ueno et al. [2] proposed a GRM that incorporates

the rater’s severity parameter for peer assessment. The
model gives the response probability as presented below.

Pijrk = P ∗
ijrk−1 − P ∗

ijrk, (8)
P ∗
ijrk = 1

1+exp(−αi(θj−bi−εrk))
k = 1, · · · ,K − 1,

P ∗
ijr0 = 1,

P ∗
ijrK = 0.

In those expressions, bi represents the difficulty of as-
signment i; and εrk denotes the severity of rater r for
category k. Here, εr1 < εr2 < · · · < εrK−1. Additionally,
ε11 = −2.0 is given for model identification.

The study also proposed the following rating consis-
tency index.

Rr =
1

K
exp(−

K∑
k=1

P (ε̂rk)logP (ε̂rk)). (9)

Therein, P (ε̂rk) = 1
1+exp(ε̂rk−1)

− 1
1+exp(ε̂rk)

. The consis-
tency index reveals a higher value when the severity
parameters are distributed in a wide range and at even
intervals.

5.3 Hierarchical Rater Model
The models described above have been proposed as

item response models that directly incorporate the rater
parameters. A different modeling called the hierarchical
rater model (HRM) has been proposed [21], [27], [28].

The main ideas of HRM are the use of an ideal
rating ξij of each work and hierarchical structure data
modeling. Concretely, the HRM assumes that learner j’s
work for assignment i has the ideal rating ξij . Rater r’s
rating xijr follows the function of the ideal rating ξij
and the rater characteristic parameters. Patz et al. [21]
proposed the following HRM.

1) The ideal rating ξij to learner j’s work for assign-

ment i is given by the PCM below.

p(ξij = k|θj , βi,di) =
exp

∑k
m=1 [θj − βi − dim]∑K

l=1 exp
∑l

m=1 [θj − βi − dim] .
(10)

Here, di1 = 0 and
∑K

k=2 dik = 0 for each i are given
for model identification.

2) Given the ideal rating ξij , the rater r’s response xijr
to learner j’s work for assignment i is assumed by
the following signal detection model [46].

p(xijr = k|ξij) ∝ exp
{
−k + ξij + σr

2ψ2
r

}
. (11)

Therein, σr denotes a rater’s severity. The recipro-
cal of ψ2

r denotes a rater’s consistency.
DeCarlo et al. [27] proposed another HRM. The model

used the following latent class signal detection model
[47] instead of the signal detection model.
p(xijr = k|ξij) = p(xijr ≥ k−1|ξij)−p(xijr ≥ k|ξij), (12)
p(xijr ≥ k|ξij) = 1

1+exp(drk−crξij)
k = 1, · · · ,K − 1,

p(xijr ≥ 0|ξij) = 1,

p(xijr ≥ K|ξij) = 0.

In the equations presented above, cr stands for a rater
r’s consistency. In addition, drk signifies rater r’s severity
for category k. Here, dr1 < dr2 < · · · < drK−1. The latent
class signal detection model is regarded as the GRM with
a discrete latent variable.

DeCarlo et al. [27] also used the following GPCM
instead of the PCM.

p(ξij = k|θj ,βi) =
exp

∑k
m=1 [αi(θj − βim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βim)] .
(13)

Here, βi1 = 0 for each i is given for model identification.

5.4 Other Statistical Models for Peer Assess-
ment

Several statistical models have been used for peer
assessment without the item response model [15], [48]. In
these models, the generation process of rating data xijr is
formulated as a normal distribution, which depends on
the ideal rating ξij and rater characteristics. However,
the models cannot estimate the learner ability because
they do not incorporate the learner’s ability parameter.

In addition, the generalizability theory [49] has been
used widely for analyzing the reliability of an assessment
with multiple raters. The generalizability theory enables
estimation of the reliability of a performance assess-
ment, including expert and peer assessment, and enables
analysis of the influence of the raters and assignments
on the reliability. Moreover, Longford [50] proposed an
extended framework of the generalizability theory for
analyzing each rater’s characteristics. However, these
methods do not estimate the ability of learners directly
considering the characteristics of raters and assignments.

Therefore, we are not concerned with these models
and methods in this article.

5.5 Problems of the Previous Models
In the previous models, the ability of learners can be

estimated considering rater characteristics. Therefore, the
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Fig. 4. Item characteristic curves of two raters.
reliability of peer assessment is expected to be improved
if the model parameters can be estimated accurately.
However, in the previous models, the number of rater
parameters increases with two or more times the number
of raters because the models include higher-dimensional
rater parameters. The parameter estimation accuracy is
known to be reduced when the number of parameters
increases because the data size per parameter decreases
[29]. In peer assessment, the number of raters increases
concomitantly with an increasing number of learners.
Therefore, the parameter estimation accuracy for the
previous models would be reduced when applying them
to actual peer assessment.

To solve the problems, this article presents a proposal
of a new item response model for peer assessment. The
proposed model incorporates a rater’s consistency and
severity parameters to maintain as few rater parameters
as possible.

6 Proposed Model
This article presents a proposal of an item response

model for peer assessment by extending the GRM as
follows.

Pijrk = P ∗
ijrk−1 − P ∗

ijrk, (14)
P ∗
ijrk = 1

1+exp(−αiαr(θj−bik−εr))
k = 1, · · · ,K − 1,

P ∗
ijr0 = 1,

P ∗
ijrK = 0.

In those equations, bik denotes the difficulty in obtaining
the score k for assignment i (here bi1 < bi2 < · · · <
biK−1), and εr represents the severity of rater r. Here,
αr=1 = 1 and ε1 = 0 are assumed for model identifica-
tion.

