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Abstract—Source and load impedance conditions for second
harmonics have a great influence on the efficiency of amplifiers.
The bandwidth of high-efficiency operation is limited, since
efficiency is drastically degraded due to a slight change in source-
side second harmonic impedance from the optimum point. For
this reason, to avoid steep efficiency degradation, a source-side
second harmonic impedance control is introduced. In addition,
a harmonic treatment network which reduces the influence on
matching-network design is also described here. A fabricated
GaN HEMT amplifier has achieved a maximum power-added
efficiency (PAE) of 79% with a saturated output power of
48.0dBm at 2.02 GHz. The amplifier has also achieved a high-
efficiency characteristic of more than 70% PAE in the frequency
range from 1.68 to 2.12 GHz.

Index Terms—Power amplifier, high efficiency, GaN HEMT,
harmonic reactive terminations.

I. INTRODUCTION

Recent advanced wireless communication systems, such as
LTE (long term evolution) and WiMax (worldwide interoper-
ability for microwave access), require wider bandwidths due
to the increasing transmission rate, in addition to the coverage
of multiple frequency bands. Accordingly, microwave power
amplifiers are required to be capable of wideband or multiband
operation. In the meantime, high-efficiency operation remains
an important requirement for microwave power amplifiers. To
achieve high-efficiency operation, source and load impedances
at higher harmonic frequencies including a fundamental fre-
quency have to be properly treated.

Thus far, many different design approaches to achieve high-
efficiency power amplifiers, such as class-F [1], [2], class-E
[3], and harmonic reactive load [4], [5], have been reported. In
practice, it is difficult to obtain high-efficiency in a wide fre-
quency range for the class-F and class-E amplifiers, since these
approaches require precise control for the optimum source
and load impedances at harmonic frequencies. Whereas, the
load harmonic impedance condition is looser for the harmonic
reactive load type, which is theoretically arbitrary pure re-
actance [4]. However, even in this approach, source second
harmonic impedance has a great effect on efficiency [6]-[11].
Efficiency has a steep characteristic due to the change in
second harmonic impedance near the optimum point, hence,
the bandwidth of high-efficiency becomes narrowed, though
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Fig. 1. Circuit configuration of designed GaN HEMT amplifier

optimum high-efficiency is obtained at a single point of the
designed frequency [5].

In this work, a high-efficiency amplifier is designed based
on the harmonic reactive termination approach [4], [5]. A
circuit configuration of the designed amplifier is shown in
Fig. 1. The second harmonic on the source-side and the second
and third harmonics on the load-side were treated for this
amplifier. The source impedance dependence of efficiency at
the second harmonic frequency was investigated by source-
pull simulations, and then the optimum condition for wideband
high-efficiency is discussed. In the network design, harmonic
treatment networks can be constructed by using quarter-
wavelength open-ended stubs for the harmonics so that ar-
bitrary reactance values can easily be obtained [12]. However,
these networks affect the design of other harmonic treatment
networks or a matching-network at the fundamental frequency.
In this study, a second harmonic treatment network was
successfully shared with a quarter-wavelength bias network
to reduce the influence on the latter matching-network design.

II. AMPLIFIER DESIGN WITH SECOND HARMONIC
CONTROL

The efficiency of an amplifier is expected to be maximized
when power dissipation at a transistor is minimized. To reduce
power dissipation, the load impedance condition has to be
pure reactance at each higher harmonic frequency, and has
to be an appropriate condition to balance with the supplied dc
power at a fundamental frequency. In addition, the reactance
values for the harmonics have to be optimized to shape the
voltage and current waveforms at the transistor so as to mini-
mize the overlap between the voltage and current waveforms,
which produces power dissipation. To achieve maximum high-
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Fig. 2. Schematic diagram of bias network with second harmonic treatment

efficiency operation, source-side harmonic impedance condi-
tions have to be adjusted in addition to those on the load-side.
Especially, the source-side impedance at the second harmonic
has a remarkable effect on efficiency [6]-[11].

