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Abstract: The fused lasso penalizes a loss function by the L1 norm for both the

regression coefficients and their successive differences to encourage sparsity of both.

In this paper, we propose a Bayesian generalized fused lasso modeling based on a

normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed

into the difference of successive regression coefficients. The proposed method enables

us to construct a more versatile sparse model than the ordinary fused lasso using

a flexible regularization term. Simulation studies and real data analyses show that

the proposed method has superior performance to the ordinary fused lasso.

Key Words and Phrases: Bayesian lasso, Hierarchical Bayesian model, Normal-

exponential-gamma distribution, Markov chain Monte Carlo.
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1 Introduction

With the advanced computer systems and progress in instrumentation technologies, the

extremely high-dimensional data are being observed and recorded in biology, genomics,

and many other fields of science. For such data, the usual methods of separating model

estimation and evaluation are ineffectual for constructing an optimal model, and thus

effective techniques are required to construct a statistical model with high reliability and

prediction. This created a need for work on modeling and has led to the proposal of various

regularization methods with an L1 penalty term, in addition to the sum of squared errors

or log-likelihood functions. A distinctive feature of the L1 regularization methods is their

capability for simultaneous model estimation and variable selection.

Lasso proposed by Tibshirani (1996) is the most fundamental tool, which imposes

the sum of absolute values (L1 norms) of the regression coefficients as a constraint on

the sum of squared errors. Tibshirani et al. (2005) also proposed the fused lasso for the
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analysis of data where the predictor variables are in some sense ordered. The fused lasso

can be used for sparse modeling both for regression coefficients and for their successive

differences, and it has become the focus of increasing interest as a useful technique in life

sciences, image processing, and many other fields (see, e.g., Friedman et al. (2007) and

Tibshirani and Wang (2008)). In the L1 type of regularization, however, the L1 norm

constraint is non-differentiable at zero and no closed-form solution is available. Various

estimation algorithms for lasso have therefore been developed such as the least angle

regression (LARS) algorithm of Efron et al. (2004) and the coordinate descent algorithm

of Friedman et al. (2007).

Tibshirani (1996) demonstrated that the lasso estimates can be interpreted as a pos-

terior mode estimation when the regression parameters have independent and identical

Laplace (double-exponential) priors. Park and Casella (2008) suggested Gibbs sampling

for the lasso with a Laplace prior in a hierarchical model. Kyung et al. (2010) proposed

a Bayesian fused lasso by interpreting the fused lasso in a Bayesian framework, assum-

ing a product of the Laplace distribution in the prior of the regression coefficient vector.

It might be, however, pointed out that the methods which encourage sparsity between

neighboring variables via the L1 norm such as the fused lasso and Bayesian fused lasso

may have a substantial bias in their estimates, because the ordinary methods impose a

large penalty for differences between regression coefficients that belong to different groups.

As a result, the group difference is not contrasted, and then it may incur inaccuracy of

prediction.

In order to overcome these issues, we propose a Bayesian sparse fused lasso and a

Bayesian sparse generalized fused lasso based on the normal-exponential-gamma (NEG)

prior distribution. The NEG penalty allows construction of highly versatile sparse mod-

els, because it has spike at zero and more extreme flatness in its tail than does the lasso

penalty (Griffin and Brown 2005; Hoggart et al. 2008). Using a NEG prior to the differ-

ence of successive regression coefficients, our Bayesian sparse modeling can yield clearly

different estimates for parameters in different groups and improves prediction accuracy.

For parameter estimation, we present a simple implementation of the Gibbs sampling for

the proposed Bayesian sparse model, by exploiting the hierarchical representation of the

NEG prior analogous to that of the Laplace prior in Bayesian lasso (Park and Casella

2008). A drawback of Gibbs sampling in sparse Bayesian modeling is that the random

numbers hinder producing exact sparse solutions (e.g. in estimate by posterior mode). To

overcome the limitation, we develop an algorithm, called a sparse fused algorithm, which

can produce exact sparse solutions from Gibbs sampling. We also investigate a model

selection criterion for evaluating the estimated models.

The rest of this paper is organized as follows. Section 2 devotes the L1 norm regu-

larization. In Section 3, we describe the Bayesian sparse modeling which formulates the

sparse estimation in a Bayesian framework. In Section 4, we propose a Bayesian sparse
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modeling having higher versatility than the fused lasso using the NEG distribution. Monte

Carlo simulations and real data analysis are conducted to examine the performance of our

proposed procedure and to compare it with existing methods in Section 5. Concluding

remarks are given in Section 6.

2 L1 norm regularization

In this section, we describe the L1 norm regularization, where the sum of absolute values

of regression coefficients is imposed in a penalty term. In particular, we describe the lasso,

fused lasso, and generalized fused lasso.

2.1 Regularized likelihood method

Suppose that we have observed data {(yi,xi); i = 1, 2, . . . , n} for response variable y and

p-dimensional predictor variables x = (x1, x2, . . . , xp)
T . Without loss of generality, the

response is centered around the mean and the predictors are standardized:

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2ij = n (j = 1, 2, . . . , p).

We consider the following linear regression model without the intercept:

y = Xβ + ϵ, (1)

where y = (y1, y2, . . . , yn)
T is the n-dimensional vector of observed values for the response

variable, X = (x1, . . . ,xn)
T is the n× p design matrix, β is the p-dimensional regression

coefficient vector, and ϵ is the n-dimensional error vector distributed as Nn (0n, σ
2In).

Then, the likelihood function is given by

f(y|X;β, σ2) =
n∏

i=1

f(yi|xi;β, σ
2), (2)

where

f(yi|xi;β, σ
2) =

(
2πσ2

)−1/2
exp

{
−(yi − xT

i β)
2

2σ2

}
.

Hereafter, we denote the probability density function f(yi|xi;β, σ
2) as f(yi|β, σ2) for

simplicity.

A regularization method imposes a constraint condition for β with a penalty function

P (β) (> 0) on the maximization of the loss function such as a log-likelihood function
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log f(y|β, σ2). We consider the following constrained optimization problem:

max
β

n∑
i=1

log f(yi|β, σ2), subject to P (β) ≤ t, (3)

where t (≥ 0) is a constant. The above optimization problem is equivalent to the maxi-

mization of the following objective function,

n∑
i=1

log f(yi|β, σ2)− pγ(β), (4)

where pγ(β) (> 0) is a penalty function corresponding to the constraint P (β) ≤ t and

γ (> 0) is a tuning parameter to control the degree of penalties, called the regularization

parameter. When pγ(β) = γ∥β∥22, the optimization problem (4) reduces to the ridge

regression problem proposed by Hoerl and Kennard (1970). The ridge regression improves

the prediction performance, but it cannot produce zero values for regression coefficients.

