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Abstract

The well-known Takagi-Sugeno (T-S) fuzzy systems has attracted many attentions for its
capability to represent a large class of nonlinear systems. A wide range of applications, e.g.
robotic systems, aircraft systems, etc, have also adopted the T-S fuzzy systems to approximate
the nonlinear systems in terms of a set of fuzzy IF-THEN rules. Recently, a so-called polynomial
fuzzy model has been proposed as an extension of the T-S fuzzy model. By allowing polynomial
expression in the state or the input variables, polynomial fuzzy systems has tighter sectors
compared to T-S fuzzy systems. Moreover, this reduces fuzzy rules number. These merits lead

to the relaxation of polynomial fuzzy systems stability conditions.

Even though polynomial fuzzy model yields relaxation in stability analysis compared to that
of the T-S fuzzy model, the conservativeness remains an issue. One of the important sources
of the conservativeness is the selection of Lyapunov function candidate form, e.g. quadratic
Lyapunov function, piecewise Lyapunov function, polynomial Lyapunov function (PLF), etc. In
this thesis, a piecewise polynomial Lyapunov function-based (PPLF-based) approach is proposed
in order to design the state feedback and the state estimation of polynomial fuzzy systems. In
the PPLF-based approach, several PLFs are provided to analyze the stability of system. A
switching index is then defined to simultaneously choose one Lyapunov function which is the
minimum value among others. Based on this switching index, a switching controller is designed
and selected in order to stabilize the polynomial fuzzy system. The effectiveness of the proposed
design is demonstrated through simulation of major benchmark design examples. To show
the possible utilization of the PPLF-based approach, the stabilization is expanded to robust
stabilization by considering uncertainty parameters in the polynomial fuzzy systems. Finally,

the PPLF-based approach is employed to design an observer.
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This thesis is organized as follows.
Chapter 1 introduces the objectives and motivation of this study.

Chapter 2 presents a description to express nonlinear systems as fuzzy systems represen-
tation by utilizing a universal approximator. A sector nonlinearity concept which is used to
convert nonlinear systems as fuzzy systems representation is also described in this chapter. The
stability condition is analyzed based on the Lyapunov stability theory which is then represented
as linear matrix inequalities (LMIs) problem. The conventional fuzzy systems representation is
extended to polynomial vector field which is called polynomial fuzzy systems. The construc-
tion of polynomial fuzzy systems is also exploited by sector nonlinearity method. Since LMI
design framework is restricted for a system with polynomial vector fields, another framework is
required to perform the stability analysis and design for polynomial fuzzy systems. To date, one
of the most powerful frameworks to prove nonnegativity of a polynomial is called sum of squares
(SOS). The stability analysis by using this framework is described in this chapter. Furthermore,
two relaxation techniques, i.e. copositive relaxation and positivstellensatz relaxation (P-satz),
used in the subsequent chapters are also introduced. The copositive relaxation comes from the
idea of Polya’s theorem while P-satz was developed as the solution of Hilbert 17** problem in

19" century.

Chapter 3 provides a detailed derivation of polynomial fuzzy systems stabilization via a
PPLF-based approach. Design of a switching controller based on parallel distributed compen-
sation (PDC) is also presented. In the derivation process, two relaxations are considered, i.e.
copositive and P-satz relaxation. Then, the stabilization conditions are formulated in terms of
the SOS framework. Finally, sufficient conditions can be obtained to prove the nonnegativity of
the polynomial fuzzy systems stabilization conditions. The effectiveness of the proposed design

is demonstrated through the simulation results of two major benchmark design examples.

Chapter 4 introduces the proposed PPLF-based approach for robust control of polynomial
fuzzy systems. A nonlinear system consisting of uncertainties are exactly converted to poly-
nomial fuzzy systems with uncertainties by using sector nonlinearity concept. In the proposed
robust control design, there are two schemes. In the first case, uncertainties appeared both in the

system and in the input term. In the second case, the uncertainty appeared only in the system.
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The robust stabilization conditions for these two schemes are then derived in terms of the SOS
framework. To deal with the nonconvex term in the stabilization conditions, a path-following
algorithm is applied. The validity of the proposed design was tested on two major benchmark

design examples. The results are then compared to those of existing designs.

Chapter 5 provides a detailed description of an observer-controller design for the polyno-
mial fuzzy systems. As a consequence of PPLF-based design, the augmented system contains
both the switching polynomial fuzzy controller and the switching polynomial fuzzy observer. Ac-
cording to the switching information on the PPLF, the controller and observer can be switched
simultaneously to stabilize the system and estimate the states. There are three schemes (Class
I, Class II, Class IIT) that are introduced in the design of the polynomial fuzzy observer. The
classification depends on the dependence of polynomial fuzzy matrices with respect to the state
which is going to be estimated. The proposed design shows that separation principle design is
not necessary for polynomial fuzzy observer. A significant improvement of the proposed design

is demonstrated by using a design example for all the classes.

Chapter 6 summarizes this thesis and provides possible pathways for future development

regarding in this topic.
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Chapter 1.

Introduction

The classical control theory began its history in 19th century. Dynamical systems were ana-
lytically modeled using linear differential equations. However, there are some real systems whose
the mathematical model cannot be derived and represented as differential equation. They had
also been frequently modeled using high-order differential equations which has large complexity
for analysis and calculation. In addition, the physical system became more and more complex
especially if it has high nonlinearities. These caused the classical approaches could not be relied
to completely represent the nonlinear plant. Therefore, research interest on control design for

nonlinear systems has been rapidly growing since the past decades.

By extending the concept of fuzzy set theory founded by Lotfi Zadeh, Takagi-Sugeno (T-S)
fuzzy system was first proposed and published in [2]. The T-S fuzzy system have shown its great
ability to describe any nonlinear systems in terms of a set of fuzzy IF-THEN rules representing
the relation of local linear input-output of a nonlinear system. The local dynamic of each rule
(fuzzy implication) is expressed by a linear system model [7]. Extensive research efforts have

been done to show the utility of T-S fuzzy model including stability analysis of T-S fuzzy model.

In control design, stability is one of the most important issues. The so-called parallel dis-
tributed compensation (PDC) is one such control design framework that has been proposed
and developed over the last two decades [9]. In the framework of T-S fuzzy model and PDC
control design, stability analysis can be stated as a set of linear matrix inequalities (LMIs). By
using the concept of Lyapunov stability theory, stability conditions of T-S fuzzy model can be
reduce to the existence of positive definite function such that its time derivative is negative along
the trajectories. Then the problem to find the positive definite function is formulated as LMI
optimization problem which can be solved by LMI solver such as LMI toolbox in MATLAB.
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Recently, a more general approximator called polynomial fuzzy systems has been proposed by
Tanaka et al [24]. Polynomial fuzzy model is an extension of T-S fuzzy model that can represent
any nonlinear systems in polynomial cases. Therefore the stability analysis for polynomial fuzzy
system reduces to the existence of positive definite polynomials such that its partial derivative
is negative along the trajectories. In this case, LMI optimization technique cannot be applied
due to its restriction for a system with polynomial vector field. Moreover, finding such positive
definite polynomials of the whole space is known as NP-hard problems [17]. Therefore, an
approach called sum of squares (SOS) to deal with the problem has been proposed in [17,18,
20, 21]. The idea is to prove the nonnegativity of a polynomial by the presence of an SOS
decomposition. By utilizing SOS approach, stabilization conditions of polynomial fuzzy systems
can be derived as SOS optimization problems which can be solved by MATLAB toolboxes such
as SOSTOOLS [22] and SOSOPT [65].

Numerous investigations have been addressed to accomplish stability analysis and design for
polynomial fuzzy systems based on SOS approach. The authors in [16,24, 36,43, 44, 63] have
presented SOS-based design frameworks for polynomial fuzzy systems and the results shown
that SOS-based approaches provide better results over LMI-based approaches. Those SOS-based
design frameworks are applicable not only for polynomial fuzzy model but also for the T-S fuzzy
model based control. Therefore, research on stability analysis of both T-S fuzzy systems and
polynomial fuzzy systems has attracted many attentions. Some researches tried to bring more
relaxations by considering the types of Lyapunov functions such as quadratic Lyapunov function,
control Lyapunov function, piecewise Lyapunov function, polynomial Lyapunov function (PLF),

etc.

Piecewise systems design and analysis widely proposed in [34, 66,68, 69] performed attrac-
tive results. Other studies in [36,64] compared piecewise polynomial Lyapunov function-based
(PPLF-based) approach with other approaches i.e. PLF, multiple PLF's, and piecewise Lyapunov
function-based approaches. According to the results, the authors concluded that PPLF-based
approach brought more relaxation in comparison with the others. In the PPLF-based approach,
Lyapunov function candidates are described as piecewise and polynomial functions. In addi-
tion, since the conservatism in SOS-based approach still exist, i.e. there is a gap between SOS

forms and positive definite polynomial forms, considering a relaxation technique will contribute
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a better result. One of the techniques relies on positivstellensatz (P-satz) that has been used
to tackle optimization problems related to analysis and design. Other relaxation that has been

proposed in [22] is called copositive relaxation.

1.1 Objectives and Overview of Thesis

One of methods to provide more relaxed results in stability analysis is by selecting a good Lya-
punov function candidate form. According to several literature, piecewise polynomial Lyapunov
function (PPLF) brought promising results in stability analysis and design for fuzzy control
systems. Motivating from the fact, this thesis proposes newly derived stabilization conditions
of polynomial fuzzy systems based on PPLF approach. Some relaxations, i.e. copositive relax-
ation and S-procedure, are also carried out in the derivation process in order to fully consider
the PPLF properties. To prove the effectiveness of the proposed design, two benchmark design

examples are demonstrated and the results are compared with other existing results.

In reality, an error of a plant model is possibly appear in the modeling process which means
there is a differences between the actual plant and the used model in control design. Hence,
robust control theory has became important feature in designing control systems. Robust control
design of polynomial fuzzy systems, by considering uncertainties in the systems and input terms,
has been performed in [44,61]. Seeing that PPLF-based stabilization conditions has successfully
shown its effectiveness, this thesis also provides the robust stabilization of polynomial fuzzy
systems via PPLF approach. In order to compare the proposed robust stabilization conditions
with other existing approaches, i.e. [44,61], two design examples are demonstrated and the

results also showed the effectiveness of PPLF-based approach.

In designing the control systems, the states of a system are usually assumed to be available
for feedback. However in practical applications, not all the states are available. This causes
the necessity of unavailable states estimation. To fulfill such necessity, observer design becomes
important feature in control systems. Hence, the works in this thesis also cover the observer
design of polynomial fuzzy systems by taking the utility of PPLF-based approach, i.e. switch-

ing polynomial fuzzy observer and controller. In this case, the designed switching polynomial
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fuzzy controller depends on the state-estimation of the switching polynomial fuzzy observer. In
addition, all the conditions are derived to guarantee the global stabilization and global state-

estimation convergence of original nonlinear systems.

1.2 Chapters Outline

This thesis is organized as follows.
Chapter 1 introduces the objectives and motivation of this study.

Chapter 2 presents a description to express nonlinear systems as fuzzy systems represen-
tation by utilizing a universal approximator. A sector nonlinearity concept which is used to
convert nonlinear systems as fuzzy systems representation is also described in this chapter. The
stability condition is analyzed based on the Lyapunov stability theory which is then represented
as linear matrix inequalities (LMIs) problem. The conventional fuzzy systems representation is
extended to polynomial vector field which is called polynomial fuzzy systems. The construc-
tion of polynomial fuzzy systems is also exploited by sector nonlinearity method. Since LMI
design framework is restricted for a system with polynomial vector fields, another framework is
required to perform the stability analysis and design for polynomial fuzzy systems. To date, one
of the most powerful frameworks to prove nonnegativity of a polynomial is called sum of squares
(SOS). The stability analysis by using this framework is described in this chapter. Furthermore,
two relaxation techniques, i.e. copositive relaxation and positivstellensatz relaxation (P-satz),
used in the subsequent chapters are also introduced. The copositive relaxation comes from the

7th

idea of Polya’s theorem while P-satz was developed as the solution of Hilbert 17*" problem in

19" century.

Chapter 3 provides a detailed derivation of polynomial fuzzy systems stabilization via a
PPLF-based approach. Design of a switching controller based on parallel distributed compen-
sation (PDC) is also presented. In the derivation process, two relaxations are considered, i.e.
copositive and P-satz relaxation. Then, the stabilization conditions are formulated in terms of
the SOS framework. Finally, sufficient conditions can be obtained to prove the nonnegativity of

the polynomial fuzzy systems stabilization conditions. The effectiveness of the proposed design
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is demonstrated through the simulation results of two major benchmark design examples.

Chapter 4 introduces the proposed PPLF-based approach for robust control of polynomial
fuzzy systems. A nonlinear system consisting of uncertainties are exactly converted to poly-
nomial fuzzy systems with uncertainties by using sector nonlinearity concept. In the proposed
robust control design, there are two schemes. In the first case, uncertainties appeared both in the
system and in the input term. In the second case, the uncertainty appeared only in the system.
The robust stabilization conditions for these two schemes are then derived in terms of the SOS
framework. To deal with the nonconvex term in the stabilization conditions, a path-following
algorithm is applied. The validity of the proposed design was tested on two major benchmark

design examples. The results are then compared to those of existing designs.

Chapter 5 provides a detailed description of an observer-controller design for the polyno-
mial fuzzy systems. As a consequence of PPLF-based design, the augmented system contains
both the switching polynomial fuzzy controller and the switching polynomial fuzzy observer. Ac-
cording to the switching information on the PPLF, the controller and observer can be switched
simultaneously to stabilize the system and estimate the states. There are three schemes (Class
I, Class II, Class III) that are introduced in the design of the polynomial fuzzy observer. The
classification depends on the dependence of polynomial fuzzy matrices with respect to the state
which is going to be estimated. The proposed design shows that separation principle design is
not necessary for polynomial fuzzy observer. A significant improvement of the proposed design

is demonstrated by using a design example for all the classes.

Chapter 6 summarizes this thesis and provides possible pathways for future development

regarding in this topic.

1.3 T-S Fuzzy Systems vs LPV Systems

This section provides an overview of T-S fuzzy systems and linear parameter varying (LPV)
systems. The well known T-S fuzzy system, introduced by T. Takagi and M. Sugeno in 1985 [2],
and linear parameter varying (LPV) systems, introduced by J. S. Shamma [45] and published in

1990 [51], received many attentions for their capability to deal with nonlinear systems control
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design. T-S fuzzy systems provides an effective way to approximate nonlinear systems by using
the concept of fuzzy sets, fuzzy rules, and a set of linear models. By merging the linear models
through fuzzy membership functions, the overall model of the nonlinear systems can be con-
structed. In practical applications, T-S fuzzy systems has successfully been applied for robotic

systems [46], aircraft systems [47,48], fault tolerant control [49,50], power filter [52], etc.

Motivated from the methodology of gain scheduling control design , LPV systems was pro-
posed in [51]. LPV systems approximate nonlinear plant as a linear system whose coefficients
depend on some varying parameters. LPV systems has been also utilized in practical applica-
tions as T-S fuzzy systems: robotic systems, aircraft systems, fault tolerant control, and power

filter.

In [53], the authors showed that the nonlinear embedding method, a method for the auto-
mated generation of LPV models, can be extended to construct T-S fuzzy model. On the other
hands, the sector nonlinearity concept, a technique widely used for T-S fuzzy construction, can
be utilized to construct a polytopic LPV model. The authors in [53] also conducted two measures
for comparing between T-S fuzzy and LPV systems, i.e. overboundedness-based measure and
region of attraction estimate-based measure. Through the result of a mathematical example,
the authors stated that which model is the best depends on the context in which the model is

used.

Stability analysis of both T-S fuzzy and LPV systems can be carried out as convex opti-
mization problem and can be formulated as LMIs optimization problem. In order to reduce
the conservativeness of T-S fuzzy model, polynomial fuzzy model which is a general form of
T-S fuzzy model was proposed by K. Tanaka et al in [24]. In the same way, by considering
polynomial term in the system and input, polynomial LPV has also been proposed by F. Wu et
al in [55]. Stabilization conditions of both polynomial fuzzy model and polynomial LPV, based
on Lyapunov stability theory, can be formulated in terms of SOS approach to provide sufficient
conditions for the positive definiteness of the Lyapunov function and the negative definiteness

of its partial derivative.
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1.4 Related Researches in Other Classes

The advantage of PPLF-based approach was also utilized not only in fuzzy control area, but also
other classes. For instance, in [19] a PPLF approach was used to conduct a stability analysis of
switched and hybrid systems. The analysis showed significant improvements over the previous
methods. Hence they extended the method for robust stability analysis of nonlinear hybrid

systems with dynamic uncertainties in [25].

Another research in [58] showed an investigation of constructing piecewise polynomial Lya-
punov function (PPLF) based approach was conducted for global stability analysis and global
Lo, gain estimation of linear systems with deadzone/saturation with structured parametric un-
certainties. The sufficient conditions of the system stability and system performance via PPLF
are derived by using a candidate of Lyapunov function dependent on the uncertain parameter.
A numerical example to show the maximum value of uncertain parameter was demonstrated.

According to the results, PPLF provided contribution to reduce the conservativeness.

PPLF approach was also performed in [26] to conduct a stability analysis of nonlinear systems
with polynomial vector fields. Instead of using SOS framework, the Handelman’s theorem was

used to provide a positive polynomial parametrization on the given polytope.

Besides PPLF, polynomial Lyapunov function is also considered as a good Lyapunov function
form. In [57], research on stability region analysis, based on Lyapunov stability theory, of a
nonlinear system was conducted. By utilizing polynomial Lyapunov function based approach,
the author presented a method to enlarge the inner estimate of RoA (region of attraction)
of nonlinear systems. The stability conditions are derived in terms of sum of squares (SOS)
problems and solved by using SOS optimization technique. Through several examples, the

works in [57] show the efficiency of the proposed method for finding RoA of nonlinear systems.

Other study in [60] conducted a finite time stability (FTS) analysis of nonlinear quadratic
systems. It is stated that a system is said to be finite time stable if the state of the system is
restricted within a given bounded region of the state-space. Sufficient conditions for F'TS of non-
linear systems were derived by considering several types of Lyapunov functions, i.e. quadratic

Lyapunov function, non-quadratic Lyapunov function, and polynomial Lyapunov function. The
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conditions were verified through a benchmark design example resulting that the derived condi-
tions via polynomial Lyapunov function approach provided less conservative results compared

with quadratic, non-quadratic Lyapunov functions.
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Chapter 2.

Preliminaries

This chapter provides the necessary mathematical background on control theory for the later

results.

2.1 Definitions and Notations

The following notations and definitions on polynomial are adopted through the whole of this

paper [1,5,13,20].

Definition 2.1.1 (Monomials). Let a be an n-tuple of non-negative integers. A monomial in

x(t) = [x1(t) -+ z,(t)] is a function of the form zq(¢t)* - -+ 2, (£)*" where the degree is defined
by Z?:l (678

Definition 2.1.2 (Polynomials). P is defined as the polynomials universe. A polynomial is
a mathematical expression that consists of variables including any operations (e.g. addition,

subtraction, multiplication, etc).

Definition 2.1.3 (Positive Semi Definite (PSD) Polynomials). If ¢(x(¢)) is a polynomial of P
and ¢(x(t)) > 0 for all x(t) € R", then q(x(t)) is defined as a positive semi definite polynomial
(PSD). The space of PSD polynomials is denoted as P°7.

Definition 2.1.4 (Sum of Squares (SOS) Polynomials). S is defined as a set of sum of squares
(SOS) polynomials. A polynomial is called as an SOS polynomial if it can be formulated as
q(z(t)) = S, fA(z(t)) where fi(x(t))i=1,..n € P. According to these definitions, we have
S c P C P. By setting a polynomial such that g(z(t)) € S, positive definiteness of the

polynomial can be guaranteed. More explanation of SOS polynomial is given in Section 2.2.2.
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2.2 Lyapunov Stability Theory

In this thesis, stabilization conditions of polynomial fuzzy systems were derived based on Lya-
punov stability theory. Therefore, this chapter also provided description about Lyapunov theory
adopted from [10].

Consider an autonomous system

@(t) = f(x(t)) (2.1)

where x(t) € R" is the states and f : R” — R™. Without loss of generality, it is assumed that
f(x(t)) satisfies f(0) = 0. The stability in the origin, i.e., () = 0, is described as follows.

Definition 2.2.1 (Lyapunov Stability). The equilibrium point x(¢) = 0 is

1. stable, if for each € > 0 there is § = d(¢) > 0 such that

[2(0)|| <0 = [lz(t)]| <€ Vi =0,

2. unstable if it is not stable,
3. asymptotically stable if it is stable and § can be chosen such that

lz(0)] <6 = tlgcr)lo x(t) = z..

In 1892, instead of energy, Lyapunov determined the stability by employing a certain function
instead of energy. Then the stability analysis was reduced to the existence of positive definite
function such that its derivative is negative deninite along the trajectories. The statement of

Lyapunov’s stability theorem are described as follows.

Definition 2.2.2 (Stable and Asymptotically Stable). Given a function V(x(t)) : D — R such
that

V(0) and V(z(t))>0 in D-— {0},
V(z(t) <0 in D, (2.2)

then, x(t) = 0 is stable. Moreover, if V(2(t)) < 0 in D — {0}, then x(t) = 0 is asymptotically

stable.
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For instance, we have a nonlinear system as follows.
x(t) = Ax(t) (2.3)

where A € R™™™ is a constant system matrix. Choose a Lyapunov function candidate as
V(x(t)) = x(t)T Px(t) where P € R™" is called Gram matrix. According to Lyapunov’s
stability theorem, the system (2.3) is stable, i.e, all trajectories converge to the equilibrium

point, if and only if there exist matrix P that is positive definite such that
ATP 1+ PA<O. (2.4)

Note that, positive-definiteness of matrix P has to be satisfied to guarantee V(x(t)) > 0.
Moreover, condition (2.4) is given to guarantee that the partial derivative of V' (z(¢)) is negative
definite, i.e., V(2(t)) < 0. The two conditions, i.e., P > 0 and condition (2.4), are formulated

as linear matrix inequality (LMI) problems, which can be solved by an LMI solver.

2.2.1 Linear Matrix Inequality

Linear matrix inequality (LMI) begins its history since Lyapunov theory was published in 1890.
As presented in previous, the stability analysis can be reformulate as a problem to find a function
that is positive definite such that its partial derivative is negative along the trajectories. The
problem to find P > 0 such that AT P + PA < 0 is a special form of an LMI. An LMI in the

variables x(t) € R™ has the form

Qz(t)) = Qo+ z1(H)Q1 + -~ + n(H)Qn > 0, (2.5)

where Qo € R™*™ ... ' Q, € R™*™ are symmetric matrices and x(t) is a vector of scalar.

2.2.2 Sum of Squares

In the previous section, according to Lyapunov theory, i.e. the so-called Lyapunov’s direct
method, a stability analysis of dynamical system can be reduced to the existence of a Lyapunov
function V: a positive definite function V' whose the derivative is negative semi-definite along

the trajectories. Finding such a function can be expressed as LMI problems. However, the
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technique is restricted for a system with polynomial vector fields, i.e. the dynamical system that
is described by polynomial equations. Therefore, for a system with polynomial terms Lyapunov
theory reduces to the existence of nonnegative polynomials of the whole space which is known
as NP-hard problems [17]. A sufficient condition to prove nonnegativity of a polynomial is the

presence of a sum of squares (SOS) decomposition.

A multivariate polynomial ¢(z(t)) is an SOS if it can be decomposed as
a(x(t)) =Y pi(a(t)). (2.6)
i=1

for p1(x(t)), p2(x(t)), -, pn(x(t)) € Rlx(t)]. Condition (2.6) is a sufficient condition to guaran-
tee the nonnegativity of a polynomial. Remarkably, it can also be determined by the following

lemma.

Lemma 2.2.1. [20] Consider a polynomial q(x(t)) in n variables of degree 2d. The exis-
tence of an SOS decomposition of q(x(t)) can be obtained by solving the following semi-definite
programming (SDP) problem.

q(z(t)) = z(t)TPz(t), z=[Lz1(t),xa(t), -+ ,xp(t), z1(t)22(t), - - ,xn(t)d] (2.7)

If P € P, then q(z(t)) € S

By applying an SOS approach, Lyapunov stability analysis reduces to the following lemma.

Lemma 2.2.2. [18,21] Let consider a system with polynomial vector field x(t) = f(x(t)) where
f(0) = 0. The equilibrium point x(t) = 0 is asymptotically stable if the following conditions
hold.

V(x(t) — e(x(t) €S (2.8)
v
~ e/ E) €S (2.9)

where €(x) € P is a slack variable to guarantee the positivity of Lyapunov function V (x(t)).

In order to guarantee that V (z(t)) < 0 at & # 0, Lemma 2.2.2 can be represented as follows.
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Lemma 2.2.3. The equilibrium point x(t) = 0 is globally asymptotically stable if the following

conditions hold.

V(z(t) —e(z(t)) € S, (2.10)
oV
— Mf(w(t)) +aV(x(t) eS (2.11)

where « is a negative scalar.

The above SOS problems are SOS optimization problems where « as the objective to be
minimized, i.e., a is minimized until & < 0 is obtained. To solve the SOS problems, two
kinds of SOS solvers can be employed: SOSOPT [65] and SOSTOOLS [70]. These are free,
third-party MATLAB toolboxes. Other tool is an SDP (semidefinite programming) solver like
SeDuMi and SDPT3. The diagram depicting relation among sum of squares program (SOSP),
SOSOPT/SOSTOOLS (SOS solver), SDP solver, and SOSP solution can be seen in the following
Figure 2.1.

