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An Approximate PML Applied to Cylindrical and
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Abstract—This paper proposes an approximate perfectly
matched layer (PML) that is applicable to cylindrical and
spherical coordinate sectors. The proposed PML is based on
complex coordinate stretching, which enables the truncation of
FDTD grids, not only at ρ- and r- coordinates, but also at φ-
and θ- coordinates. The absorption performance of the PML is
demonstrated through numerical simulations.

Index Terms—Perfectly matched layer, complex coordinate
stretching.

I. INTRODUCTION

PERFECTLY matched layer (PML) [1] has been widely

used as a standard absorbing boundary condition to trun-

cate a computational domain for solving open-region problems

by using the finite-difference time-domain (FDTD) method.

The PML based on complex coordinate stretching facilitates

PML formulation in the framework of Maxwell’s equations

[2]. Although the FDTD method has been applied to various

coordinate systems, studies on the development of PML for

such systems are rather limited. Among the seminal works

on the PML based on complex coordinate stretching, Teixeira

and Chew [3] formulated cylindrical (ρ, φ, z) and spherical

(r, θ, φ) PMLs with complex coordinate stretching, where

waves propagating in the ρ- and z-directions, and r-direction

are absorbed in the cylindrical and spherical coordinates,

respectively. The above mentioned PMLs are useful for solving

scattering problems with cylindrical and spherical symmetry;

however, problems characterized by limited regions wherein

a computational domain is truncated in constant φ- and θ-

planes still remains a challenge. An example of such a problem

is propagation in an earth-ionosphere waveguide in very-

low-frequency (VLF) or low-frequency (LF) bands, where

it is sufficient to simulate fields only in the region along a

propagation path [5].

This paper, therefore, proposes an approximate PML formu-

lation that is applicable to cylindrical and spherical sectors,

in which a computational region is truncated at constant

azimuthal and polar coordinates as well as radial coordi-

nates. The proposed method is based on complex coordinate

stretching; however, the variable change is not fully considered

and some parts of the coordinate remain unchanged. To

implement complex coordinate stretching in the time domain,
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auxiliary field variables must be introduced. The proposed

method reduces the auxiliary fields to mitigate increases in

computational costs while maintaining the performance of the

PML.

II. FORMULATION

A. PML in cylindrical coordinates

In this section we describe the PML applied to com-

putational domain having the form of a cylindrical sector

for the two-dimensional TMz case. To accomplish this, in

addition to the coordinate stretching in the ρ-direction [3], we

introduce stretching in the φ-direction normal to the boundary

of the sector. The three-dimensional formulation is rather

straightforward because the z-axis is the same as that in the

Cartesian system.

The complex stretched variable transformations with respect

to α can be represented as follows.

α → α̃ =

∫ α

α0

sα(α
′)dα′ + α0 = α− j

σ̃α

ω
, (1)

where α = ρ and φ; α0 is a constant; sα = 1 − jσα(α)/ω;

and σ̃α =
∫ α

α0

σα(α
′)dα′. It is known that the coordinate φ is

not a measure of length; therefore, Eq. (1) with α = φ can be

considered as the transformation of the variable ρφ to ρφ̃.

Maxwell’s equations can then be rewritten as follows:

jωεEz =
1

ρ̃

1

sρ

∂(ρ̃Hφ)

∂ρ
−

1

ρ̃

1

sφ

∂Hρ

∂φ
, (2)

jωµHρ = −
1

ρ̃

1

sφ

∂Ez

∂φ
, (3)

jωµHφ =
1

sρ

∂Ez

∂ρ
, (4)

Here, we adopt the time factor ejωt. In a manner similar to

[2], the time domain equations to be solved are represented as

∂Ẽzρ

∂t
+ σρẼzρ =

1

ε

∂H̃φ

∂ρ
, (5)

∂Ẽzφ

∂t
+ σφẼzφ = −

1

ε

∂Hρ

∂φ
, (6)

Ẽz = Ẽzρ + Ẽzφ, (7)

ρ
∂Ez

∂t
+ σ̃ρEz =

∂Ẽz

∂t
, (8)

∂H̃ρ

∂t
+ σφH̃ρ = −

1

µ

∂Ez

∂φ
, (9)

∂Hφ

∂t
+ σρHφ =

1

µ

∂Ez

∂ρ
, (10)
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ρ
∂Hρ

∂t
+ σ̃ρHρ =

∂H̃ρ

∂t
, (11)

∂H̃φ

∂t
= ρ

∂Hφ

∂t
+ σ̃ρHφ. (12)

Note that the field variables on the left-hand side of the above

equations must be updated by finite differentiation. Therefore,

for the time-domain solution, it is necessary to introduce the

following auxiliary field variables: Ẽzρ, Ẽzφ, Ẽz , H̃ρ, and H̃φ.