2.2 Lasso

When pγ(β) = γ
∑p

j=1 |βj|, the optimization problem (4) reduces to the lasso problem by

Tibshirani (1996):

β̂ = arg max
β

{
log f(y|β, σ2)− γ

p∑
j=1

|βj|

}
. (5)

In contrast to the shrinkage of regression coefficients toward zero that occurs in ridge

regression, the lasso results in exactly zero estimates for some of the coefficients. The

regularization parameter γ controls the overall model sparsity (that is, the model with

exactly zero values for the coefficients) and shrinkage of the regression coefficients. A

larger value of the regularization parameter produces sparser models.

2.3 Fused lasso

Tibshirani et al. (2005) proposed the fused lasso for the sake of analyzing data whose

predictor variables are in some sense ordered. The regularization procedure gives estimates

by

β̂ = arg max
β

{
log f(y|β, σ2)− λ1

p∑
j=1

|βj| − λ2
p∑

j=2

|βj − βj−1|

}
,

where λ1 (> 0) and λ2 (> 0) are regularization parameters. The λ1 controls the degree of

sparsity and λ2 controls the degree of smoothing between successive differences. If λ2 = 0,

the fused lasso reduces to the lasso. In recent years, the fused lasso has become the focus
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of increasing interest as a useful technique in genomic data analysis, image processing,

and many other fields (see, e.g., Friedman et al. (2007), Tibshirani and Wang (2008)).

The upper left panel of Fig. 3 shows the penalty

pλ2(βj) = λ2

(
|βj − βj−1|+ |βj+1 − βj|

)
(6)

as a function of βj, while we fix both βj−1 and βj+1.

A general form of the generalized fused lasso is given by

β̂ = arg max
β

log f(y|β, σ2)− λ1
p∑

j=1

|βj| − λ2
∑

(j,k)∈E

|βj − βk|

 ,

where E ⊂ {(j, k); j, k = 1, . . . , p}. It is important to determine the set E according to

the subject of the analysis. Examples of the generalized fused lasso include hexagonal

operator for regression with shrinkage and equality selection (HORSES; Jang et al. 2013),

which is a regularization method that maximizes the objective function

log f(y|β, σ2)− λ1
p∑

j=1

|βj| − λ2
∑
j>k

|βj − βk|.

In HORSES, all combinations between two regression coefficients are used as a penalty.

Although in the fused lasso, the predictors must be in some sense ordered, HORSES, on

the other hand, does not require that condition.

One of useful applications of the fused lasso is the fused lasso signal approximator

(FLSA; Friedman et al. 2007). The FLSA solves the optimization problem

min
β1,...,βn

{
n∑

i=1

(yi − βi)2 + λ1

n∑
i=1

|βi|+ λ2

n∑
i=2

|βi − βi−1|

}
. (7)

The FLSA corresponds to the case where n = p and X = In in the ordinary fused lasso.

Tibshirani and Wang (2008) applied the FLSA to the analysis of comparative genomic

hybridization (CGH) data.

3 Bayesian sparse modeling via Gibbs sampling

In this section, we describe the Bayesian lasso which formulates the lasso in a Bayesian

framework. We consider the Bayesian sparse estimation with an NEG distribution as

the prior distribution instead of the Laplace prior distribution. In addition, the Bayesian

fused lasso is described to formulate the fused lasso in a Bayesian framework.
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3.1 Bayesian lasso

The posterior distribution of coefficient vector β is given by

π(β|y) ∝ f(y|β, σ2)π(β|σ2)π(σ2).

The coefficient vector β is estimated by the posterior mode for given data y. Park and

Casella (2008) used the Laplace prior on the coefficient vector β:

π(β|σ2) =

p∏
j=1

λ

2
√
σ2

exp

(
− λ√

σ2
|βj|
)

(8)

and the non-informative scale-invariant prior π(σ2) = 1/σ2 or inverse-gamma prior π(σ2) =

IG(ν0/2, η0/2) on σ
2, where ν0 (> 0) is a shape parameter and η0 (> 0) is a scale param-

eter. An inverse-gamma probability density function is given by

IG(x|ν, η) = ην

Γ(ν)
x−(ν+1) exp

(
−η
x

)
,

where Γ(·) is the gamma function. The hyper-parameter λ in (8) plays the same role

as that of regularization parameter γ in (5). It controls the degree of sparsity of the

coefficients estimated. In other words, the larger values of hyper-parameter λ get, the

more numbers of zero regression coefficients increase. The smaller values of λ get, the less

numbers of zero regression coefficients increase.

The Laplace distribution is represented by a scale mixture of normals (Andrews and

Mallows 1974):

λ

2
√
σ2

exp

(
− λ√

σ2
|β|
)

=

∫ ∞

0

1√
2πσ2τ 2

exp

(
− β2

2σ2τ 2

)
λ2

2
exp

(
−λ

2

2
τ 2
)
dτ 2.

From this relationship, Park and Casella (2008) assumed the following priors:

π(β|σ2, τ 21 , τ
2
2 , . . . , τ

2
p ) =

p∏
j=1

1√
2πσ2τ 2j

exp

(
−

β2
j

2σ2τ 2j

)
,

π(τ 21 , τ
2
2 , . . . , τ

2
p ) =

p∏
j=1

λ2

2
exp

(
−λ

2

2
τ 2j

)
.

As a result, it enables us to carry out Bayesian estimation by Gibbs sampling. Assuming

an inverse-gamma prior IG(ν0/2, η0/2) on σ
2:

π(σ2) =
(η0/2)

ν0/2

Γ(ν0/2)
(σ2)−(ν0/2+1) exp

(
−η0/2

σ2

)
,
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the full-conditional posteriors on β, σ2, τ 21 , τ
2
2 , . . . , τ

2
p are given by

β|y, X, σ2, τ 21 , τ
2
2 , . . . , τ

2
p ∼ Np(A

−1XTy, σ2A−1),

A = XTX +D−1
r , Dr = diag(τ 21 , τ

2
2 , . . . , τ

2
p ),

σ2|y, X,β, τ 21 , τ 22 , . . . , τ 2p ∼ IG
(ν1
2
,
η1
2

)
,

ν1 = n+ p+ ν0, η1 = ∥y −Xβ∥22 + βTD−1
r β + η0,

1

τ 2j

∣∣∣∣ βj, σ2, λ ∼ IGauss(µ′, λ′),

µ′ =

√
λ2σ2

β2
j

, λ′ = λ2, j = 1, 2, . . . , p,

where IGauss(µ, λ) denotes the inverse-Gaussian distribution with a density function√
λ

2π
x−3/2 exp

{
−λ(x− µ)

2

2µ2x

}
(x > 0).