SOSOPT / SOSTOOLS

SDP Solver
sosp “ sop \
Solution Solutlon/
\_/ o N

SOSOPT / SOSTOOLS

Fig. 2.1:Relation between SOSP, SOSOPT/SOSTOOLS, SDP, and SDP Solver [70]

First of all, T define SOS conditions (consisting of the symbolic forms) as SOSP. Then
SOSOPT/SOSTOOLS will automatically convert SOSP to SDP (semidefinite programming).
By calling the SDP solver, the SOSP can be numerically solved as SDP solution then convert
the SDP solution backs to the solution of original. In this research, I used SOSOPT as an SOS
solver because I can choose the reliability level. In all the simulations, I used the most reliable

options to get the feasible solutions, i.e. “both” options. Moreover, all the feasible solutions
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have been verified by using “issos” command in SOSOPT with the most reliable options, i.e.

“both” options. This double checking is important to obtain reliable solutions.

2.3 Relaxations Technique

2.3.1 Positivstellensatz Relaxation

The Positivstellensatz (P-satz) has been introduced as a solution of Hilberth 17** problem. By
employing P-satz, an infeasibility certificate or refutation, the emptyness of a set of polynomials
can be determined [20]. In [13], the infeasibility certificate can be formulated in any commutative

ring K via the real spectrum Spec,(K) as follows:
Lemma 2.3.1. f1, ..., fr, 91, ---G¢, h1, ...hy € K, the empty set condition is described as follows:
{z(t) e R"| f1(x(t)) >0, ..., fr(x(t)) >0,

g1(x(t)) #0, ..., gi(x(t)) # 0,
hi(x(t)) =0, ..., hm(x(t)) = 0} C Spec, (K) = @.

The above condition can be converted as the presence of f € C(f1, ..., fr), 9 € M(g1, ..., gt), h €
Z(hiy ...y hy) such that

fla(t) + g*((t)) + h(z(t) = 0. (2.12)

M, C, and 7 are defined in Definition 2.3.1, 2.3.2, and 2.3.3 as used in [13,62].

Definition 2.3.1. Given (gi(z(t)))i=1,..n is a set of polynomials, the multiplicative monoid

M(gi(x(t))) is the set of all finite products of g;(x(t)) including I i.e. the empty product.

Definition 2.3.2. Given (f;(x(t)))j=1,..¢ is a set of polynomials, the cone of f;(x(t)) is defined

as follows.
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for j =1,...,&, a positive integer £, SOS polynomials s;(x(t)), and e;(x(t)) € M(f;(x(t))).

Definition 2.3.3. Given (hy(x(t)))y=1,..,, is a set of polynomials. The Ideal of h,(x(t)) is

defined as Z(hy,(z(t))) := >_7_1 hy(z(t))py(2(t)) for p is a positive integer and p,(x(t)) are

polynomials.

2.3.2 Copositive Relaxation

Lemma 2.3.2. [17,20] A symmetric matriz J € R™*™ is copositive if

vl Jv = Z Z vivjdi; € POT (2.13)

i=1 j=1

for v =[vy,v9,- - U] and v; > 0.

Checking whether a matrix is copositive is a co-NP problem (see [4,20,22]). Thus, in [20]
a sufficient condition to guarantee the copositivity has been proposed as described in Lemma

2.3.3.

Lemma 2.3.3. [20,22] Consider v; in Lemma 2.13 as v; = ziz. A matriz J is copositive if the
following condition is satisfied.
m @ m m
Q(z)= (3 2) Y e (2.14)
k=1 i=1 j=1

where z = [z1, 29, - - ,zm]T and 1 is a nonnegative integer.

The above relaxation technique can also be applied for a polynomial J(x(t)).

2.4 Takagi-Sugeno Fuzzy Model

Takagi-Sugeno (T-S) fuzzy model was first proposed by Takagi and Sugeno in 1985 [2]. T-S
fuzzy systems provides an effective way to approximate nonlinear systems by using the concept
of fuzzy sets, fuzzy rules, and a set of linear models. By merging the linear models through

fuzzy membership functions, the overall model of the nonlinear systems can be constructed.
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Given a nonlinear system, the i-th rule of the T-S fuzzy model are expressed as followings:

Model Rule i:
IF 21(t) is M;; and - -+ and z,(t) is Mo,
THEN a:(t) = Azx(t) + Biu(t),

i=1,2,- 7 (2.15)

where, x(t) € R” is the system states, r is the number of linear models represented as number
of fuzzy rules, M;, is the fuzzy set associated with i-th model rule, and z,(t) is known premise
variables. A; € R™™ and B; € R™*Y are are matrices of the system and input respectively.
By performing ”fuzzy blending” of the local linear system models, the overall fuzzy system

representation is constructed as follows:
:L'(t) = Z hi(z(t)){Aiz(t) + Biu(t)}, (2.16)
i=1

where z(t) = [21(t) 22(t)---  2,(t)]T € R?,

_ TG M%)
> k=1 H?:l My;j(2;(t))

Zhi(z(t))zl, hi(z(t)) >0, Vi.

A more detail explanation to construct a T-S fuzzy model is given in 2.4.1.

2.4.1 Construction of T-S Fuzzy Model

There are two methods to construct a Takagi-Sugeno (T-S) fuzzy model. One of the method
is indentification using input-output data which has been proposed in [2]. The identification
process of a fuzzy model is divided into two main parts: structures identification and parameters
identification. However, this approach is more suitable for a plant that is hard to be represented
by analytical or physical models. [14]. The other approach is by using derivation of the nonlinear
systems which built upon sector nonlinearity concept. This approach has been employed in

9,11,12].

The main idea of sector nonlinearity is described in the Figure 2.2. By employing the sector
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q1x(t)
R f(JC(t))
UL
i q2x(t)
o N
_____ -

Fig. 2.2:Global sector nonlinearity [14]

nonlinearity concept, the nonlinear system &(t) = f(a(t)) can be exactly represented by the

sectors q1(x(t)) and go(x(t)) such that @(t) € [ql QQ} x(t).

The membership functions of T-S fuzzy model are

m (z(t))

B ma(x(t))
ha(z()) my (a(t)) + ma(x(t))’

" mi(z(t) + ma(z(t))

(2.17)

hao(z(t)) =

where hq(x(t)) > 0, ha(x(t)) > 0, and hy(x(t)) + ha(x(t)) = 1. Hence the T-S fuzzy represen-

tation is constructed as follows.
x(t) = Zhi(m(t))%(‘n(t» = hi(x(t))q1(2(t) + hao(2(t))g2(2(t)), i=1,2,---,r (2.18)

where r is number of rules. For the case that the global sector for a nonlinear system cannot
be found, we can consider a local sector nonlinearity to convert the nonlinear system as the T-S
fuzzy model. Figure 2.3 describes the idea of local sector nonlinearity where the two dashed lines
become the local sector under —d < @ < d. The local region of the nonlinear system f(x(t))

can be exactly represented by applying the local sector nonlinearity concept.



CHAPTER 2. PRELIMINARIES 23

f(x®)

T qx(t)

- g x(t)

x(t)

Sy Sl | I S S S
)
T~
SN
\

.

Fig. 2.3:Local sector nonlinearity [14]

2.4.2 Parallel Distributed Compensation

In this thesis, parallel distributed compensation, called PDC, was used to design a controller for
stabilizing the T-S fuzzy model [14]. In PDC, the controller has the same membership functions
as the T-S fuzzy model. Each controller is designed according to the corresponding rule of the

T-S fuzzy model. For T-S fuzzy system (2.15), the controller is designed as follows:

Control Rule i:
IF 21 is M;1 and --- and z, is M;,,

THEN wu(t) = —Fx(t), i=1,2,---,r, (2.19)
where the defuzzified outputs of the fuzzy controller is represented as follows:
T
u(t) ==Y hi(2)Fa(t). (2.20)
i=1

By substituting the above controller to the T-S fuzzy closed-loop system, the overall closed-loop

system is represented as

(1) = 33 hi(2)h(2) {Ai — BiFj} a(t). (2.21)

i=1 j=1
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2.4.3 Stabilization of T-S Fuzzy Systems

This section provides LMI approach to perform T-S fuzzy model stability and stabilization
analysis based on Lyapunov stability theorem. Let V(x(t)) = x(t)? Px(t) becomes a Lyapunov
function candidate, and without loss of generality, assume that & = 0 is the equilibrium point.

A stability analysis, i.e., u = 0 of T-S fuzzy model is described in Lemma 2.4.1.

Lemma 2.4.1. [T-S Fuzzy Model Stability Analysis] The equilibrium x(t) = 0 of (2.16) with

zero control input is asymptotically stable if a matriz P is exist such that

P >0, (2.22)

ATP+PA; <0. Vi (2.23)

LMI problems in Lemma 2.4.1 guarantee the positive-definitness of the Lyapunov function

such that its partial derivative is negative definite along the trajectories.

Now, by considering the fuzzy controller u, stabilization analysis of T-S fuzzy model can be

described in the following Lemma.

Lemma 2.4.2. [11][T-S Fuzzy Model Stabilization Analysis] The equilibrium x = 0 of (2.21)

is asymptotically stable if the exist matriz X = P~' and F; such that

X >0, (2.24)
- XAT — A, X + M"B! + B,M; > 0, (2.25)
- XAl - AX - XA} - A;X + M/ B + BiM; + M B] + B;M, > 0. (2.26)

The local feedback gains are obtained as F; = M; X 1.

2.5 Polynomial Fuzzy Model

Polynomial fuzzy system was introduced [24] as a more general approximator than T-S fuzzy
model. Polynomial fuzzy systems can represent any nonlinear system in polynomial cases,

i.e. consequent parts are represented in polynomial vector field. Consider a nonlinear system
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represented in (2.27).

(1) = f(z(t), u(t)), (2.27)
where x(t) = [21(t) 22(t) -+ 2,(t)]" is the state vector, f is a nonlinear function, and w(t) =
[ui(t) uz(t) -+ um(t)]” is the input vector. Here, similar to the construction of the T-S fuzzy

model, by applying the sector nonlinearity concept [14], the nonlinear system can be exactly
represented by the polynomial fuzzy model as proposed in [24]:

Model Rule i:

IF z1(t) is M;; and - -+ and z,(t) is Mo,

THEN @(t) = A;(z(t))&(z(t)) + Bi(z(t))u(t),

i=1,2,-- 7, (2.28)
where r denotes the rules number, z,(t) and M;, are the premise variable and the fuzzy set
respectively. A;(z(t)) € RN and B;(z(t)) € R™Y are polynomial matrices in the system

and input respectively. #(z(t)) € RY is a monomial vector in x(t) under assumption that

z(x(t)) =0 < x(t) =0.
The overall closed-loop system is presented as follows [24]:
&= hi(z(0){Ai((t)2(@(t)) + Bi(z(t))u(t)}, (2.29)
i=1

where z(t) = [21(t) 22(t) - - 2,(t)] € R,
TG Mi(2())
a > ket H;zl My (=;(t))

We note from the property of the membership functions that

hi(=(t))

hi(z(t)) >0, Vi,

S hil=(1) = 1.

i=1
2.5.1 Construction of Polynomial Fuzzy Model

Construction of polynomial fuzzy model also utilize the sector nonlinearity approach as described
in Figure 2.4. By allowing the sectors in polynomial term, the nonlinear system which has

polynomial term can be exactly represented as polynomial fuzzy model.
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qllx(t) 'go%(t)

Fig. 2.4:Sector nonlinearity approach for polynomial fuzzy system construction

In order to bring more clarity, the construction of polynomial fuzzy model is provided as

follows.

Let consider the following nonlinear system.

B = —x + 27+ 25 + 22x0 — 2122 + 29 + 71U (2.30)
Z9 = —sin(z1) — x2 (2.31)
The above nonlinear system can be rewritten as follows.
14z +2? 4z —a3 1 T
i = ! 2 T+ u (2.32)
—2Z21 —1 0
T sin(x
where © = [gjl ;CQ} and z; = (1) = sinc(x1). Since
Z1
maxz; =1 = q, min z; = —0.2172 = ¢,
1 1
21 can be rewritten as
(2.33)

2
2 = Z hi(z1)qi
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where

Z1 — —Z
hi(z1) = qi — Zz, ha(21) = Zi — q;. (2.34)

By substituting z1, q1, g2 into (2.34), the membership functions h;(z1) can be represented as

sin(z1) — 0.217224
1.2172x,

x1 —sin(z)
1.2172x,

h1 (Zl) = hQ(Zl) == (235)

Hence, the nonlinear system can be exactly represented as polynomial fuzzy system for z; €

(—o0 00) and zy € (—o0 00), i.e., globally:

&= hi(2){Ai(z)Z + Bi(x)u} (2.36)

where x = ¢ = [961 :1}2:| ,z =1, and

14z +23+zay—a3 1
Al = y
-1 —1
14z +23+zay—a3 1
A2 = ’
0.2172 —1
X x1
Bi(z) = . Ba(z) =
0 0

The membership functions are given as

sin(z1) — 0.217224
1.2172x,

x1 —sin(z)

2.
1.2172x4 (2:37)

hi(z1) = 2(21) =

2.5.2 Parallel Distributed Compensation

By using the same concept as T-S fuzzy model, the following polynomial fuzzy controller (2.38)

is typically utilized to stabilize polynomial fuzzy model in (2.29).

u(t) = — Z hi(z(t)) Fi(z(t))a&(x(t)) (2.38)
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Then, by substituting (2.38) into (2.29), the overall closed-loop system becomes (2.39).

B(t) = D > hilz(£)h(=(t) x

i=1 j=1

{Ai(z(t)) — Bi(=(t)) Fj(2(t)) j2(x(t)) (2.39)

2.5.3 S-procedure

In [8], an S-procedure to encounter a constraint in quadratic forms, i.e. some quadratic forms
be negative implies other quadratic forms are negative, has been presented. Given ¥;(x(t)) =

z(t)7Qix(t) + Lix(t) + ¢; for i = 0, ..., k, and consider the condition (2.40).
Vo(x(t)) € PO Va(t) such that 9;(z(t)) € POF (2.40)

fori =1, ..., k. If ; > 0 is exist satisfying

k
o(@(t) > S rdi(w(t)) Va(2), (2.41)
=1

then (2.40) holds. This technique cal also be applied in polynomial cases as described in Lemma

2.5.1.

Lemma 2.5.1. [29] Given polynomials g1(x(t)) and ga(x(t)) define sets L1 and Lo:

Ly = {o(t) € B : g(a(t)) <0},

Ly = {(t) € B : ga(alt)) <0},

if o(x(t)) € PO is ewist satisfying —g1(x(t)) +o(x(t))g2(x(t)) € P for all (t) then Ly C L.
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Chapter 3.

Stability Analysis of Polynomial
Fuzzy Systems

This section provides an analysis of polynomial fuzzy system stabilization.

3.1 PPLF and Switching Controller Design

Piecewise polynomial Lyapunov function can be categorized as an extension of polynomial Lya-
punov function (PLF). One of several provided PLFs is chosen as Lyapunov function simultane-
ously. There are two types of PPLF-based approach: minimum-type and maximum-type. This
thesis only focuses on the minimum-type PPLF. In minimum-type PPLF-based approach, the
chosen Lyapunov function is selected when it becomes the minimum Lyapunov function among
others. It is simply described as follows.

V(a(®) = min Vi(a(t). (3.1)

where N described the PPLF number and V;(x(t)) is a PLF. It is worth mentioning that PPLF
will be reduced to PLF when N = 1. In order to avoid ambiguity between Vi(x(t)) and V (z(t)),
Vi(z(t)) (I=1,2,---,N) are called as partial Lyapunov functions or partial Lyapunov function
candidates. Moreover, switching controller is also employed so that the advantages of PPLF-

based approach can be gained.

u(t) = =Y hi(z(t)) Fa(a(t)@(2(1)) (3.2)
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when V(x(t)) = Vi(x(t)) for { =1,2,--- ,N. If N =1, (3.2) reduces to (2.38). By substituting
(3.2) into (2.39), the closed-loop system is written as

@) = Y D> hi(z(t)h(2(t)) x

i=1 j=1

{Ai(z(t)) — Bi((t)) F(a(t)) }2(2(t)) (3.3)

when V(z(t)) = Vi(x(t)). If N =1, the closed-loop system (3.3) reduces to (2.39). From now, ¢
notation will be dropped. Hence, in the later discussion, @ (¢) will be written as  and &(x(t))

will be written as &(x).

3.2 Stabilization Conditions Based on Positivstellensatz Relax-

ation

Theorem 3.2.1. The switching controller (3.2) stabilizes the closed-loop system (3.3) with
the equilibrium x = 0 if Lyapunov functions Vi(x) (Vi(0) = 0), polynomial matrices Fj(x),

Gijmi(), ski(x), Giri(x) € S, pri(x) € P and a scalar o < 0 are exist such that

Vi) —v(x) €8 (3.4)
- ; ; ;h?ﬁ?ﬁz{sm(@ {mggn) x

{Ai(z) — Bi(z) Fy(z)}&(z) — aVi(z)
N

+ 3 Gimi(®) V(@) = Vi(@)] + gia(®) + pua()}
m=1

+> hipu(e) €8 (35)
k=1

Gijmi(x) €S (3.6)

fori,j€{l,...,r}, m, 1€ {l, ..., N}. N >0 denotes the PPLF number, and v(x) € PT is a

predefined radially unbounded polynomial.



CHAPTER 3. STABILITY ANALYSIS OF POLYNOMIAL FUZZY SYSTEMS 31

Proof. Vi(x) for I =1, ..., N with N > 0 are chosen as the candidates of Lyapunov function.
Since the Lyapunov functions have to be positive definite function, a predefined polynomial

v(x) € PT is employed satisfying
Vi(z) —~(z) > 0. (3.7)

Moreover, partial derivatives of the Lyapunov functions have to be negative definite along the

trajectories. The derivatives of Vj(x) is presented in (3.8).

Vi(z) = & (3.8)

By substituting (3.3) into (3.8), the condition (3.8) can be rewritten as

=3 @) P Aw) - Bife) Fu(a) (). (3.9

i=1 j=1

Recall Lemma 2.5.1, hence condition (3.9) is represented as (4.21).

S i@ 20 4 @) - B Fya)at)

j=1 i=1

N
+ 3 Cmil@) (V@) ~ Vil@)) | <0,
=1

Va # 0. (3.10)

Now, introduce h? (37_, h? = 1) to replace the term h;(z) as performed in [62]. Moreover, in

i=1""

order to guarantee Vi(x) < 0 at & # 0, a scalar o < 0 is introduced satisfying V;(x) —aVj(x) < 0.
Hence, (3.10) becomes (3.11).

ZZhW_ 1, #0 (3.11)
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To apply the P-satz relaxation, the empty set condition of (3.11) is written as follows.

{z e RV Ay(z) >0, = #0, 22h2h2—1:0}:® (3.12)
=1 j=1
where
M) =3 3 w2 { 1 @) - Bi(a) Fa(a) i (a) - avil@)

1i=1

. N
+ 3 Cmi(@) (Vi (@) = V(=) }. (3.13)

m=1

Let h = [h2--- h2]T. The constraint = # 0 in (3.12) is replaced by qu(h, ) € P with
under constraint g (h, ) # 0 <= « # 0. Then define ¢,y (h, ) = S.7_, h2¢uq(x) with under

i=1""

constraint ¢gi(h, ) # 0 <= x # 0. Hence, (3.12) can be expressed as

{x € RN| Ajj(z) >0, Z h2qua(x) # 0

ZZh2h2—1:O} = (3.14)

i=1 j=1

where Aj(x) is defined in (3.13). Now, apply P-satz described in Lemma 2.3.1 to condition
(3.14) where f1(x), g1(), and hi(x) of (2.12) in P-satz correspond to Ay(x), S°7_, h2qui(x),

i=1"%

and D77, 7L hlzh2 — 1 in (3.14) respectively, the condition (3.14) can be rewritten as

su(h, @) + sy (h, o) ZZh%Z[W’

=1 j=1

{Ai(z) - Bi(x) Fy(x)}a(z) - aVi(z)
N
+ Z Gismi(@)(Vin(@) — Vi(@))|

tpulh, z [ZZh2h2fl]

i=1 j=1

+ [ZT: Qmil(m)} =0 (3.15)
i—1
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where s1;(h,x), sy1(h,x) € S, and p;(h,x) € P. In order to simplify (3.15), [Zle qzit(T) ’ are
writtenas » ;>0 1 quil(€)qzmi(x), then we can represent qgi () gzmi () = giri(x). Moreover,
we choose py(h, ) = 3" _ h2pp(x) and sy(h, ) = 37 hisp(z) where sy(x) € S and
pri(x) € P. Therefore, the condition (3.15) becomes (3.16).

i=1 j=1m=1

{Ai(z) — Bi(z)F(z)}2(z) — aVi(z)

N
+ 37 Gt (Vin ) = Vi(@))| + s () + pra(a) }
m=1

+3 " hipu(z) € S (3.16)
m=1

According to the relation between a space of nonnegative polynomials and a set of SOS poly-
nomials, the conditions (3.4) and (3.5) are sufficient conditions of (3.7) and (3.16) respectively.
Therefore, the SOS problems presented in Theorem 3.2.1 are to find polynomial Lyapunov func-
tions Vj(x), polynomials sy (), Cijmi(x), giri(x) € S, pr(x) € P, polynomial matrices Fj(x),

and a scalar a < 0 such that conditions (3.4) - (3.6) are satisfied. O

To solve the SOS conditions in Theorem 3.2.1, an SOS solver called SOSOPT is used. How-
ever, since nonconvex term appears in (3.5), a path following algorithm (see [36,61]) is required

to solve the problem which is explained in the next section.

3.2.1 Path Following Algorithm

In order to solve the nonconvex condition, path-following algorithm is presented as follows.
Step 1: Set n = 0, randomly choose Vj(z) and sy, (x), I = {1, ..., N}, m = {1, ..., r}
Step 2: Set sy, () = s () , and Vi(x) = V" (x) and solve the following optimization problem
min a subject to (3.4), (3.5), and (3.6).
Fji(x),Cijs1(x),qikt (22),pri () ( ) ( ) ( )

If & < 0 is obtained in Step 2, it is a strict solution and the iteration will be stopped otherwise

go to Step 3.
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Step 3: For the Fj(x), Cijmi(x), qiri(x), pri(x) obtained from step 2, solve the following

optimization problem

min a subject to
Vi (2),0Fj1(2),0C; jmi(2),05k1 (2),0q:k1 (2),0pki ()

Vi(e) + 0Vi(@) ~ e(a) 580, L € {1, .., N} (3.17)
SHI thhW{ sua(@) + dsa @) [ T2 s (A (w) — Bl B ()} ) )

i=1 j=1m=1
—aVi(@) + chml (2) = Vi(e))]
Tou(e) Pg; o, [Ai(2) — Bi(2)F(2)}a(z) — abVi(x)

N

HD Mg (@) (0Vin(@) = Vi) + iyt (@) V() — Vi)

m=1

+s() [%gm) x {Ai(@) - By(2) Fy(2)}a(x)]

+(giri () + dgqin () + Z hi(pra () + 5pkl($))} S (3.18)

Cijml( )+5C1jml( )158087
ie{l,..,r} s, 1e{l, .., N} (3.19)
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35

V6.

e V2 (@) Vi)
| V() 1

ecCimi(®)  0Cijmi(x)
| 0Gijmi(x) 1

erFjj (z)F(z) OF; ()
3 Fji(z) I

v1 €S

v €S

v3€ S

v €S

v5€ S

g () Oqipi(x) v €S

| gk () 1

i,je{l,..,r} m,le{l, .., N}

where €,, €¢, €7, €5, €, €, are small positive scalars for small perturbation.

Step 4:

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

For dsi(x), 6Vi(x) obtained from step 3, update s}, (x) and V;’(x) such that SI(JZH)(:B) =

sy (x) + dsp(x) and Vl(nﬂ)(m) = V() + 6Vi(x); then set n = n+ 1 and go back to step 2.

Remark 1. The path-following algorithm in this thesis is performed by utilizing SOSOPT with

the most reliable options ’both’. Please note that if any feasible solutions in Step 2 are found,

the solutions will be substituted into the original SOS conditions in theorem 3.2.1 and checked

whether they satisfy the SOS conditions (i.e. by using “issos” command with the checking

options ’both’). This double checking is important to obtain reliable solutions.

3.2.2 Design Example

In order to show the effectiveness of the proposed design described in Theorem 3.2.1, a bench-

mark design example employed in many literature is demonstrated in this section.

Consider the following continuous T-S fuzzy model.
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3
&= hi(z){Ai(x)2 + Bj(x)u}

=1

where z = 1, &(x) = x = |21 $2]T7 and

1.59 —-7.29 1

Al == 5 Bl = )
0.01 0 0
_0.02 —4.64_ _8_
A2 = 5 B2 = ’
0.35 0.21 0
_—a —4.33 _—b +6
Az = , B3 =
0 0.05 -1

The membership functions are given as

cos10x; +1 sin10x7 + 1
hi(z1) = fl, ho(z1) = fla
—cos10x1 —sin10xq + 2
h3(x1) = : 1 : :

In this design example, set ¢ = 2 and find the maximum value of b that can be achieved by
solving the SOS conditions in Theorem 3.2.1. Obtaining a larger b means a more relaxed result
can be achieved. The feasible region of b by applying the proposed design will then be compared
with the existing results from the existing approaches. To solve the SOS conditions in Theorem

3.2.1, the following setting are used (see Table 3.1).

Table 3.1:Order setting of decision variables in Theorem 3.2.1 for design example 3.2.2.