For explanation of the proposed rater parameters, Fig.
4 shows item characteristic curves of two raters with the
assignment parameters αi = 1.5, bi1 = −1.5, bi2 = −0.5,
bi3 = 0.5, and bi4 = 1.5. The left panel shows the item
characteristic curves of Rater 1 who has αr = 1.5 and
εr = 1.0. The right panel shows the item characteristic
curves of Rater 2, who has αr = 0.8 and εr = −1.0. Fig.
4 presents a graph with the horizontal axis showing a
learner’s ability θj . The vertical axis shows the rating
probability in each category.

Fig. 4 shows that Rater 1, who has a higher consistency,
can distinguish a learner’s ability more accurately. Addi-
tionally, it is apparent that the item characteristic curves

TABLE 1
Number of parameters in each model.

Number of parameters
Proposed IK + 2(R− 1) + J
Patz1999 I(K +R− 1) + J

Usami2010 IK + 3(R− 1) + J
Ueno2008 2I +R(K − 1)− 1 + J
HRM-Patz I(K − 1 + J) + 2R+ J

HRM-DeCarlo I(K + J) +RK + J
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Fig. 5. Relations between the parameter number and the
number of raters = learners for each model.

of Rater 1 shifted to the right compared to those of Rater
2. Therefore, a higher ability is necessary to obtain a score
from Rater 1 than to obtain the same score from Rater 2.

6.1 Reducing the Number of Parameters
The unique feature of the proposed model is that each

rater has only one consistency and severity parameter.
Consequently, when the number of raters increases, the
number of rater parameters in the proposed model in-
creases more slowly than those in the models with higher
dimensional rater parameters, such as Ueno et al. [2] and
Patz et al. [23].

Table 1 presents the number of parameters in the
proposed model and in the previous models. In Table
1, Patz1999 denotes equation (6), Usami2010 denotes (7),
Ueno2008 denotes (8), HRM-Patz denotes the combina-
tion of (10) and (11), and HRM-DeCarlo denotes the
combination of (12) and (13).

According to Table 1, it is apparent that the proposed
model has the minimum number of parameters when
2R + 1 > 3I , I > 2, and K = 5. The conditions
are generally fulfilled because the number of raters is
fundamentally greater than the number of assignments
in peer assessment.

Here, Fig. 5 shows relations between the number of
parameters and the number of raters R = learners J
given K = 5 and I = 5. The Fig. 5 horizontal axis shows
R = J ; the vertical axis shows the number of parameters.
Although the assumption of R = J is a strict restriction,
this article assumes the most difficult condition to esti-
mate the rater parameters in peer assessment.

According to Fig. 5, the proposed model has the
minimum number of parameters when the number of
raters = learners is large. In contrast, Ueno2008 has
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the minimum number of parameters when the number
of raters = learners is small. The horizontal value of
the intersection point between the proposed model and
Ueno2008 in Fig. 5 approaches zero when the number of
assignments I or categories K decreases.

The parameters in the proposed model are fewer than
in previous models as the raters and learners become
more numerous. The accuracy of parameter estimation
for a model, which has fewer parameters, is known to
be generally higher because the model has a greater
number of data per parameter [29]. Consequently, the
proposed model can realize higher estimation accuracy
than previous models if the suitability of the proposed
model for peer assessment data is the same as those of
the earlier models.

The following GPCM extension model, which has the
same number of parameters as the proposed model, is
possible.

Pijrk =
exp

∑k
m=1 [αiαr(θj − βim − ρr)]∑K

l=1 exp
∑l

m=1 [αiαr(θj − βim − ρr)] .
(15)

Here, ρr denotes the severity of rater r. For model
identification, αr=1 = 1, ρ1 = 0 and βi1 = 0 for each
i are given. However, this article proposed the GRM
extension model because GRM is known to provide
higher performance than GPCM, as described in Section
4.3.

6.2 Improving the Reliability
The other feature of the proposed model is intro-

ducing the rater’s consistency parameter. Patz1999 and
Ueno2008 use no consistency parameters. However, the
reliability of peer assessment is known to be reduced
if the learner’s ability is estimated ignoring the rater’s
consistency and severity [19] [51]. Therefore, to obtain
higher reliability, consideration of the rater’s consistency
is necessary. Usami [19] demonstrated that parameter αr

used in Usami2010 can optimally represent the rater’s
consistency. Therefore, the parameter is used for this
study.

In summary, the proposed model is expected to im-
prove the reliability of peer assessment because the
ability of learners can be estimated with higher accuracy
and can be considered with the rater’s consistency and
severity characteristics.

However, if an extremely large rating data for each
learner is obtainable, then models with higher dimen-
sional parameter (e.g., a model incorporating the interac-
tion among assignment, rater and learner) might realize
higher reliability than the proposed model. As described
in Section 3, collecting large rating data for each learner
is generally difficult in actual situations [6], [15].

Additionally, it is noteworthy that the proposed model
does not consider the learner’s ability change in the pro-
cess of peer assessment. The proposed model is assumed
to be applied to peer assessment data collected during
a short period, in which major ability change does not
occur.

7 Parameter Estimation
To estimate the parameters in item response models,

several previous studies used Bayes estimation. In Bayes
estimation, parameters are regarded as random vari-
ables. Prior distributions are assumed for each param-
eter. The prior distributions reflect the uncertainty of the
parameters before observing the data. The parameters in
the prior distributions, called hyperparameters, are deter-
mined arbitrarily as reflecting an analyst’s subjectivity.