3.2 Bayesian fused lasso

Kyung et al. (2010) proposed the Bayesian fused lasso by interpreting the fused lasso in a

Bayesian framework. In the Bayesian fused lasso, the prior distribution of the regression

coefficients β is defined as follows:

π(β|σ2) ∝ (σ2)−
2p−1

2 exp

(
−λ1
σ

p∑
j=1

|βj| −
λ2
σ

p∑
j=2

|βj − βj−1|

)
.

This can be expressed as a hierarchical representation of the Laplace distribution,

π(β|σ2) ∝ (σ2)−
2p−1

2

p∏
j=1

∫
1√
2πτ 2j

exp

(
−

β2
j

2σ2τ 2j

)
λ21
2
exp

(
−λ

2
1

2
τ 2j

)
dτ 2j

×
p∏

j=2

∫
1√
2πτ̃ 2j

exp

{
−(βj − βj−1)

2

2σ2τ̃ 2j

}
λ22
2
exp

(
−λ

2
2

2
τ̃ 2j

)
dτ̃ 2j

∝
∫ ∫

(σ2)−
2p−1

2

p∏
j=1

(τ 2j )
− 1

2

p∏
j=2

(τ̃ 2j )
− 1

2 exp

(
− 1

2σ2
βTΣ−1

β β

)

×
p∏

j=1

π(τ 2j )

p∏
j=2

π(τ̃ 2j )

p∏
j=1

dτ 2j

p∏
j=2

dτ̃ 2j ,
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where

Σ−1
β =



1
τ21

+ 1
τ̃22

− 1
τ̃22

0 · · · 0 0

− 1
τ̃22

1
τ22

+ 1
τ̃22

+ 1
τ̃23

− 1
τ̃23

· · · 0 0

0 − 1
τ̃23

1
τ23

+ 1
τ̃23

+ 1
τ̃24
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
τ2p−1

+ 1
τ̃2p−1

+ 1
τ̃2p

− 1
τ̃2p

0 0 0 · · · − 1
τ̃2p

1
τ2p

+ 1
τ̃2p


.

(9)

This formulation enables us to implement Gibbs sampler for β, σ2, τ 21 , τ
2
2 , . . . , τ

2
p and

τ̃ 22 , τ̃
2
3 , . . . , τ̃

2
p . The full-conditional distribution is then given by

β|y, X, σ2, τ 21 , τ
2
2 , . . . , τ

2
p , τ̃

2
2 , τ̃

2
3 , . . . , τ̃

2
p

∼ Np

(
(XTX + Σ−1

β )−1XTy, σ2(XTX + Σ−1
β )−1

)
,

σ2|y, X,β, τ 21 , τ 22 , . . . , τ 2p , τ̃ 22 , τ̃ 23 , . . . , τ̃ 2p ∼ IG (ν1/2, η1/2) ,

ν1 = n+ 2p− 1 + ν0,

η1 = (y −Xβ)T (y −Xβ) + βTΣ−1
β β + η0,

1

τ 2j
|βj, σ2, λ1 ∼ IGauss

(√
λ21σ

2

β2
j

, λ21

)
,

1

τ̃ 2j
|βj, βj−1, σ

2, λ2 ∼ IGauss

(√
λ22σ

2

(βj − βj−1)2
, λ22

)
,

where an inverse-gamma prior distribution IG(ν0/2, η0/2) is assumed for σ2.

3.3 Lasso-type Bayesian sparse regression via NEG prior

Griffin and Brown (2005) proposed an NEG distribution as a prior distribution for the

regression coefficients β which is more flexible with respect to sparsity than a Laplace

distribution. As in Laplace distribution, the NEG distribution has a hierarchical repre-

sentation which is useful to derive a simple Gibbs sampling algorithm as shown in the

following. The NEG density function is given by

NEG(βj|λ, γ) = κ exp

(
β2
j

4γ2

)
D−2λ−1

(
|βj|
γ

)
, (10)

where κ = (2λλ)/(γ
√
π)Γ(λ + 1/2) is a normalization constant, D−2λ−1 is a parabolic

cylinder function, and λ and γ are hyper-parameters with positive values that control

the sparsity of the coefficients. The parabolic cylinder function is a solution of the
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second-order linear ordinary differential equation

d2w

dz2
−
(
z2

4
− 1

2
− a
)
w = 0,

and its integral representation is given by

D−2λ−1

(
|β|
γ

)
=

1

Γ(2λ+ 1)
exp

(
− β2

4γ2

)∫ ∞

0

w2λ exp

(
−1

2
w2 − |β|

γ
w

)
dw.

Then, NEG density function can be expressed as a hierarchical representation

NEG (βj|λ, γ)

=

∫ ∫
1√
2πτ 2j

exp

(
−
β2
j

2τ 2j

)
ψj exp

(
−ψjτ

2
j

) (γ2)λ
Γ(λ)

ψλ−1
j exp

(
−γ2ψj

)
dτ 2j dψj

=

∫ ∫
N(βj|0, τ 2j )EXP(τ 2j |ψj)Ga(ψj|λ, γ2)dτ 2j dψj.

The lasso-type Bayesian sparse estimation via an NEG distribution (Griffin and Brown

2011; Rockova and Lesaffre 2014) assumes the following NEG distribution instead of the

Laplace distribution as a prior distribution for the regression coefficients β,

π(β|σ2) =

p∏
j=1

1√
σ2

NEG

(
βj√
σ2

∣∣∣λ, γ) .
By assuming the above prior distribution, it is possible to guarantee a unimodal posterior

distribution (Rockova and Lesaffre 2014) and perform Bayesian estimation of the regres-

sion coefficient vector by Gibbs sampling in the same way as the Bayesian lasso. The

full-conditional distributions of β, σ2, 1/τ 2j and ψj (j = 1, 2, . . . p) are given by

β|y, X, σ2, τ 21 , τ
2
2 , . . . , τ

2
p ∼ Np(A

−1XTy, σ2A−1),

A = XTX +D−1
r , Dr = diag(τ 21 , . . . , τ

2
p ),

σ2|y, X,β, τ 21 , τ 22 , . . . , τ 2p ∼ IG(ν1/2, η1/2),

ν1 = n+ p+ ν0, η1 = ∥y −Xβ∥22 + βTD−1
r β + η0,

1

τ 2j
|βj, σ2, ψj ∼ IGauss(µ′, λ′), j = 1, 2, . . . , p,

µ′ =

√
2ψjσ2

β2
j

, λ′ = 2ψj,

ψj|τ 2j , λ, γ ∼ Ga(λ+ 1, τ 2j + γ2), j = 1, 2, . . . , p.