Decision variable H Degree

Vi(z) 2
Gijmi(x) €S 0
spi(x) €S 0
qiri(xz) €S ond
pri(x) € P ond

By using the proposed design in Theorem 3.2.1, the feasible solution is obtained for byax = 6.5
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for second order PPLF when NN = 1. The feasible solutions are as follows:

V() = 0.866346x% + 1.0400z 12 + 10.9320123,
Fi = [31.340180 13.45745} ;
Fy = [173.50990 104.23202} ;
Fs = [—33.88348 —292.6525} ;

511 = 1.0471144, S21 = 5.0495888, §31 = 1.2063872,

p11(z) = 0.01539327 4 0.020307z1 25 + 0.01160523,
po1(x) = 1.7807192% + 2.087569z1 x5 + 0.612413232,
p31(x) = 0.03351022 + 0.036831x1x5 + 0.10356923,
qui(x) = 016624.%'% +0.021287x 129 + 0.009619:13%,
@121 () = 2.31012622 + 2.675464x1 x5 + 0.7922562:2,
q131(x) = 0.0644002% — 1.33475621 29 + 12.4903423,
go11 () = 2.31012622 + 2.675642x1 x5 + 0.79225623,
Go21 () = 2.63583922 + 3.092061x1 x5 + 0.90725623,
Go31 () = 164830322 + 1.897572x1 x5 + 0.58693123,
g311(x) = 0.06440027 — 1.33475621 29 + 12.4903423,
321 () = 1.64830327 + 1.897572x 29 + 0.5869313,
@331 () = 0.04497522 — 0.187010x1 x9 + 2.4079842:2,

Gijmi = 71.2881515.

The comparison of the result with other existing results is shown in Table 3.2.



CHAPTER 3. STABILITY ANALYSIS OF POLYNOMIAL FUZZY SYSTEMS 38

Table 3.2:Comparison of b4z .

Approach H bmaa

Theorem 3.2.1 (2"¢ order) 6.5
M. C. M. Teixeira et al [40] 6.0

Y. -J. Chen et al. [33] 6.0
F. Delmotte et al [38] 6.0
C. -H. fang et al [41] 6.0

M. C. M. Teixeira et al. [39] 5.0

X. Liu et al [42] 2.5

The controlled behavior of the design example can be seen in Figure 3.1. From the figure, we
can see that the switching controller stabilizes the system, i.e., all the initial conditions converge

to the equilibrium point.

T2
o
T

-10 I I I I I I I I I 1

Fig. 3.1:Control results of design example 3.2.2 by solving Theorem 3.2.1
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3.3 Stabilization Conditions based on Copositive Relaxation

In this section, the other relaxation technique, i.e. copositive relaxation, is applied to obtain
more relaxed SOS PPLF-based stabilization conditions. The derived SOS conditions are given

in Theorem 3.3.1.

Theorem 3.3.1. The equilibrium point € = 0 of the polynomial fuzzy systems (2.29) can
be stabilized by the switching controller(3.2) if there exist polynomial matrices Fj(x), radially
unbounded polynomials (polynomial partial Lyapunov functions) Vi(x) with V;(0) = 0, SOS

polynomials &;mi(x) € S, a nonnegative integer pu, and a negative scalar T such that

Vi(z) —e(x) € S, (3.26)

. (Z iﬁ) Z Zh2h2{ i) — TVi(z) + Z €t (2){Vin () — Vl(:n)}} €S (327)
k=1 i=1 j=1

Eijmi(x) €S (3.28)

fori,je{l,..,r},1€{l,.., N} and N denotes the PPLF number. A polynomial e(x) € PT
is a predefined radially unbounded polynomial to guarantee the positivity of Vi(x). ©;(x) are
defined as

_IVi(=x) .
Oii(@) = = = { Ail@) - Bi(@)Fu(@) }a(a). (3.29)
Proof. Vi(x) (3l € {1,2,---,N}) are partial Lyapunov function candidates selected as minimum

polynomial Lyapunov functions (PLFs). If Vi(x) are radially unbounded polynomials VI, then
V(x) is a radially unbounded polynomial. e(x) € P* is introduced as predefined radially
unbounded polynomial satisfying Vj(x) — e(x) > 0. This condition is used to guarantee that
Vi(z) are radially unbounded polynomials VI. It implies Vj(x) > e(x) > 0 at & # 0. According
to the definitions in 2.1, the condition can be satisfied if (3.30) holds.

Vi(z) — e(z) € S (3.30)

Time derivatives of Vj(x) are described in (3.31).

i),

Vl(w) T oz

(3.31)
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By substituting (3.3) into (3.31), (3.31) is rewritten as (3.32).
= Zzhi(z)hj(z)@ijl(m) (3.32)
i=1 j=1

To guarantee Vj(x) < 0 at = # 0, a scalar 7 < 0 is considered satisfying V;(x) < 7V;(z), that is,
Vi(x) — 7Vi(z) < 0. (3.33)

The condition (3.33) is equivalent to
Z Z hi(2)hj(2) (O (z) — TVi(z)) < 0. (3.34)
i=1 j=1

As a consequence of minimum-type PPLF-based approach (5.5), i.e. Vi(x(t)) are chosen in the

partial Lyapunov functions, (3.35) is necessary for m =1,2,--- | N.
Vi(x) — Vin(x) <0 (3.35)
Now, apply the S-procedure in Lemma 2.5.1 by defining sets L; and Lo as

L :={xcR": Zzhi(z)h]’(z)(eijl(m) — V() <0},

i=1 j=1

Ly :={x € R": Vj(x) — Vjn(x) < 0}.

According to Lemma 2.5.1, if & (x) € PO are exist such that

Z Z hi(z)h;(2)(Oi(z) — TV () + Z Eijmi (e (z) = Vi(z)}) <0 (3.36)

i=1 j=1

holds Va then Ly C L;. In other words, the condition (3.34) is satisfied only if (3.37) is satisfied.

N
> Gjmi(@){Vin(@) — Vi(z)} € PO* (3.37)
m=1

According to the relation between a space of nonnegative polynomials and a set of SOS polyno-

mials (see Section 2.1), (3.38) is a sufficient condition of (3.36).

=D hi(2)hi(2) (Ogu(a) — TVi(x) + Z Eijmi(®){Vin () — Vi(z)}) €S (3.38)

i=1 j=1

Apply copositive relaxation in Lemma 2.3.3, (3.38) can be rewritten as

(i)' S Y ey - i +Zemml Valz) - Vi(@)}} €S, (339)
k=1

i=1 j=1

O]
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In order to use SOS design frameworks, &;jmi(x) in (3.39) are set as SOS polynomials even
though &;jmi(x) € POF are sufficient for (3.39).
Recent frameworks to efficiently solve the SOS conditions in Theorem 3.3.1 have widely discussed
in many literature, e.g. [29-31,33,36,54,61,62,64], and so on. The SOS stabilization conditions
fully takes the advantage of the PPLF properties and provides several new ideas in the derivation
process of both the stabilization and robust stabilization conditions over the existing approaches.
The utility of the approach can be seen though two design examples. The SOS solver that is
used to solve the SOS conditions is SOSOPT [65] with the most reliable computational accuracy
option ‘both’.
Remark 2. Note that e(x) is a slack radially unbounded polynomial to keep the positivity of
Vi(x). In most of cases, an extremely small positive definite polynomial is set to e(x). For
example, we can set e(x) = 107 %(2¢ + 294 - - +22) where d € [2,4,6, - - -] means d-th Lyapunov
function.
Remark 3. Polynomial Lyapunov functions V;(x) are even degree polynomials. For fourth degree

Vi(x), the form is defined as

T
3 3
3x3
Vi) = |22 | P77 |22
3 3

where P, are called the Gram matrices whose elements are decision variables. SOS solver can
numerically find the Gram matrices P, such that Vj(x) are positive definite polynomials. By
employing an SOS solver, the SOS problems in Theorem 3.3.1 will be determined as an SOSP
(sum of squares program). SOSOPT [65] or SOSTOOLS [70], SOS solvers, call an SDP solver
(SDPT3, SeDuMi, etc) after the SOSPs have been automatically converted as SDPs (semidefinite
programs). Then, SDP solutions can be obtained after calling the SDP solver. Finally, a
conversion from SDP solutions to SOSP solutions is the last step in SOS solver. The SOSP

solutions are called as feasible solutions in this thesis.

3.3.1 Path Following Algorithm

This section provides the algorithm, path following algorithm, to solve the SOS stabilization

Conditions in Theorem 3.3.1.
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Step 1: Set n = 0, choose Ap;; fori =1,2, ..., pand [ =1, ..., N where N is positive integer
indicating the number of PPLF. For all the combinations (p1;, pai, ..., Ppt) on all grid points

, . . , pu 0
[pﬁm p?}m] X e X {pﬁm p;'}aﬂﬁ} with the intervals Apy;, Apay, ..., Apy, set Vi =
0 pu

where [ = 1,2, ..., N.
Step 2: Set Vi(x) = V}"(x) and solve the following optimization problem

min T subject to (3.26) - (3.28) .
Fjl(m)vgijml(m)

Choose the appropriate Vi(x) for [ = 1,2, ..., N such that the minimum 7 is obtained in step
2. If 7 < 0 is obtained (the feasible solution is obtained), then stop the iteration otherwise go

to step 3.

Step 3: For Fj(x) and &j,u(x) obtained from step 2, solve the following optimization

problem, which is the linearized version of (3.26) and (3.27).

min 7 subject to
Vi(x),0 Fji(x),08; jmi ()

(S 8R)" S S i 0(a) + 80(@) — r(Vi(e) + Vi(e)
k=1

==
P9 (B (@) (@) (x)

+ f: {(&jmi(®) + 6&mu() (Vin () — Vi(2)) + &ijmi(@) (6Vin () — 5W(m))}} €S (3.40)
&-:nZ(lw) + 6&ijmi () €S (3.41)
vl 6;22;(:)) 51/;@) v €S (3.42)
o1 (@) @] .

| 0&ijmi() 1

¢ F1 () Fjy(z) 6F}(x

vl erFj (z) Fy(x) OF) () vs e S (3.44)
51‘7}[(1‘) I

for 7,7 € {1, ..., 7}, m,1 € {1, ..., N}, and N is a positive integer indicating the number of
PPLF. ©;j(x) is defined as in (16) while d0;j;(x) is defined as follows.
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50,1(w) = aaglséw) x A;(x) — Bj(z)Fj(x)i(x) (3.45)

€v, €¢, €7 are small positive scalars for small perturbations. In this simulation, we use €, =
e = €5 = 0.001. In step 3, solve SOS conditions in (4.35)-(4.40) such that minimum 7 can be

obtained.
Step 4:

For §V(x) obtained from Step 3, update V;"(x) such that Vl(nﬂ)(m) = V(z) + 6V(x); then
set 7 = n + 1 and solve the following optimization problem.
min T subject to (3.26) - (3.28).
Fji(x),&ijmi(x)

If 7 < 0 is obtained, then stop the iteration otherwise go back to Step 3.

Remark 4. Please note that if 7 < 0 is obtained, double checking is performed to obtain reliable
solutions. This is performed by substituting the solutions into the original SOS conditions and
check whether they satisfy as SOS or not, i.e. using “issos” command with the checking options

'both’. If

3.3.2 Design Examples

As mentioned before, two benchmark design examples are presented to prove the effectiveness
of the proposed design in Theorem 3.3.1. Example I is the well-known benchmark design exam-
ple for T-S fuzzy systems. This example are used in several literature e.g. [24,33,35-37] . By
using this benchmark design example, the result can be fairly compared between the proposed
approach and other existing approaches. Example II is a benchmark design example for polyno-
mial fuzzy systems. This example is used not only to show the effectiveness of the proposed SOS
conditions but also to show that the proposed design is applicable for both T-S fuzzy systems

and polynomial fuzzy systems.
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Example 1

Consider the following T-S fuzzy systems:
&= hi(z){Ai(x)& + Bji(x)u}, (3.46)

where #(x) = = [11 22]7 and z = 21,

1.59 —-7.29 1

Al = ; Bl = )
0.01 0 0
_0.02 —4.64_ _8_
A2 = 5 B2 = ’
0.35 0.21 0
_—a —4.33 —b+6
Az = , B3 =
0 0.05 -1

The membership functions are given as

cos10x; + 1

ha (1) = —— (3.47)
sinl10xq +1

ha(z1) = 741 ; (3.48)
—cos 1021 — sin 10 2

hg(xl) _ cos 10x1 4sm xr1 + ' (3.49)

In this design example, we set a = 2.0, the same setting as used in [24,33,35-37] . Then,
the maximum value of b, 0 < b < 8.5 with interval 0.5, is calculated by applying the proposed
stabilization conditions in Theorem 3.3.1. The results of the proposed design can be seen in

Table 3.3 which also provides comparison of by, with other reported results.

From Table 3.3, it can be concluded that the proposed stabilization conditions in Theorem
3.3.1 provides the most relaxed results compared with other existing approaches. Moreover, the
effect of increasing the PPLF number has also been investigated by setting N = 1, 2, 3 which
indicates PPLF;(PLF), PPLFy, and PPLF3, respectively. The Lyapunov functions are set to
as second and fourth degree polynomials. The results of PLF approach (N = 1) and PPLF

approach (N > 1) are summarized in Table 3.4.
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Table 3.3:Comparison of b, .
Method H bmaz

Theorem 3.3.1 (4'" order) 8.0

Theorem 3.3.1 (2" order) 7.0

Y. -J. Chen et al. [36] 6.5
V. F. Montagner et al. [37] 6.5
A. Sala [35] 6.5

Y. -J. Chen et al. [33] 6.0
F. Delmotte et al [38] 6.0

M. C. M. Teixeira et al. [39] 5.0
X. Liu et al [42] 2.5

Table 3.4:Comparison of b,,,, for PLF and PPLF approach with a = 2.

274 order 4" order

PLF bmaz = 6.5 | bmaz =7.0
PPLF2 || bmaz = 7.0 | bmaz = 8.0
PPLF3 || bmaz = 7.0 | bmaz = 8.0

For b = 8.0, feasible solutions (4" order PPLF3) are obtained as follows:

Vi(x) = 0.000585z7 — 0.00195923 25 + 0.012132323
4 0.02171921 23 + 0.011680823,
Va(z) = 0.0237152] — 0.026073z3 5 + 0.478558x2 x5
+ 0.503281x1 25 + 3.666267x3,
Fy = :5.403357 0.063883] :

Fi2 = |4.91963 —3.5975}7

F> = |12.6513 10.95309

Fy = [13.2867 12.06171

F31 = |—5.4542 —40.982|,

F3 = | —4.6248 —45.402] .

T
For 4" order PPLF5, the control result of an initial state x(0) = {5 _1()} is presented in
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Fig. 3.2:Control result for an initial state (0) =[5 — 10]7 in fourth order PPLF5 approach.

Figure 3.2. The blue line indicates V(x) = Vi(x) while the red line indicates V(x) = Va(x).
The use of switching controller can also be seen in Figure 3.2, i.e. Fjo is switched to F;; around

6 [sec.] in order to stabilize the system.

Controlled behavior of the system with six initial states is given in Figure 3.3 for 4" order
PPLFy approach (a = 2.0 and b = 8.0). By employing the designed switching controller, it
shows that all the initial states converge to zero. The region of Vi(x) (“x”)and Va(x) (“+7) for

4" order PPLF5 is shown in Figure 3.4 for a = 2.0 and b = 8.0.

Example 11

Consider the following polynomial fuzzy system:

3
&= hi(2){Ai(x)& + Bi(z)u}, (3.50)
=1
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T2
o
T

4+
6 [, 1 1 1 & 1 1
6 4 2 0 2 4 6
X1
Fig. 3.3:Control trajectories of six initial states: x(0) = [2 — 6|1, =(0) = [4 — 4]T,

z(0)=[4 47, 20)=[1 6]7, z(0) =[-4 4], x(0) = [-4 — 4]T for fourth order PPLFy
approach (a = 2.0 and b = 8.0).

where &(x) = = [z1 22]7 and z = z1,
Ar(x) 1.59 + x% — 2:6% —x1xe —7.294 22129
1\&) = )
i 0.01 —? — a3 |
Ao () 0.02 + :L‘% — 2:1:% —x1x0 —4.64 4+ 22129
2\ ) = )
0.35 0.21 — 2?2 — 23
As(z) —a + m% — 23:% —z10 —4.33 4+ 22129
3\&) =
0 0.05 — 23 — a3
1 + x4+ 22|
Bi(z) = ey
0
E + a1+ 2]
Bs(z) = L
0
Bay(x) = —b+6+ 21 + af
-1
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Fig. 3.4:Switching boundaries of fourth order of Vj(x) and Va(x) for a = 2.0 and b = 8.0. X for
Vi(x) and + for Va(x).

In the polynomial fuzzy system, a and b are constant parameters, and the membership functions

are given as

1

1 + e(12521+12)/2°
1

1+ e—(12521-12)/2°

hl(xl) =

hQ(ZBl) =

hs(x1) =1 — hi(x1) — ho(x1).

Since other existing approaches are mostly in LMI-based frameworks and they cannot be
applied for this design example, we only compare our proposed design with other SOS-based
approach, i.e. PLF approach. The global stabilization conditions in Theorem 3.3.1 are solved
for all combinations of 2 < a < 5.5 for 2" and 4" order of PLFs and PPLFs. By setting
2 < a < 5.5, we try to obtain the maximum value of b that can be achieved for both PLFs and
PPLFs. The feasible solutions can be seen in Figure 3.5. Note thet the plotted mark in Figure
3.5 is accumulative. In other words, plotted region in Figure 3.5 indicates that o (2" order

PPLF3) C + (4" order PLF) C x (4" order PPLFy).
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Fig. 3.5:Feasible solutions area of Example II (o for 2" order PPLFy, + for 4" order PLF, and
x for 4" order PPLFy).

For 2™ order Lyapunov function, PLF approach (the existing approach) fails to obtain any
feasible solutions, while in the PPLF3, b0 = 5.0 can be achieved for a = 5.5. From the results,

the PPLF approach (N > 1) provides better results compared with the existing PLF approach.

For 4" order PPLF, with a = 2 and b = 5.5 which is an infeasible point of both 4" order
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PLF and 2" order PPLF5), the obtained feasible solutions are as follows:

Vi(x) = 0.33412227 + 0.65782923 29 + 1.06943522 23
+0.900811z x5 + 3.974909z3,
Va(x) = 0.3663079x] + 0.775042423 x5 + 1.036988x7 23

+0.789109z1 x5 + 3.942412x3,

Fi1 = |12.52659 4.115568

Fio = [14.13437 3.423371

Fy = |10.98544 7.711715

F> = |8.382026 6.896101

Fs1 = |6.852751 —12.30076},

F35 = (13.43515 —19.20387}-

T
Control result of an initial state x(0) = [_6 _4} is shown in Figure 3.6 for 4" order PPLF
(a = 2 and b = 5.5). The blue line implies V(x) = Vi(x) which indicates u = Fj;(x)Z(x) is
used as control input. The red line implies V() = Va(x) which indicates u = Fjy(x)z(x) is

used as control input.

From the figure, it can be seen that the controller switches for four times which indicates by
color changing (from blue to red and vice versa). For instance, at t = 0, the chosen Lyapunov
function is Vi (x) so that controller Fj;(x) is employed to stabilize the system. After that, the
controller switches from Fj(x) to Fia(x). At around 1.5 [sec.], the controller switches from
Fj3(x) to Fji(x). The controlled behavior of the system with six initial states is presented in
Figure 3.7. From the figure, it can be seen that all the initial states converge to the equilibrium

point.

The region of Vj(x) and Va(x) is plotted in Figure 3.8 which are marked by “x” and “+7,

respectively.
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Ty, T2

Fig. 3.6:Control result for an initial state (0) = [—6

T2
o
T

— 4]7 in fourth order PPLF5 approach.

[T R (O T R B B
!
!
!
i

[ R B N N

Fig.  3.7:Trajectories of control results (¢ = 2.0, and b = 5.5) for six initial states:

z(0) =2 -6, z(0) =[4 —47, x(0) = [4 47, 2(0) = [1 6", 2(0) = [-4 47,

x(0) =[-4 —4]7 in fourth order PPLF3 approach.
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Chapter 4.

Robust Control of Polynomial Fuzzy
Systems

In reality, an error of a plant model is possibly appear in the modeling process which means
there is a differences between the actual plant and the used model in control design. Hence,
robust control theory has became important feature in designing control systems. This section
provides robust control of such systems represented as polynomial fuzzy model by assuming

there are uncertain elements in plant dynamics.

In [44,61], robust control design of polynomial fuzzy systems, by considering uncertainties in
the systems and input terms, has been performed by utilizing a polynomial Lyapunov function
(PLF) approach. In order to compare the proposed robust stabilization conditions (PPLF-based
approach) with other existing approaches, i.e. [44,61], two design examples are also demonstrated

in this section.

4.1 Polynomial Fuzzy Systems with Uncertainties

Global robust stabilization of polynomial fuzzy system first has been performed by Cao et al [44]
and Tanaka et al [61] by employing PLF approach. Motivating from the results showed in the
previous section, i.e. global stabilization of polynomial fuzzy systems, PPLF approach is also
considered to be used in robust control of polynomial fuzzy systems. Newly derived robust

stabilization conditions of polynomial fuzzy systems with uncertainties are presented in this
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section. The definition of polynomial fuzzy system with uncertainties is described as follows.

Model Rule i:

IF 2z1(t) is M1 and - -+ and z,(t) is Mo,

THEN &(t) = {Ai(z(t)) + Dai(x(t)) Agi(z(t)) Eai(z(t)) }&(z(t))
+{Bi(z(t)) + Dyi(x(t)) Avi(2(t)) Epi (x(t)) bu(t),

1=1,2,--- 7, (4.1)
The defuzzification process of the polynomial fuzzy system (4.1) is represented as
&= erhz(z){Az(az):f:(m) + Bi(x)u + Dgi(x)Aui(x) Eqi(x)Z(x)
i=1
+ Dy () Api () Epi (z)u }. (4.2)

D,i(x), Dyi(x), Eqi(x), and Epy;(x) are polynomial matrices in @(x). Agi(x) and Ay(x) are the
uncertain matrices that satisfy |[Agi(z)|| < Bai(x) and [|Api(z)|| < Bri(x) respectively where

Bai(x) and Sy (x) denotes the upper bound of the uncertainty norm.

The global robust stabilization conditions of polynomial fuzzy systems with uncertainties

(4.2) are presented in Theorem 4.2.1.

4.2 PPLF-based Robust Stabilization Design of Polynomial Fuzzy

Systems

Theorem 4.2.1. The polynomial fuzzy system with uncertainties (4.2) is stabilized by the switch-
ing controller (3.2) if radially unbounded polynomials Vi(x) (V;(0) = 0), polynomial matrices

Fj(x), &Gimi(x) € S, ji(x) € P, p >0, a scalar 7 < 0 and a scalar ¢; > 0 are exist and
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satisfythe following conditions.

Vi(z) — e(z) € S, (4.3)
- (Z BQ) Z Z thz( ijt(®) +iji(x) = 7Vi(z)
k=1 i=1 j=1
N
+3° G (@) {Vin(@) ~ Vil@)}) € 8, (4.4)
m=1
Gijl(@, x)v €S (4.5)

fori,je{l,..,r}, L e{l,.., N}, and N > 1 denotes PPLF number. vy is an independent
vector, and e(x) € PT is a predefined radially unbounded polynomial to guarantee positive def-

initeness of Vi(x). ©;j(x) have the same definition as in (3.29), and Giji(¢1, ) are defined

as
S =, T
Giji(d1, ) = Oilliji(x) = Eijmi () - Mz (1, @) 7
Miji(r, ) T
where
_.'ijl Z C’ijl ) ‘/Z(CU)), (46)
_@ﬁai(w)Dﬂ (axg :(B:c) )T-
) % 1‘) T
M) = | P @PuT5,7) 0| .7
Eaz(w)i(m)
Eyi(x) Fj ()2 ()

T =2I,. (4.8)

Proof. Define Vj(x) (31 € {1,2,---,N}) as Lyapunov function candidates chosen as the mini-

mum PLFs. V(x) — oo at ||z|| — oo (radially unbounded) if Vj(x) — oo at ||z|| — oo for all
l.

In order to guarantee radially unboundedness of Vj(x), €(x) € PT is introduced satisfying

Vi(x) —e(x) > 0. That condition implies Vi(x) > €(x) > 0 at « # 0. According to the relation of
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a soace of nonnegative polynomials and a set of SOS polynomials (see Section 2.1), the following

condition is a sufficient condition of V;(x) — e(x) > 0.

Vi(z) —e(z) € S (4.9)

Partial derivatives of Vj(x) are described as

oV (x) .
ox *

Vi(z) = (4.10)

Substitute the closed-loop system (4.2) and the control input (3.2) into (4.10), condition (4.10)

becomes
Vi(z) = Z Z hi(2)h;(2) (Oiu(@) + Tii(@)) (4.11)

where Ij;1(x) = @i (2)9:1(x), @a(x) and 95 (z) are as follows:
i - (M ]
diu(x) = Ebi)gz:(w) (4.13)

for Qui(x) = Dgi(x) Agi(x) and Qp;(x) = Dy;i(x) Api(x). Relation between () and 9 (x)

can be expressed as

drpi ()i (o) + . 19”1( )0iji(x)

> pu(@)din(e) + (@)% (@) (4.14)

for any ¢; > 0 and positive integer [. Since ()9 (x) = Lpg(m)ﬁile(m), we have the following
relation.

i15’51(173)197;31(33) > 21 () (x) (4.15)

drpa(x)py () + "
I
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Hence, by substituting (4.12) and (4.13) into (4.15), the condition becomes (4.16).

pu(@)9i(2) < Fepu(@el(e) + 5 0@ Dinle)
&1 0Vi(x) oVi(x)\T
= S @)l @) ()
8Vl(w)>T

oV,
v (e (T4

+ 558" (@) B (@) Bul@)i(a)
+ 558" @ Ff (@) B(@)
% Byi(2)Fy(2)é(x)
< Agji(¢r, ) (4.16)

Aiji(¢r, ) in (4.16) are given as follows.

