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Abstract—We propose Templatized Elastic Assignment
(TEA), a light-weight scheme for mobile cooperative caching
networks. It consists of two components, (1) one to calculate
a sub-optimal distribution of each situation and (2) fine-
grained ID management by base stations (BSs) to achieve the
calculated distribution. The former is modeled from findings
that the desirable distribution plotted in a semilog graph
forms a downward straight line with which the slope and Y-
intercept depend on the bias of request and total cache capacity,
respectively. The latter is inspired from the identifier (ID)-
based scheme, which ties devices and content by a randomly
associated ID. TEA achieved the calculated distribution with
IDs by using the annotation from base stations (BSs), which
is preliminarily calculated by the template in a fine-grained
density of devices. Moreover, such fine-grained management
secondarily standardizes the cached content among multiple
densities and enables the reuse of the content in devices from
other BSs. Evaluation results indicate that our scheme reduces
(1) 8.3 times more traffic than LFU and achieves almost the
same amount of traffic reduction as with the genetic algorithm,
(2) 45 hours of computation into a few seconds, and (3) at most
70% of content replacement across multiple BSs.

Keywords-D2D, mobile cooperative caching, lightweight com-
putation, traffic reduction

I. INTRODUCTION

Video-on-demand (VoD) traffic is increasing yearly. Cisco
reports [1] that internet traffic in 2020 will increase eight
times that in 2016 mainly due to VoD services while
needing to maintain the demanded delivery quality. Cache
servers have the potential to overcome quality and overload
issues by delivering requested content from positions closer
to users. Network caches, especially for mobile networks,
should be efficiently deployed at closer positions to users
with significant storage capacity. For meeting these require-
ments, using a vast amount of mobile devices as caches
through device-to-device (D2D) communications has gained
a great deal of attention.

D2D communications enable direct data delivery from
a device to another device without going through a base
station (BS), which allocates wireless resources to devices.
[2]. After the fundamental idea to use devices over the
D2D network is established, the most attractive challenge
is to maximize the offloading ratio by tweaking who-has-
what among all devices. Previous studies approached this

maximization by fully using the personalities of owners. In
particular, integration of a physical graph and overlay social
graph, e.g., relations on social-networking services (SNS),
has been discussed [3], followed by studies fully exploiting
personal information, e.g., effects on SNS [4], to assign
content more precisely. However, such complicated schemes
have three common problems, i.e., they are not suitable for
the transitioning mobile environment, contain security and
privacy issues [5], and do not take into account the mobility
of devices.

We previously proposed an identifier (ID)-based coop-
eration scheme [6] to overcome such privacy and per-
formance issues. An ID, which is randomly chosen from
lists and granted to content/devices by BSs, simplifies and
anonymizes the content association by tying content/devices
that have the same ID. This scheme secondarily enables
the optimization of traffic reduction by tweaking the vari-
ety/duplicity of content by a variety of IDs. However, an
ID does not take into account the transitions caused by the
mobility of devices. It is natural for devices to be carried
to multiple BSs, but an ID does not take into account an
outsider who have unmanaged content on the ID. In such a
situation, BSs cannot maintain the ideal content distribution
situation.

In this paper, we propose Templatized Elastic Assign-
ment (TEA), a light-weight, highly efficient and mobility-
oriented cooperation scheme that is used in combination
with the ID-based cooperation scheme. TEA consists of
two components, (1) one to generate the optimal content
distribution, and (2) one for fine-grained ID management by
BSs. We found through observations that the sub-optimal
distribution forms a downward line in a semilog graph,
which is controlled by two parameters: (1) the request
bias and (2) total cache capacity among all devices. This
approximation formula (called a “template”) enables BSs
to preliminarily calculate an optimal density of various
situations and manage devices to achieve such distribution.
The distribution by BSs can be managed in a fine-grained
manner according to the joined/left devices. Moreover, this
template secondarily enables the commonization of cached
content among all densities and reduces content replacement
by reusing the cached content in devices from other BSs. The
main contributions of this paper are as follows.
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Figure 1. BS-supported device discovery of D2D.