The NEG distribution can maintain flat tails with a large preponderance of the density
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Figure 1: The NEG penalty function in Equation (13), pλ,γ(β) = logNEG(β|λ, γ) + C.
The left panel shows functions under varying λ at γ = 0.1, while the right panel shows
those under varying γ at λ = 0.1.

around zero, making the resulting estimator more clear-cut. As both λ and γ increase

such that ξ =
√
2λ/γ remains a constant, the NEG distribution converges to the Laplace

distribution with a parameter ξ. The NEG distribution is differentiable everywhere except

at the point 0. First and second derivatives of the NEG density function at β ̸= 0 are

respectively given by

∂

∂β
NEG(β) = −κ2(λ+ 1/2)sign(β)

γ
exp

(
β2

4γ2

)
D−(2λ+2)

(
|β|
γ

)
, (11)

∂2

∂β2
NEG(β) = κ

4(λ+ 1/2)(λ+ 1)

γ2
exp

(
β2

4γ2

)
D−(2λ+3)

(
|β|
γ

)
. (12)

Fig. 1 shows the NEG penalty function

pλ,γ(β) = logNEG(β|λ, γ) + C, (13)

when the hyper-parameters are varied, where C is a constant such that pλ,γ(β) takes

zero value at β̃ = arg min pλ,γ(β). The hyper-parameters λ and γ affect the degree of

sparsity of the solution: either a larger value of λ or a smaller value of γ produces sparser

results. Setting an appropriate value of the hyper-parameters is an important problem.

Rockova and Lesaffre (2014) summarized the properties of the NEG distribution. The

most remarkable property is

∂

∂β
log NEG

(
β
∣∣λ, γ) = O

(
1

|β|

)
as |β| → ∞,

which implies that the regression estimator is less biased for large |β|. The lasso esti-

mator varies continuously, but is highly biased because of the strong constraint imposed

10



Figure 2: The relationship between the least-squares estimator and shrinkage estimator
for lasso (left panel), SCAD (middle panel), and NEG (right panel). The dotted lines are
the least-squares estimator β̂LS, while the solid lines are shrinkage estimators.

on nonzero estimates. It will be more clear by considering the univariate least-squares

problem with a penalty term pλ(β),

β̂ = arg min
β

{
1

2
(β̂LS − β)2 + pγ(β)

}
, (14)

where β̂LS is the unpenalized least-squares estimate in univariate case. Fig. 2 shows

β̂ from the optimization problem (14) with lasso, smoothly-clipped absolute deviation

(SCAD; Fan and Li 2001), and the NEG (13) penalties. The lasso has a large bias from

β̂LS. SCAD has less biased for large |β̂LS|. This property is also true of the minimax

concave penalty (MCP; Zhang 2010). The NEG penalty yields similar estimators to

those from SCAD penalty, but the change is continuous in β̂LS.

4 Bayesian fused lasso modeling via NEG prior

4.1 Bayesian fused lasso via NEG prior

In this section, we propose a Bayesian sparse modeling with higher versatility than the

fused lasso. The Bayesian fused lasso assumes two independent Laplace distributions as

the prior distributions for the regression coefficients β and their successive differences. By

replacing the Laplace distribution for the differences for the regression coefficients with

the NEG distribution, we propose the prior distribution

π(β|σ2) = (σ2)−(2p−1)/2

p∏
j=1

Laplace

(
βj√
σ2

∣∣∣λ1)

×
p∏

j=2

NEG

(
βj − βj−1√

σ2

∣∣∣λ2, γ2) , (15)
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where λ1, λ2, γ2 are hyper-parameters with positive values. Using the NEG distribution,

compared to the Laplace distribution, the closer the difference between two regression co-

efficients is, the stronger the penalty becomes. Consequently, by adding the NEG penalty

for the differences for regression coefficients, the truly identical regression coefficients tend

to be estimated as identical, while the truly different regression coefficients tend to be es-

timated as different. Note that we adapt the NEG distribution only to the fused penalty,

because imposing the NEG distribution to both penalties causes much computational

cost.

The upper right panel of Fig. 3 shows the penalty function

pλ2,γ2(βj) = logNEG(βj − βj−1|λ2, γ2)
+ logNEG(βj+1 − βj|λ2, γ2) + C, (16)

where C is a constant term such that the function pλ2,γ2(βj) takes zero value at β̃ =

arg min pλ2,γ2(βj). When β̃ satisfies an inequality βj−1 ≤ β̃ ≤ βj+1, the fused lasso

penalty pλ2(β̃) always takes the minimum value, but the penalty of the proposed method

does not always. The resulting estimator based on prior (15) tends to be identical to

either βj−1 or βj+1, and more contrasted result is obtained than the fused lasso penalty.

This shows that the prior (15) is more flexible than that of the Bayesian fused lasso.

A full-conditional distribution is obtained for each of the prior distributions, enabling

Bayesian estimation by Gibbs sampling. The prior (15) can be expressed as a hierarchical

representation

π(β|σ2) = (σ2)−(2p−1)/2

p∏
j=1

Laplace

(
βj√
σ2

∣∣∣λ1) p∏
j=2

NEG

(
βj − βj−1√

σ2

∣∣∣λ2, γ2)

=

∫
· · ·
∫ p∏

j=1

1√
2πσ2τ 2j

exp

(
−

β2
j

2σ2τ 2j

) p∏
j=1

λ21
2
exp

(
−
λ21τ

2
j

2

)

×
p∏

j=2

1√
2πσ2τ̃ 2j

exp

{
−(βj − βj−1)

2

2σ2τ̃ 2j

} p∏
j=2

ψj exp
(
−ψj τ̃

2
j

)
×

p∏
j=2

(γ22)
λ2

Γ(λ2)
ψλ2−1
j exp(−γ22ψj)

p∏
j=1

dτ 2j

p∏
j=2

dτ̃ 2j

p∏
j=2

dψj.
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Figure 3: Upper left panel: The function (6), pλ2(βj) = λ2

(
|βj−βj−1|+|βj+1−βj|

)
, where

βj−1 and βj+1 are fixed. Upper right panel: The function (16), pλ2,γ2(βj) = logNEG(βj −
βj−1|λ2, γ2) + logNEG(βj+1− βj|λ2, γ2) +C, where βj−1 and βj+1 are fixed. Lower panel:
A constraint region of fused lasso via NEG penalty (shaded region). The red dotted line
indicates fused lasso.
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Therefore, the priors on β, τ 21 , τ
2
2 , . . . , τ