Aiji(dy, ) = ;@Mijl(ﬁblam)TMijl(ﬁblam) (4.17)

From inequality (4.17), (4.11) becomes
Vil@) < 30N hil=)hy () (Oua(@) + Aiu(@) ). (1.18)

i=1 j=1

Now, introduce polynomials II;;; (x) satisfying (4.19).
T T
SN hi(z)hy(2) (—Aijl(@, ) + H@-ﬂ(m)) e PO+ (4.19)
i=1 j=1
By introducing polynomials II;;;(x) satisfying (4.19), (4.18) is converted to (4.20).
T T
Vi) < 305 nil2)hy(2) (O(@) + (@) (4.20)
i=1 j=1
To utilize the properties of PPLF approach (minimum type), Lemma 2.5.1 is applied to the

condition (4.20) as applied in global stabilization analysis.

Moreover, the negative definiteness of Vl(w) < 0 at & # 0 can be guaranteed by considering
a scalar 7 < 0 such that Vi(x) < 0;(z) + Ii(z) < 7Vi(z). Those conditions are represented

in the following condition.

>N hilz)hy(2) (Osu(@)+ (@) — V(=)

i=1 j=1

N
+ 3 Gomi@) V(@) - Vi(@)}) <0, (4.21)
m=1
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The following SOS condition is a sufficient condition of (4.21).

SN hi(z)hy(2) (—@iﬂ(az)—nm(m) + V()

i=1 j=1
N
=Y Gml@) V(@) - Vi(@)}) € 5. (4.22)
m=1

By utilizing the same technique as used in the global stabilization analysis based on copositive

relaxation, we arrive at the following SOS condition.

B (zr: ﬁi) Z Z hihi(© ( iji(x) + 5 (x) — 7V ()
k=1

i=1 j=1
N
+ 3 Gymi@) V() - Vi(@)}) €S (4.23)
m=1

Note that & (x) € PO* are sufficient in condition (4.23). However, since all conditions should

be reformulated in SOS frameworks,hence &;;n () are defined as SOS polynomials.

From (4.19), condition (4.24) is satisfied for ¢; > 0.

Zzh (¢1szl( ) — ¢lAijl(¢lam)) e Pt (4.24)

=1 j=1

Again, by applying Lemma 2.5.1 to the condition (4.24), it can be rewritten as (4.25).

¢lejl Z ngml ) ‘/2(213)}

— ¢ Aiji(¢r, ) € POT (4.25)

According to the Schur complement, (4.25) can be transformed to (4.26)

Z Z hi( )Giji(dr, ) € POF (4.26)

=1 j=1
where
Oilliji(x) — g () My (01,
Miji(d1, ) T
Eijmi(x), Mji (¢, x) and T are as given in (4.6), (4.7) and (4.8), respectively. O

Remark 5. Conditions (4.5) always hold even if 8,;(x) = 0 and Sy;(x) = 0, i.e., no uncertainties
case, Dyi(x) = Dyi(x) = Eqi(x) = Ep(x) = 0. In other words, Theorem 4.2.1 is equivalent

with 3.3.1 if the uncertainties are not exist.
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Corollary 4.2.2. Assume there is no uncertainties with respect to the input, i.e. Ap;(x) = 0Vi.
The closed-loop system (4.2) is stabilized by the switching controller (3.2) if Lyapunov functions
Vi(x) (Vi(0) = 0), feedback gains Fj(x), &imi(x) € S, Gmu(x) € S, Ily(x) € P, scalars pn > 0,

T <0 and ¢; > 0 are exist satisfying

Vi(z) —e(z) €5 (4.28)
_< T i@“ 22: Z hih (@uz(w) + () — TVi(x)
P e
+ miv:l Eijmi () {Vin () — Vz(ﬂﬂ)}) €S (4.29)
vl Ga(¢r,z)v1 €S (4.30)

where i, j € {1, ..., r}, L € {1, ..., N}, N is a positive integer, and v; denotes a vector that is
independent of x. A small radially unbounded polynomial e(x) € Pt is a given slack variable
to keep the positivity of Vi(x). ©;5(x) in O;;(x) have the same definition as in (3.29) while
Gii(¢, x) are defined as

ol (x) — Egpu(z) ML (S1, )

Gil(¢l7 l‘) = (4.31)
M (¢, ) T
where N
Eimi (@) =Y Cm(@) (Vin () — Vi()), (4.32)
m=1
¢lﬁaz‘($)DZi(aw($))T

Mil(@; .’13) = ox , (4.33)

T =2I,. (4.34)
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4.3 Path Following Algorithm

This section provides the algorithm, path following algorithm, to solve the SOS robust stabi-

lization conditions in Theorem 4.2.1.

Step 1: Set n = 0, choose Ap;; fori=1,2, ..., pand [ =1, ..., N where N is positive integer
indicating the number of PPLF. For all the combinations (p1;, pai, ..., Ppt) on all grid points

, A . . pu 0
[pnm p?}aw} X+ X {pz}m p;'}aﬂﬁ} with the intervals Apy;, Apay, ..., Apy, set Vi =
0 pa

where [ = 1,2, ..., N.
Step 2: Set Vi(x) = V}"(x) and solve the following optimization problem

min T subject to (4.3), (4.4), and (4.5).
Fji(2),&ijmi(@),Cijmi ()51 (x)
Choose the appropriate Vi(x) for [ = 1,2, ..., N such that the minimum 7 is obtained in step

2. If 7 < 0 is obtained (the feasible solution is obtained), then stop the iteration otherwise go

to step 3.

Step 3: For Fji(x), Gijmi(x), ;j(x), and &jmi(x) obtained from step 2, solve the following
optimization problem, which is the linearized version of (4.3), (4.4), and (4.5).
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min T subject to

SVi(2),0Fj1(),08i5m1(x) 0 jmi (x),01L;5 ()

(i) S is{ou

+1j0(x) + 6105 (x) —

=1 j=1
V()

2 (Bi(@)oFu(@)i(@)

) + 005 (x) — 7(Vi(x) + 6Vi(x))

N
+ 3 {Em() + 08ijma(@)) (Vi (@) = V() + Exgma (2)(6Vin () — 0Vi()) } } € S (4.35)
m=1

—(Z ﬁz) ZZhW Giji(¢1, @) + 0Gi1(6,x))vg € S (4.36)
k=1 i=1 j=1

Eijmi(x) + 0&mi(x) € S (4.37)

2

vl V(@) V(@) €S (4.38)
I WVi(x) 1
[ 2 g

of €¢&jm(®) 08imi () vy €8 (4.39)
| 0&ijmi(®) 1
- | .

o Fj(x)Fy(z) 0F; (z) vs €S (4.40)
| OF(x) I
[ 2

vl o7 5¢l] vs €S (4.41)

dpp 1

o ertlLyji ()01 () v (4.42)
i 5H2]l($) 1

o 6<Cijml($)2(5<ijml(w)2] v (4.43)

fori, 5 € {1, ...,r}, m,l € {1, ...,

_5Cijml($)2 1

N}, and N is a positive integer indicating the number of

PPLF. ©;j(x) is defined as in (16) while §0;;;(x) is defined as follows.

€y, €¢, €4 are small positive scalars for small perturbations.

26Vi()
ox

5@ijl($) =

X Az(ar:) — BZ(ZU)

Fy(x)a(x) (4.44)

In this simulation, we use €, =
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€ = €5 = 0.001. In step 3, solve SOS conditions in (4.35)-(4.40) such that minimum 7 can be

obtained.
Step 4:

For §Vj(x) obtained from step 3, update V" (x) such that Vl(nﬂ)(a}) = V(x) + 0Vi(x); then

set n =n + 1 and go back to step 2.

4.4 Design Examples

4.4.1 Example III

Consider the following polynomial fuzzy system with uncertainties:
T
»=Y" hi(z){(Ai(w) + Dy () Agi(x) i () 2
i=1

+ Bl(:n)u}
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T
where r = 3, &(x) = x = [901 332] , z =11, and

1.59 + a:% — 23:% —x1x2 —7.29 4+ 27129
Ai(z) = ,
0.01 —x3 — 3
0.02 + a:% — 2:1:% —x1x2 —4.64 + 27129
As(x) = ,
0.35 0.21 — 2§ — 23
_—a+:z:2 — 222 —xixy —4.334 2211
Ag(a:) _ 1 2 142 142 ’
0 0.05 — 22 — 23
B + a1 + 22|
Bi(z) = R
0
E + a1 + 22|
By (z) = e
0
[
By(x) = s
-1
C
Dal(x) = Da2($) = DaS( ) = )
0

Aal (:I:) = Aag(:I:) = Aa3(113) = A(t)/c,

Eu (@) = Ba(®) = Bwg(w) = [z, 0],

with a, b, and ¢ are constant parameters. The membership functions are given as

1

1 + e(12521+12)/2°
1

1+ e—(12521-12)/2°

h3(1‘1) =1- hl(a}l) — h2($1).

hl (561) =

hQ (1‘1) =

A(t) is the uncertainty satisfying |A(t)| < ¢ and [|Aq1(@)] = ||Aw2(2)] = |A()/c|| < 1 from
A1) < ¢, Bar(x) = Baz2(x) = 1. The effectiveness of the proposed design (Corollary 4.2.2)
can be demonstrated by finding maximum ¢, a parameter for the norm of the uncertainty. The
feasible region of the proposed design (PPLF approach) can be compared with the feasible region

of the existing robust stabilization designs [44, 61].

By setting @ = 3.0 and 4.5 < b < 5.5 with the interval 0.5, the uncertainty value cpqs; of
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Table 4.1:¢y,q, of PPLF-based robust stabilization (Corollary 4.2.2) and PLF-based robust sta-
bilization [44,61] for a = 3.

Approach H b=45 ‘ b=5.0 ‘ b=55
Cao et al [44] infeasble | infeasible | infeasible
Tanaka et al [61] c<0.79 | ¢<0.64 c<0.42

Corollary 4.2.2 PPLF> c<1.88 c<1.71 c <0.68

the proposed approach (Corollary 4.2.2) and the existing approaches [44,61] are calculated. In
this design example, we consider fourth order Lyapunov functions since PLF-based approaches
proposed in [61] fails to find any feasible solutions for second order PLF. Therefore, to fairly
compare our proposed robust stabilization design with the existing PLF approaches ( [44,61]),

fourth order Lyapunov function are investigated.

Table 4.1 shows ¢yq, 0f Corollary 4.2.2, Theorem 1 in [44] and Theorem 2 in [61] for a = 3
and 4.5 < b < 5.5. The calculation results ¢4, = 0.79 by performing PLF approach in [61]
while PPLF approach results ¢, = 1.88 for b = 4.5. Robust stabilization design proposed
in [44] fails to find any feasible solutions by using the same setting. It can be seen that our
proposed design produces the most relaxed results compared to [44,61]. For a = 3, b = 5.0 and
¢ = 1.71, a point where the existing approaches [44,61] fail to find any feasible solutions, we find

feedback gains and partial Lyapunof functions as follows:
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Vi(z) = 0.092513z] + 0.187352z3 x5 + 0.430232x2 23
+ 0.575256x1 5 + 3.149431x3,
Vao(x) = 0.089803z] 4 0.064798z3 29 + 0.32464427 23
+ 0.47425921 23 + 3.114964x3,
Fy = :20.()49363 10.029594} ;
Fiy = :4.7361688 —1.169653} ;
Fy = :29.851701 30.126719} ;
Fy = :5.3369071 4.3670417} ;

F3 = |71.144731 —57.69251},

F35 = |6.7869621 —12.81281]

The regions of Vi (x) and Va(x) are shown in Figure 4.1 indicated by ” x” and "+, respectively.
Figure 4.2 shows controlled behavior (a = 3.0, b = 5.0 and ¢ = 1.71) of six initial states. From
the control results, it can be seen that all the initial states go to the equilibrium point. In
the simulations, A(t) satisfying |A(t)| < ¢ is set as A(t) = ¢sin(2007t). The polynomial fuzzy
system with uncertainty can be stabilized by the designed switching controller for all the initial

states.

4.4.2 Example IV

Consider the following polynomial fuzzy systems with uncertainties:
T
&= hi(2){Ai(z)é(x) + Bi(x)u
i=1

+ Dgi(x)Asi(x)Eyi(x)&(x) + Dbi(w)Abi(w)Ebi(w)u}.



CHAPTER 4. ROBUST CONTROL OF POLYNOMIAL FUZZY SYSTEMS 66

20

15

10+

T2
<

-10F

-15

-20

Fig. 4.1:Switching boundaries of fourth order of Vi(x) and Va(x) for a = 3.0, b = 5.0, and
c¢=1.71. x for Vi(z) and + for Va(x).

with r =2, &(x) = x = [331 1‘2]7 z = x1, and

_—1—1—33 + 22 4 xy39 — X2 1_
Al(x): 1 1 142 2 ’
2 6

_—1—1—33 + 22 4 x129 — X2 1_
Ay() = 1+ 2] + 2120 — 25 7
2 —6
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Fig. 4.2:Controlled behavior of six initial states: x(0) =
2(0) = [0 AT, 2(0) =[1 67, 2(0) = [-4 4, x(0) = -4
approach (a = 3.0, b = 5.0, and ¢ = 1.71).

Dy, () ] , Dip(z) = {
—4q 4qy

Aui(z) = Agz(x) = Aq(t)/da,

Api(x) = Apz(x) = Ao (1) /g0,

Eqi(z) = Eq2(z) = [1 0,

Ey () = Ep(z) = 1,

2

— 6", 2(0) = 4 -4,
— 4)T for fourth order PPLF,
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Fig. 4.3:Feasible regions of PPLF approach in Theorem 4.2.1 ([0), and the existing SOS frame-
work designs in [61] (x) and [44] (o).

where ¢, and ¢ are constant parameters. Description of the membership functions are

sin (1) + 1
2 )

1 —sin(z1)

hi(z) = 5

hQ(Z)

A, (t) and Ay(t) are the uncertainties satisfying |A,(t)| < g and |Ap(t)| < g As performed in
the previous design example, in this design example we also compare the results of our proposed
robust control design with those of [44,61]. The comparison can be conducted by comparing the
feasible regions of g, and g, parameters that can be achieved by the three robust control designs.
Since A1 (@)]] = [Aa2(@)]| = |8a(t)/aall < 1 and [ Ap (@) = [ Ap(@)] = [ As()/as] < 1,
Bar(x) = Baz(x) = Bp1(x) = Bra(x) = 1.

Figure 4.3 provides the feasible regions obtained by our PPLF based robust control design
(Theorem 4.2.1) and PLF approaches performed in [44,61]. In this design example (a more
complex design example compared with the previous design example), our PPLF-based robust
control design also produces the most relaxed results. Note that, the plotted mark in Figure 4.3
is accumulative. Hence, Figure 4.3 indicates that o (PLF-based robust stabilization in [44]) C
x (PLF-based robust stabilization in [61]) C O (PPLF-based robust stabilization in Theorem
4.2.1). For q, = 0.17 and g, = 0.30, a point where the existing SOS based robust control
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Fig. 4.5:Controlled behavior of six initial conditions: z(0) = [2 —6]T, =(0) = [4 — 4]T,
z(0)=14 47, z0)=01 6T, 20)=[-4 47, 2(0)=[-4 -4 (¢, =0.17, ¢ = 0.3).

designs ( [44,61]) fail to find any feasible solutions, feedback gains and the Lyapunov functions
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are obtained as follows:

¢1 = 7.0813189,
$2 = 1.5071593,
Vi(x) = 1.1010042% + 0.270211x3,

Va() = 177655927 + 0.22489823,

- T
1.871427x1 + 0.248278x5 + 0.571009
Fii(x) = ;
0.248278x1 — 0.2821642
- T
1.773991xz1 + 0.232586x5 + 1.019811
Fy(xz) = ;
0.232586x1 + 0.166421
- T
1.900791z1 + 0.313101x5 + 0.755888
Fia(x) = ;
0.313101x; — 0.113636
- T
1.881896x1 + 0.283963x2 + 0.849027
FQQ(:IJ) =
0.283963x1 + 0.087415

Figure 4.4 shows the regions of V;(x) (”x”) and Va(x) ("+”) when ¢, = 0.1, and ¢, = 0.3. The
control trajectory results of the stabilized polynomial fuzzy system with uncertainties can be
seen in Figure 4.5 with six initial conditions. All the initial states converge to the equilibrium

point which means the designed switching controller successfully stabilizes the system.

The calculation time of the three robust control designs to find a feasible solution for this
complex design example is given in Table 4.2. Although the complexity and the required cal-
culation time (see Table 4.2) are slightly inferior as compared to other approaches, i.e. [44,61],
these demerits are well compensated by the advantage of the proposed design, i.e. wider robust
stabilization region. The computer environment is an Intel(R) core(TM)i7-6700K CPU (4.00
GHz) with 16.0-GB RAM.
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Table 4.2:Calculation time for design example 4.4.2

Gas @ H K. Cao et al. [21] | K. Tanaka et al. ‘ Theorem 4.2.1
qe = 0.01, q» = 0.05 3s 6s 14s
ga = 0.03, g» = 0.03 3s 6s 14s
qo = 0.01, ¢» = 0.25 infeasible 13 s 15 s
qo = 0.03, ¢» = 0.23 infeasible 13 s 15s
qo = 0.05, ¢» = 0.21 infeasible 13 s 16 s
qa = 0.07, ¢» = 0.17 infeasible 13 s 16 s
qa = 0.09, q» = 0.13 infeasible 13 s 16 s
q¢a = 0.01, g» = 0.55 infeasible infeasible 18 s
qo = 0.03, ¢» = 0.55 infeasible infeasible 18 s
qa = 0.05, ¢» = 0.53 infeasible infeasible 18 s
qe = 0.07, q» = 0.51 infeasible infeasible 18 s
qe = 0.09, ¢» = 0.49 infeasible infeasible 18 s
qe = 0.11, qp = 0.47 infeasible infeasible 17 s
¢a = 0.13, g» = 0.45 infeasible infeasible 17 s
qa = 0.15, g» = 0.43 infeasible infeasible 17 s
qa = 0.17, ¢» = 0.43 infeasible infeasible 17 s
qe = 0.19, q» = 0.41 infeasible infeasible 19 s
qe = 0.21, q» = 0.39 infeasible infeasible 18 s
qe = 0.23, q» = 0.37 infeasible infeasible 19 s
qo = 0.25, ¢» = 0.37 infeasible infeasible 17 s
qa = 0.27, g» = 0.25 infeasible infeasible 18 s
qa = 0.29, ¢» = 0.25 infeasible infeasible 18 s
qo = 0.31, ¢» = 0.21 infeasible infeasible 19 s
qe = 0.33, q» = 0.19 infeasible infeasible 18 s
qa = 0.35, ¢» = 0.03 infeasible infeasible 19s
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Chapter 5.

PPLF-based Controller-Observer
Design

In designing the control systems, the states of a system are usually assumed to be available
for feedback. However in practical applications, not all the states are available. This causes
the necessity of unavailable states estimation. To fulfill such necessity, observer design becomes
important feature in control systems. Hence, the works in this thesis also cover the observer
design of polynomial fuzzy systems by taking the utility of PPLF-based approach, i.e. switch-
ing polynomial fuzzy observer and controller. In this case, the designed switching polynomial
fuzzy controller depends on the state-estimation of the switching polynomial fuzzy observer. In
addition, all the conditions are derived to guarantee the global stabilization and global state-

estimation convergence of original nonlinear systems.

The polynomial fuzzy observer has fisrt been proposed by Tanaka et al in [16]. The poly-
nomial fuzzy observer designs are divided into three classes, i.e. class I, class II, and class

III.

Through this thesis, the polynomial fuzzy observer based on PPLF approach is proposed in
a more general design. The proposed design is applicable for the all three classes which brings
more efficiency design compared with the work in [16]. In this thesis, switching polynomial
fuzzy observer and controller are designed without considering the separation principles used
in [16]. The difficulty part on applying PPLF-based approach is on the switching information
according to the value of Lyapunov function. Since the chosen Lyapunov function also depends
on the unknown state x, a technique of Lyapunov function structure is proposed to deal with

the problem.



CHAPTER 5. PPLF-BASED CONTROLLER-OBSERVER DESIGN 73

5.1 Switching Polynomial Fuzzy Observer

This section provides SOS conditions for switching polynomial fuzzy observer and controller

design. Consider the following polynomial fuzzy system representation:

w—zh ){Ai(pa)z + Bi(pp)u}, (5.1)

where z(t) = [21(t) 22(t) - - 2,(t)] € R?,

[1521 Mij(z;(t))
Dkt L1521 M (2(1))
hi(2(1)) >0, Vi, (5.3)

> hi(z(t) = L. (5.4)
=1

hi(z(t)) =

Even though the proposed polynomial fuzzy observer design can be applied for all classes
as categorized in [16], this Thesis also consider the same classification in order to show the
merits of the proposed design compared with [16]. For the polynomial fuzzy system (5.1), the
classification is categorized as follows:

1. Class I: p, =mand pp =1

2. Class II: Class I: p, =« and pp =1
3. Class III: p, =x and p, = x
7 is an independent state of . From the above classification, it can be seen that Class 111

is the most complicated class since the polynomial matrices A; and B; depend on the state x.

SOS conditions for Class III design are derived in Section 5.1.1.

5.1.1 SOS conditions

This section provides SOS conditions for polynomial fuzzy observer and controller based on

PPLF approach. A description of PPLF:

Vxy) = 121}I<HK Vi(xy), (5.5)
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where [ is the switching information and K is the PPLF number. Obviously, if K = 1 then
PPLF will reduce to PLF. By applying PPLF-based approach, a switching observer estimating

the state is designed as follows.

r

= hi(z){Ai(&)Z + Bi(&)u+ Ly(&)(y — 9)} (5.6)
=1

g=> hi(2)Ciz (5.7)
=1

where & € RP is a vector of state estimated by the observer, y € R? is an estimated output, u;
is the switching control input, and L; (&) is the observer gain according to the switching index
l. By using the estimated state feedback (5.6), a switching controller to stabilize the system is

designed as
w=— " hi(z(t) Fu(Z)® (5.8)
i=1

Remark 6. In this paper, Lyapunov functions V;(zx,) are defined as Vj(z,) = =1 Y}(Z)x,. Gram

matrices Y; € R™*™ of the selected Lyapunov functions V;(&) are defined as

V(@) Y2(&) - V@]

21 T 22 T 2n T
Yl@):Yz()Yl() Y (@) (5.9)

Y (@) vR(E) - Y(@) ]

The Lyapunov function is switching according to the value of YA (Z), Y2?(Z), and Y22(&) for K
is the number of PPLF. For instance, if the number of PPLF is 2 (K = 2) then Y{!! (%) # Y (2),
Y{%(2) # Y3%(2), and Y2(2) # Y#2(2) while other values of the Gram matrices are the same

forl=1and ! = 2.

The SOS conditions for switching observer and controller are given in Theorem 5.1.1.

Theorem 5.1.1. The polynomial fuzzy system is stabilized by the polynomial fuzzy controller
if there exist positive definite polynomial matrices Yi(&), polynomial matrices Fj(x), Ly (x),
positive definite polynomial matrices IL;j(x) such that the following conditions are satisfied with

a < 0 and the estimation error via the polynomial fuzzy observer tends to zero.
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vi (Yi(Z) — e1(2))v1 € S (5.10)
T
( ﬁfn) Zzh?hf TAij(z, &)z, €S (5.11)
m=1 i=1 j=1
Nijsi(€) € S (5.12)
where p is a nonnegative integer, vi s an independent vector, 1,7 € 1,2,---.r and s,l €

1,2,--+ , K for rules number r and PPLF number K. €1(&) is a predefined positive definite
polynomial matriz. A;j(x,x) are defined as

K

Aiji(z, z) ZH(YZ(C‘E)MW(%@)) — ol (@) + Z Nijsi (T z){Ys(z) — Yi(2)}. (5.13)
s=1

Proof. Define x,, = [jT eT}, and the estimation error € = x — & by the observer. The error

system is represented as

e =35 hi(z)hy(2)x

i=1 j=1

{(Ai(z) - Ai(2) - (Bi(z) — Bi(%))F;(2))Z + (Ai(x) — Li(2)C))e}. (5.14)

We obtain the following augmented system:

ZZ ha( Mz, &)z, (5.15)

i=1 =1
where

Mji(z, &) = [ M@ Mi(@) ] : (5.16)

Mij(x, &) M (2, )

Mji(E) =Ai(z) — B;(2) Fj(2) (5.17)

M5(2) =Ly(&)C; (5.18)

M. @) =Ai(@) — Ai(#) — (Bi() - By(&) Fu(@) (5.19)

Mi(x, &) =Ai(@) - Lu(%)C; (5.20)
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Now consider the candidate of minimum PPLF as

Viz,) = @iSnK{mf YK(@)%} (5.21)

where K denotes the number of PPLF. Hence, the chosen Lyapunov function Vj(x,) can be

described as

Vi(w,) = @) Y (&), (5.22)

The time derivatives of Vj(x, ) are represented as follows.