A high-efficiency GaN HEMT amplifier with harmonic
reactive termination was designed at fo = 2.1 GHz. Source
impedance at the second harmonic frequency and load
impedance at the second and third harmonic frequencies were
taken into account to achieve higher efficiency operation.
All designs and simulations were performed on Keysight
ADS software. A 70 W-class bare die GaN HEMT (Cree
CGHV1J070D) was used for this amplifier and its large-signal
model provided by the manufacturer was used for the design.
The device was biased with a drain supply voltage of 40V
and a gate supply voltage of —2.8 V (class-B operation). The
targeted source- and load-side impedance conditions were set
to the optimum conditions based on source- and load-pull
simulation results.

For the design of harmonic reactive load amplifiers, the
impedance for the harmonics can be adjusted regardless of the
latter matching network by using a quarter-wavelength open-
ended stub for a harmonic frequency. On the other hand, the
configuration of the harmonic treatment network affects the
latter matching-network design, though the desired impedance
for the harmonic is obtained [13]. A quarter-wavelength bias
network with second harmonic treatment has been introduced
to reduce the influence on the matching-network design, as
described in Fig. 2. The bias network consists of a transmission
line as a reactance adjustment line, a quarter-wavelength line
for fy and quarter-wavelength open-ended stubs for f, and
2fo. Both of the open-ended stubs are connected to the end
of the bias line (A). For 2fj, the input impedance of the bias
network (B) becomes zero, since A is shorted and the bias
line is a half-wavelength. Then, Z; can reach the desired
value of pure reactance by adjusting the electrical length of
the reactance adjustment line 6. This network configuration
is not to be seen for fy, therefore, it does not disturb the
latter matching-network design. In addition, B achieves a
very high impedance value for 3fy, since A is a very low
impedance value. Therefore, a third harmonic treatment stub
can be optimally connected while being scarcely affected by
the configuration of the bias network. This stub barely affects
fundamental matching, since its electrical length is short at the
fundamental frequency. Generally, the matching network of a
single-band amplifier can consist of a transmission line. As a
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Fig. 3. Source-pull simulation result and PAE degradation from the maximum
and output power versus the phase of source reflection coefficient at 2 fo

result, the reactance adjustment line can be shared with the
matching network.

To maximize the efficiency of an amplifier, the source-side
second harmonic impedance has to be adjusted, as discussed
above. However, it has been reported that the bandwidth of
high-efficiency operation is limited due to a slight change of
source-side second harmonic impedance from the optimum
point [5]. For the device used in this work, a steep power-
added efficiency (PAE) characteristic due to a change in the
phase of the reflection coefficient has also been observed
by a second harmonic source-pull simulation, as shown in
Fig. 3. Moreover, a steep gain characteristic has also been
observed. The amplitude of the reflection coefficient |T'| is
fixed to 0.95 in the lower graphs. It is found that the valley
and the peak point of efficiency and output power are located
close to each other. Hence, in the optimum case, the amplifier
has a sharp frequency characteristic of efficiency and gain,
though high-efficiency operation is achieved at a single point
of the designed frequency. The bandwidth of high-efficiency
operation becomes narrowed.

Fig. 4 shows a comparison of impedance variation and sim-
ulated PAE and output power between the optimum case and
a shifted case of targeted source second harmonic reactance.
Filled and unfilled circles in the Smith chart represent source
and load impedance conditions at 2.1 GHz, respectively. The
network configurations described in Fig. 1 are used in both
cases for the simulation, and therefore the impedance values
for the other frequencies are almost identical. The load-side
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Fig. 5. Second harmonic load-pull simulation result at 2.1 GHz (blue lines)
and simulated impedance variation of output network (red line)

network is designed to eliminate a drastic change in efficiency,
as shown in Fig. 5. Nevertheless, in the optimum case, a
much higher PAE than that in the shifted case is achieved
at 2.1 GHz, but a slight variation of 20 MHz reduced the PAE
by 9%. A dip in output power has also been observed. As
a result, PAEs of the shifted case are higher than those of