2
p , τ̃

2
2 , τ̃

2
3 , . . . , τ̃

2
p , ψ2, ψ3, . . . , ψp are

β|σ2, τ 21 , τ
2
2 , . . . , τ

2
p , τ̃

2
2 , τ̃

2
3 , . . . , τ̃

2
p ∼ Np(0p, σ

2Σβ),

τ 2j ∼ EXP(λ21/2),

τ̃ 2j |ψj ∼ EXP(ψj),

ψj ∼ Ga(λ2, γ
2
2),

where Σβ is given by the formula (9). Hence the full-conditional distributions of param-

eters are given by

β|y, X, σ2, τ 21 , . . . , τ
2
p , τ̃

2
2 , . . . , τ̃

2
p , ψ2, . . . , ψp ∼ Np

(
A−1XTy, σ2A−1

)
,

A = XTX + Σ−1
β ,

σ2|y, X,β, τ 21 , . . . , τ 2p , τ̃ 22 , . . . , τ̃ 2p , ψ2, . . . , ψp ∼ IG (ν1/2, η1/2) ,

ν1 = n+ 2p− 1 + ν0,

η1 = (y −Xβ)T (y −Xβ) + βTΣ−1
β β + η0,

1

τ 2j
|βj, σ2, λ1 ∼ IGauss

(√
λ21σ

2

β2
j

, λ21

)
,

1

τ̃ 2j
|βj, βj−1, σ

2, ψj ∼ IGauss

(√
2σ2ψj

(βj − βj−1)2
, 2ψj

)
,

ψj|τ̃ 2j , λ2, γ2 ∼ Ga
(
λ2 + 1, τ̃ 2j + γ22

)
. (17)

4.2 Bayesian generalized fused lasso via NEG prior

The generalized fused lasso is given by the optimization problem

max
β1,...,βp

−
n∑

i=1

(yi − βi)2 − λ1
p∑

j=1

|βj| − λ2
∑

(k,l)∈E

|βk − βl|

 . (18)

Various problems are included under this framework by changing the set E. In this

section, we consider using the NEG distribution for the generalized fused lasso.

4.2.1 2d fused lasso

The 2d fused lasso is a useful application of the generalized fused lasso. The purpose of

this method is the denoising of image data. The gray scale of p1 × p2 pixel in the image

data corresponds to each yi,j (i = 1, . . . , p1, j = 1, . . . , p2). We consider the following

14



optimization problem:

max
β1,1,...,βp1,p2

{
−

p1∑
i=1

p2∑
j=1

(yi,j − βi,j)2 − λ1
p1∑
i=1

p2∑
j=1

|βi,j|

−λ2
p1∑
i=1

p2∑
j=2

|βi,j − βi,j−1| − λ2
p1∑
i=2

p2∑
j=1

|βi,j − βi−1,j|

}
. (19)

The estimated value of parameter βij corresponds to the denoised image.

Next, we formulate the 2d fused lasso in a Bayesian framework. For the following

discussions, we use the notations

y = (y1,1, . . . , y1,p2 , y2,1, . . . , y2,p2 , . . . , yp1,1, . . . , yp1,p2)
T

= (y1, y2, · · · , yp)T ,
β = (β1,1, . . . , β1,p2 , β2,1, . . . , β2,p2 , . . . , βp1,1, . . . , βp1,p2)

T

= (β1, β2, · · · , βp)T ,

where p = p1 × p2. The likelihood function and prior distribution on β are, respectively,

f(y|β, σ2) = Np(β, σ
2Ip), (20)

π(β|σ2) ∝ (σ2)−(3p−p1−p2)/2

p∏
j=1

λ1
2
exp

(
−λ1
σ
|βj|
)

×
∏
j∈Ω1

NEG(βj − βj−1|λ2, γ2)
∏
j∈Ω2

NEG(βj − βj−p2|λ2, γ2),

(21)

where Ω1 = {1, 2, . . . , p}\{1, p2 +1, . . . , (p1− 1)p2 +1}, Ω2 = {p2 +1, p2 +2, . . . , p}. The

15



prior (21) can be expressed as a hierarchical representation

π(β|σ2) =

∫
· · ·
∫ p∏

j=1

1√
2πσ2τ 2j

exp

(
−

β2
j

2σ2τ 2j

) p∏
j=1

λ21
2
exp

(
−
λ21τ

2
j

2

)

×
∏
j∈Ω1

1√
2πσ2τ̃ 2j−1,j

exp

{
−(βj − βj−1)

2

2σ2τ̃ 2j−1,j

}
×
∏
j∈Ω1

ψj−1,j exp
(
−ψj−1,j τ̃

2
j−1,j

)
×
∏
j∈Ω1

(γ22)
λ2

Γ(λ2)
ψλ2−1
j−1,j exp(−γ22ψj−1,j)

×
∏
j∈Ω2

1√
2πσ2τ̃ 2j−p2,j

exp

{
−(βj − βj−p2)

2

2σ2τ̃ 2j−p2,j

}
×
∏
j∈Ω2

ψj−p2,j exp
(
−ψj−p2,j τ̃

2
j−p2,j

)
×
∏
j∈Ω2

(γ22)
λ2

Γ(λ2)
ψλ2−1
j−p2,j

exp
(
−γ22ψj−p2,j

)
×

p∏
j=1

dτ 2j
∏
j∈Ω1

dτ̃ 2j−1,j

∏
j∈Ω1

dψj−1,j

∏
j∈Ω2

dτ̃ 2j−p2,j

∏
j∈Ω2

dψj−p2,j.

The full-conditional distribution is then obtained by replacing Σ−1
β by the following ex-

pression in the fused lasso-type Bayesian modeling via the NEG distribution in Equation

(17):

(Σ−1
β )(i,j) =


1
τ2i

+ 1
τ̃2i−1,j

+ 1
τ̃2i−p2,j

+ 1
τ̃2i,j+1

+ 1
τ̃2i,j+p2

, (i = j),

− 1
τ̃2i,j
, (j ∈ {i+ 1, i+ p2, i− 1, i− p2}),

0, (otherwise),

where (Σ−1
β )(i,j) is the (i, j)-element of Σ−1

β and 1/τ̃ 2i,j = 1/τ̃ 2j,i, 1/τ̃
2
j′−1,j′ = 0 for j′ ∈

{1, . . . , p} \ Ω1, while 1/τ̃ 2j′−p2,j′
= 0 for j′ ∈ {1, . . . , p} \ Ω2.