B. Simplified PML in cylindrical coordinates

The second term on the right-hand side in Eq. (2) and

Eq. (3) absorb the wave components propagating along the φ-

direction. These terms influence the PML normal to φ where

sφ 6= 1 and sρ = 1. Therefore, the operator 1

ρ̃sφ

∂
∂φ

can be

approximated by 1

ρsφ

∂
∂φ

. This approximation would affect only

the four corners of FDTD grids where PMLs normal to the ρ-

and φ-axes are overlapped. For example, Eq. (2) becomes

jωεEz =
1

ρ̃

1

sρ

∂(ρ̃Hφ)

∂ρ
−

1

ρ

1

sφ

∂Hρ

∂φ
. (13)

In the time domain, Eqs. (6), (7), and (9) are rewritten as

∂Ezφ

∂t
+ σφEzφ = −

1

ε

1

ρ

∂Hρ

∂φ
, (14)

Ez = Ezρ + Ezφ, (15)

∂Hρ

∂t
+ σφHρ = −

1

µ

1

ρ

∂Ez

∂φ
. (16)

Moreover, Ezρ must be updated before the operation of

Eq. (15) by

ρ
∂Ezρ

∂t
+ σ̃ρEzρ =

∂Ẽzρ

∂t
, (17)

and thus, Eq. (8) is rendered redundant. In this formulation,

the number of update equations decreases by one whereas that

of the auxiliary field variables reduces to the following four,

Ẽzρ, Ezρ, Ezφ, and H̃φ.

C. Simplified PML in spherical coordinates

In the spherical coordinates, a similar formulation is pre-

scribed, as follows. The coordinate transformation is the same

as Eq. (1). As stated earlier, the coordinate transformation can

be considered as rθ to rθ̃ and r sin θφ to r sin θφ̃. As a result,

the Maxwell-Ampere’s law can be rewritten as

1

r

1

sθ

∂Hφ

∂θ
+

cot θ

r
Hφ −

1

r sin θ

1

sφ

∂Hθ

∂φ
= jωεEr, (18)

1

r sin θ

1

sφ

∂Hr

∂φ
−

1

r̃

1

sr

∂(r̃Hφ)

∂r
= jωεEθ, (19)

1

r̃

1

sr

∂(r̃Hθ)

∂r
−

1

r

1

sθ

∂Hr

∂θ
= jωεEφ, (20)

In addition, the transformation of Faraday’s law is similar

according to the duality of Maxwell’s equations. In Eq. (18),

to improve absorption performance, the equation mapped onto

the stretched coordinate space is 1

r

∂Hφ

∂θ
+ cot θ

r
Hφ as opposed

to 1

r sin θ
∂
∂θ
(sin θHφ). It is noted that the r-coordinate is not

transformed in terms of differentiation with respect to θ and

φ, as discussed in the previous section.
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Fig. 1. Left panel: Numerical results obtained from the formulas in Secs. II-A
and II-B. Right panel: Observed waveforms with varying numbers of sublay-
ers.
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Fig. 2. Dependence of reflection from PML on the incident angle

The update equations in the time domain are obtained in

the same manner as in the case of cylindrical coordinates,

where the r-components of the curl equations are split into

three components corresponding to the terms on the left-hand

side of Eq. (18), and Hφ is the averaged value of neighboring

fields because it is not assigned to the staggered Yee cell.

For computation in the PML region, twenty-two auxiliary

field variables are necessary— twelve split subcomponents,

two are further split as shown in Eq. (18); the remaining eight

variables are Ẽθr, Ẽφr, H̃θr, H̃φr, Ẽθ , Ẽφ, H̃θ , and H̃φ.

III. NUMERICAL RESULTS

A. Cylindrical PML

For evaluating the reflection of the developed PML, the

waveforms are measured at an observation point. The compu-

tational domain is defined by ρi ≦ ρ ≦ ρo(= ρi+Rρ) and 0 ≦

φ ≦ φ0, where ρi = 21.2, Rρ = 25.6, and φ0 = 5π/8. The

domain is discretized by Nρ×Nφ = 640×1000 cells. The tem-

poral step is chosen as ∆t = 0.99/c0/
√

∆ρ−2 + (ρi∆φ)−2,

where c0 is the speed of light in vacuum. The PML with

L-sublayers lies inside the domain. Moreover, the fields are

excited by a current source with current density Jz [A/m2]

at (ρs, φs), spread over an area corresponding to one cell

∆S(= ∆ρ × ρs∆φ); here, ρs = 27 and φs = 3π/16. The

waveform of Jz ∆S, defined as f(t), is given by

f(t) = −
t− t0
σ

exp

(

−
{t− t0}

2

2σ2

)

, (21)

where σ = 12∆t and t0 = 6σ. The observation point is located

at ρ1 = 26, φ1 = φs, and L = 16. The absorption parameters

σρ and σφ are chosen as σ(α) = −{α/(L∆α)}M (M +
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1)c0 lnR0/(2L∆α), where α is the distance from the interface

between PML and the vacuum, and ∆α is the cell size.