Vi(@o) = > ) hi(2)hy(z)@) H(Yi(@) M, &),

i=1 j=1

(5.23)

In order to guarantee V(acv) < 0 at  # 0, a scalar o < 0 and positive definite polynomial

matrices IL;; (&) are introduces satisfying Vi(z,) < azlT1;;;(&)z,, that is,

Vi(xy) — axl T (2)x, <0 (5.24)

which is equivalent to

YD hilz)hy(z)x

i=1 j=1

27 (H(Y}(:Ic)Mijl(m, Z)) — aHiﬂ(i))a}U <0 (5.25)

v

Since we consider minimum type PPLF, the following condition must be satisfied for s,1 €

1,2, K
Vi(my) = Vs(xo) <0 (5.26)
which is equivalent to

zl (Yi(2) — Yi(&))z, <0 (5.27)
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Now, recall Lemma 2.5.1 and define sets L; and Lo as (5.24) and (5.27) respectively. If there
exist A\;js1(Z) € POT such that

ZZh el Ay (e, %)z, <0 (5.28)

=1 j=1

for all « then Ly C L;. In other words, condition (5.24) is satisfied only if the following condition

is satisfied.

K

> i@ {Ya(@) — Yi(@) e, € PO (5.29)

s=1
Hence, by applying S-procedure, (5.25) becomes (5.28). According to the relation between PSD
and SOS polynomials, it can be represented as

- Z Z hi( )z, Aijsi (@, &) Ty € S. (5.30)

=1 j=1
Now, define h;(z) as iL? By applying copositive relaxation, we arrive at the following condition.
T
—(Z h2 ) Z Z W2h2al (@, &)w, € S (5.31)
m=1 =1 j=1

O

Remark 7. Theorem 5.1.1 provides SOS conditions for a complicated class of observer and
controller design, i.e. A;(x) and B;(x) are dependent on the states . The SOS conditions in
Theorem 5.1.1 will be applied for design example Class III. However, note that the derivation
process of those SOS conditions are applicable for other classes, i.e. Class I and Class II,

discussed in the later section.

5.1.2 Class III

Consider the following polynomial fuzzy model:
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1 —0.3x9
Al(a:) =
—1.5 —2—2a3
—0.2172  —0.3z2
Ax(z) = ,
-1.5  —2-— 2}
23 +1

Bl(cc) = BQ(CB) =
0

012022[1 0}7

hl(z)

_sinzy + 0.217224

1.2172x,

hg(z) =

X = sin 1
1.2172x4

By solving Theorem 5.1.1, the feasible solutions are obtained as follows:

Y:

Y, =

[ 0.084872546217
—0.015893873678
0.00657122799
| —0.0169007245

—0.015893873678
21.463101758
—0.040945780950
7.51508518597

[ 0.071454510942
—0.019681749295
0.00657122799

—0.019681749295
19.240128926
—0.040945780950
7.51508518597

| —0.0169007245

0.006571227939

—0.04094578095

0.036208017307
0.00545974909

0.006571227939

—0.04094578095

0.036208017307
0.00545974909

001690072455 |
7.5150851859
0.005459749095
20.28222606643 |

—0.01690072455 |
7.5150851859
0.005459749095

20.28222696643 |

?

)

(5.32)

(5.33)
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Fu(@) 278.4102863% — 118.2616131 79 + 273.092568%3 + 6488.52165 (5.:34)
11(x) = .
—118.2628761% + 273.0924197 1 75 — 272.76195473 — 10182.781400
5.22269477 — 374.8373667 172 + 102.55985633 + 6263.1893820
Fia(x) = (5.35)
—374.8369162 + 102.559897% 172 — 483.55607043 — 13481.704452
R 278.4122997% — 118.239005%1 72 + 273.07098273 + 6488.127035
F(x) = (5.36)
—118.240083%% + 273.070894F 1 &2 — 272.7321447% — 10176.218720
B 5.221237% — 374.570463 172 + 102.53429472 + 6259.523026
Fy(z) = (5.37)
—374.573278%2 + 102.5342817 175 — 483.48627273 — 13464.058652
B 13.330447%% + 40.7306651 79 + 148.212518%3 + 399.0613619
Ly (&) = ’ (5.38)
—0.0115763% — 0.09428631 72 + 0.016883%3 + 0.170604
B 24.7782897% + 101.942773%1 79 — 406.98511533 + 2191.737402
L12($) = s (539)
—0.010774%% — 0.102280%1 79 + 0.4309727%3 — 1.220117
B 13.3449297% + 40.668152%1 79 + 148.29505023 + 399.005053
—0.011574%% — 0.094264%1 79 + 0.01684273 + 0.171024
B 24.796897%2 4 101.535972%1 9 — 406.559168%2 4 2190.50042
—0.010783772 — 0.102051871 2 + 0.43068772 — 1.220407

The feasible solutions of other decision variables can be seen in Appendix A.

Figure 5.1 shows the output y and estimated output y by the designed switching observer
and controller. In the simulation, the initial states are x(0) = [5 5}T and x = [_5 _5]T
The control results of design example class I1I can be seen in Figure 5.2. By using the estimated
state &, the switching polynomial fuzzy controll can stabilize the system and all the initial states

converge to the equilibrium point.
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Fig. 5.1:Output and estimated output.

5.1.3 Class I1

Consider the following polynomial fuzzy system for Class II:
=3 hi(=){Ai(@)z + Bi(n)u}

Y= i hi(z)Ciz

(5.42)

(5.43)

where y € RP denotes the output. The switching polynomial fuzzy observer and controller are

designed as follows.

z = Z hi(z){Ai(z)Z + Bi(n)w + Ly(z)(y — 9)}

i=1
§=> hi(z)CiE
=1
u=—Y hi(z)Fy(&)i
=1

(5.44)

(5.45)

(5.46)

where £ € R" is the state vector estimated by the switching observer and §y € RP denotes

the estimated output. The switching controller is constructed with the state feedback that is
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Fig. 5.2:Controlled behavior of design example 5.1.2.

estimated by the switching observer. SOS conditions for the observer and conditions designs are

presented in Corollary 5.1.2.

Corollary 5.1.2. The polynomial fuzzy system is stabilized by the polynomial fuzzy controller if
there exist positive definite polynomial matrices Y;(x), polynomial matrices Fj(x), Ly(x),and
positive definite polynomial matrices IL;ji(x,n, &) such that the following conditions are satisfied

with o < 0 and the estimation error via the polynomial fuzzy observer tends to zero.

vl (Vi(2) — €1(2))v; €S (5.47)
T N © T T
- (X 0) S il A m, @), € S (5.48)
k=1 =1 j=1
where | is a nonnegative integer, vy is an independent vector, i,j,k € 1,2,--- ;r and m,l €

1,2,--- N for rules number r and PPLF number K. €(Z) is a predefined positive definite
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polynomial matrices as slack variable. A;j(x,n,x) are defined as
Aiji(z,m, &) =H(YVi(@) M (z,n, &) — oIlji(z,n, T)

N
+ ) Nijmi(@){ Yo (&) — Yi(2)}. (5.50)
m=1

where

Mij(n.x) M)

Mi(z,n@)=|" ! : (5.51)
0 M (z, T)

Mji(n, &) =Ai(&) — Bi(n)Fj(%), (5.52)

M5(&) =Ly (&)C;, (5.53)

M (2, &) =A;(z, &) — La()C; (5.54)

In order to show the effectiveness of the proposed design, a design example that was also
used in [16] is also performed. Consider the following nonlinear system where x; is measurable

and y = 1 [16]:

@1 = sinx — 0.329 + (23 + 1)u

iy = —1.5z1 — 2wy — 3. (5.55)

The dynamics of the nonlinear system can be represented as the polynomial fuzzy system where
r =2,z =mn = y. In order to compare the proposed SOS conditions with other approach,
we set parameter a and b in the matrices. The polynomial fuzzy model representation for the

nonlinear system is as follows.
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1 —0.3z9+ b
-15 -2- ax% 7
—-0.2172 —0.3x9 + b
—1.5 -2 — ax% 7
2
y 41
= By(n) = :
0
- 02 = |:1 0i| )
siny + 0.2172y y —siny
=, ha(2) = "5
1.2172y 1.2172y
= Ai(x)x — A (x)T
1 —0.3(332 + fg) +b el

-1.5 —-2-— aa:% — X9To — afc% )

AQ(:I:)CC — AQ(&:)C&

—0.2172
—-1.5

—0.3(:62 + fz) +b

2 = ~2
—2 —axj — x2T2 — aT;

€1

€2

In this design example, \jjm;(€) and Y;(&) are set to be zero order polynomials and zero

order polynomial matrices in & respectively. Therefore, €1 (&) are set as positive definite matrices

instead of polynomial matrices and p = 0.

The feasible area of the proposed design and those in [16] can be seen in Figure 5.3. From

the figure, it can be seen that the proposed design provides more relaxed results compared with

Theorem 2 in [16]. The estimated results by the switching polynomial fuzzy observer is showed

in Figure 5.5. The figure shows the estimation error converge to zero. The controlled behavior

of the nonlinear system is given in Figure 5.6. The switching polynomial fuzzy controller that

depends on the estimated state & has successfully stabilized the system, i.e., all the initial states

go to the equilibrium point.

For a = 3.7 and b = 1050, the obtained feasible solutions are presented in (5.56)-(5.66). The

domain area of the chosen Lyapunov function can be seen in Figure 5.4.
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Fig. 5.3:Feasible area of a and b (o for Theorem 2 [16] and and x for Theorem 5.1.2).
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Fig. 5.4:Domain area of chosen Lyapunov functions: x for V(x,) = Vi(x,) and + for

Vixy) = Va(ay).

Feasible solutions for design example class II:

o = —0.011609298758377, (5.56)
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output
251 — — — estimated output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.5:Control and estimation results.
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Fig. 5.6:Controlled behavior of design example class II.

[ 0.12063721937297 0.074535107397063 0 0

0.074535107397063  76.897608062766 0 0
0 0 0.0165750092 0

0 0 0 6.640939209 |

)

(5.57)



CHAPTER 5. PPLF-BASED CONTROLLER-OBSERVER DESIGN

86

_0.1208809520173 0.07493125377689
0.07493125377689  76.894238293000

0
0

0
0

Y>(n) = ,
0 0 0.0165750092 0

0 0 0

(5.58)

6.640939209 |

T

Fiu () 512.5543212867% — 8.3749131427871 72 + 98.513730277972 + 607.99119602
11{x) =
8.374913142787% + 236.2464693137 172 + 375.68113306773 + 5.2408 x 10~°

(5.59)

- T
512.5543203473% — 8.37492204601%1 72 + 98.513763418%3 + 600.180814897

8.374922046017% + 98.513763418%1 72 + 236.24650380973 + 370.859430816
5.60

8.705995444963% + 97.893729343971 %2 + 236.73542928972 + 377.6212915886

5.61
T

(5.60)
- T
512.37485949537 — 8.705995444961 %2 + 97.893729343973 + 609.133690126 ]
(5.61)

512.374853510%% — 8.705980036317 172 + 97.893681707372 + 601.258007411
8.70598003631%% + 97.8936817073% 172 + 236.73538005773 + 372.744431475

(5.62)

106.699616497% — 1.820826463971 72 + 274.83769552%3 + 158.90628583
—0.046556381017% — 0.609511666531 72 — 0.255212624273 + 0.03082695247

(5.63)

106.69961603573 — 1.82082682346%1 79 + 274.837695285%3 + 157.059963456
—0.04655637841%% — 0.6095116623371 72 — 0.255212623%3 + 0.0306023115

(5.64)

106.492568578987% — 1.8309687537971 72 + 274.8326325669472 + 158.83084456528

ng(:i) =
—0.0466155742472 — 0.61029863031 &5 — 0.2565548294F2 + 0.03025763564
(5.65)
Ln(®) 106.4925675193672 — 1.830968689597 &5 + 274.8326344110272 + 156.97222945267
22\T) =

—0.046615578%2 — 0.610298638571 7 — 0.256554832372 + 0.03003235435
(5.66)
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In order to maintain readability, other solutions of the decision variables can be seen in

Appendix B.

5.1.4 Class I

This section provides a less complicated class of switching observer and controller design. By
defining A;(n) and B;(n) are polynomial matrices in 7, the polynomial fuzzy system is described

as follows.

az—Zh n)x + B;(n)u} (5.67)

y= Z hi(z)Cix (5.68)

A switching observer and controller are designed as follows.

T

z = hi(z){Ai(n)z + Bi(n)u+ La(n)(y — 9)} (5.69)
=1

9= hi(2)Ci (5.70)
=1

— > hi(z)Fu(n)® (5.71)
=1

The SOS conditions for above observer and controller design are described as Corollary 5.1.3.

Corollary 5.1.3. The polynomial fuzzy system is stabilized by the polynomial fuzzy controller if
there exist positive definite polynomial matrices Y;(n), polynomial matrices Fj(n), Ly(n),and
positive definite polynomial matrices I j(n) such that the following conditions are satisfied with

a < 0 and the estimation error via the polynomial fuzzy observer tends to zero.

vf (Yi(n) —ex(n))vi €S (5.72)
_( T ) ZZW cAii(mz, €S (5.73)
m=1 i=1 j=1

Aijml € S (5.74)
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where p is a nonnegative integer, vi s an independent vector, 1,7 € 1,2,--- .1 and s,l €
1,2,--- K for rules number r and PPLF number K. e€1(n) is a predefined positive definite

polynomial matriz. A;j(x,m,x) are defined as

Aiji(n) =H (Y (n)Miji(n)) — Xl (n)

K
+ ) Nijmi{ Ya(n) — Yi(m))}. (5.75)
m=1

Proof. Define the error dynamics as follows.
T T
e=Y > hi(2)hj(z){Ai(n) — Lu(n)C;}e. (5.76)
i=1 j=1
The augmented system consisting of the switching observer and controller is represented in

(5.77).

&y =) Y hi(2)hi(z) M)z, (5.77)
i=1 j=1
where

ML M2
Mi 1(77) _ Zjl(n) z]l(n) : (578)

! 22

0 Mz’jl(n)

Miji(n) =Ai(n) — Bi(n)Fy(n) (5.79)
M%(n) =Ly(n)C; (5.80)
M (n) =Ai(n) — Ly(n)C; (5.81)
The derivation process is the same as presented in Theorem 5.1.2. n

Now, consider the following dynamic polynomial fuzzy system [16] where r = 2 and n = y.

-0.1y2 +b —a-

Ai(n) =
1 —y2
-O.1y2 +b —a-

Asz(n) =
—0.2172  —y?

1
Bi(n) = NE Bs(n) = Bi(n)
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In this design example, we set 2 < a < 9 with interval 0.5 and try to find maximum b. By
using these parameters, the feasible area from Corollary 5.1.3 and from [16] are compared in

Figure 5.7.

800 -
750
700
650
600 -
550
500 ¥

450 ¥

DOOOX XX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX

DOO XX XX XX XX XXX XX XX XX XX XXX KX XX XX XX XXX XX XXX
DOOOOOX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX XX XX
DOOOOOX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX XX XX XX XX

DOOOX XX XX XX XXX XX XX XX XX XXX XX XX X

DOO XX XX XX XX XXX XX XX
DOO XX XX XX XX XXX XX XX XX XX X

400 x

U1 GOOOX XX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX

D GOOOX XX XX XX XXX XX XX XK XX XXX XX XX XX XX XXX XX XXX

~N GOOOOOX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX XX XX

00 GOOOOOX XX XX XXX XX XX XX XX XXX XX XX XX XX XXX XX XX XX XX

© GOOOOOX XX XX XXX XX XX XX XX XXX KX XX XX XX XXX XX XX XX XX XXX

B COOOX XX XX XX XXX XX XX XX XX XXX XX XXX

W BOOXX XX XX XX XXX XX XX XX XX X

S}

Fig. 5.7:Feasible area of a and b (o for Theorem 1 [16] and x for Corollary 5.1.3).

For a > 4.0, the value of maximum b is still under calculation which means the feaisble area

of Corollary 5.1.3 might be wider than those in the Figure 5.7.

For a = 4.0 and b = 670, the feasible solutions are:

o = —0.216378962094441, (5.82)
[ 8.679 x 107 1.205 x 10—8 3.781 x 10~ 1716 x 106 |
1.205 x 1078 9.013 x 1076 5.663 x 106 1.323 x 107°
Y, — . (5.83)

3.781 x 107°  5.663 x 1075  0.5714266615488365 0.09034608102209585
| —1.716 x 1076 1.323 x 107° 0.09034608102209585 0.1073956448474586 |
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0
56448474586 |

Do D% %% %% 20 %% %0 %% % 20t e et e % %%
Do S0%%% %% 20 %% %% % % %% %0 %% %% %%
D S0%%% %% %0 %% %% % % %% %0 %% %0 % %%
D S0 %%% %% %0 %% %0 %% % %% %0 e % % % %%

D S0%%% %% %0 %% %% % % %% %0 %% % % %%
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D 00%% %% % %0205 %0 %0 % % 2%t e e e 20 0020 %
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Fig. 5.8:Chosen Lyapunov functions: x for
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Fii(n) =

Fo(n) =

Fis(n) =

Fy(n) =

Li(n) =

Ly (n) =

Liz(n) =

Loy (n) =

111, =

II12 =

308.82986093443y? + 643.4693312809
0.26589218346769y> + 22.755185602646

308.8300137908y2 + 582.21706641301

0.26593345933302y% — 7.1973237595371
T

308.80969875718y? + 642.95914175229

0.4239431701425y% + 20.521905206253

- T
308.8098511724y2 + 582.63348795194

0.42398774111363y> — 6.5535617398279

388.4292091484068y2 + 640.002098143941
—278.3733185009212y% — 17.50801836252333

388.3915196527874y2 + 581.7093496549514
—278.3467870540393y? — 67.15141610586224

388.436372083897y% + 634.8942397136793
—278.3913290146102y% — 21.23235991871676

388.3986718685013y2 + 583.8601422200068
—278.3648104692165y% — 66.13437525723143

[ 0.03366283418
1.92 x 1075
—0.00146967397

0.037095776548  7.67 x 106 0.0004928154045 —8.73 x 1076 |
7.67 x 107° 1.94 x 1077 1.65 x 1077 —3.56 x 1076

0.0004928154045  1.65 x 1077 1.95367678337  0.05074564828
—-8.73x107%  —3.56 x 10%  0.05074564828  0.03269751748|

1.92 x 1075 —0.00146967397 —0.00121725964_

8.23 x 1078
2.54 x 1077

—0.00121725964 4.25 x 106

2.54 x 1077
1.95344817346
0.053420809298

4.25 x 1076
0.053420809298
0.015769935976 |

9

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)
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[ 0.053485016936
4.46 x 107°
—8.08 x 10-°

1121

4.46 x 107°
8.52 x 1078
1.07 x 1076

—8.08 x 107°
1.07 x 1076
1.95521546980

| —0.002202634383 —3.78 x 1079 0.04091187136

—0.002202634383 |
—3.78 x 1076
0.04091187136

0.249164158979 |

[ 0.05807093018
0.00010211552
0.00142484225

| —0.0038939159

[ 0.053485017602
4.46 x 107°
—8.08 x 107°

1T

[ 0.058070930718
0.0001021155
0.0014248471

| —0.003893915718

[ 0.017786451347
1.66 x 107
—0.005299013941
| —0.001580184684

11591

[ 0.019920724566

11399

3.24 x 107°
—0.004915540307

| —0.001091150549

0.000102115
2.20 x 1077
3.68 x 106

0.0014248422
3.68 x 1076
1.955672861

—9.61 x 1076 0.03758674717

4.46 x 107°
8.52 x 10~8
1.07 x 106

0.000102115
2.20 x 1077
3.68 x 1076
—9.61 x 1076

1.66 x 107°
2.60 x 1078
—9.64 x 1076
—2.64 x 1076

3.24 x 107°
6.45 x 1078
—7.13 x 1076
—2.37 x 1076

~0.0038939159|
—9.61 x 1076

0.03758674717
0.2595696846 |

—8.08 x 107°
1.07 x 1076
1.9552155951

| —0.00220263557 —3.78 x 1075 0.040911877332

0.0014248471
3.68 x 1076
1.95567290512
0.037586750794

—0.00220263557]
378 x 106
0.040911877332
0.24916416324

—0.003893915718 |
—9.61 x 1076
0.037586750794
0.25956968646

—0.005299013941 —0.001580184684-

—9.64 x 1076
1.9082116944
—0.03459880875

—2.64 x 1076
—0.03459880875
0.16279190378 |

—0.004915540307 —0.001091150549-

—7.13x 1076
1.940469357
—0.008332974410

—2.37x 1076
—0.008332974410

0.16923354534 |

(5.95)

(5.96)

(5.97)

(5.98)

. (5.99)

. (5.100)

Figure 5.10 describes the control results by the switching polynomial fuzzy observer and

controller designed in Corollary 5.1.3. From the figure, it can be seen that all initial states

converge to zero
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T2
o
T

Fig. 5.10:Control results by the switching polynomial fuzzy observer and controller

5.2 Switching Polynomial Fuzzy Observer Design with Unmea-

surable Premise Variables

Consider the following polynomial fuzzy model representation:

&= hi(x){Ai(z)&(z) + Bi(z)u}, (5.101)
=1
y = hi(z)Ci(z)x (5.102)

where @ is the state vector , y is the output vector, A;(x) and B;(x) are given polynomial
matrices. C;(x) are the polynomial matrices output. As performed in Chapter 3 and Chapter
4, in this chapter the polynomial fuzzy observer is designed as a switching observer according to
the information of the switching index [. The switching polynomial fuzzy observer to estimate

the state « is represented as follows.
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& = w;(2){Ai(&)Z + Bi(2)u + La(®)(y — 9)}, (5.103)

y = wix)Ci(x)z (5.104)

where & is the estimated state and L; (&) are the switching observer gain.

Remark 8. In this case, we consider unmeasurable premise variables in the polynomial fuzzy
model. Therefore, the membership functions of the polynomial fuzzy observer depend on the

estimated state x.

By using the obtained estimated state &, the switching polynomial fuzzy controller is repre-

sented as:

u=—> wi(&)F;Z)z (5.105)
=1

where Fj;(x) are the chosen controller gain according to the switching index .

Theorem 5.2.1. The polynomial fuzzy system is stabilized by the polynomial fuzzy controller
if there exist positive definite polynomial matrices Yi(&), polynomial matrices Fj (&), Ly (x),
positive definite polynomial matrices IL;ji(x, &) such that the following conditions are satisfied

with o < 0 and the estimation error via the polynomial fuzzy observer tends to zero.

vf (Yi(&) — e1(&))v1 € S (5.106)
T u T T
- (X iz) B2l Ay (2, )z, € S Vi (5.107)
m=1 j=1k=1
Aijksl(j) esS (5108)
where p is a nonnegative integer, vi s an independent vector, 1,7 € 1,2,---,r and s,l €

1,2,--+ , K for rules number r and PPLF number K. €1(&) is a predefined positive definite
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polynomial matriz. Aji(x, x) are defined as

Aji(z, &) = H(YV(Z) Mirji(z, &) — ally(z, &)

K
3 Ngr(@){Y(@) - Yi(@)}, (5.100)
s=1
11 - 12 -
Mz, ) = Mijkl(w7 :f) M;j;l(w’ :f) ; (5.110)
Mzzjlkl(xv x) Mijkl(mv z)
Mz'ljlkl(w,i) = Ap(2) - Bk(i)Fjl(i)
+ Liy(2)(Ci(x) — Cj(x)) (5.111)
M %y (x, &) = Ly (2)Ci(z) (5.112)
Miin(x, @) = Ap(Z) — Ai(x) — (Bi(Z) — Bi(x)) Fji(2)
— L (2)(Ci(x) — Cj(z)) (5.113)
M?J'le(% z) = Aij(x) — Ly(x)Ci(x) (5.114)
Proof. Define x, = [;ﬁT eT}, and the estimation error e = & — @& by the observer. The error
system is represented as
é=Y Y wi(@)h;(&)he(&)
i=1 j=1j=1
({Az(m) — Ai(2) — (Bi(®) — B(2))Fj(2) + Li(2)(Cy(2) — Ci(z)) }&
+{A(z) - Lkl(:b)Cl(:c)}e> (5.115)
The augmented systems is described as follows.
DRI (5.116)

by = Z DO wil@)h (&) i (@) Mijp (z, &)
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where
z)
(5.117)

)

ij ) - B
Mz]kl( ) M%ﬁkl( :1})

M (x, &) =Ay(@) — By(2)F(&) + L (&)(Ci(x) — Cj(&)) (5.118)
M5y (x, @) =Ly (2)Ci(x) (5.119)
M (. &) =A;(2) — A(Z) — (Bi(z) — By(2)) Fj()
— Lu(@)(Ci(x) - C;(8)) (5.120)
MB(x, &) =Ai(x) — Liy(&)Cy() (5.121)
The chosen Lyapunov function is described as
Vi(w,) = ) Yi(2)z, (5.122)
where the time derivatives are
(5.123)

7) (chH (Yi(&) Miju(z, ze))x,,)

Vi) = D> Y wil@)hj(@)hi(@

i=1 j=1 j=1

In order to guarantee Vj(x,) < 0 at & # 0, a scalar & < 0 and positive definite polynomial

matrices Il (x, ) are introduces satisfying V}(azv) < ax, I, (x, €)x,, that is

Vi(zy) — ozl T3 (z, )z, <0 (5.124)
which is equivalent to
S5 S i)y (@))%
i=1 j=1 j=1
7 (H(K(ﬁ:)Mijkl(cc,cE)) S e @))mv <0 (5.125)

Since we consider minimum type PPLF, the following condition must be satisfied for s,l €

1,2, K
Vi(xy) — Vs(xy) <0 (5.126)

which is equivalent to
(5.127)
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Now, recall Lemma 2.5.1 and define sets L; and Lo as (5.124) and (5.127) respectively. If there

exist A\;js1(2) € POT such that

SN wil@)hy (@) hi(®) @] Ajji (2, &),y < 0 (5.128)

i=1 j=1 j=1
for all « then Ly C Ly. In other words, condition (5.24) is satisfied only if the following condition

is satisfied.
K
> Nijpst (@)2 {Y5(2) - Yi(®) )2, € POT (5.129)
s=1

Hence, by applying S-procedure, (5.125) becomes (5.128). According to the relation between
SOS and PSD polynomials, the following condition is a sufficient condition of (5.128).