TABLE 1
TARGETED SOURCE- AND LOAD-SIDE IMPEDANCES

Frequency Zs(2) Z1(92)
o 4441 5+ 49
2o 014450  0.1+436
3fo N/A 0.1 — j110

the optimum case in upper-side frequencies. Accordingly, the
frequency characteristic of efficiency is expanded by the shift
of targeted source second harmonic reactance. Moreover, the
frequency characteristic of the output power is flattened. To
achieve a wider frequency characteristic of efficiency and a flat
frequency characteristic of output power, the targeted source
second harmonic reactance has to be shifted from the optimum
at the sacrifice of maximum high-efficiency operation.

To extend the frequency characteristic of efficiency, the
second harmonic on the source-side and the second and third
harmonics on the load-side were treated while avoiding a
steep efficiency degradation. The targeted source- and load-
side impedance conditions are listed in Table 1. The input
and output networks were designed so that the impedance
conditions of the targets would be fulfilled. Bonding wires
for connection of the transistor and networks, and parasitic
components in the chip dc block capacitors were taken into
account for the design.

The input and output networks were designed based on
the proposed approach. The third harmonic was treated by
a quarter-wavelength open-ended stub in the output network.
The layouts of both networks were analyzed and optimized by
using electromagnetic (EM) simulations.

III. FABRICATION AND MEASUREMENT OF GAN HEMT
AMPLIFIER

The designed high-efficiency GaN HEMT amplifier at
2.1 GHz was fabricated, as shown in Fig. 6. Both the input and
output networks were fabricated on resin substrates (Panasonic
Megtron7) with a board thickness of 0.75 mm and ¢, = 3.37.
The size of the amplifier module is 64 mm x 50 mm excluding
protrusions. Feed-through capacitors are mounted at the gate
and drain bias points. A series ferrite inductor at the gate
bias point and a series parallel-RC' network on the RF input

Fig. 6. Photograph of the fabricated GaN HEMT amplifier
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Fig. 8. Comparison between targeted, simulated and measured impedance
conditions for the output networks at fo = 2.1 GHz

line were additionally mounted to maintain the stability of the
amplifier in measurement.

The impedance conditions for the fabricated input and
output networks were measured by a vector network analyzer
(Keysight PNA-X) and compared with targets and simulation
results. These results are shown in Figs. 7 and 8. The measured
and simulated results and targets were almost identical at a
fundamental frequency of 2.1 GHz. For the higher harmonic
frequencies, the measured impedances deviated clockwise.
That can be caused by dispersion in the relative dielectric
constant of the resin substrate.

Fig. 9 shows the measured circuit loss of the output network,
which is calculated using the following formula:

1—1S11)?
|S21]?

Note that Ports 1 and 2 are provided at the transistor-side
end and the load-side end of the output network, respectively.
The measured circuit loss was 0.36dB at 2.1 GHz and was
stable over a wide frequency range. Due to underestimated
dielectric loss in simulation, the measured loss is greater than
the simulated loss. The measured value does not greatly reduce
the amplifier’s efficiency.

Performance measurements of the fabricated GaN HEMT
amplifier were performed under pulsed operation (1 ms with
a 3% duty cycle) while gate and drain bias voltages were
constantly supplied, in order to suppress heating without
influence on RF characteristics. The bias conditions were set
to the same values as the designed ones.
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Fig. 9. Measured (solid line) and simulated (dashed line) circuit loss of the
output network

A maximum PAE of 79%, a drain efficiency of 84% and
a saturated power of 48.0dBm were obtained at 2.02 GHz
for the measurements. An associated gain of 12.4dB was
obtained. The measured results for output power, gain, and
efficiency versus input power characteristics for the fabricated
GaN HEMT amplifier at 2.02 GHz are shown in Fig. 10.