• Reducing the traffic of a sub-optimal-grade BS
• Simplifying the complicated computation into a tem-

plate
• Enabling the reuse of the cached content among mul-

tiple BSs

The rest of this paper is organized as follows. In Sec-
tion II, we introduce background and related work. In Sec-
tion III, we describe the traffic-calculation model and con-
tent association based on our ID-based cooperation scheme
in Section IV. We present evaluation results in Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. D2D Communications

LTE D2D communication is a fast, low-latency, and
long-range ad-hoc communication scheme [2]. As BSs can
support devices to find, negotiate, and communicate with
other devices in a normal period [7], as shown in Figure
1, D2D has attracted attention as a way to conduct caching
at mobile devices to improve content-delivery performance.
This is achieved in the following four steps.

1) Server user enrolls his/her information to the proxim-
ity service (ProSe) database in a BS.

2) A client user queries his/her interests by referring to
the ProSe database.

3) The BS notifies both the server and client user of their
matching and promotes the server to send a discovery
message.

4) The client user receives the message from the server.

D2D over millimeter-wave (mmWave) is also an attrac-
tive fast content-delivery scheme. It used to be difficult
for a mobile device to handle such high-frequency waves,
but the appearance of mmWave-available modems for 5G
smartphones [8] has enabled fast ad-hoc communication in
proximity. The mmWave, which has a shorter range but
significantly faster throughput (~Gbps) is suitable for mobile
cooperative caching, which uses neighboring devices in a
congested area [9]. We assume that all the assigned content
for devices is associated with the ProSe database and BSs
fully support D2D requests to find the requested content
from neighboring devices.

Figure 2. ID-based content association.

B. Mobile Cooperative Cache over D2D

In contrast to a static wired network, cache over D2D
communication is different from both aspects of topology
and available cache servers for an individual device. As
these characteristics make it difficult to find the optimal
content assignment, previous studies did by investigating the
personality and influence of owners. This is done from the
physical position of the owners [10], their browser histories
[11], and even their influence on SNSs [4]. However, such
investigation incurs heavy computation load in the crowds
while mobile network topology drastically changes with
time. Moreover, the dependency on personality was found
to have potential privacy issues and degrade content-delivery
performance [5].

In our previous proposal [6], we proposed a light-weight
and anonymous cooperation scheme, called the ID-based
cooperation scheme to overcome the problems faced in pre-
vious studies. The randomly associated bit-vector identifier
(ID) of this scheme simplifies and anonymizes cooperation
by dividing both content and devices exclusively and tying
them with the corresponding ID, as shown in Figure 2. The
ID also plays a role to maintaining a good variety/density of
content, which affects the offloading ratio. This maintenance
is done by stretching the number of IDs with an ID-mask
according to the device density. These designs enable the
use of devices in an anonymous and light-weight manner.
On the other hand, the bit-vector-based design of IDs
becomes a bottleneck to change the cache content according
to the request bias. The bottleneck arises from the rough
management of IDs with the unit of 2n and the restriction
that all content has a single ID.

We associate content/devices with an anonymous label
(originally from the study by Nakajima et al. [12]) and the
implementation of the ID is separately considered. With our
proposed scheme, we first consider a sub-optimal distribu-
tion of content density in a light-weight manner and achieve
such distribution with the anonymous label.

C. Content injection for mobile devices

It is also essential for mobile cooperative caches to
inject assigned content into each device. As injection over
unicast may incur a significant traffic load, using multicast
is preferable. BSs can deliver a piece of content to all
devices at the cost of a single transmission over LTE



Evolved Multimedia Broadcast Multicast Service (eMBMS)
[7]. Also, the overhearing D2D of communications and
snatching of the transmitted content has been extensively
studied for rapid content deployment [13]. We assume that
the assigned content with our proposed scheme is injected
to devices in these manners to reduce deployment costs.

III. TRAFFIC CALCULATION MODEL

We define “cache miss” as meaning “there are no (even a
single) neighboring devices that have the requested content”.
For simplicity, we evaluated the efficiency of a cooperative
cache by calculating the miss ratio from this viewpoint.
We give the calculation notations in Table I and overall
calculation in Algorithm 1.

The Dn and Dc are different subsets of Da. The variation
in Dn is calculated from the combination of Da and Dn.

Vall = Da
CDn

(1)

The cache miss in our context means that nobody in Dn

has the requested content. In other words, no one in the
population has the requested video. The variation in cache
miss can be expressed as follows.

Vmiss = (Da−Dc)CDn
(2)

The cache miss ratio of content is expressed as the
division of these two variations.