Letting the set of parameters be θ = {θ1, · · · , θJ},
αi = {logαi=1, · · · , logαi=I}, b = {b11, · · · , bIK−1},
αr = {logαr=1, · · · , logαr=R} and ε = {ε1, · · · , εR}.
Furthermore, g(θj |τθ), g(ai|ταi), g(bik|τb), g(αr|ταr ) and
g(εr|τε) denote the prior distributions. Here, τθ, ταi , τb,
ταr , and τε are the hyperparameters. Then, the poste-
rior distribution of the proposed model is described as
follows.

g(θ,αi, b,αr, ε, |U) ∝ L(U |θ,αi, b,αr, ε)

g(θ|τθ)g(αi|ταi)g(b|τb)g(αr|ταr )g(ε|τε). (16)
Therein,

L(U |θ,αi, b,αr, ε)

= ΠJ
j=1Π

I
i=1Π

R
r=1Π

K
k=1(Pijrk)

zijrk , (17)

zijrk =

{
1 : xijr = k,

0 : otherwise.
(18)

As the priors on logαi, logαr, εr and θj , normal
distributions are generally assumed. For example, the
prior on logαi is described as

logαi ∼ N(µαi , σαi), (19)
where N(µαi , σαi) denotes the normal distribution with
mean µαi and standard deviation σαi .

Here, the scale of θj must be fixed for model identifi-
cation. In this article, the standard normal distribution
N(0, 1) is assumed as the scale of θj . Therefore, the
hyperparameters τθ = {µθ, σθ} in the prior g(θj |τθ) are
fixed as {0, 1}. In the following sections, the notation
g(θj) is used instead of g(θj |τθ) to represent that the
hyperparameters τθ are fixed.

For the prior on b, the multivariate normal distribution
MN(µb,Σb) is assumed. Here, µb is a K dimensional
mean vector; Σb is a covariance matrix.

In Bayes estimation, the point estimation of each pa-
rameter is generally provided as the expected value of
the marginal posterior distribution [29], [30]. It is called
the expected a posteriori (EAP) estimate. For example, the
EAP estimates of θ0 can be provided as the expectation
of the marginal posterior distribution g(θ0|U), where
g(θ0|U) is calculated by marginalizing all parameters
except θ0 from the posterior distribution (16).

7.1 Hierarchical Bayes Model
The EAP estimation generally provides more robust

estimation than the maximum likelihood estimation or
maximum a posteriori (MAP) estimation [29], [44]. How-
ever, the accuracy of the Bayes estimation is known to
depend on hyperparameters, especially when the data
are sparse [30]. In peer assessment, gathering the large
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amount of data is generally difficult because a rater can
only evaluate a few works [6], [15]. Therefore, the estima-
tion accuracy would be reduced if the hyperparameters
were determined arbitrarily, as in previous studies. To
solve the problem, this article presents a proposal of a
parameter estimation method using a hierarchical Bayes
model (HBM) for the proposed model. In this method,
the hyperparameters can be learned from data in the
parameter estimation process.

In the HBM, the hyperparameters are also regarded
as random variables. Prior distributions are assumed for
each hyperparameter. Therefore, the posterior distribu-
tion of the proposed model is described as follows.

g(θ,αi, ταi , b, τb,αr, ταr , ε, τε|U)

∝ L(U |θ,αi, b,αr, ε)g(θ)g(αi|ταi)g(ταi)

g(b|τb)g(τb)g(αr|ταr
)g(ταr

)g(ε|τε)g(τε). (20)
Here, g(ταi), g(τb), g(ταr ) and g(τε) denote prior distri-
butions on the hyperparameters. We designate the priors
as hyperpriors.

The conjugate priors are used as the hyperpriors. In
this article, normal distributions are used as the priors on
logαi, logαr and εr. The conjugate prior on the mean of
a normal distribution is a normal distribution N(µ0, σ0).
The conjugate prior on the variance is an inverse gamma
distribution IG(g1, g2). Here, g1 is called a sharpness
parameter; g2 is a scale parameter.

The conjugate prior on the mean vector µb is a
multivariate normal distribution MN(µ0,Σ0), and the
prior on covariance Σb is an inverse-Wishart distribution
IW (ν,Σ) which has the scale matrix Σ and degrees of
freedom ν0 ≥ K.

7.2 MCMC
In the EAP estimation, the marginal posterior distribu-

tions must be calculated. However, when the models are
complicated, such as the proposed model, it is generally
impossible to derive the marginal posterior distribution
analytically or to calculate it using a numerical analytical
method such as the Gaussian quadrature integral be-
cause of a high-dimensional multiple integral. To resolve
the problem, the Markov Chain Monte Carlo method
(MCMC), which is a random-sampling-based estimation
method, has been proposed. The MCMC effectiveness
has been demonstrated in various fields [29] [52]. In item
response theory, the MCMC has been used especially
with complicated models such as the hierarchical Bayes
IRT, multidimensional IRT and multilevel IRT [30].

One shortcoming of MCMC is the computational load.
Although the EAP estimation using MCMC generally
provides robust estimation as described in Subsection
7.1, the MCMC algorithm might not be feasible if
the data are extremely large. When the data become
large, other estimation methods which have asymptotic
consistency, such as the MAP estimation and maxi-
mum marginal likelihood (MML) estimation, would also
provide accurate parameter estimation. The MAP and
MML estimation using Newton–Raphson method can

be solved with lower computational cost than that of
MCMC. Therefore, the MAP or MML estimation using
Newton–Raphson method might be preferred for ex-
tremely large data. However, the extremely large data
are not assumed in this article because increasing the
number of raters for each learner is difficult in actual
peer assessment. Such sparse data justify the use of
MCMC estimation.