D wil@)h ()i (&)] A (a0, )y, € S. (5.130)

i=1 j=1 j=1

Since all the membership functions are nonnegative, we can define w;(z) = &2,h;(z) = ﬁjz, and

hn(Z) = 7. By applying copositive relaxation, we arrive at the following condition.

—(Z g;n)”Zzzwgﬁ%img&jkl(m,@% €S (5.131)
m=1

i=1 j=1 k=1

Condition (5.131) is equivalent to

—< 7%271)“ h2hial Ajju(z, &)z, € SVi (5.132)

5.2.1 Design Example

Consider the following polynomial fuzzy model:
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1 1
15 —2-a3|
1 1
15 —2-a3|
:1:2+1—
— By(z)= | :
0
£2+1—
—By(®)= | ° ,
0

—1.5 —2—2a3
1 —0.2172
-1.5 —2—33

1 —0.2172

The membership functions with unmeasurable premise variable xo are given as follows:

sinxo + 0.2172x9
1.217225 ’

To — Sin o

(@) = 1.217225

hg(z) =

By solving the SOS conditions in Theorem 5.2.1, the feasible solutions obtained are as follows.

Y;

Y, =

[ 83.619570
86.148409

—1.0917213

| —0.3246260

[ 14.509313
0.2623232

~1.0917213

| —0.3246260

86.148409
4051.332701
—9.5786605

—2469.296519

9.2623232
3856.109286
—9.5786605

—2469.296519

—1.0917213
—9.5786605
2.8566668
—1.4063507

—1.0917213
—9.5786605
2.8566668
—1.4063507

—0.3246260 |
2469.296519
—1.4063507
3101.863217 |

—0.3246260 |
—2469.296519
—1.4063507

3101.863217 |

(5.133)

(5.134)
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- 1T
R 0.304753172 — 0.1182763% &2 + 2.66809172 + 237.375739
Fi(z) = (5.135)
—0.11869972 + 2.668531%1 79 + 5.435706%3 + 70.008868
- =T
0.05805217% + 0.0164858% 172 + 0.34474973 + 196.501705
Fiy(z) = (5.136)
0.014332072 + 0.342859%1 75 + 0.720625872 — 21.474960
_ T
R 0.4935573% — 0.0565624%1 79 + 2.985698972 + 287.0107846
F(x) = (5.137)
—0.056720%7 + 2.98618397 172 + 6.13938172% + 90.2251491
- =T
B 0.0581702%% + 0.015747051 %2 + 0.34331972 + 196.494352
Fy(z) = (5.138)
0.015109172 + 0.3440863% 172 + 0.72049972 — 21.580022
B 15.602788%2 — 7.6346817 172 + 83.96143073 — 360.227634
Ly (z) = (5.139)
0.01196397% — 0.310138%1 75 — 0.366190472 + 0.90083
. 2.63826477 + 3.08618371 72 + 24.001923%3 + 81.156223
Lix(z) = (5.140)
—0.015031972 — 0.101156&1 72 — 0.11203433 — 0.455324
3 14.792057%% — 4.8022657 172 + 96.61862473 — 209.4245491
Lo () = (5.141)
0.0062323% — 0.37329971 72 — 0.422054%3 + 0.869989
B 2.643308%7 + 3.077547%1 79 + 24.00324173 + 81.060344
—0.015012072 — 0.101137%1 32 — 0.112093533 — 0.455670

Other feasible solutions of decision variables, i.e., Ajjxsi(Z), Iljjr (2, ), are shown in the
Appendix C. The output and the estimation output by the PPLF-based observer are shown
in Figure 5.11. From the figure, it can be seen that the estimation error tends to zero. In
Figure 5.12, the control trajectory results are provided with several initial states. From the
results, PPLF-based observer that depends on the estimated states has successfully stabilized

the system, i.e. all the states converge to the equilibrium point.
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Fig. 5.11:Output and estimated output.
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Fig. 5.12:Control behavior of the design example with unmeasurable premise variable.
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Chapter 6.

Conclusions and Future Works

6.1 Conclusions

This thesis proposes a minimum-type piecewise polynomial Lyapunov function-based (PPLF-
based) approach to reduce the conservativeness in the stability analysis of nonlinear system
which are represented as polynomial fuzzy systems. The strength of the proposed PPLF-based
approach has been demonstrated in the stabilization, robust stabilization, and observer design

for polynomial fuzzy systems.

PPLF-based approach provides several polynomial Lyapunov functions (PLFs) according to
the number of PPLF. This is different to that of other approaches which commonly use only
one Lyapunov function. In PPLF-based approach, the chosen PLF can be switched simulta-
neously according to a switching index which was defined to declare the minimum PLF at the
time. In order to fully utilize the strength of this approach, a switching controller has been
designed based on a parallel distributed compensation (PDC) concept. The switching index
decides the switching feedback gain simultaneously when the state is on the switching bound-
aries of minimum-type PPLF. This technique leads to a wider stability region which has been

demonstrated through several design examples.

In regards of stabilization, the proposed PPLF-based approach was utilized to derive sta-
bilization conditions by considering two relaxations: positivstellensatz (P-satz) and copositive
relaxation. In order to solve the SOS conditions consisting of nonconvex term, a path following
algorithm was presented (Chapter 3). A benchmark design example was used for stabilization
conditions based of both P-satz and copositive relaxation. It was found that copositive relax-

ation resulted in a reduced conservativeness in comparison to that of P-satz relaxation. The
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effectiveness of the proposed design described in Theorem 3.3.1 has been demonstrated through
two benchmark design examples, i.e. a benchmark T-S fuzzy and a polynomial fuzzy design
example. Comparison to other existing methods for stabilization of polynomial fuzzy systems
showed that the proposed design yields a more relaxed result by achieving a wider feasible ar-
eas. Example I in Section 3.3.2, the maximum value of b for second order PPLF5 is 7.0 while
PPLF; (or PLF) yields byax = 6.5 while the other existing results are bya.x = 6.5 [36,37],
bmax = 6.0 [33,35,38], bmax = 5.0 [39], bmax = 2.5 [42].

The proposed PPLF-based approach was then employed in a robust control design for poly-
nomial fuzzy systems. The SOS conditions are presented for two cases. In the first case,
uncertainties appeared both in the system and in the input term. In the second case, the uncer-
tainty appeared only in the system. In order to solve the SOS conditions in Theorem 4.2.1 and
Corollary 4.2.2; a path following algorithm was utilized in a similar manner as the previously
explained stabilization case. The results have been compared to two design examples used by
other approaches. It was demonstrated that the proposed design yields a wider uncertainties
parameter region. For instance, in design example 4.4.2, a much wider feasible region can be ob-
tained with uncertainties satisfying |A,(¢) < 0.35 and |Ap(¢)| < 0.55 while the results from other
existing approaches are |A,(t) < 0.09, |Ap(t)] < 0.25 [61] and |A4(t) < 0.03, |Ap(t)] < 0.05 [44].
Moreover, the calculation time to find the feasible solutions for design example 4.4.2 has also
been presented. Although the complexity and the required calculation time are slightly inferior
as compared to the other approaches, these demerits are well compensated by the advantage of

the proposed design i.e. a wider robust stabilization region.

Finally, the proposed PPLF-based approach was also employed to design a polynomial fuzzy
observer (Chapter 5). By using the switching information on the PPLF, a switching polynomial
fuzzy observer was designed according to the information of the estimated states obtained by the
switching polynomial fuzzy observer. The PPLF-based approach fuzzy observer and controller
were designed for several cases, i.e. Class I, Class II, and Class I1I, according to the dependencies
of polynomial matrices in the system and/or input (A; and B;). This brings more efficiency on
designing polynomial fuzzy observer-controller compared with other existing work in [16] that
proposed an observer design for each class. Comparison with three design examples used in other

existing approaches, this thesis has demonstrated that the proposed observer design was able to
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obtain a wider feasible area. Moreover, a polynomial fuzzy observer design with unmeasurable

premise variables has also been presented.

According to the results, it can be concluded that the proposed designs are effective to reduce
the conservativeness in the stabilization, robust stabilization, and observer design for a class of
nonlinear systems. This is crucial to improve the stabilizability in practical applications such as

aerial vehicle applications (unmanned aerial vehicle, powered paragliding, micro helicopter).

6.2 Future Works

Numerous investigations have been addressed to accomplish stability analysis and design of
polynomial fuzzy systems via SOS framework. The stability analysis based on Lyapunov stability
theory can be reduced to the existence of positive definite polynomial such that its partial
derivative is negative definite along the trajectories. The stability/stabilization conditions are
derived and formulated as SOS optimization problems which then be solved by an SOS solver.
During the past decade, a lot of research efforts have been put on reducing conservativeness
in the derivation process of stability/stabilization conditions. One of the main sources causing
conservativeness is selection of Lyapunov function candidate form. This thesis proposed a PPLF-
based approach to overcome the problem and it has been showed that the PPLF-based approach
has successfully produced more relaxed results compared to other existing approaches. For
further improvement, the following aspects need to be considered in the future. Firstly, further
optimization in the path-following algorithm to select initial conditions shall be addressed. In
this thesis, the initial conditions are given by either using random generation (see Chapter 3.2.1)
or grid search method (see Chapter 3.3.1). Since the success of path-following algorithm depends
on given initial conditions, a method to select a good initial condition can be improved. The
improvement of this aspect may lead to a more relaxed result. One of the ideas is by using the
solution from local convex stabilization conditions. For example, we have 2-rules polynomial
fuzzy system. By deriving convex stabilization conditions, we can solve the problems for each
local system. The solutions obtained for each local system can be used to create a cone. Then,
grid search method can be performed to select good initial conditions inside the cone. This

method may possibly bring better initial conditions causing a less conservative result. Another
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aspect that can be improved is the perturbation value, e.g. €,,€¢, € in Chapter 3.3.1. In this
thesis, the perturbation value was usually equal to 0.001. Small change of the perturbation value
may lead to different results which can be more or less conservative results. Therefore, a method
to choose proper perturbation values shall be investigated in order to improve path-following

algorithm.

Secondly, an alternative method to reduce the gap which exists between SOS and PSD
polynomial forms shall be explored further. This thesis has proposed a PPLF-based approach to
reduce conservativeness existing in the stability analysis and design of polynomial fuzzy systems
that has been applied in three key features: stabilization, robust control, and observer design.
However, conservativeness issue in the SOS design framework has not been deeply investigated.
Therefore, improvement on this aspect may possibly give significant contribution on stability
analysis not only in the fuzzy system but also in the other classes of nonlinear systems. One
of the alternative methods that can be used to overcome this problem is by using Handelman’s
theorem instead of SOS to guarantee the existence of nonnegative polynomials. Stability analysis
of nonlinear systems by using Handelman’s theorem has been investigated in [26]. The results
in [26] showed their proposed approach can be used to analyze the stability of nonlinear systems
with polynomial vector field where the Lyapunov functions were represented in the Handelman
basis. Complexity comparison between SOS approach with Polya theorem and linear program
(LP) with Handelman representation has also been discussed. Stability analysis represented in

Handelman basis can be applied for polynomial fuzzy system.

Thirdly, simulation of design examples of a real system shall be considered in order to show
the practical ability of the proposed designs. The design examples used in this thesis were mostly
benchmark design examples in the fuzzy control areas. Simulation of design examples of a real
system becomes important to demonstrate an expanded usability of the proposed approach.
Some potential practical applications include powered paraglider (PPG), UAV system, among
others. As demonstrated in the robust stabilization design, the proposed piecewise polynomial
Lyapunov function (PPLF) based design successfully obtained larger upper bounds of the un-
certain terms as compared to the existing results [44] [61]. Therefore, it is highly potential that
the proposed robust control can yield a significant improvement in the control system design

of practical applications that have many unknown parameters such as moment of inertia, drag
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coefficient, etc. A representative example in this case is powered paraglider (PPG), in which
a problem related to the drag coefficient still remains. The drag coefficient may be slightly
changed even near the considered trim equilibrium [61]. [73] offered a solution to this problem
by considering parameter uncertainties in the constructed lateral model. A robust controller
to stabilize the lateral model was designed based on quadratic Lyapunov function approach.
In this aspect, considering that the form of quadratic Lyapunov function is more conservative
than PPLF, the proposed robust control design in this thesis work allows a significantly better
solution for the problem and there is a possibility to expand for other unknown parameters, e.g.,

wind disturbance, in the PPG robust control.

Finally, as the proposed PPLF-based design is effective for the stabilization, robust control,
and observer design, promising results can be expected in applying the proposed PPLF-based
approach to other fields of control theory. For instance, it can be utilized in designing H, control,

guaranteed cost control, optimal control, stochastic control, and adaptive control, among others.
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The obtained feasible solutions of \;; and IT;j(x, ) for design example class III in Chapter

5.1.2 are as follows.

A1111 =0.6090895542693308
A1121 =0.6090895489549435
A1211 =0.6090895541207217
A1221 =0.6090895573739531
A2111 =0.6090895604949692
A2121 =0.6090895550411645
A2211 =0.6090895576425222

A2221 =0.6090895554171446

A1112 = 0.6090895626845496
A1122 = 0.6090895585473359
A1212 = 0.6090895594138583
A1222 = 0.6090895583839942
A2112 = 0.6090895601780549
A2122 = 0.6090895574885047
A2212 = 0.6090895551894614

A2222 = 0.6090895621370879
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I (2, &) =4.43725 + 00432331 + 02232379 + 3.407235% 4 0.016235, 59 + 27172353+
0.0322F3 + 0.1482973 %9 + 0.02622F1 53 4 0.0962975 + 6.269%] 4 0.01323 79+
2. 7153233 + 0.04471 73 + 3.817%5

3, (z, ) =0.063x5 + 0.235x3%; + 0.076x322 + 0.015232% + 0.261235% 1% + 0.0992573+
01272233 + 0.0262973 %9 + 0.11829& 175 4 0.09122F5 + 0.01F] + 0.247F3 39+
0.04772%2 + 0.32%, 75 + 0.159%4

131, (2, &) =0.47425 + 0.01623%1 + 0.0662379 + 0.51723%% 4 0.00423%, %2 + 0.0882333+
0.008297% + 0.0422233 %9 — 0.00822F1%3 — 0.008z275 — 0.098%F — 0.002%3 79—
0.081#2%3 — 0.028%, %5 — 0.117%5

1 (2, ) =0.02623 + 0.83923%1 — 0.003z5%9 + 0.0342373 + 0.00423% 179 — 0.0142353+
0.722372 —0. Olmgxle + 0. 1263:2961332 0. ()Olacg + 0. 016 0.125?532—
0.023%233 — 0.21771 75 — 0.084%5

12, (z, ) =0.063x5 + 0.235x5%; + 0.076x322 + 0.01523%2 + 0.261235% 1 + 0.0992375+
0.1272073 + 0.0262252 %5 4 0.1182971 23 + 0.0912075 + 0.01E] 4 0.2473 70+
0.04722%3 + 0.32, &5 + 0.159%3

132, (x, &) =4.693x3 + 0.075253%; + 0.76623% + 2.7112353 + 0.12351 35 + 3.5282575+
0.01922F3 + 0.1052972 %9 + 0.104x07 175 4 0.721z9F5 + 3.754%] + 0.03623 79+

2.81532%3 + 0.18671 75 + 5.166%5

132, (x, &) = — 0.057z5 + 0.070x3% — 0.0052529 + 0.00523%7 4 0.06423%, 55 — 0.013x353+
0. O39$21‘1 0. 008x2x1x2 —0. 0141‘2561.732 0. 007332302 0.001z% 0.0885:?%2—
0.03272%2 — 0.179%, &5 + 0.01535

1%, (x, &) =0.391x3 — 0.002253%1 + 0.59323%9 + 0.0323%% — 0.01223% 79 — 0.178235%—
0.008297% + 0.13x232%9 + 0.21z9F5 — 0.0627 — 0.01723 79 — 0.2017272—

0.09731 %5 — 0.955%5
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113, (@, ) =0.47423 + 0.01623%1 + 0.0662379 + 0.51723% 4 0.004235,F2 + 0.0882333+
0. 0081:2301 + 0. 042$2$1$2 —0. 008x2x1m2 —0. 008$2$2 0. 0983:1 0.0025??.%2—
0.081%%%3 — 0.028% &5 — 0.117%4

123, (x, &) = — 0.057z3 + 0.070x3%; — 0.0052529 + 0.00523%2 4 0.06423%, %5 — 0.0132353+
0. O39$2$1 0. 008$2x1x2 —0. 0149625613:2 0. 0073:2:1:2 0.001z% 0.0885:?1’932—
0.032%2%3 — 0.179%1 23 + 0.015%5

133, (, ) =6.488x5 + 0.006x5%; — 0.014x5339 + 4.014x372 — 0.013235% 7 + 3.9792375+
0.003z27% + 0.0382283%2 + 0.0082251 %32 — 0.002x2F5 + 6.495%F — 0.014F3 2o+
4.2097%72 + 0.01471 &5 + 6.1275

33, (&, &) =0.0225 + 0.409235%; — 0.05925F2 + 0.0122322 + 0.00823%1 79 + 0.0082273+
0. 38:1;2371 + 0. 012x2x1x2 + 0. 074372x1:c2 0. 005332 + 0. 013:1 + 0. 129:r1:c2+
0.02472%3 + 0.16871 75 — 0.021%5

11, (z, ) =0.026x5 + 0.839x3%; — 0.003x322 + 0.0342372 + 0.004x3%F9 — 0.0142375+
0.72222%3 — 0.012983 %9 + 0.12622F1 33 — 0.0012973 + 0.016Z] — 0.1273 79—
0.023723% — 0.217%, &5 — 0.08475

12} (z, ) =0.39123 — 0.00223%1 + 0.593x5%9 + 0.032357 — 0.01223%1 %5 — 0.1782375—
0.008x2F3 + 01329838y + 0.21005 — 0.0627 — 0.01755 — 0.20152 53—
0.097%1 3 — 0.955%4

134, (x, &) =0.0225 + 0.409235%; — 0.05925F2 + 0.0122222 + 0.00822% 29 + 0.0082273+
0.3829%% 4 0.01229F2 %9 + 0.0742971 73 — 0.00529%5 + 0.01Z] + 0.12975 59+
0.02472%3 + 0.168%, 25 — 0.021%3

11, (x, ) =6.071z5 + 0.0325%; — 0.2362552 + 3.351232% + 0.00823% %9 + 3.2712353+
0. 036:1323@1 0. 13:L'2x1:1:2 —0. 016$2x1x2 —0. 411:1:21‘2 +4.2025% 1+ 0.0089%?:%2—}—

2.81372%3 4 0.091%, 73 + 4.655i3
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H%%2($,

H%%2(m7

H?%2($7

H%%Z(w7

12
1o (x,

H%%Q (w7

H?%2 (m7

HZI%Q (m7

&) =4.53524 + 0.038x3%, + 0.3432329 + 3.6952352 4 0.0352271 %5 + 2.9112273+

0.03422F3 + 0.3982973 %9 + 0.0330%175 4 0.217x0F5 + 6.8452] + 0.03573 79+

3.3122%3 + 0.038% &3 + 4.03575

&) = — 0.006x3 + 0.35525%; + 0.02523% + 0.0352352 + 0.468x32%1 %5 + 0.0332375+

0.347x2F3 + 0.0342972 %9 + 0.26229% 175 4+ 0.017x2F5 + 0.0312] + 0.78973 79+

0.045%2%3 + 0.60521 25 + 0.016%5

&) =0.314x3 — 0.00823%; + 0.03525% 4 0.214235% — 0.0492331 %5 + 0.0792375+

0.022973 4 0.01529F7%2 + 0.01529F1 73 + 0.0152275 + 0.208FF + 0.028%3 79+

0.095&3%3 + 0.07621 &5 + 0.111%3

&) =0.001z4 + 0.847x3%; — 0.02923%2 + 0.01237% — 0.064x3%,Z9 — 0.0042373+

0.76929%3 + 0.00222F3 %9 4+ 0.1942971 73 + 0.0112935 — 0.0012F — 0.44253 59—

0.01232%3 — 0.38%1 45 — 0.001%3

&) = — 0.006x3 + 0.35525%1 + 0.02523% + 0.035235% + 0.468x3%1 %5 + 0.0332575+

0.3472933 + 0.034297379 + 0.26222F173 + 0.01722F5 + 0.0317 + 0.78973 7+

0.04522%2 + 0.605%1 &5 + 0.01675

&) =4.686x3 + 0.02525% + 0.74625%0 4 2.908235% + 0.034x331 %9 + 3.5012375+

0.02922F3 + 0.2542973 %9 + 0.0229F1 73 + 0.674x075 + 4.173%] + 00382325+

3.1453%5 + 0.018%1 &5 + 5.098%3

&) = — 0.115x3 + 0.03723%1 — 0.02123%9 — 0.049233% + 0.0512331F2 — 0.03923735+

0.01622F3 + 0.0152973%9 + 0.013298 143 4 0.024x2F5 + 0.02427 + 0.06F3 32+

0.083%2%3 + 0.08%, &5 + 0.223%3

&) =0.385x5 — 0.029235%1 + 0.611x555 — 0.033235% — 0.004235 % — 0.174x375+

0.0012233 + 0.2012933 %9 + 0.014x9% 175 4 0.2332075 — 0.3227 — 0.0123 79—

0.391#2#3 — 0.0012, 75 — 0.931%5
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113, (x, &) =0.314z3 — 0.008x3F1 + 0.03523%9 + 0.214235% — 0.049235, %9 + 0.0792353+
0. 023321:1 + 0. 015x2x1m2 + 0. 015:(:2x13:2 + 0. 0153:2 340. 208x1 + 0. 0283;13:2—1—
0.09572%3 4 0.07631 43 + 0.11133

123, (z, &) = — 0.11525 + 0.037x3%; — 0.02123%9 — 0.0492357 4 0.05125%1 22 — 0.0392373+
0. 016:1:2x1 + 0. 015$2x1x2 + 0. 013902561332 + 0. 0241’2 + 0.024z7 + 0. 065513:2—}—
0.083%2%3 + 0.08%, &5 + 0.223%

133, (z, ) =6.238x3 — 0.008x3%; — 0.018x5330 + 4.2022372 — 0.025x35% 9 + 3.9672375+
0.012297% + 0.031228389 + 0.0052251 %3 — 0.003x2%5 + 6.034%F — 0.007E3 2o+
4.01632%3 — 0.008%, 75 + 5.912%5

I3, (x, &) =0.034z3 + 0.25923% — 0.10623%9 + 0.0423%2 — 0.01623% 79 + 0.01723534+
0.146297%5 — 0.062285 %2 + 0.0392931 %3 — 0.05z045 — 0. 006x1 0.04473 59—
0.068%2%2 — 0.065% 145 — 0.1997

1y (z, ) =0.001x] + 0.847x3%; — 0.02923%9 + 0.012337 — 0.0642351 55 — 0.004x355+
0.769z975 + 0.0022233 59 + 0.19429F1 %3 + 0.011x275 — 0.0012T — 0.442F3 79—
0.0127232 — 0.38%, 45 — 0.001%5

134, (x, &) =0.385x3 — 0.02923%, + 0.61123%9 — 0.03323% — 0.004235, 59 — 01742353+
0.0012233 + 0.2012932 %9 + 0.014x97 172 4 0.233205 — 0.3277 — 0.0123 79—
0.391%%%3 — 0.0012, &5 — 0.931%3

T35 (x, ) =0.034x3 + 0.25923%; — 0.106253%9 + 0.04z327 — 0.01623%1 35 + 0.01723%5+
0.1462975 — 0.0622233 %9 + 0.03929F1 %3 — 0.052045 — 0.0062] — 0.04475 55—
0.068%2%3 — 0.06521 75 — 0.199%3

iy (x, ) =5.958x5 + 0.029x3% — 0.264x5%2 + 3.4232372 — 0.028237 7 + 3.2862375+
0. 008:1323@1 0. 276.%'2.1‘11'2 — 0. 019x2x1:p2 —0. 43:1:21‘2 +4.478%% 1+ 0.0089%?:%2—}—

3.052%%2 + 0.011%, &5 + 4.64615
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iz (,

I3 (=,

I1121(

HZl%l(w7

H121(

135, (,

135, (=,

I35, (,

&) =3.88224 + 0.017x3%; 4 0.074a3%9 + 2.7942353 4 0.0042371 72 + 2.575x353+
0.01222F3 + 0.0492972 %9 + 0.00829% 173 4 0.02929F5 + 4.466%] + 0.003%3 79+
2.536343 + 0.013%1 &5 + 3.6675

&) =0.02123 + 0.076x5%; + 0.0282372 + 0.002x377 + 0.0692371 72 + 0.034x355+
0.0422%3 + 0.008x232 %9 + 0.0362271 75 + 0.03229%5 + 0.002%] + 0.04F3 5+
0.012%22 + 0.07921 &5 + 0.05143

&) =0.223 + 0.00823%; + 0.031x3% 4 0.252235% + 0.0042331 F2 + 0.0442575+
0.0062275 + 0.0192233 55 — 0.004z251%3 — 0.001x275 + 0.023%T + 0.001%3 79—