4.2.2 HORSES

In the fused lasso, the predictors must be in some sense ordered. On the other hand,

HORSES does not have such a requirement. In the HORSES, all pairwise differences of

two regression coefficients are used as a penalty. The regularization method maximizes

16



the objective function

log f(y|β, σ2)− λ1
p∑

j=1

|βj| − λ2
∑
j>k

|βj − βk|. (22)

Next, we formulate HORSES in a Bayesian framework. The prior on β is assumed as

π(β|σ2) = (σ2)−(p+p(p−1)/2)/2

p∏
j=1

Laplace

(
βj√
σ2

∣∣∣λ1)∏
j>k

NEG

(
βj − βk√

σ2

∣∣∣λ2, γ2) .
The full-conditional distribution is obtained by replacing the p×p matrix Σβ in the fused

lasso-type Bayesian modeling via an NEG distribution in (17) by

(Σ−1
β )(i,j) =


1

τ 2i
+
∑
j′ ̸=i

1

τ̃ 2i,j′
(i = j)

− 1

τ̃ 2i,j
(otherwise)

,

where (Σ−1
β )(i,j) is the (i, j)-element of Σ−1

β .

4.3 Computational algorithm for exact sparse solution

Since a posterior mode is estimated by random numbers, the Gibbs sampling does not

produce exact zero estimates of the coefficients. The fused lasso has two purposes: sparse

estimation of both the coefficients and differences between adjacent regression coefficients.

To achieve these two purposes, we propose a sparse fused algorithm, which allows both

regression coefficients and differences of regression coefficients to be exactly zero. Table

1 shows the proposed algorithm.

A detail of the algorithm is given as follows. Steps 1 and 2 are initialization. The

index vector I stores information on groups of regression coefficients, where the same

values indicate that they are in the same group. In addition, we assume that β̂ is the

mode of sampled estimates. Step 3 updates three vectors β̃(f), β̃(b), β̃(z) that are used for

comparison of posterior distribution. β̃
(f)
k is updated in the value of the group before the

group of regression coefficients belonging to β̂k, while β̃
(b)
k is updated in that after the

group of regression coefficients belonging to β̂k. We assign β̃
(z)
k into zero value. Step 3.1

computes values of the posterior distributions. In Step 3.2, estimated values are obtained

from the magnitude of the posterior distribution. In addition, we update the estimate

of regression coefficient and group information. Step 2 and Step 3 are repeated until

convergence. By modifying this algorithm slightly, we can also construct an algorithm for

the generalized fused lasso.
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Table 1: Sparse fused algorithm

1. Let β̂ = (β̂1, . . . , β̂p)
T

be a vector of estimates obtained
from Gibbs sampling.

β̂ is the mode of sampled estimates.
I = (I1, I2, . . . , Ip)← (1, 2, . . . , p)

2. β̃ = (β̃1, β̃2, . . . , β̃p)
T ← β̂

β̃
(f)

= (β̃
(f)
1 , β̃

(f)
2 , . . . , β̃

(f)
p )T ← β̂

β̃
(b)

= (β̃
(b)
1 , β̃

(b)
2 , . . . , β̃

(b)
p )T ← β̂

β̃
(z)

= (β̃
(z)
1 , β̃

(z)
2 , . . . , β̃

(z)
p )T ← β̂

3. FOR j = 1, . . . , p
FOR k = 1, . . . , p
IF Ik = j THEN
IF j ̸= 1 THEN

SET β̃
(f)
k ← β̂j−1

END IF
IF j ̸= p THEN

SET β̃
(b)
k ← β̂j+1

END IF

SET β̃
(z)
k ← 0

END IF
END FOR

3.1 G = g(β̃, ξ̂, y)

G(f) = g(β̃
(f)
, ξ̂, y)

G(b) = g(β̃
(b)
, ξ̂, y)

G(z) = g(β̃
(z)
, ξ̂, y)

G =
{
G, G(f), G(b), G(z)

}

3.2 FOR k = 1, . . . , p
IF Ik = j THEN
CASE max {G} OF

G：β̂k ← β̃j
IF j ̸= 1 THEN

G(f)：β̂k ← β̃j−1

Ik ← j − 1
END IF
IF j ̸= p THEN

G(b)：β̂k ← β̃j+1

Ik ← j + 1
END IF
G(z)：β̂k ← 0

Ik ← 0
END CASE

END IF
END FOR

END FOR
4. Repeat Steps 2 and 3 until
convergence and sparsified

estimates are stored in β̂.

Here, g(β, ξ, y) = log f(y|β, ξ) + log π(β, ξ), f(y|β, ξ) is a likelihood function,

π(β, ξ) is a prior on (β, ξ), and ξ̂ is an estimate of parameter vector ξ that
consists of parameter vectors except for β.
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4.4 Model selection

A set of processes for selecting the optimal model using a model selection criterion such as

Akaike information criterion (AIC; Akaike 1973) or Bayesian information criterion (BIC;

Schwarz 1978) is effective for evaluating a regression model estimated by the maximum

likelihood or least-squares method (see, e.g., Konishi and Kitagawa (2008)). However,

when analyzing high-dimensional data, the traditional methods are not effective. Chen

and Chen (2008) proposed an extended Bayesian information criterion (EBIC) to over-

come the difficulties in model selection for small sample and high-dimensional data fre-

quently encountered in genomic studies and image analysis.

The basic idea of EBIC is as follows. Suppose that the likelihood function is Ln(θ) =

f(y|θ) =
∏n

i=1 f(yi|xi,θ), where θ ∈ Θ ⊂ Rp. A model M is a subset of {1, . . . , p}. It

indicates indexes of variables included in the model. For M included in the model space

M, the posterior of M is given by

p(M |Y ) =
m(Y |M)p(M)∑

M∈Mm(Y |M)p(M)
,

where m(Y |M) is the marginal likelihood and p(M) is the prior of M . The marginal

likelihood is

m(Y |M) =

∫
f
{
Y |θ(M)

}
π
{
θ(M)

}
dθ(M),

where π{θ(M)} is the prior of θ(M) being the parameter θ of the model M . By the

Laplace approximation for integrals in the above quantity, we derive

−2 logm(Y |M) = −2 logLn{θ̂(M)}+ ν(M) log n− 2p(M),

where θ̂(M) is the maximum likelihood estimator of θ(M), ν(M) is the degrees of freedom

of M . In addition, terms of smaller order than O(1) with respect to the sample size n are

ignored. The BIC (Schwarz 1978) approximates the posterior probability of a model by

assuming that the prior is uniform over all models, and is of the form

BIC(M) = −2 logLn

{
θ̂(M)

}
+ ν(M) log n.

For the theoretical aspect and derivation of the BIC, we refer to Konishi et al. (2004);

Konishi and Kitagawa (2008).