The measured results for the frequency characteristics of
maximum output power, and gain, PAE and drain efficiency
associated with output power for the fabricated GaN HEMT
amplifier are shown in Fig. 11. Wideband high-efficiency
characteristics of more than 70% PAE and more than 77%
drain efficiency were obtained in the frequency range from
1.68 to 2.12 GHz (440 MHz bandwidth). The maximum output
power and gain varied from 46.9 to 50.0dBm and from 10.2
to 11.9dB, respectively, in the same frequency range. The
downward shift in the frequency of the peak PAE is due to the
clockwise impedance deviations from the designed values, as
described in Figs. 7 and 8. A high-efficiency characteristic was
obtained even below 2 GHz, since the harmonic impedance
loci deviated inward on the Smith chart by the influence of
the circuit loss so as to avoid a steep efficiency degradation.
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Fig. 10. Pulsed measurement results for output power, gain, PAE and drain
efficiency (np) versus input power characteristics for the fabricated GaN
HEMT amplifier at 2.02 GHz
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Fig. 11. Pulsed measurement results for frequency characteristics of
maximum output power, and gain, PAE and 7, associated with output power
for the fabricated GaN HEMT amplifier

The proposed amplifier has transmission zeroes at the sec-
ond and third harmonic frequencies achieved by the harmonic
treatment network on the load-side, and hence it can be
expected to suppress the output level of the harmonics. Fig. 12
shows the measured power output spectrum of the fabricated
amplifier. A significant level of the second harmonic has
been observed, unlike the expected result of the third one.
That is possibly due to the loss of the bias network in
the output network, which is also used for second harmonic
treatment. The fabricated amplifier was also measured for a W-
CDMA (wideband code division multiple access) 3GPP (third
generation partnership project) signal. The bias conditions
were set to the same values as the designed ones. Fig. 13
shows the output spectrum for the modulated input signal with
a center frequency of 2.02 GHz. The input power level was
set to 23 dBm, which was roughly a 10-dB back-off operation
condition. Although the proposed amplifier design was not
applied any optimization for the performance under modulated
operations, it has a moderate distortion characteristic, which
implies the capability of good distortion performance achieved
by the further improvement of the design.

The performance of the proposed amplifier compared with
that of previously reported harmonic-controlled GaN HEMT
amplifiers is summarized in Table II. The proposed amplifier
has a broadband high-efficiency performance comparable to
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TABLE II
PERFORMANCE COMPARISON WITH OTHER HARMONIC-CONTROLLED
GAN HEMT AMPLIFIERS

Ref. Type Pout | Frequency | Bandwidth PAE D
W) (GHz) (MHz) (%) (%)
[14] class-E 12.7 2.0-2.5 500 71-74 74-71.3
[15] class-E 20 1.2-2.0 800 N/A 80-89
[16] class-F! 100 2.5-2.8 300 74.5 61-76.1
[17] class-F 17.4 1.4-2.5 1100 N/A 73-88.6
[18] class-BJ 28 1.7-2.8 1100 52-59 58-66
[19] class-EF 15.5 1.42-1.72 300 62-81 65-85
[20] class-F! 19.5 1.7-2.8 1100 N/A 60.3-80.4
This Harmgnic
work reactive 100 1.68-2.12 440 70-79 77-84
termination

the reported 10 W- to 20 W-class amplifiers [14], [15], [17]-
[20]. Though fewer results of 100 W-class broadband high-
efficiency GaN HEMT amplifiers have been reported, the pro-
posed amplifier exhibited the best broadband high-efficiency
performance among the amplifiers of the same power class.

IV. CONCLUSION

This paper presented the design, fabrication and measure-
ment of a high-efficiency GaN HEMT amplifier with har-
monic reactive terminations. A design strategy for source-
side second harmonic impedance control to avoid a steep
efficiency degradation has been described. This strategy has
also avoided the appearance of a gain dip. The fabricated
GaN HEMT amplifier achieved a maximum PAE of 79% with
a saturated output power of 48.0dBm at 2.02 GHz. High-
efficiency characteristics of more than 70% PAE and more
than 77% drain efficiency were obtained in the frequency range
from 1.68 to 2.12 GHz.
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