Pmiss =
Vmiss

Vall
(3)

There are many types of content that have different
popularities and densities. The normalized popularity has
been extensively studied to follow Zipf’s distribution model
[14]. We assume the request traffic follows the Zipf(rank)
and the request that cannot be served by neighboring devices
is modeled as the download traffic of a BS. Therefore, the
sum of download traffic of all content is regarded as the
traffic of a BS.

Traffic =

all∑
rank=1

Pmiss(rank)× Zipf(rank) (4)

Table I
NOTATION.

Character Meaning

Da # of (a)ll devices in a single BS.
Dn # of (n)eighboring devinces of a single device.
Dc # of devices which (c)ache the requested content.

Dopti # of devices in the (opti)mal distribution.
Vall # of (V)ariety of all patterns.
Vmiss # of (V)ariety of miss patterns.
Pmiss # of (P)robability of miss patterns.

Algorithm 1 Traffic evaluation
1: #define n number_of_videos
2: array[n] cached ▷ The # of caching devices for all videos
3: array[n] popularity ▷ The normalized popularity for all videos
4: int Da ▷ All devices
5: int Dn ▷ Neighbor devices
6: double traffic = 0
7:
8: int Vall = DaCDn ▷ Eq. (1)
9: for rank from 1 to n do

10: int Dc = cached[rank] ▷ Caching devices
11: int Vmiss = (Da−Dc)CDn ▷ Eq. (2)
12: double Pmiss = (double) (Vmiss / Vall) ▷ Eq. (3)
13: double miss = access[rank] ×Pmiss

14: traffic += miss
15: end for
16:
17: return traffic

The most important factor of this model is that it enables
direct competition regarding the efficiency between the dis-
tributions of content density expressed as cached in line 2 of
Algorithm 1. Table II gives a small example of competition
with two distributions (A/B) when Da = 100 and Dn = 5.
The traffic of each distribution is calculated in the same
manner and measured on the bases of the scale of traffic.

IV. TEMPLATIZATION OF CONTENT DISTRIBUTION

A. Content-Distribution Tendencies

Based on the evaluation methodologies discussed above,
we explored the efficient distribution of content with the
parameters listed in Table III to follow the ID-based coop-
eration scheme. We assumed from the fractalness of Zipf’s
distribution that there must be common characteristics for
the optimal distribution.

From this assumption, we compared two sub-optimal
algorithms (genetic algorithm (GA) and hill climbing (HC))
for this exploration, as shown in Figure 3. The former is
used to find a sub-optimal distribution with the parameters
listed in Table III, and the latter is to get a feel for the
distribution. We now give further details about HC 2. It starts
from an empty cache and collects the most beneficial content
for traffic reduction in each iteration. With the aim to obtain
the overall picture of a solution of a sub-optimal distribution
among all, we ignore the limitation of cache capacity but set

Table II
EXAMPLE IN Da = 100 , Dn = 5 AND Zipf s = 0.68.

rank cached D2D miss ratio
Zipf

BS traffic
A B A B A B

1 20 15 0.319 0.435 0.090 0.028 0.039
2 10 12 0.583 0.520 0.056 0.032 0.029
3 8 10 0.653 0.583 0.042 0.027 0.024
4 5 8 0.769 0.653 0.035 0.027 0.022

. . . . . . . . . . . . . . .
100 0 0 1 1 0.003 0.003 0.003
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Figure 3. Content distribution of sub-optimal explorations.

the exit condition when the least popular content is marked
as beneficial. From the common characteristics that these
two different distributions form parallel lines in the semilog
graph, as shown in Figure 3, we were inspired to use this
distribution as the template to find a sub-optimal distribution.

To find the controlling factors, we re-evaluated HC in
various densities and biases of requests, as shown in Figure
4. The biases of requests are from the upper-end (s = 1.2)
to lower-end (s = 0.6) of VoD [15] and a more gentle
distribution (s = 0.4). It is obvious from the graph that
there were a few affects from the density of devices while the
bias of request controls the slope of these lines. From these
observations, we conclude that the sub-optimal distribution
forms a straight line in the semilog graph with which the
bias of request and capacity among all devices control the
slope and Y-intercept, respectively.

B. Templatization of the distribution

From the conclusion above, we modeled an approximation
of lines in Figure 4. This approximation is expressed by
Equation 5 with the parameters listed in Table IV.