0.0052%3 — 0.0112, 75 — 0.026%5

&) =0.011z3 + 0.27525%; — 0.00223% 4 0.016235% + 0.019233, 25 — 0.0032373+

0.2232975 — 0.005298 582 + 0.0262231 %3 + 0.008%] + 0.001F3 29—
0.0052742 — 0.049%, &5 — 0.0257

&) =0.02123 + 0.076x5%; + 0.0282372 + 0.002x357 + 0.0692371 72 + 0.034x355+
0.0422%3 + 0.008x232 %9 + 0.036x271 72 + 0.0322075 + 0.002%7 + 0.04F3 55+
0.01232%3 + 0.0797, 25 + 0.051%3

&) =3.948x3 + 0.02823%; + 0.251a3%0 4 2.571235% + 0.0372331 29 + 2.8342375+
0.006x2F3 + 0.0292973 %9 + 0.03820% 175 4 0.239x2F5 + 3.6272F + 0.0123F5+
2.59153%5 + 0.063%1 &5 + 4.05613

&) = — 0.021x3 + 0.0322371 — 0.00223%9 + 0.005235% + 0.0422331 35 — 0.0032575+
0. 018562301 0. 0041:2:61332 — 0. 003x2x1x2 — 0.004z275 + 0. 00174 0.008:7:?952—
0.012%2%3 — 0.0462, 25 + 0.005%3

&) =0.148x3 — 0.00223%; + 0.17923% + 0.02322%% — 0.003x331 32 — 0.03525735—
0.00422F3 + 0.0292973 %9 + 0.048z275 4 0.01Z] — 0.00433%5 — 0.03952 53—

0.03131 &5 — 0.253%5
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113, (z, ) =0.2x3 4+ 0.00823%1 + 0.03125F2 + 0.252237% + 0.004x3%,T9 4 0.0442373+
0.00622F3 + 0.0192973 %9 — 0.00429% 173 — 0.00122E5 + 0.023% + 0.0015 50—
0.005&3%3 — 0.01121 &5 — 0.026%4

123, (x, &) = — 0.021z3 + 0.032x3% — 0.0022529 + 0.00523%2 + 0.04223%, %5 — 0.003x353+
0.01829%% — 0.004x233F5 — 0.003z9%1 23 — 0.0042245 4+ 0.001ZF — 0.008F3 50—
0.012%%3 — 0.04621 %5 + 0.005%3

133, (x, &) =4.559x5 + 0.004x5331 — 0.00523%9 + 2.989237% — 0.007x3%, %9 + 2.9622373+
0.002z97% + 0.0172283 82 + 0.0052251 %3 — 0.003x2%5 + 4.536% — 0.007E3 2o+
3.069%2%3 + 0.008%, 75 + 4.399%5

1113, (z, ) =0.008z3 + 0.19123%; — 0.023x57 + 0.00523%3 — 0.00823% 1% + 0.0012353+
0. 19:1;2;1:1 + 0. 008x2x1x2 + 0. 039372x1:c2 + 0. 001332 + 0. 004x1 + 0. 026x1x2+
0.008%2%3 + 0.045%1 23 — 0.008%5

13, (x, &) =0.011x3 + 0.27523%1 — 0.00223%9 + 0.01623%7 4 0.01923%, %5 — 0.0032373+
0.223x2%3 — 0.0052272 %2 + 0.02629% 172 4 0.008%] + 0.001F3 75—
0.00522%% — 0.049%, &5 — 0.02575

1123, (x, &) =0.148z3 — 0.002z53%; + 0.17923% + 0.02323%7 — 0.003x351 35 — 0.0352575—
0.004x2F3 + 0.0292972 %9 + 0.0482975 4+ 0.012] — 0.00423%5 — 0.03952 53—
0.031% 3 — 0.25375

133, (z, ) =0.008x3 + 0.191x3%; — 0.023x325 + 0.0052323 — 0.008235% 1% + 0.0012573+
0.1922%3 + 0.00822%2 %9 + 0.039z971 75 4 0.001z975 + 0.004%7 4+ 0.02673 70+
0.008%2%3 + 0.045%1 3 — 0.008%3

113, (x, &) =4.34225 + 0.01423%) — 0.02323%9 + 2.779235% 4+ 0.001235, 59 + 2.7272353+
0. 018:1323@1 0. 012.%'2.1‘11'2 — 0. 005x2x1:p2 — 0.094z275 + 3. 767x1 + 2. 5821‘11‘2+

0.03%1 75 + 3.884%3
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L, (2, &) =3.90423 + 0.01623%1 + 0.1162379 + 2.893237% 4 0.015235, 59 + 2.6442353+
0.01422F3 + 0.1422973 %9 + 0.013227 155 4 0.07x075 + 4.6192] + 0.01423 55+
2.755%345 + 0.01431 &5 + 3.729%4

123, (x, &) = — 0.005z3 + 0.11923%; + 0.01z3E2 + 0.01523%2 + 0.14523% 9 + 0.0132333+
0.1229%3 + 0.013223729 + 0.08622F1 73 + 0.0052973 + 0.011F] 4 0.23727 72+
0.0162773 + 0.17%, 73

133, (2, &) =0.137x5 — 0.004x3%1 + 0.01823%9 + 0.104237% — 0.02323%, %2 + 0.0392373+
0.0072275 + 0.0072283 82 + 0.0062251 %3 + 0.008x2%5 + 0.135&; + 0.011F3 2o+
0.06232%3 + 0.032%, 25 + 0.0633

I3, (2, &) =0.26525%; — 0.01523%, + 0.0042372 — 0.00623% 159 — 0.0022353+
0.2342973 + 0.00222F3 %5 4 0.0522971 73 + 0.0062245 + 0.0012F — 0.11753 59—
0.003%2%3 — 0.09771 25 + 0.004%5

M2, (x, &) = — 0.00523 + 0.11923%; + 0.01z3E2 + 0.0152222 + 0.14523%, 7 + 0.0132252+
0.1222%3 + 0.0132232 %9 + 0.0862271, 72 4 0.0052075 + 0.011%7 4 0.23773 50+
0.01623%3 + 0.17%, 15

122, (x, &) =3.944x5 + 0.0125%, 4 0.2432550 + 2.642237% + 0.014237 79 + 2.8182253+
0.0112233 + 0.0832972 %9 + 0.00620% 175 4 0.218z9F5 + 3.782%] + 0.01443 79+
2.697%3%3 + 0.00131 &5 + 4.024%3

132, (x, &) = — 0.04523 + 0.01923%; — 0.01123%9 — 0.02123%7 + 0.03423%, &9 — 0.018x333+
0.008x2F3 + 0.0062973 %9 + 0.012971 73 + 0.00729%5 + 0.008%] + 0.048F3 75+
0.03472%3 + 0.058%1 25 + 0.09%3

1%, (x, &) =0.149x3 — 0.01423%; + 0.18623%9 + 0.00123%% — 0.00223%, %2 — 0.032353+
0.002x2F3 + 0.0572973 %9 + 0.00829% 153 4+ 0.055x2F5 — 0.082%F — 0.003%5 50—

0.0962272 + 0.004%1 &5 — 0.24%5
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13, (x, &) =0.137x3 — 0.00423%1 + 0.01823%9 + 0.10423% — 0.023235, %2 + 0.0392353+
0.00722%3 + 0.0072932 %9 + 0.00629% 175 4 0.008z2F5 + 0.1352] + 0.01173 9+
0.0623373 + 0.032%1 &5 + 0.0675

123, (z, &) = — 0.04525 + 0.01923%; — 0.01123%9 — 0.02123%7 4 0.03423% %2 — 0.0182373+
0.00822%3 + 0.006z2F7F5 4 0.0122E1 73 4 0.00729F3 + 0.008E] 4 0.048%3 9+
0.03472%3 + 0.058%1 25 + 0.09%3

033, (z, ) =4.4x5 — 0.003z5% — 0.01225%, + 3.0522332 — 0.011x37 79 + 2.9622375+
0.0072275 + 0.0132283 %2 + 0.0032251 23 — 0.002x275 + 4.333%7 + 2.988%272—
0.001% 73 + 4.31675

Hﬁz( x) =0. 014372 +0.12723%; — 0.04225%9 + 0.017235% — 0.01523%1 %5 + 0.007x325+
0.077z9&3 — 0.02722F3 %9 + 0.0242971 73 — 0.0192975 — 0.003%7 — 0047550 —
0.02972%2 — 0.048%, &5 — 0.083%

1, (x, ) =0.265x5%; — 0.01525%9 4+ 0.00423%7 — 0.00623% 149 — 0.0022355+
0.2342975 + 0.0022233 52 + 0.05229F1 %3 + 0.006x275 + 0.0012F — 0.11723 79—
0.003%373 — 0.09771 %5 + 0.004%5

123, (x, &) =0.149z3 — 0.01423%; + 0.18623%9 + 0.00123%% — 0.002x35, %2 — 0.0323534+
0.002x2F3 + 0.0572973 %9 + 0.00822% 173 4+ 0.055x2F5 — 0.082%F — 0.003%3 50—
0.0967273 + 0.00471 &5 — 0.2475

133, (x, &) =0.014x3 + 0.12723%1 — 0.0422379 + 0.0172327 — 0.01523%1 %2 + 0.0072373+
0.077x2F3 — 0.0272973 %9 + 0.02429% 175 — 0.01922F5 — 0.003%] — 0.04F3 55—
0.029727% — 0.048%, &5 — 0.0835

{3, (x, ) =4.296x5 + 0.014x3%; — 0.031x330 + 2.7922372 — 0.01423% 7y + 2.732355+
0. 002:1323@1 0. 068.%'2.1‘11'2 — 0. 01x2x1x2 —0. 097:1:21‘2 + 3.862%4 1+ 0.004&?:%2—}—

2.66231% 4 0.001%, %5 + 3.876%
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II211(

51, (=,

I1211(

Hg%l(w7

II211(

3% (,

51, (=,

157 (,

&) =3.88224 + 0.017x3%; 4 0.074a3%9 + 2.7942353 4 0.0042371 72 + 2.575x353+
0.01222F3 + 0.0492972 %9 + 0.00829% 173 4 0.02929F5 + 4.466%] + 0.003%3 79+
2.536343 + 0.013%1 &5 + 3.6675

&) =0.02123 + 0.076x5%; + 0.0282372 + 0.002x377 + 0.0692371 72 + 0.034x355+
0.0422%3 + 0.008x232 %9 + 0.0362271 75 + 0.03229%5 + 0.002%] + 0.04F3 5+
0.012%22 + 0.07921 &5 + 0.05143

&) =0.223 + 0.00823%; + 0.031x3% 4 0.252235% + 0.0042331 F2 + 0.0442575+
0.0062275 + 0.0192233 55 — 0.004z251%3 — 0.001x275 + 0.023%T + 0.001%3 79—

0.0052%3 — 0.0112, 75 — 0.026%5

&) =0.011z3 + 0.27525%; — 0.00223% 4 0.016235% + 0.019233, 25 — 0.0032373+

0.2232975 — 0.005298 582 + 0.0262231 %3 + 0.008%] + 0.001F3 29—
0.0052742 — 0.049%, &5 — 0.0257

&) =0.02123 + 0.076x5%; + 0.0282372 + 0.002x357 + 0.0692371 72 + 0.034x355+
0.0422%3 + 0.008x232 %9 + 0.036x271 72 + 0.0322075 + 0.002%7 + 0.04F3 55+
0.01232%3 + 0.0797, 25 + 0.051%3

&) =3.948x3 + 0.02823%; + 0.251a3%0 4 2.571235% + 0.0372331 29 + 2.8342375+
0.006x2F3 + 0.0292973 %9 + 0.03820% 175 4 0.239x2F5 + 3.6272F + 0.0123F5+
2.59153%5 + 0.063%1 &5 + 4.05613

&) = — 0.021x3 + 0.0322371 — 0.00223%9 + 0.005235% + 0.0422331 35 — 0.0032575+
0. 018562301 0. 0041:2:61332 — 0. 003x2x1x2 — 0.004z275 + 0. 00174 0.008:7:?952—
0.012%2%3 — 0.0462, 25 + 0.005%3

&) =0.148x3 — 0.00223%; + 0.17923% + 0.02322%% — 0.003x331 32 — 0.03525735—
0.00422F3 + 0.0292973 %9 + 0.048z275 4 0.01Z] — 0.00433%5 — 0.03952 53—

0.03131 &5 — 0.253%5



Appendix A 117

133, (z, &) =0.223 4+ 0.0082371 + 0.031x5F2 + 0.252237% + 0.004x3%,F9 4 0.0442373+
0.00622F3 + 0.0192973 %9 — 0.00429% 173 — 0.00122E5 + 0.023% + 0.0015 50—
0.0052%3 — 0.0112, 25 — 0.026%5

123, (&, &) = — 0.021z5 + 0.032x3% — 0.0022529 + 0.00523%2 + 0.04222%, %5 — 0.003x353+
0.01829%% — 0.004x233F5 — 0.003z9%1 23 — 0.0042245 4+ 0.001ZF — 0.008F3 50—
0.01222%2 — 0.0463, 75 + 0.005%5

1133, (x, &) =4.559x5 + 0.004x531 — 0.00523%9 + 2.989237% — 0.007x35, %9 + 2.9622373+
0.002z97% + 0.0172283 82 + 0.0052251 %3 — 0.003x2%5 + 4.536% — 0.007E3 2o+
3.069%2%3 + 0.008%, 75 + 4.399%5

133, (z, ) =0.008z3 + 0.19123%1 — 0.023z579 + 0.00523%3 — 0.00823% 1% + 0.0012353+
0. 19:1;2;1:1 + 0. 008x2x1x2 + 0. 039372x1:c2 + 0. 001332 + 0. 004x1 + 0. 026x1x2+
0.008%2%2 + 0.045% 1 &5 — 0.008%

31, (z, ) =0.011x5 + 0.275x3%; — 0.002x522 + 0.0162322 + 0.01923% %9 — 0.0032375+
0.223x2%3 — 0.0052272 %2 + 0.02629% 172 4 0.008%] + 0.001F3 75—
0.00522%% — 0.049%, &5 — 0.02575

151, (x, &) =0.148z3 — 0.002z3%; + 0.17923% + 0.0232347 — 0.003x351 35 — 0.0352575—
0.004x2F3 + 0.0292972 %9 + 0.0482975 4+ 0.012] — 0.00423%5 — 0.03952 53—
0.031% 3 — 0.25375

51, (z, ) =0.008x3 + 0.191x3%; — 0.023x325 + 0.0052323 — 0.00823%1 % 4+ 0.0012575+
0.1922%3 + 0.00822%2 %9 + 0.039z971 75 4 0.001z975 + 0.004%7 4+ 0.02673 70+
0.008%2%3 + 0.045%1 3 — 0.008%3

51, (x, &) =4.34225 + 0.01423% — 0.02323%9 + 2.779235% 4+ 0.001235, 59 + 27272353+
0. 018:1323@1 0. 012.%'2.1‘11'2 — 0. 005x2x1:p2 — 0.094z275 + 3. 767x1 + 2. 5821‘11‘2+

0.03%1 75 + 3.884%3
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L, (x, &) =3.90425 + 0.01623%, + 0.1162379 + 2.893237% 4 0.015235, 59 + 2.6442353+
0.01422F3 + 0.1422973 %9 + 0.013227 155 4 0.07x075 + 4.6192] + 0.01423 55+
2.755%345 + 0.01431 &5 + 3.729%4

2%, (x, &) = — 0.00523 + 0.11923%1 + 0.01z3E2 + 0.01523%2 + 0.14523%, 9 + 0.0132333+
0.1229%3 + 0.013223729 + 0.08622F1 73 + 0.0052973 + 0.011F] 4 0.23727 72+
0.0162773 + 0.17%, 73

131, (x, &) =0.137x5 — 0.004x53%1 + 0.01823%9 + 0.104237% — 0.02323%, %2 + 0.0392373+
0.0072275 + 0.0072283 82 + 0.0062251 %3 + 0.008x2%5 + 0.135&; + 0.011F3 2o+
0.06232%3 + 0.032%, 25 + 0.0633

5t (2, &) =0.26525%; — 0.01523%, + 0.0042372 — 0.00623% 159 — 0.0022353+
0.2342973 + 0.00222F3 %5 4 0.0522971 73 + 0.0062245 + 0.0012F — 0.11753 59—
0.003%2%3 — 0.09771 25 + 0.004%5

L2, (x, &) = — 0.00523 + 0.11923%; + 0.01z3E2 + 0.0152222 + 0.14523%, 79 + 0.0132252+
0.1222%3 + 0.0132232 %9 + 0.0862271, 72 4 0.0052075 + 0.011%7 4 0.23773 50+
0.01623%3 + 0.17%, 15

132, (x, &) =3.944x5 + 0.0125%, 4 0.2432559 + 2.6422372 + 0.014237 79 + 2.8182253+
0.0112233 + 0.0832972 %9 + 0.00620% 175 4 0.218z9F5 + 3.782%] + 0.01443 79+
2.697%3%3 + 0.00131 &5 + 4.024%3

3%, (x, &) = — 0.04523 + 0.01923%; — 0.01123%9 — 0.02123%7 + 0.03423% &9 — 0.018x333+
0.008x2F3 + 0.0062973 %9 + 0.012971 73 + 0.00729%5 + 0.008%] + 0.048F3 75+
0.03472%3 + 0.058%1 25 + 0.09%3

5%, (x, &) =0.149x3 — 0.01423%; + 0.18623%9 + 0.00123%% — 0.00223%, %2 — 0.032353+
0.002x2F3 + 0.0572973 %9 + 0.00829% 153 4+ 0.055x2F5 — 0.082%F — 0.003%5 50—

0.0962272 + 0.004%1 &5 — 0.24%5
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113, (2, &) =0.137x3 — 0.00423%1 + 0.01823%9 + 0.104235% — 0.02323%, %2 + 0.0392353+
0.00722%3 + 0.0072932 %9 + 0.00629% 175 4 0.008z2F5 + 0.1352] + 0.01173 9+
0.0623373 + 0.032%1 &5 + 0.0675

1133, (z, &) = — 0.04525 + 0.01923%; — 0.01123%9 — 0.02123%7 4 0.03423%1 25 — 0.0182373+
0.00822%3 + 0.006z2F7F5 4 0.0122E1 73 4 0.00729F3 + 0.008E] 4 0.048%3 9+
0.03472%3 + 0.058%1 25 + 0.09%3

133, (z, ) =4.4x3 — 0.003z5% — 0.01223%5 + 3.05223%2 — 0.011x37 79 + 2.9622375+
0.0072275 + 0.0132283 %2 + 0.0032251 23 — 0.002x275 + 4.333%7 + 2.988%272—
0.001% 73 + 4.31675

H%i’z( x) =0. 014372 +0.12723%; — 0.04225%9 + 0.017235% — 0.01523%1 %5 + 0.007x325+
0.077z9&3 — 0.02722F3 %9 + 0.0242971 73 — 0.0192975 — 0.003%7 — 0047550 —
0.02972%2 — 0.048%, &5 — 0.083%

31y (x, ) =0.265x5%; — 0.01525%9 4+ 0.00423%7 — 0.00623% 159 — 0.0022355+
0.2342975 + 0.0022233 52 + 0.05229F1 %3 + 0.006x275 + 0.0012F — 0.11723 79—
0.003%373 — 0.09771 %5 + 0.004%5

31, (x, &) =0.149z3 — 0.01423%; + 0.18623%9 + 0.00123%% — 0.00223%, %2 — 0.0323534+
0.002x2F3 + 0.0572973 %9 + 0.00822% 173 4+ 0.055x2F5 — 0.082%F — 0.003%3 50—
0.0967273 + 0.00471 &5 — 0.2475

31, (x, &) =0.014x3 + 01272331 — 0.0422379 + 0.0172327 — 0.01523%1 %2 + 0.0072373+
0.077x2F3 — 0.0272973 %9 + 0.02429% 175 — 0.01922F5 — 0.003%] — 0.04F3 55—
0.029727% — 0.048%, &5 — 0.0835

51y (x, ) =4.296x5 + 0.014x3%; — 0.031x330 + 2.7922372 — 0.01423% 7y + 2.732355+
0. 002:1323@1 0. 068.%'2.1‘11'2 — 0. 01x2x1x2 —0. 097:1:21‘2 + 3.862%4 1+ 0.004&?:%2—}—

2.66231% 4 0.001%, %5 + 3.876%
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II221(

II221(

1155, (,

I3 (,

II221(

113, (,

155, (=,

1155, (,

&) =4.439x3 + 0.043237; + 0.22325% 4 3.406235% + 0.0162331 39 + 2.7172375+
0. 033321:1 + 0. 148x2x1m2 + 0. 026:(:2x13:2 + 0. 0963:2 31+ 6. 273x1 + 0. 0133;13:2—1—
2.71553%3 + 0.043%1 &5 + 3.817%4

&) =0.063x3 + 0.235x5%1 + 0.0762372 + 0.0152557 + 0.2612371 72 + 0.0992373+
0.12722F3 + 0.0262973 %9 + 0.11829& 145 4+ 0.09122F5 + 0.01F] + 0.247F3 35+
0.047%2%3 + 0.327, &5 + 0.159%3

&) =0.47623 + 0.016x5%; 4 0.0662372 + 0.518x357 4 0.0042371 72 + 0.088x375+
0.008297% + 0.043x233 59 — 0.00822F1%3 — 0.01z0d5 — 0.097%] — 0.00275 55—
0.081#2#3 — 0.0272, 25 — 0.117%5

&) =0.02624 + 0.841x3%; — 0.00323%9 + 0.0342353 4 0.0042371 2 — 0.0132353+
0.722332 —0. legxlajg + 0. 126:172x1:c2 0. 001332 + 0. 016x1 0.125?:52—
0.023%233 — 0.21721 75 — 0.084%5

&) =0.063x3 + 0.235x5%1 + 0.0762372 + 0.0152557 4+ 0.2612371 72 + 0.0992375+
01272975 + 0.026208 582 + 0.11829F1 53 + 0.091z2F5 + 0.01%] 4 0.24773 50+
0.04722%2 + 0.32, &5 + 0.159%3

&) =4.693x3 + 0.07525%, + 0.76625% + 2.7112357 + 012331 &2 + 3.5292575+
0.01922F3 + 0.1052973 %9 + 0.104x0% 175 4 0.721z0F5 + 3.754%] + 0.0353 79+
2.81532%3 + 0.1862, %5 + 5.167i5

&) = — 0.058z3 + 0.070z5%1 — 0.005z5%5 + 0.00623%% + 0.06423% 79 — 0.0132575+
0. 039562301 0. 0081:2:61332 — 0. 014x2x1x2 —0. 007332:1:2 0.001z% 0.086:7:?952—
0.032%2%3 — 0.18%, &5 + 0.0145

&) =0.392x3 — 0.00223%; + 0.59323%9 + 0.0323%% — 0.01223% 79 — 0.1782353—
0.008x2F3 + 0132983 %5 + 0.21975 — 0.0627 — 0.01759 — 0.2015253—

0.09631 &5 — 0.956%5
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133, (z, &) =0.47623 + 0.0162371 + 0.066x572 + 0.518237% + 0.00423% 179 + 0.0882353+
0.008x2F3 + 0.0432973 %9 — 0.00829% 175 — 0.0120%5 — 0.097%] — 0.002E3 55—
0.081%%%3 — 0.0272 &5 — 0.117%4

123, (x, &) = — 0.058z3 + 0.070x3%; — 0.0052529 + 0.00623%2 4 0.06423%, %5 — 0.0132353+
0. O39$2$1 0. 008$2x1x2 —0. 0149625613:2 0. 0073:2:1:2 0.001z% 0.0865:?1’932—
0.0323%73 — 0.18% 145 + 0.01425

1133, (z, &) =6.488x5 + 0.006x5%; — 0.013x379 + 4.0172372 — 0.01323% 79 + 3.98x355+
0.003z97% + 0.03708389 + 0.0082951 53 — 0.002x2F5 + 6.4977 — 0.01473 79+
4.2097%72 + 0.013%1 &5 + 6.1275

153, (&, ) =0.021z3 + 0.41123%; — 0.06x5E2 + 0.0122322 + 0.008232% 79 + 0.0082373+
0. 3813:2 + 0.012292722 + 0. 074:L’2.T1.T2 0. 005(1321:2 + 0. lel + 0. 128x1x2+
0.02472%3 + 0.168%1 75 — 0.02%

133, (x, &) =0.0263 + 0.841253%1 — 0.00323%9 + 0.034237% 4 0.004x3%1 %5 — 0.0132373+
0.72222%3 — 0.012983 %9 + 0.12622F1 33 — 0.0012973 + 0.016Z] — 0.1273 79—
0.023723% — 0.217%, &5 — 0.08475

I35, (z, %) =0.39223 — 0.00223%1 + 0.593x5%9 + 0.032357 — 0.01223%1 75 — 0.1782375—
0.008x2F3 + 0132983 %y + 0.21075 — 0.0627 — 0.017575 — 0.20152 53—
0.09671 %5 — 0.95675

33, (x, &) =0.021x3 + 0.41123% — 0.06x5%2 + 0.012233% + 0.00823%1 29 + 0.0082375+
0.38122F3 + 0.0122973%9 + 0.07429% 155 — 0.00522F5 + 0.01F] + 0.128F3 35+
0.02472%3 + 0.168%1 25 — 0.02%3

33, (x, &) =6.073x3 + 0.0325%; — 0.2362552 + 3.35223%% + 0.00823% 79 + 3.2712353+
0. 036:1323@1 0. 129302:1:1:62 — 0. 016x2x1:p2 —0. 411x2x2 +4.201z7 + 0. 0081‘11‘2+