The fundamental idea of MCMC is to define a
Markov chain M0,M1,M2, · · · with states Mt =
(θt,αt

i, b
t,αt

r, ε
t); then to simulate observations from the

Markov chain.
As a MCMC algorithm for the item response theory,

Patz et al. [23] proposed the Metropolis Hastings within
Gibbs sampling method (Gibbs/MH).

Based on the Gibbs/MH method, the procedures of
the parameter estimation using HBM for the proposed
model can be formulated as presented below.

1) Sample θt as follows.
a) Draw each θtj ∼ h(θtj |θ

t−1
j ) independently for

each j=1, 2, · · · , J . As the proposal distribu-
tion h(θtj |θ

t−1
j ), the following normal distribu-

tion N(θt−1
j , σp) is used.

h(θtj |θt−1
j ) =

1

σp
√
2π
exp

[
−
(θtj − θ

t−1
j )2

2σ2
p

]
.

(21)
The standard deviation σp of the proposal
distribution is a smaller value than that of the
prior distribution, such as 0.01.

b) Calculate the following acceptance probability.

a(θtj |θt−1
j )

= min

(
L(Uj |θtj ,θ

t−1
−j , ξ

t−1)g(θtj)

L(Uj |θt−1, ξt−1)g(θt−1
j )

, 1

)
, (22)

where ξt = {αt
i, b

t,αt
r, ε

t}, θt
−j = {θt\θtj} and

L(Uj |θtj ,θt−1
−j , ξ

t−1)

= ΠI
i=1Π

R
r=1Π

K
k=1p(xijr = k|θtj ,θt−1

−j , ξ
t−1)zijrk .

c) Accept θtj with probability a(θtj |θ
t−1
j ), other-

wise let θtj = θt−1
j .

2) Sample each αt
i, bt, αt

r, εt, using the same pro-
cedure of 1). Here, to restrict the order of the
difficulty parameter bik, the acceptance probability
must be 0 if a drawn sample bt does not satisfy the
order restriction.

3) The hyperparameters for logαi, namely µαi , σαi ,
are drawn from the conditional probability distri-
bution p(µαi , σαi |αi

t). Concretely,

µαi |σαi ,α
t
i ∼ N(

I0µ0 + Iᾱi

I + I0
,
σ2
αi

I + I0
), (23)

σ2
αi
|αt

i ∼ IG(g1 +
I

2
, σ2

n), (24)

where ᾱi =
∑

i logαi
t/I , σn = g2+

∑
i
(logαi−ᾱi)

2

2 +
II0(ᾱi−µ0)

I+I0
and I0 is a small positive value. For

further details related to the derivation of (23)
and (24), see [30], [53]. To obtain random samples
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from an inverse gamma distribution, the sampling
algorithm proposed by [54] is useful.

4) The hyperparameters for bt, αt
r and εt are updated

similarly. Samples of hyperparameters µb and Σb

are drawn from the following distributions.

µb|Σb, b
t ∼MN(

I0µ0 + I b̄

I + I0
,

Σb

I + I0
), (25)

Σb|bt ∼ IW (I + ν,Σ∗−1). (26)

Here, Σ∗ = Σ0 +
∑

i(bi − b̄)(bi − b̄)t + II0
I+I0

(b̄ −
µ0)(b̄ − µ0)

t, and b̄ =
∑

i bi/I . For further details
related to deriving the posterior, see [30], [53].

5) Repeat the procedures described above.
The EAP estimation is given by calculating the mean

of the samples generated from the chain. The samples
before a burn-in are discarded because the first samples
tend to depend on the initial values. The pseudo-code
of the MCMC algorithm for the proposed model is
summarized in Algorithm 1.
Algorithm 1 MCMC algorithm for the proposed model.

Given maximum chain length T , burn-in period B,
interval E.
Initialize array for MCMC sample A = {}.
Initialize all parameters θ0,α0

i , b
0,α0

r, ϵ
0, and hyper-

parameters for the priors on αi, b,αr, ϵ.
for t = 1 to T do

for each ω ∈ {{θ,αi, b,αr, ϵ}\{αr=1, ϵ1}} do
Sample ωt ∼ N(ωt−1, σp).
Accept ωt with probability α(ωt, ωt−1).

end for
for each hyperparameter h do

Set h← hnew drawn from (23)(24)(25)(26).
end for
if t ≥ B and t%E = 0 then

Add {θt,αt
i, b

t,αt
r, ϵ

t} to A.
end if

end for
return Averaged value of A

8 Simulation Experiment
To evaluate the parameter estimation accuracy of the

proposed model and the previous models, the following
simulation experiment was conducted.

1) In the proposed model, Patz1999, Usami2010,
Ueno2008, HRM-Patz, HRM-DeCarlo and Expanded
GPCM that denotes (15), the true parameter values
were generated randomly from the distributions in
Table 2. In Table 2, LN(µ, σ) denotes a lognormal
distribution with mean µ and standard deviation
σ.

2) Data were sampled randomly given I = 5, K = 5,
R = J = 5, 10, 20, 50 and the generated parameters
in procedure 1).

3) Using the data, the parameters were estimated us-
ing MCMC. Here, the parameter estimation of the
proposed model was conducted in the following
settings.