Cached Devices(rank) =

{
log( 1

rankP ) + C (if >= 0)

0 (otherwise)
(5)

Constant C is a tunable parameter along with the cache
capacity. It is mandatory that the sum of associated content
be equal to or less than the available capacity among
all devices. To maximize content-delivery performance, C

Table III
EVALUATION PARAMETERS

Radius of BS [16] 600 m
Radius of D2D [16] 100 m

The number of BS 1
The number of devices 10,000
The number of neighbors 277 ( = 10,000 / 36 )

The number of contents 4096(GA, ID-based) / 100(HC)
Device capacity 2 videos(GA, ID-based) / N/A(HC)

Zipf’s bias parameter α [14] 0.68

Algorithm 2 Sub-optimal exploration using Hill Climbing
1: #define n 100
2: array[n] cached = all 0
3: array[n] popularity ▷ The normalized popularity for all videos
4:
5: while cached[n] == 0 do ▷ While the least popular one is not cached
6: reduction_content = 0
7: max_reduction = 0
8: for rank from 1 to n do
9: diff = missratio(cached[rank]) - missratio(cached[rank]+1)

10: reduction = popularity[rank] × diff
11: if reduction > max_reduction then
12: reduction_content = rank
13: max_reduction = reduction
14: end if
15: end for
16:
17: cached[reduction_content]++
18: end while
19: return traffic
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Figure 4. HC in multiple parameters.

is also tuned to maximize the cached content. It is also
expressed to minimize the difference between the cache
capacity by Equation 6.

Cmax = min[Capacity −
all∑

rank=1

{log( 1

rankP
) + C}] > 0

(6)
We use Equation 6 as a template to generate the sub-

optimal distribution of content with the given parameters.

C. Conversion of distribution into ID

Generated distribution from the template is also manda-
tory. We assigned multiple IDs to a piece of content to
handle content density.

Table IV
PARAMETERS OF THE TEMPLATE FOR EACH BIAS OF REQUEST.

Zipf s (P) ower (C) onstant

0.4 36 72
0.68 60.5 121
1.2 106 212



Algorithm 3 Conversion from distribution into the ID
1: #define n number_of_videos
2: #define id number_of_all_ids
3: #define dev number_of_devices
4: array[n] dist ▷ Distribution from the template
5: array[n] id_dist = all 0
6:
7: for rank from 1 to n do
8: for assoc_id from 1 to id do
9: current_assoc_dev = dev × assoc_id / id

10: next_assoc_dev = dev × ( assoc_id + 1) / id
11: if next_assoc_dev > dist[rank] > current_assoc_dev then
12: id_dist[rank] = assoc_id
13: break
14: end if
15: end for
16: end for
17:
18: return id_dist

Dense : 1, 2, 4, 7, ... 

Sparse : 1, 7, ... 
Middle : 1, 5, 7, ... 

Sparse AreaMiddle Area

ID: 1, 2, 4, 7, ... 

Dense Area

ID: 1, 5, 7, ... ID: 1, 7, ... 

Figure 5. An integration of templates in a Web server.

As shown in related work, ID-based scheme content
association only verifies their own ID and video’s IDs.
Furthermore, the original research on IDs [17] pointed out
that the multiplicity of content can be stretched by adjusting
the number of associated IDs. We approximated the sub-
optimal multiplicity of each piece of content with a simple
minimization, as shown in Equation 7.

IDmax = min{Dopti −Da ×
Associated IDs

All IDs
} > 0 (7)

After the number of associated IDs for each piece of
content is calculated, the actual IDs are assigned to meet
the calculated number among all. As these processes are
sufficiently light-weight, BSs can preliminarily calculate
the optimal distribution for multiple densities and main-
tain the desirable density by incremental replacement from
the current situation. Moreover, this elasticity enables an
incremental update for BSs, as shown in Figure 5. BSs
can determine the sub-optimal density of content in a light-
weight manner. This light-weighted feature enables BSs to
monitor the difference between the optimal situation and
current situation, in which devices continuously join/leave
and replace the content that is assigned.

B: 3000A: 2000 C: 4000

G: 8000 H: 9000 I: 10000

D: 5000 E: 6000 F: 7000

Figure 6. Mobility evaluation with multiple BSs and multiple densities.