On the other hand, the EBIC considers the prior probability on a model M which

takes the number of candidate models into consideration, rather assuming a uniform

prior. Suppose that a model spaceM is partitioned into
⨿

jMj. The EBIC is then given
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by, for M ∈Mj,

EBIC(M) = −2 logLn

{
θ̂(M)

}
+ ν(M) log n+ 2η log τ(Mj),

where η (0 < η < 1) is a tuning parameter and τ(Mj) is a quantity which characterizes

Mj. Chen and Chen (2008) used τ(Mj) =
(
p
j

)
= p!/{(p − j)!j!} for variable selection

problem. For the fused lasso-type problem, Tibshirani et al. (2005) proposed the degrees

of freedom

df(β̂) = #
{
nonzero coefficient blocks in β̂

}
.

It can be rewritten as

df(β̂) = p−#
{
β̂j = 0

}
−#

{
β̂j = β̂j−1; β̂j, β̂j−1 ̸= 0

}
.

In this paper, we use df(ŷ) as the degrees of freedom ν(M) in the EBIC above and

τ(Mj) =
( pg

df(β̂)

)
= pg!/[{pg − df(β̂)}!df(β̂)!], where pg is the number of coefficient blocks

in β̂ including zero coefficients. We also use η = 1 − log n/(2 log p) as recommended by

Chen and Chen (2008). The values of the hyper-parameters are determined by minimizing

the EBIC.

5 Numerical studies

5.1 Monte Carlo simulation

We simulated data from the model with n observations and p predictors:

y = Xβ∗ + ϵ,

where β∗ is the p-dimensional true coefficient vector, ϵ is an error vector distributed as

Nn(0n, σ
2In). In addition, xi (i = 1, 2, . . . , n) was generated from a multivariate normal

distribution with mean vector 0p and variance-covariance matrix Σ. We simulated 200

datasets with n observations. We considered the following three cases.

• Case 1: n = 50, p = 20, β∗ = (0.0T
5 ,2.0

T
5 ,0.0

T
5 ,2.0

T
5 )

T , σ = 0.75, Σii = 1, and

Σij = 0.5 (i ̸= j), where Σij is the (i, j)-element of Σ.

• Case 2: n = 50, p = 50, β∗ = (0.0T
5 ,5.0

T
3 ,0.0

T
15,3.5

T
7 ,0.0

T
10,4.5

T
5 ,0.0

T
5 )

T , σ = 0.75,

and Σ = Ip.

• Case 3: n = 30, p = 50, β∗ = (3.0T
5 ,−1.5T

5 ,1.0
T
5 ,2.0

T
5 ,0.0

T
30)

T , σ = 5.0, and

Σij = 0.5|i−j|.
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These simulation settings are the same as those in Tibshirani et al. (2005) and Shen and

Huang (2010). Cases 1 and 3 correspond to Examples 1 and 2 in Shen and Huang (2010),

respectively, while Case 2 corresponds to Figure 3 in Tibshirani et al. (2005).

We denote the blocks of indexes which have distinctive regression coefficients by

B1, B2, . . . , BL ⊂ {1, 2, . . . , p}. For example, L = 4 in Case 1. For each generated

dataset, the estimates were obtained by using 5,000 iterations of Gibbs sampler (after

2,000 burn-in iterations). Candidates of the hyper-parameters were set by

λmin exp{(log λmax − log λmin) · (i/m)} (23)

for i = 1, . . . ,m. For the hyper-parameters λ1 and λ2, we set m = 100, λmin = 10−4, and

λmax = 50 for Cases 1 and 2 and λmax = 100 for Case 3 such that all coefficient parameters

are zero. For the hyper-parameters γ2, we set m = 100, λmin = 0.1, and λmax = 2.

We used the lasso, fused lasso, and Bayesian fused lasso as competitors. Regularization

parameters were selected by the EBIC.

The performances were evaluated in terms of two accuracies: variable selection and

prediction. For variable selection accuracy, we used three measures:

PZ =
1

200

200∑
k=1

#{j : β(k)
j = 0 ∧ β∗

j = 0}
#{j : β∗

j = 0}
,

PNZ =
1

200

200∑
k=1

#{j : β(k)
j ̸= 0 ∧ β∗

j ̸= 0}
#{j : β∗

j ̸= 0}
,

PB =
1

200

200∑
k=1

p−
∑L

l=1N
(k)
l

p− L
,

where β̂
(k)

= (β̂
(k)
1 , . . . , β̂

(k)
p )T is the estimate of coefficient vector for the k-th dataset,

and N
(k)
l is the number of distinct regression coefficients {β̂(k)

j : j ∈ Bl}. PZ indicates the

accuracy of identifying truly zero coefficients. PNZ indicates the accuracy of identifying

truly nonzero coefficients. PB indicates the accuracy of identifying the true coefficient

blocks. The higher the value, the more accurate variable selection is. We assessed the

accuracy of prediction using the mean squared error (MSE) and prediction squared error

(PSE) as follows:

MSE =
1

200

200∑
k=1

(β̂
(k)
− β∗)TΣ(β̂

(k)
− β∗),

PSE =
1

200

200∑
k=1

(
1

n
∥ŷ(k) − ỹ(k)∥22

)
,
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where ỹ(k) = X(k)β∗+ ϵ̃(k), with ϵ̃(k) being an observation independent of k-th error vector

ϵ(k).

The simulation results are summarized in Table 2. First, the lasso showed low PB in

all cases, because it cannot handle regression coefficients as blocks, and hence blocks of

zero coefficients exist. The fused lasso and Bayesian fused lasso outperformed the lasso

because of accounting for the block structure. With respect to almost all criteria, the

proposed method provided much better performance than the competitors. In particular,

the true blocks were almost identified by the proposed method, which may be seen from

the results that the values of PB in Table 2 are close to 1. Moreover, the low values of

MSE and PSE show that our method provides proper estimates for not only the true

blocks but also their true regression coefficients.

Table 2: The results for Monte Carlo simulations. flasso indicates the fused lasso, Bflasso
the Bayesian fused lasso, and NEG-flasso our proposed fused lasso-type modeling via the
NEG prior distribution.