TABLE 2
True priors used for the simulation experiment.

logαi ∼ N(0.1, 0.4)
logαr , log cr , βi, βr , bi, ∼ N(0.0, 0.5)
εr , ρir , βik , dik , dr, σr , θ ∼ N(0.0, 1.0)
ψr ∼ LN(0.4, 0.2)
bik , εrk , drk ∼MN(µb,Σb)

µ = {−2.00,−0.75, 0.75, 2.00}

Σ =

 0.16 0.10 0.04 0.04
0.10 0.16 0.04 0.04
0.04 0.04 0.16 0.10
0.04 0.04 0.10 0.16


a) The true hyperparameters in Table 2 were

used.
b) The hyperparameters were learned using

HBM.
c) For the prior on logαi, logαr and εr, the true

variance×2 and true mean were used. More-
over, for the prior on bik, the true covariance
× 2 and true mean vector were used.

d) The hyperparameters were generated ran-
domly from the following procedure. Let µτ

and στ be the true mean and variance in the
prior on logαi, logαr, εr. Let µ∗

b and Σ∗
b be the

true mean vector and covariance matrix in the
prior on b Here, the means and variances for
the prior on logαi, logαr, εr were selected ran-
domly from N(µτ , 0.5) and LN(στ , 0.5). The
mean vector for the prior on bik was selected
from MN(µ∗

b ,Σ
∗
b ). The covariance matrix was

selected from zΣ∗
b , where z ∼ uniform(0, 2).

However, in the models aside from the proposed
model, the true hyperparameters were given. Here,
the standard deviation of the proposal distribution
used for MCMC was 0.01. The burn-in period was
30, 000. The EAP estimates were calculated as the
mean of the samples obtained from 30, 000 period
to 50, 000 period at intervals of 1000.

4) The root mean square deviations (RMSEs) between
the estimated parameters and the true parameters
were calculated.

5) After repeating the procedure described above 20
times, the average and standard deviation of the
RMSE values were calculated.

In this experiment, all models can estimate the param-
eters and abilities with high accuracy if sufficient rating
data exist for each learner. However, as described in Sec-
tion 3, it is generally difficult to increase the number of
raters for each learner. In practice, each rater can assess,
at most, several dozen works. The main purpose of these
experiments is to evaluate the estimation accuracy of the
parameters and ability when several dozen J = R are
given.

8.1 Accuracy of Parameter Estimation
Table 3 shows the RMSE of the rater and assignment

parameter estimation.
According to results obtained using the proposed

model with the true and wrong hyperparameters, the
estimation accuracy depended on the hyperparameters.
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TABLE 3
Parameter and ability estimation accuracy of each model.

rater and assignment parameters ability
J = R = 5 J = R = 10 J = R = 20 J = R = 50 J = R = 5 J = R = 10 J = R = 20 J = R = 50

Proposed model
with true hyperparameters .233 (.030) .156 (.023) .126 (.012) .087 (.014) .285 (.061) .182 (.064) .144 (.037) .104 (.028)
with learned hyperparameters .248 (.030) .172 (.027) .148 (.019) .109 (.023) .297 (.073) .189 (.050) .152 (.034) .112 (.037)
with 2σ2r and 2Σb .255 (.036) .199 (.033) .162 (.023) .134 (.021) .317 (.063) .220 (.061) .193 (.046) .165 (.041)
with random hyperparameters .421 (.097) .330 (.077) .297 (.076) .269 (.084) .355 (.154) .337 (.125) .287 (.090) .251 (.092)

Previous models
Patz1999 .449 (.044) .341 (.041) .240 (.025) .157 (.019) .337 (.090) .238 (.078) .200 (.046) .163 (.050)
Usami2010 .405 (.064) .275 (.055) .192 (.025) .166 (.016) .322 (.094) .237 (.075) .191 (.063) .159 (.032)
Ueno2008 .229 (.034) .186 (.022) .162 (.017) .128 (.013) .273 (.051) .226 (.050) .200 (.058) .138 (.050)
HRM-Patz .620 (.055) .476 (.029) .294 (.022) .195 (.024) .461 (.095) .447 (.109) .372 (.057) .361 (.030)
HRM-DeCarlo .595 (.264) .592 (.271) .565 (.239) .533 (.220) .926 (.189) .804 (.199) .772 (.112) .715 (.058)

Expanded GPCM .324 (.034) .225 (.037) .155 (.036) .123 (.031) .308 (.085) .239 (.076) .179 (.064) .132 (.044)

* Shaded cells in the table represent minimum values.

Furthermore, the proposed model using HBM revealed
the closest accuracy using the true hyperparameters.

According to the results of each model with the true
hyperparameters, the proposed model revealed the min-
imum RMSE in all cases except for Ueno2008 with J =
R = 5. Ueno2008 had the minimum RMSE because it has
the minimum number of parameters when J = R = 5.

From these results, it is apparent that the proposed
model realizes higher accuracy of parameter estimation
than the other models when the number of raters in-
creases. Furthermore, parameter estimation using HBM
is expected to provide higher performance in practice be-
cause the true hyperparameters are practically unknown.

According to the result, the RMSEs of the proposed
model were lower than those of the expanded GPCM
in all cases, although these two models have the same
number of parameters. In this experiment, the true and
prior distributions for the category parameters bik in the
proposed model have smaller variance than βik in the
expanded GPCM. This article selected the distributions
on bik to represent the ascending order restriction of the
parameters. As a result, the RMSE of the category param-
eters in the proposed model tends to be lower because
both the true and estimated values of the parameters
are distributed within a smaller range than those of the
parameters in the expanded GPCM. The estimates of
all the parameters and ability are mutually dependent.
Therefore, the RMSE of the proposed model tends to be
lower than that of the expanded GPCM.