V. EVALUATION

Figure 6shows the content distribution, overall traffic in
multiple biases of requests, computation overhead in a single
BS, and number of replacements with multiple BSs. The
evaluation was conducted with the same parameters as with
our ID-based scheme, i.e., those listed in Table IIIto compare
the efficiency. The specifications of the server used for the
evaluation are listed in Table V.

We first compared the content distributions of GA, the ID-
based scheme, and TEA in the less biased request pattern
(zipf s = 0.68) in Figure 9. With TEA, P and C in
Equation 5 were calculated as 60.5 and 174, respectively,
from s and total cache capacity 10000 × 2 = 20000. The
generated distribution from the template of our scheme was
converted as a set of IDs. We used a total of 2048 IDs
for the fine-grained tuning of distribution of density. In
contrast to TEA, which overlaps the line of GA, the ID-based
scheme had difficulty in biasing the distribution according
to popularity.

We then compared traffic downloaded from an actual
BS in the gentle biased request, as shown in Figure 7
and heavily biased request, as shown in Figure 8. The
comparison was done among Least Frequently Used (LFU)
without cooperation, the ID-based scheme, TEA, and GA
(only in Figure 7). TEA achieved 0.01% overhead from
GA, which was only a 5% improvement compared with
the ID-based scheme in both situations. We also show the
computation times to find the sub-optimal distribution in
Table VI. The computation time of TEA was sufficiently
fast even when finding the sub-optimal distribution of 20000
videos in 10000 devices in contrast to GA. We substituted
the computation of the ID-based scheme, which requires
simulations of over 10 million requests into the calculation

Table V
SPEC. OF SERVER FOR EVALUATIONS

Spec.

CPU AMD Ryzen 5 1600 (3.2GHz, 6C12T)
Memory 32GB
Storage Crucial CT512MX100 SSD
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Figure 7. Traffic under a gentle biased request (s = 0.68).
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Figure 8. Traffic under a heavily biased requests (s = 1.2).

presented in Section III.
We finally evaluated the endurance to mobility from the

replaced content to maintain the optimal distribution with
nine BSs that have different device densities, as shown in
Figure 6. Some of the devices in each BS crossed 12 borders
(24 directions) to other BSs in 100 iterations. The maximum
number of transitioning devices in a single direction was
specified from 100 to 1000, and we counted the number
of replaced pieces of content by BSs to maintain the sub-
optimal density under new conditions. Note that the update
time of an ID in Table VII from this exploration using the
evaluation scheme discussed in Section III.

Figure 10 shows the evaluation results. It is obvious from
the graphs that replaced content was reduced by a maximum
of 70% with the ID-based scheme. This is because it is
difficult to increase the variety of cached content with TEA
from the characteristics of the semi-log graph, enabling the
reuse of the content from other BSs. On the other hand, the
ID-based scheme easily flaps the variety, as shown in Table
VII, causing frequent replacement.

Table VI
COMPUTATION TIME IN SEC.

GA ID TEA

162408 sec 2 sec /w models in section III
(originally 10 million req.[6]) 2 sec
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VI. CONCLUSION AND FUTURE WORK

We proposed TEA, a light-weight scheme for mobile
cooperative caching to achieve the sub-optimal multiplicity
of content in devices. We found that (1) the sub-optimal
multiplicity in a crowd forms a decreasing straight line in
a semilog graph, and (2) is affected by two parameters:
bias of the request and overall cache capacity. From these
findings, the scheme is composed on an approximation
formula to duplicate sub-optimal content distribution from
the associated situation of bias/capacity. We also proposed a
conversion method for the ID-based association to achieve
calculated multiplicity. This template enables us (1) to find
the sub-optimal distribution in a few seconds, (2) incre-
mentally update to the sub-optimal distribution, and (3)
reuse the cached content across multiple BSs. In a traffic
comparison, our scheme incurred a low overhead, which is
1% that of GA, while significantly reducing computational
time. Moreover, the combination of our TEA and the ID-
based cooperation scheme enables easy deployment in an
associated ratio.

For future work, we will investigate a scenario in which
different types of devices, such as phones, tables, and cars,

Table VII
ID UPDATE DENSITY.

# of IDs 16 32 64 128

# of devices ∼ 1255 1256 ∼ 2628 2629 ∼ 5506 5507 ∼



coexist.
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