Case 1 : n = 50, p = 20
MSE (sd) PSE (sd) PZ PNZ PB

lasso 0.26 (0.13) 0.85 (0.21) 0.58 1.00 0.17
flasso 0.27 (0.20) 0.69 (0.15) 0.49 1.00 0.89
Bflasso 0.14 (0.10) 0.72 (0.12) 0.57 1.00 0.82

NEG-flasso 0.03 (0.05) 0.59 (0.12) 0.96 1.00 1.00

Case 2 : n = 50, p = 50
MSE (sd) PSE (sd) PZ PNZ PB

lasso 1.23 (0.71) 1.81 (0.80) 0.57 1.00 0.24
flasso 0.46 (0.24) 0.88 (0.20) 0.74 1.00 0.89
Bflasso 1.50 (1.27) 1.98 (1.35) 0.38 1.00 0.52

NEG-flasso 0.04 (0.03) 0.60 (0.12) 1.00 1.00 1.00

Case 3 : n = 30, p = 50
MSE (sd) PSE (sd) PZ PNZ PB

lasso 67.70 (23.77) 96.17 (33.17) 0.54 0.69 0.22
flasso 76.38 (36.55) 48.56 (12.40) 0.28 0.86 0.47
Bflasso 71.83 (32.11) 104.96 (42.83) 0.11 0.94 0.30

NEG-flasso 10.54 (8.92) 35.81 (10.56) 0.49 0.96 0.94
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Figure 4: The result for the simulated data in Section 5.2. Black dots indicate the
simulated data, the black line is the true model, the blue line is the estimate of fused lasso,
the green line is the estimate of Bayesian fused lasso, and the red line is the estimate of
the proposed method.

5.2 Demonstration with artificial data for FLSA model

We demonstrated our proposed method with artificial data generated from the FLSA

model

y = β∗ + ϵ, (24)

where β∗ is the p-dimensional true parameter and ϵ ∼ Np(0p, σ
2Ip). We considered

β∗ = (−1T
5 ,0

T
20,2

T
5 ,0

T
40,4

T
10,0

T
5 ,2

T
5 ,0

T
10)

T and σ = 0.5. This setting was inspired by

Friedman et al. (2007). The hyper-parameters were tested for candidates given by (23),

where (m,λmin, λmax) = (200, 0.001, 30) for λ1, (m,λmin, λmax) = (200, 0.5, 30) for λ2 , and

(m,λmin, λmax) = (5, 0.1, 2) for γ2. We used the fused lasso and Bayesian fused lasso as

competitors.

Fig. 4 gives estimates from the proposed method, fused lasso, and Bayesian fused lasso.

In the fused lasso and Bayesian fused lasso, the blocks of estimated nonzero coefficients

tended to shrunk toward zero. On the other hand, the proposed method could successfully

estimate the true coefficients blocks. The proposed method gave no blocks consisting of

single coefficient, while other methods had such seven blocks. In addition, the proposed

method seems to capture the true structure better than other methods in whole.
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Figure 5: The result for the comparative genome hybridization (CGH) analysis. Black
dots indicate data points, the blue line is the estimate of fused lasso, the green line is the
estimate of Bayesian fused lasso, and the red line is the estimate of the proposed method.

5.3 Comparative genomic hybridization analysis for FLSAmodel

We applied our proposed method to a real dataset: comparative genomic hybridization

(CGH) data. The dataset is available from the cghFLasso package in the software R. We

randomly extracted 110 samples from the dataset. We compared the proposed method

to the FLSA procedure of Tibshirani and Wang (2008), which can be implemented in

the cghFLasso package, and Bayesian FLSA procedure. The candidate values of the

hyper-parameters λ1, γ2 were the same as those given in Section 5.2. For λ2, we set

(m,λmin, λmax) = (200, 0.001, 60).

Fig. 5 gives the result for analyzing the CGH data. The FLSA procedure provided

seemingly an over-fitted model. Bayesian FLSA procedure could avoid overfitting com-

pared to the FLSA procedure, but it was unstable for a range from 20 to 80 genome

orders. On the other hand, the proposed method seems to be stable for all ranges and

gives more clear-cut estimates than other methods.

5.4 Demonstration with artificial data for 2d fused lasso model

Next, we considered a numerical demonstration for the 2d fused lasso model applied to

image reconstruction. A sample image was generated by simulation. The figure (a) in Fig.

6 shows the true image taking the values from 0 (blue) to 1 (white). The figure (b) in Fig.

6 shows a noisy image which has noises generated from normal distribution with mean 0

and standard deviation 0.35. These images are 32× 32 = 1024 pixel in size. The hyper-
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Figure 6: Results for artificial data generated from 2d fused lasso model. (a) is the true
image, (b) the noisy image, (c) our proposed method, (d) the 2d fused lasso, and (e) the
Bayesian 2d fused lasso.
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parameters were tested for candidates given by (23), where (m,λmin, λmax) = (200, 1, 200)

for λ2 and (m,λmin, λmax) = (5, 0.1, 2) for γ2. Note that we set λ1 = 0 because this

numerical study does not focus on estimating zeros of coefficients. We compared the

proposed method to the 2d fused lasso by Friedman et al. (2007), implemented in the

genlasso package in the software R, and Bayesian 2d fused lasso. The regularization

parameters were chosen by the EBIC.

The figures (c), (d), (e) in Fig. 6 show the results of the proposed method, the 2d fused

lasso, and the Bayesian 2d fused lasso, respectively. The 2d fused lasso and Bayesian 2d

fused lasso often failed to differentiate between the blue and white areas in the true image.

The proposed method more successfully recovered the true image. The result shows that

the proposed method worked better than other methods. The squares error ∥β∗− β̂∥22 by
the proposed method was 50.38, while that by the 2d fused lasso and Bayesian 2d fused

lasso was, respectively, 102.91 and 86.05. The results suggest that the proposed method

may also be effective in image analysis.

6 Concluding remarks

We proposed the fused lasso-type estimation via NEG distribution for the penalty for

differences between regression coefficients. Because the NEG distribution has a more

extreme spike at zero and more tail flatness than the Laplace distribution, the proposed

method enables us to estimate blocks of coefficients more clearly. In addition, we proposed

the sparse fused algorithm to provide a solution which has exactly zero coefficients and

produces exactly estimated blocks. Numerical examples showed that our proposed method

provided a contrasted estimator, and worked better than existing methods.

An extension of the proposed method to other types of the generalized fused lasso

method is important. For example, we may also replace the Laplace prior for the regression

coefficients by the NEG prior. This extension would be useful for the situation in which

estimating regression coefficients to be zeros is important in addition to merging regression

coefficients. However, as described in Section 3.3 this additional extension increases

computational cost, and hence, we need to balance between computational feasibility and

estimation accuracy. For example, in Case 1 of Section 5.1, the computational time is

about 11.4 hours at each dataset even if the NEG is applied only to the fusion penalty.

It is also interesting to develop information criteria such as the generalized Bayesian

information criterion (GBIC; Konishi et al. 2004) for evaluating these methods. We leave

these interesting topics as future work.
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