8.2 Accuracy of Ability Estimation
Table 3 shows the RMSE of the learner’s ability esti-

mation.
Comparing the ability estimation accuracy and the

parameter estimation accuracy in Table 3, a similar ten-
dency of the parameter estimations can be confirmed.
Concretely,

1) the proposed model provided higher accuracy of
ability estimation than the other models when the
number of raters increases,

2) the ability estimation accuracy depends on the
hyperparameters,

3) the ability estimation using HBM provides the
closest accuracy using true hyperparameters.

The results showed that if the proposed model is
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Fig. 6. Item characteristic curves of the proposed model
estimated using actual data.
suitable for given data, then the proposed model can
estimate the ability with the highest accuracy even if
the raters and assignments are changed. Therefore, the
proposed model is expected to realize the highest relia-
bility of peer assessment if the model is suitable for peer
assessment data.

9 Actual Data Experiment
Actual data experiments were conducted to evaluate

the suitability and reliability of the proposed model for
an actual peer assessment.

9.1 Actual Data
The actual data were gathered using the following

procedures.
1) 20 learners’ reports for 5 assignments were col-

lected from an e-learning course offered from 2009
to 2011 on statistics as described in Section 2. The 20
learners were selected randomly from the learners
who submitted all 5 report assignments. The details
were 8 learners from 2009, 8 learners from 2010,
and 4 learners from 2011.

2) The 20 learners’ reports for 5 assignments were
evaluated by 20 other raters who had attended the
same e-learning course. The raters rated the reports
using the 5 categories based on a rubric that the
author offered.

9.2 Example of Parameter Estimation
This subsection presents a parameter estimation exam-

ple in the proposed model using actual data.
Parameter estimation using HBM was conducted by

the MCMC using the same procedure as the simulation
experiment. Table 4 presents the estimated parameters
and hyperparameters. Furthermore, Fig. 6 depicts item
characteristic curves of the Rater 11 for the Assignment 1
and 16 for the Assignment 1 and 5.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. X, NO. X, XXXX XXXXX 11

TABLE 4
Estimated parameters and hyperparameters.

α̂i
ˆbi1 ˆbi2 ˆbi3 ˆbi4

Assignment 1 1.031 -1.840 -0.537 0.790 2.226
Assignment 2 1.331 -1.984 -0.427 0.887 1.891
Assignment 3 1.128 -2.404 -0.866 0.861 2.354
Assignment 4 1.681 -1.659 -0.369 0.890 2.203
Assignment 5 1.904 -2.151 -0.519 0.626 1.774

α̂r ε̂r α̂r ε̂r
Rater 1 1.000 0.000 Rater 11 2.268 2.985
Rater 2 1.130 0.009 Rater 12 1.063 0.119
Rater 3 1.359 -0.333 Rater 13 1.336 -0.578
Rater 4 1.326 -0.617 Rater 14 1.599 -0.434
Rater 5 1.108 -0.493 Rater 15 1.776 -1.085
Rater 6 1.800 -0.252 Rater 16 1.202 -1.230
Rater 7 0.989 -0.512 Rater 17 1.045 -1.180
Rater 8 0.975 -0.700 Rater 18 1.500 -1.076
Rater 9 1.357 0.093 Rater 19 1.068 -1.387
Rater 10 1.270 -0.337 Rater 20 1.009 0.803

θ̂ θ̂
Learner 1 0.302 Learner 11 -0.204
Learner 2 -0.256 Learner 12 -0.369
Learner 3 0.852 Learner 13 -0.610
Learner 4 -0.271 Learner 14 -0.593
Learner 5 0.033 Learner 15 -0.194
Learner 6 0.298 Learner 16 -0.645
Learner 7 -0.679 Learner 17 0.019
Learner 8 0.402 Learner 18 -0.628
Learner 9 -0.254 Learner 19 -0.515
Learner 10 -0.169 Learner 20 -0.565
logαi ∼ N(0.270, 0.4932), bi ∼MN(µb,Σb)

µb = {−2.147,−0.699, 0.817, 2.208}

Σb =

 0.136 0.027 0.076 0.105
0.027 0.135 0.051 0.050
0.076 0.051 0.141 0.049
0.105 0.050 0.049 0.131


logαr ∼ N(0.227, 0.3822), εr ∼ N(−0.274, 1.0592)

According to Table 4 and Fig. 6, the rater characteris-
tics can be regarded as explained below.

• Rater 11 evaluated with high consistency and with
severe criteria. Rater 11 tended to give the lowest
score to a learner who has ability below the average.

• Rater 16 has the average-valued consistency and low
value of severity.

Moreover, it is apparent that Assignment 5 has a higher
value of the discriminant parameter and can distinguish
learners’ ability more accurately than Assignment 1.

The proposed model can estimate the learner’s ability
considering these rater and assignment characteristics.

9.3 Model Comparison using Information
Criteria

This subsection presents model comparisons using
information criteria to ascertain whether the proposed
model is suitable for the actual data. The procedures of
this experiment are described below.

1) Using the actual data, the parameters of the
proposed model, Patz1999, Usami2010, Ueno2008,
HRM-Patz, HRM-DeCarlo, and Expanded GPCM
were estimated. Here, the hyperparameters in Table
2 are given. In the proposed model, parameter
estimation using HBM was also conducted.

2) Several information criteria were calculated for
each model. Concretely, BIC [55], Marginal Like-
lihood (ML), DIC [56], [57] and WAIC [58] were
calculated. Here, ML was estimated using Monte

TABLE 5
Scores of Each Information Criterion.