Figure 1 shows the numerical results of |Ez | obtained using

the proposed PML. The left panel illustrates the difference

between the results obtained using the simplified equations

discussed in Sec. II-B(solid line) and the equations formulated

in Sec. II-A(the broken line). The direct wave is observed at

approximately 10 ns, and the reflected waves are observed at

approximately 40 and 100 ns; the former is the wave reflected

from the PML near ρ = ρi, while the latter is the wave

reflected from the PML near φ = 0. Both the results coincide

with each other, indicating that the simplified formulation is

effective. It should be noted that the use of simplified equations

decreases the computational time required for updating Hρ by

a factor of 1.5.

The right panel illustrates the waveforms of |Ez| computed

using the simplified formulas in Sec. II-B for the number of

sublayers L = 8, 16, and 32. The location of the observation

point is the same as in the previous case. The curve labeled

as “Ref” is obtained by setting a large computational domain

such that the reflected waves from the grid boundaries are not

observed. We see that the reflected wave at t = 100 ns, which

corresponds to the reflection from the PML near φ = 0, is

sufficiently mitigated for L = 16. In contrast, the reflection

observed at t = 40 ns, corresponding to the reflection from

the PML near ρ = ρi, is not mitigated effectively (−47.7 dB)

despite the increase in L.

Figure 2 shows the reflection from the simplified PML for

L = 8 and 16, as a function of the incident angle. Here, ρi
and ρo denote the convex and concave PMLs, respectively,

and φ denotes the PML normal to φ-direction. The Fourier

transform of FDTD results are taken and then normalized by

the amplitude of waves propagating with the same distance

as the reflected waves, at the frequency corresponding to the

sampling number Ns = 15, i.e., the wavelength equal to

15 cells. Although the reflection from the convex PML is

relatively higher, we can conclude that the developed PML

is effective.

B. Spherical PML

The computational domain for measuring spurious reflec-

tions from the proposed PML is defined as ri ≦ r ≦

ro, θ1 ≦ θ ≦ θ2, and 0 ≦ φ ≦ φ2, where ri =
3.2, ro = 7.4, θ1 =

(

1

2
− 9

32

)

π, θ2 =
(

1

2
+ 9

32

)

π, and

φ2 = 3π/4. This domain is discretized into Nr ×Nθ ×Nφ =
210 × 225 × 300 cells, i.e., ∆r = (ro − ri)/Nr = 0.02,

and ∆θ = ∆φ = π/400; the temporal step is ∆t =
0.999/c0/

√

(∆r)−2 + (ri ∆θ)−2 + (ri sin θ1 ∆φ)−2. A cur-

rent with dipole moment Jθ∆V [A·m] = f(t) in Eq. (21)

is located at (rs, θs, φs) = (5, π/2, 3π/8) for excitation.

Figure 3 indicates the waveform of |Eθ| observed at

(r′, θ′, φ′) = (4.5, π/2, 3π/8) with L = 4, 8, and 16 sublayers,

and M = 2.5, 3.6, and 3.7, respectively. The results were

computed using the simplified formulas presented in Sec. II-C.

The direct wave from the source is observed at approximately

4 ns, and the reflected waves are observed at approximately

13, 20, 27, and 34 ns. Through numerical simulations, we
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Fig. 4. The dependence of reflection on the incident angle from the spherical
PML. The sampling number Ns = 15.

can confirm that the wave at approximately 13 ns is reflected

from the PML near r = ri, and similarly, the waves at

approximately 20, 27, and 34 ns correspond to the PML near

r = ro, θ = θ1,2, and φ = φ1,2, respectively. We can see that

an increase in the sublayers mitigates the reflections down to

the given reflection coefficient R0 = 10−6.

In Fig. 4, the dependence of the reflection of the spherical

PML on the incident angle is illustrated for L = 8 and 16.

From the results, we see that the spherical PML developed in

this work demonstrates excellent absorption performance.

IV. CONCLUSION

In this work, we proposed a novel PML formulation that can

be applied to cylindrical and spherical sectors as FDTD grids.

The numerical results confirm the proposed PML has adequate

absorption performance. In addition, we also developed a

simplified formulation of the PML, which was demonstrated

to exhibit identical performance.
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