R = J = 5 BIC ML DIC WAIC
Proposed(HBM) -188.82 -108.38 -238.35 -116.53
Proposed -191.14 -109.24 -239.15 -117.57
Patz1999 -226.44 -118.51 -262.58 -126.85
Usami2010 -208.35 -120.15 -266.68 -129.86
Ueno2008 -187.65 -113.78 -243.97 -120.35
HRM-Patz -285.98 -143.44 -297.14 -273.74
HRM-DeCarlo -327.17 -143.92 -295.60 -563.98
Expanded GPCM -199.89 -118.68 -258.41 -127.15
R = J = 10 BIC ML DIC WAIC
Proposed(HBM) -367.41 -220.96 -476.95 -237.57
Proposed -368.38 -223.44 -486.37 -241.54
Patz1999 -452.70 -231.85 -519.18 -254.06
Usami2010 -391.86 -229.95 -495.37 -244.52
Ueno2008 -396.91 -228.46 -486.71 -242.40
HRM-Patz -736.82 -431.22 -881.37 -1230.85
HRM-DeCarlo -844.12 -443.24 -886.29 -1793.42
Expanded GPCM -371.54 -226.65 -492.88 -243.08
R = J = 20 BIC ML DIC WAIC
Proposed(HBM) -1498.09 -1218.14 -2506.43 -1250.82
Proposed -1500.46 -1220.45 -2511.77 -1253.29
Patz1999 -1694.58 -1244.63 -2573.47 -1280.17
Usami2010 -1555.66 -1229.95 -2523.76 -1259.95
Ueno2008 -1614.76 -1234.67 -2537.65 -1266.92
HRM-Patz -2383.86 -1700.11 -3401.43 -4263.99
HRM-DeCarlo -2838.99 -1997.94 -3975.69 -7184.62
Expanded GPCM -1501.59 -1223.00 -2519.72 -1257.36

* Shaded cells represent maximum scores.
** Underlined texts represent second largest scores.

Carlo integration because the exact calculation is
intractable as a result of the high-dimensional
integral. In those criteria, the ML and BIC, an
asymptotic approximation to ML, are more impor-
tant because these criteria are known to realize
the consistent model selection [55]. The consistent
model selection means that the probability of se-
lecting the true model goes to 1 as the data size
approaches infinity. The DIC and WAIC select the
model to minimize the generalization error, which
is regarded as the prediction error on future data.
In those criteria, the model which maximizes the
score is regarded as the optimal model.

3) The procedure 1) ∼ 2) was conducted using data
that reduced the number of learners J = raters R to
5 and 10. Data of J = R = 5 are defined as xi,0,0 ∼
xi,5,5. Data of J = R = 10 are xi,0,0 ∼ xi,10,10.

Table 5 presents results. Comparing the results of each
model with the fixed hyperparameters, the proposed
model was estimated as the optimal model in almost all
cases. When J = R = 5, Ueno2008 had higher BIC than
the proposed model because Ueno2008 incorporates the
minimum number of parameters. However, as described
in Section 6.1, the proposed model has practically the
minimum number of parameters in peer assessment.

Furthermore, according to Table 5, the proposed model
with HBM provided higher performances than that with
the fixed hyperparameters in all cases.

In conclusion, the proposed model is expected to be
the most suitable for the actual data because the model
was estimated as the best approximation of the true
model and the best predictor of future data.
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9.4 Reliability Evaluation
This section evaluates the reliability of peer assessment

using the actual data.
This article defined the reliability as stability of the

learner’s ability estimation [16]. From the definition, a
model that can estimate the ability with little error when
using the different assignments’ and raters’ ratings is
regarded as a reliable model. Consequently, in this exper-
iment, the reliability was evaluated using the following
procedure.

1) Using the actual data, the rater and assignment
parameters in the proposed model, Patz1999, Us-
ami2010, Ueno2008, HRM-Patz, HRM-DeCarlo and
Expanded GPCM were estimated. Here, the hyper-
parameters are given as shown in Table 2. In the
proposed model, the parameter estimation using
HBM was also conducted. Furthermore, to evalu-
ate the effectiveness of the rater’s consistency pa-
rameter, the proposed model without consistency
parameter ar was assumed.

2) First, we created an assignment group, which con-
sists of arbitrarily selected 3 assignments from all
five assignments. Here, we designate all patterns
of the assignment groups (5C3 = 10 patterns)
as the set of assignment groups. Similarly, we cre-
ated a rater group, which consists of 10 arbitrarily
selected raters from all 20 raters. We chose 10
rater groups from all patterns of the rater groups
(20C10 = 184756 patterns). The 10 rater groups are
designated as the set of rater groups.

3) By choosing one rater group from the set of rater
groups and one assignment group from the set
of assignment groups, all the pairs of a rater ×
assignment group were created (10 × 10 = 100
pairs). Then, the data corresponding to each rater
× assignment group were created from the actual
data.

4) Using the data for each rater × assignment group,
the learners’ abilities θ were estimated. In this
estimation, the rater and assignment parameters
estimated in procedure 1) were given. From this
procedure, we obtained 100 patterns of estimated
ability vector θ̂ corresponding to 100 different com-
binations of raters and assignments.

5) We calculated the Pearson’s correlation among all
the pairs of the estimated ability vector θ̂ (100C2 =
4950 pairs). Then, the mean of the correlation val-
ues was calculated.

6) Tukey’s multiple comparison test was conducted to
compare the mean of the correlations among the
models.

Here, the same experiment was conducted using a
method by which the ability is given as the averaged
value of the raw ratings. We designate this method as
the Averaged Score.

In the experiment, the correlation is expected to reveal
a higher value if the model is suitable for the real data

and the parameters are estimated with high accuracy.
Table 6 presents the result. In Table 6, µ and σ respec-

tively stand for the mean and standard deviation of the
Pearson’s correlation values. In addition, t denotes the
test statistic.

According to Table 6, the proposed model, Patz1999,
Usami2010, Ueno2008, HRM-Patz and Expanded GPCM
had higher correlation values than the Averaged Score.
Results show that the item response models were effec-
tive to improve the reliability of peer assessment. HRM-
DeCarlo revealed lower correlation than the Averaged
Score because HRM-DeCarlo had too many parameters
and because the parameter estimation accuracy was
extremely low.

Furthermore, when the fixed hyperparameters were
given, it is apparent that the proposed model revealed
significantly higher correlation than the other models.
Here, the proposed model without the consistency pa-
rameter αr revealed significantly lower reliability than
the proposed model. The use of the rater consistency
parameter αr is fundamentally effective for improving
the reliability of the proposed model. In addition, Ta-
ble 6 presents the proposed model with HBM, which
demonstrated the highest correlation in all models.

These results demonstrate that the proposed model
can realize higher reliability than the other models.
Parameter estimation using HBM can also improve the
reliability.

10 Conclusion
This article proposed the new item response model

for peer assessment that can realize higher reliability of
peer assessment. The proposed model incorporates the
rater’s consistency and severity parameters to maintain
as few rater parameters as possible. Consequently, when
the number of raters increases, the number of rater
parameters in the proposed model increases more slowly
than those in the previous models. In addition, this
article proposed a parameter estimation method for the
proposed model using the hierarchical Bayes model.
Although the accuracy of the Bayes estimation using
sparse data depends strongly on the hyperparameters,
the proposed estimation method can improve the ac-
curacy because the hyperparameters are learned from
the data. Therefore, the proposed method is expected
to improve the reliability of peer assessment because it
can estimate the ability of learners with higher accuracy
and considering the rater’s consistency and severity
characteristics.

Furthermore, this article demonstrated the effective-
ness of the proposed method through several experi-
ments. In the simulation experiment, we demonstrated
that the proposed model can provide the highest es-
timation accuracy of the parameters and ability when
the number of raters increased. Additionally, we demon-
strated that the accuracy of the Bayes estimation de-
pended on the hyperparameters and that the estimation
accuracy using the hierarchical Bayes model was close to
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TABLE 6
Result of the reliability evaluation.

Proposed Proposed Proposed Patz1999 Usami2010 Ueno2008 HRM- HRM- Expanded Averaged
(HBM) without ar Patz DeCarlo GPCM Score
µ =.834 µ =.829 µ =.802 µ =.789 µ =.818 µ =.805 µ =.653 µ =.576 µ =.821 µ =.621
σ =.068 σ =.069 σ =.072 σ =.076 σ =.069 σ =.075 σ =.104 σ =.135 σ =.065 σ =.146

Proposed t =3.224
(p < .05)

Proposed t =17.468 t =14.244
without ar (p < .01) (p < .01)

Patz1999 t =24.685 t =21.461 t =7.217
(p < .01) (p < .01) (p < .01)

Usami2010 t =8.764 t =5.540 t =8.704 t =15.921
(p < .01) (p < .01) (p < .01) (p < .01)

Ueno2008 t =15.655 t =12.431 t =1.813 t =9.030 t =6.892
(p < .01) (p < .01) (-) (p < .01) (p < .01)

HRM- t =97.895 t =94.671 t =80.427 t =73.210 t =89.131 t =82.240
Patz (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01)

HRM- t =139.111 t =135.887 t =121.643 t =114.426 t =130.348 t =123.456 t =41.216
DeCarlo (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01)

Expanded t =7.287 t =4.063 t =10.181 t =17.398 t =1.477 t =8.368 t =90.608 t =131.824
GPCM (p < .01) (p < .01) (p < .01) (p < .01) (-) (p < .01) (p < .01) (p < .01)

Averaged t =114.898 t =111.674 t =97.430 t =90.213 t =106.135 t =99.243 t =17.003 t =24.213 t =107.611
Score (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01) (p < .01)

the accuracy achieved using the true hyperparameters.
In the actual data experiments, to confirm the validity

of the proposed model for actual peer assessment data,
the model comparisons using information criteria were
conducted. Results show that the proposed model was
expected to be the most suitable for the data because
the model was estimated as the best approximation of
the true model and the best predictor of future data.
In addition, this article demonstrated that the proposed
model realized the highest reliability of peer assessment.
In the actual data experiments, the proposed model with
the parameter estimation using the hierarchical Bayes
model revealed higher performance than the proposed
model with fixed hyperparameters.

The analyses described in this article used the
Gibbs/MH method as the MCMC algorithm for pa-
rameter estimation because the algorithm is simple and
easy to implement. Recently, several newer MCMC al-
gorithms (e.g., the Hamiltonian Monte Carlo [59] and
the no-U-turn sampler [60]) have been proposed. They
are known to be more efficient than the Gibbs/MH. De-
veloping an efficient MCMC algorithm for the proposed
model remains as a future task.

In addition, as discussed in Section 6.2, the proposed
model ignores that a learner’s ability changes in the
process of peer assessment. It is another future task
to formulate an item response model that incorporates
such ability change as that in the dynamic item response
model [61].

Appendix
The MCMC program for the parameter estimation

of the proposed model can be downloaded from https:
//bitbucket.org/uto/peerassessmentirt.git. The source code
was written in Java.
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