2.81372%3 4+ 0.09, 75 + 4.65615
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L, (2, @) =4.539243 + 0.03825%; + 0.343237 + 3.69723%% + 0.03623% 10 + 2.9112353+
0.03522%3 + 0.3982973 %9 + 0.034x0% 175 4 0.217x0F5 + 6.8472] + 0.03673 79+
3.3112323 + 0.0397, &5 + 4.035%4

1335 (z, &) = — 0.00725 + 0.356x3%; 4 0.02523%9 + 0.03623%7 4 0.468235%1 F2 + 0.034233+
0.348297% + 0.03520 559 + 0.26229F1 53 + 0.018x2F5 + 0.032%] + 0.789F3 7o+
0.04622%2 + 0.605%1 &5 + 0.01575

133, (2, &) =0.313z3 — 0.008x3%1 + 0.03523%9 + 0.21323%% — 0.04923%1 %5 + 0.082373+
0.019297% + 0.014x233 %2 + 0.0152971 73 + 0.014x975 4 0.20527 + 0.02973 59+
0.094#2%3 + 0.07621 25 + 0.1135

I3k, (2, &) =0.001243 + 0.85x5%; — 0.03x3%2 4 0.012357 — 0.063235%1 22 — 0.0052333+
0.771z9&3 + 0.00222F3 %5 4+ 0.1932971 73 + 0.0112945 — 0.0012 — 0.44253 59—
0.01232%3 — 0.38%1 45 — 0.00133

132, (x, &) = — 0.007z3 + 0.356x3%1 + 0.02523%9 + 0.03625%7 + 0.46823%1 &9 + 0.034x353+
0.34822%3 4 0.035290 779 + 0.26229F1 53 + 0.0182973 + 0.03277 + 0.78973 72+
0.04622%2 + 0.605%1 &5 + 0.01575

122, (¢, &) =4.687x43 4+ 0.02525%1 + 0.74723%2 4+ 2.90822%2 + 0.03523% 19 + 3.52575+
0.02922F3 + 0.2552973 %9 + 0.02107 175 4 0.674xoE5 + 417427 + 0.03973 79+
3.14623%3 + 0.018%1 &5 + 5.099%3

3%, (x, &) = — 0.11623 + 0.038x3%1 — 0.0222379 — 0.04923%7 + 0.05223%1 &9 — 0.0392353+
0.0162975 + 0.015298 589 + 0.013228153 + 0.02522%5 + 0.0255] + 0.06%3 20+
0.084%2%3 + 0.0797, 25 + 0.22273

152, (x, &) =0.386x3 — 0.03z3%; + 0.611x5y — 0.032234% — 0.0052351 & — 0.173x355+
0.0012233 + 0.2012973 %9 + 0.014297 175 4 0.2322975 — 0.32%7 — 0.0123 79—

0.391#2#3 — 0.0012, 75 — 0.931%5
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I1222(

155 (,

1155 (,

1153, (a,

I1222(

1153, (a,

I1222(

I1222(

&) =0.313x3 — 0.00823%; + 0.03525% 4 0.213235% — 0.04923%, %5 + 0.08x353+
0.01922F3 + 0.0142973 %9 + 0.01520% 175 4 0.014z9F5 + 0.2052] + 0.02973 79+
0.0943373 + 0.07631 &5 4+ 0.1125

&) = — 0.116x3 + 0.03823% — 0.02223F5 — 0.04923%7 + 0.05223F1 &9 — 0.0392373+
0. 016:1:2x1 + 0. 015$2x1x2 + 0. 013902561332 + 0. 0251’2 + 0.025z7 + 0. 06:513:2—}—
0.0847%73 + 0.07921 &5 + 0.22275

&) =6.225x5 — 0.007x3%; — 0.018z5%y + 4.201235% — 0.0242351 %9 + 3.971x375+
0.011z97% + 0.03x232 %9 + 0.004x27, 72 — 0.0022975 + 6.035%7 — 0.008%3 0+
4.0152%%2 — 0.014, 75 + 5.908%3

x) =0. 035372 + 0.25823%1 — 0.1062529 + 0.039235% — 0.0162351 %2 + 0.0172325+
0.146332 —0. 0629623:13:2 + 0. 04:172x1:c2 0. 051332 0.0085111 — 0.04355“;’@—
0.068%742 — 0.064%, &5 — 0.198

&) =0.001z3 + 0.85x5%; — 0.0325%9 4+ 0.0123%3 — 0.06323% 159 — 0.0052373+
0.7712975 + 0.0022233 59 + 0.19329F1 %3 + 0.011x975 — 0.0012F — 0.442F3 79—
0.0127232 — 0.38%, 45 — 0.001%5

z) :0.386:13% —0.03z3 521 + 0. 611x2x2 - 0. 032:r2x1 0. 005x2x1$2 - 0. 173x2x2+
0.0012233 + 0.2012933 %9 + 0.014x07 173 4 0.2322075 — 0.3227 — 0.0123 79—
0.3914%%3 — 0.00121 &5 — 0.93143

&) =0.035x3 + 0.25823%1 — 0.10623% 4 0.039235% — 0.0162331 72 + 0.0172325+
0. 146:52301 0. 0621:2561332 + 0. 04x2x1x2 —0. 05156‘2932 —0.008%4% 0.043:?;’5:2—
0.068%3%3 — 0.06421 &5 — 0.198%3

&) =5.96x5 + 0.029257; — 0.264x579 + 3.4252372 — 0.02823% 179 + 3.2862255+
0. 007:1323@1 0. 275.%'2.1‘11'2 — 0. 02x2x1x2 —0. 429:1:21‘2 +4.4797% 1+ 0.0083%?:%2—}—

3.0522%%2 + 0.0112, &5 + 4.64615
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6.4 Appendix B

The obtained solutions of decision variables IL;;;(x,n, &) for observer class II design in Chapter

5.1.3 are as follows.

i, (z,n, ) = 0.030138x3 + 0.179679z245 + 1.7 x 10 %29y — 0.0329454:3
— 1.4 x 10729y + 8.0 x 107102

1%, (x,n, &) = —0.283326235 — 0.735998x25 + 1.0 x 10 %29y + 0.03757643
— 8.8 x 107829y + 1.3 x 10 1%

33, (x,m, &) = 1.5 x 1071822 + 0.0094142039 — 7.6 x 10~ 2029y — 0.07842143
—1.2x 10" Py — 5.2 x 107 7y?

11, (x, &) = 89.731947x3 + 0.247553x045 + 92.043523432,

M, (x,n, &) = 90.634222x3 — 0.442199z909 — 3.8 x 10 229y + 92.11591143
+ 9.8 x 107229y + 66.363700y>

4, (z,n, ) = 0.150077x3 + 0.076463x242 + 1.6 x 10 220y + 0.077956hat
— 1.2 x 107 "#9y + 41.137331y°

I3, (x,m, &) = 4.5 x 1071822 — 0.3378572029 — 2.5 x 10~ 2029y — 0.0304284:3

+ 1.7 x 10" Ty — 3.2 x 1071342,
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I, (x,n, &) = 0.03033623 + 0.180511x2d5 — 7.3 x 10~ 029y — 0.03308823
— 1.5 x 107829y — 2.6 x 107122

%, (x,n, &) = 0.15007723 + 0.076463x232 + 1.6 x 10~ 29y + 0.07795643
— 1.2 x 10~ "oy 4 41.13733142,

122, (x,n, &) = 91.942959x3 — 0.236876290 + 3.4 x 10 229y + 92.33791943
— 1.5 x 10~ &9y + 25.500119y2,

132, (x,n, &) = 3.3 x 107922 — 0.0842522939 + 4.5 x 10~ 2029y — 0.0054024:3
+1.1 x 107 "9y — 6.0 x 107132,

42, (@, n, &) = —0.28338823 — 0.736161x9@5 — 4.5 x 10~ 020y + 0.03761 142
—9.1x 10*%23; — 1.2 x 107122

M3, (x,n, &) = 4.5 x 1071822 — 0.3378572929 — 2.5 x 10~ 029y — 0.030428::3
+1.7 x 10*7:&2y — 3.2 x 107132

123, (x,n, &) = 3.3 x 107922 — 0.0842522939 + 4.5 x 10~ 2029y — 0.0054024:2
+1.1 x 10729y — 6.0 x 107132,

133, () = 80.63588462

33, (2, m, &) = 2.2 x 107922 4 0.0094722929 — 2.6 x 10" 29y — 0.0787963
+3x 107 Bg9y — 5 x 107 14y?

15 (z, 1, &) = 0.03033623 4 0.180511x939 — 7.3 x 107029y — 0.0330884:3
— 1.5 x 10 %9y — 2.6 x 1071242

31, (2, n, &) = —0.28338823 — 0.736161x239 — 4.5 x 10~ Pa9y + 0.03761123
— 9.1 x 10 %%y — 1.2 x 107122

3, (x,n, &) = 2.2 x 1071922 4+ 0.0094722939 — 2.6 x 10”229y — 0.0787964:3
+3x 10 Bioy — 5 x 107142

{1y (x, ) = 89.73196123 + 0.247605z2d5 4 92.0433853,

1L, (2, m, &) = 91.91128323 — 0.1462122935 — 1.0 x 10 820y + 92.3936404:3

— 1.2 x 10829y + 66.821423y°,
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1173, (@, n, &) = 0.05046623 + 0.0260662242 — 5.7 x 10~ z2y + 0.02642043
— 1.4 x 107839y + 41.285280y?,

I35, (z,m, &) = 8 x 107 %23 — 0.1260492222 + 5 x 107> 2oy — 0.00570643
— 4.7 x 10 %9y — 4.9 x 10712,

1175, (x, m, &) = 0.010687x5 + 0.060349z2d5 + 5.3 x 10~ 22y — 0.01118243
— 2.3 % 107 gy — 6.7 x 107132,

12, (x,n, &) = 0.05046623 + 0.026066222 — 5.7 x 10~ Yoy
+0.02642043 — 1.4 x 10~ 829y + 41.28528012,

1133, (@, n, &) = 92.33649223 — 0.076820z2d7 — 3.1 x 10~ zy + 92.47421273
— 1.2 x 107829y + 25.50794512,

T3, (2,1, ) = 2.8 x 107223 — 0.03193022 + 2.2 x 10”225y — 0.00406143
— 3% 10 %%y — 3 x 107122,

1135, (z, 1, &) = —0.10959123 — 02271512282 + 3.3 x 10~ z9y — 0.00486223
— 14 % 107 T2y — 6.8 x 107102,

I3, (z,m, &) = 8 x 107823 — 0.126049z2% + 5 x 10~ zoy — 0.00570643
— 4.7 % 10 %9y — 4.9 x 107 1y?,

12, (x,m,%) = 2.8 x 1072022 — 0.03193022% + 2.2 x 10~ 29y — 000406172
—3x 10 %%y — 2.9 x 107122,

1133, (&) = 88.1126602402943943,
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35, (2,1, &) = =2 x 107923 4+ 0.003362972 — 5 x 10”2029y — 0.02786143
— 2 x 1072 ¢y — 6.4 x 107122,

113, (x,m, &) = 0.01068723 + 0.060349x2d5 + 5.3 x 1020y — 0.01118243
— 2.3 %107 TEoy — 6.7 x 1071342,

123, (x,n, &) = —0.10959123 — 0.227151x285 + 3.3 x 10 29y — 0.004862:3
— 1.4 x 107 Zoy — 6.8 x 107102,

I35, (2,1, &) = —2 x 107923 4+ 0.003362922 — 5 x 10~ 2%29y — 0.02786143
— 2% 107 PZoy — 6.4 x 1071232,

15, (z, ) = 91.635053623 + 0.04029002272 + 92.38608234:3,

M35 (2, 1, &) = 91.91152723 — 0.146250x252 — 7.1 x 10~ 29y + 92.39361633
— 2.5 x 10 829y + 66.700773y>,

123, (2, m, &) = 0.05069623 + 0.026177x235 — 4.7 x 10~ V29y 4 0.02653223
— 1.3 x 107829y + 41.34624212,

3L, (x,m, &) = =5 x 1071822 — 01263472939 — 1 x 107 2%29y — 0.00573543
— 1.1 x 107 %49y — 3 x 1071342,

335 (2, m, &) = 0.010757x3 4 0.060627x929 — 3.5 x 10 229y — 0.01122643
+1.1 x 10 T2y — 6.3 x 107132,

M3, (x,n, &) = 0.05069623 + 0.026177x2@5 — 4.7 x 10~ Vz9y 4 0.02653223
— 1.3 x 10 829y + 41.346242y°,

2%, (x,n, &) = 92.336443x3 — 0.076838x9d 4 2.1 x 10 z9y + 92.47418243
— 6.2 x 107229y + 25.629608y2,

132, (x,n, &) = —4 x 107222 — 0.03208z235 + 1 x 10~ z9y — 0.00407923
— 6.5 x 107 0%,y + 2.2 x 107122,

132, (x, 1, &) = —0.10962623 — 0.2272072z929 — 2.1 x 10 z9y — 0.00485723
+6.9x 10~ ngy 4.6 x 107132,

M3, (x,m, &) = —5 x 107822 — 0.1263472929 — 1.4 x 10~ %29y — 0.00573543

—1x 10_95623/ —3x 107132,
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1135, (z,m, &) = —4 x 107?23 — 0.032082282 + 1 x 107> 25y — 0.00407923
— 6.5 x 107109y + 2.2 x 107122,

1193, (&) = 88.1123055846891443,

33, (2, n, &) = 2 x 107223 4 0.003391z2d2 — 5 x 10 Py — 002799343
12 x 10 Bg0y — 1.8 x 1071242,

I3 (@, n, &) = 0.01075723 + 0.0606272d2 — 3.5 x 10~ zoy — 0.011226453
+ 1.1 x 10 a9y — 6.3 x 10713y,

11735 (®, n, &) = —0.109626x5 — 0.227207z282 — 2.1 x 10~ z2y — 0.00485743
+6.9 x 10 8E9y — 4.6 x 107132,

34y (2, m, &) = 2 x 107223 + 0.003391z52 — 5 x 10~ way — 0.02799333
+2x 107 2%y — 1.8 x 107 12y2,

i3y (z, &) = 91.635045223 4 0.0402912297 + 92.386038643,

57 (@, n, &) = 91.911283z5 — 0.146212x28 — 4.9 x 10~ zoy + 92.393641723
— 9.0 x 107 %%y + 66.821425y°,

113}, (@, n, &) = 0.05046623 + 0.02606622d2 — 2.4 x 10~ 25y + 0.026419673
— 1.4 x 107829y + 41.285281y?,

8L (2,1, &) = —3 x 107822 — 0.12604922% — 3 x 102720y — 0.00570642
+6x 10929y — 6 x 1071142,

31, (z, 1, &) = 0.010687923 + 0.060349z232 — 5.5 x 10~ 39y — 0.01118233
—22x 10 Tday — 1.5 x 10732,

157, (@, n, &) = 0.05046623 + 0.02606622d2 — 2.4 x 10~ x5y + 0.026419673
— 1.4 x 10~ %y + 41.285281y°,

1133, (z, m, &) = 92.33649023 — 0.076820z282 — 1.2 x 10~ moy + 92.47421173

— 1.3 x 10~ 829y + 25.50794612,
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3% (z,m, &) = 2 x 107923 — 0.0319292942 4+ 1 x 10729y — 0.00406123
+4 x 10 89y + 7 x 10732,

133, (x, 1, &) = —0.10959123 — 0.227151 2929 — 3.4 x 10 229y — 0.00486313
— 1.4 x 107 9y — 3.2 x 1071042,

33 (2,1, &) = —3 x 107 ®23 — 0.1260492239 — 3 x 10229y — 0.00570673
+6 x 10 %29y — 6 x 107 Hy?,

23, (z,m, @) = 2 x 10722 — 0.0319292235 + 1 x 107225y — 0.00406122
+4 x 10 %9y + 7 x 107132,

1133, (2) = 88.112660002480333,

33 (x,m, @) = —1 x 107223 + 0.0033602232 — 2 x 10 P29y — 0.0278623
— 2% 107 d9y — 3 x 1071142,

31, (2, m, &) = 0.0106879x3 + 0.060349z939 — 5.5 x 10 229y — 0.01118243
—22x 107 29y — 1.5 x 107132,

131, (x,m, &) = —0.10959123 — 0.2271512285 — 3.4 x 10" z9y — 0.00486343
— 1.4 x 107 29y — 3.2 x 1071042,

I3} (z,m,&) = —1 x 107923 4+ 0.0033602929 — 2 x 10~ *°z9y — 0.027862:3
—2x 107 Py — 3 x 107 Hy?,

151, (x, &) = 91.6350524x3 + 0.04029022232 + 92.386080043,

Mo (x,m, &) = 91.91152723 — 0.1462502282 + 3.7 x 10~ 20y + 92.39361633
— 7.9 x 107229y + 66.700773y2,

21, (2, n, &) = 0.05069623 + 0.026177x235 — 3.0 x 10 %20y + 0.02653143
— 1.2 x 107 %29y + 41.346242y,

31, (x,m, @) = —8 x 1071823 — 0.1263472282 — 3 x 102029y — 0.00573543

+ 2 x 107 %29y — 2 x 1071242,
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41, (x, 1, &) = 0.010757x3 4 0.060627x9d9 + 8.7 x 10 229y — 0.01122643
+1.1 x 10" 9y + 8.0 x 1071342,

32, (z,n, ) = 0.05069623 + 0.026177z242 — 3.0 x 10 %29y + 0.0265314:3
— 1.2 x 10 %29y + 41.346242y,

3%, (x,n, &) = 92.336444x3 — 0.076839z909 — 5.1 x 10 229y + 92.47418243
+1.5 x 10229y + 25.629608y2,

132, (x,n, &) = 3 x 1072922 — 0.032080z92 + 5 x 10™2®29y — 0.00408043
+2x 10 %%y — 2 x 107 M2,

3%, (x, 1, &) = —0.10962623 — 0.227207x929 + 5.4 x 10 z9y — 0.00485873
+ 6.6 x 10*85% — 5.6 x 10712y2,

33, (x,m, &) = —8 x 1071822 — 01263472929 — 3 x 10 %29y — 0.00573543
+2x 10*9552y — 2 x 107122

133, (x,m, &) = 3 x 1072922 — 0.0320802929 + 5 x 107 2®29y — 0.00408043
+2x 10—95321/ —2x 107142,

I3, (&) = 88.1123052739004633,

33, (x,m, @) = 3 x 107923 + 0.0033912932 — 9 x 10~ 2029y — 0.02799443
—3x 107 Py — 8 x 1071342,

1, (x, 1, ) = 0.01075723 4+ 0.060627z949 + 8.7 x 10 %29y — 0.0112264:3
+ 1.1 x 10 @y + 8.0 x 107132,

315 (x,m, &) = —0.10962623 — 0.227207x235 + 5.4 x 10" 29y — 0.0048583
+6.6 x 10 829y — 5.6 x 10712y,

31, (x,n, &) = 3 x 107922 4 0.003391 2929 — 9 x 1072029y — 0.027994:3
— 3 x 1072 d9y — 8 x 107132,

15 (x, @) = 91.635043723 + 0.040291529%2 + 92.386039143,

33, (x,m, &) = 90.63345023 — 0.442078z9d9 — 8.9 x 10 Yxoy + 92.11598543

— 5.0 x 107829y + 66.477090y2,
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1133, (z, 1, &) = 0.149400z3 + 0.076135z2%5 + 4.1 x 10~ 29y + 0.0776263
+3.0 x 10 79y + 41.072603y2,

1133, (@, n, &) = 3 x 107723 — 0.337092z2d2 + 2 x 10 *z2y — 0.03037543
+5x 10 dgy — 3 x 1071042,

1133, (z,m, &) = 0.03013823 + 0.179682z225 — 2 x 10~ Yzoy — 0.032945hatz3
+4x 107 Ty + 3 x 10712,

1153, (@, n, &) = 0.14940023 + 0.07613522d2 + 4.1 x 10~ 25y + 0.0776263
+3.0 x 10 "9y + 41.072603y2,

122, (x,m, &) = 91.943092x3 — 0.236815x00 + 3.5 x 10 220y + 92.3379954:3
+3.9 X 10~ "y + 25.376574y°,

1133, (2,1, &) = 7 x 10723 — 0.083848x22 + 4.6 x 10> xay — 0.00537443
+3x 10 2oy + 1 x 1071242,

1143, (@, m, ) = —0.28332423 — 0.735999w0ds — 9 x 10 oy + 0.03757443
+3 %107 iy — 2 x 107102,

T35, (@, m, ) = 3 x 10773 — 0.33709208 + 2 x 10”2625y — 0.03037533
5% 10 a9y — 3 x 1071042,

23, (2,1, &) = 7 x 1022 — 0.083848z95 + 5 x 10220y — 0.00537442
+3x10 720y + 1.3 x 107122,

1133, (&) = 80.63678499777244%3,

1143, (%, m, &) = —6 x 107922 + 0.00941 1zads — 3 x 10220y — 0.078422:3
— 2 x 10" gy — 2 x 107142,

1133, (2,1, ) = 0.03013823 + 0.179682z282 — 2 x 10~ %22y — 0.032945hata?
+4 % 107 Ty + 3 x 10712,

1133, (%, m, ®) = —0.28332423 — 0.735999z232 — 9 x 10~ Vz9y + 0.03757443

+3 % 107 Tdgy — 2 x 107102,
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T34, (, 1, &) = —6 x 107922 + 0009411205 — 3 x 10 Pagy — 0.078422:3
— 2 x 107 g9y — 2 x 107112,

1155, (@, &) = 89.7319487x5 + 024755721582 + 92.04352015,

330 (x, m, @) = 90.63422423 — 0.442203z28 + 2.8 x 10~ zoy + 92.11591743
+ 1.6 x 10789y + 66.358397y2,

1133 (x, m, &) = 0.150078z3 + 0.076462z2d5 + 2.0 x 10 25y + 0.07795545
— 1.7 x 10~ &y + 41.134062y°,

T35y (@, m, &) = —1 x 107722 — 0.337858z2i5 — 3 x 105y — 0.03043023
+9 x 10 "Eoy — 3 x 107132,

1335 (x, 1, &) = 0.03033623 + 0.180508z245 + 4.1 x 10~ 22y — 0.03308643
+3.2% 10 "day + 1.3 x 1071242,

55 (2, m, &) = 0.150078z5 + 0.076462x282 + 2.0 x 10~ z9y + 0.07795543
— 1.7 x 10~ &9y + 41.134062y2,

1153, (@, n, &) = 91.942971a5 — 0.236877x2ds + 1.4 x 10~ %zy + 92.33792273
— 2.2 x 10 @9y + 25.498102y7,

53, (2, m, &) = —5 x 107923 — 0.084252z93 + 1 x 1072 29y — 0.005399:3
46 x 107 TZoy — 3 x 107132,

1155, (@, m, &) = —0.28338525 — 0.736156282 + 2.6 x 10 2oy + 0.03761425

+2.0 x 10 "oy — 4.4 x 107122,
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33, (x,m, &) = —1 x 1071722 — 0.337858z920 — 3 x 107 2Cx9y — 0.03043043
+9 x 107 29y — 3 x 1071342,

335 (x,m, &) = —5 x 107923 — 0.0842522929 + 1 x 10”*° 29y — 0.005399:3
+6 x 107 TZoy — 3 x 107132,

33, (&) = 80.6359007357442433,

53, (x,m, &) = —2 x 107922 + 00094712939 — 2 X 10229y — 0.07879743
+5x 10739y — 2 x 107122,

133, (z, n, ) = 0.030336x3 + 0.180508z545 + 4.1 x 10~ %29y — 0.0330864:3
+3.2 x 107 29y + 1.3 x 107 12y?,

123, (x,n, &) = —0.28338523 — 0.736156x245 + 2.6 x 10~ x0y + 0.03761443
+2.0 x 107 "doy — 4.4 x 107122,

53y (z, 1, @) = —2 x 107922 4+ 0.0094712239 — 2 x 10~ z9y — 0.07879713
+5x 10739y — 2 x 107122,

33, (x, &) = 89.731967123 4 0.24760438x929 + 92.043388343
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6.5 Appendix C

The feasible solutions of design example class I1I with unmeasurable premise variable in Chapter

5.2.1, i.e., Aijrs and Il (x, @), are as follows.

A11111 = 9596.2603127541606
A11121 = 1189.823767639005
A11211 = 9596.2603078287702
A11221 = 674.5375115904262
A12111 = 596.2603056345661
A12121 = 674.5374970261983
A12211 = 596.2603073465334
A12221 = 1185.526889552348
A21111 = 9596.2603076447876
A21121 = 1190.058515305776
A21211 = 596.2603064810264
Aa1221 = 674.1881197420444
A22111 = 596.2603064642117
A22121 = 674.1881201309479
A22211 = 596.2603079310484

A22201 = 1185.761516243532

A11112 = 5.570827578441173
A11122 = 5664.161341526748
At1212 = 12.04256622767515
Al1222 = 5664.161341526748
A12112 = 12.04256622767515
A12122 = 5664.161341526748
A12212 = 5.575579507489558
A12222 = 5664.161341526748
A21112 = 5.24219049367808

A21122 = 5664.161341526748
A21212 = 11.30521562563347
A21222 = 5664.161341526748
A22112 = 11.30521562563347
A22122 = 5664.161341526748
A22212 = 5.247353586972825

A22222 = H664.161341526748
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i (z, &) =26849.296x5 + 517.61625%, + 988.70325%0 + 28136.2782347 — 721.144235 Fo+
20284.6442353 + 447.985x0F3 + 798.0112972 %9 — 440.76920% 173 4 411.139z05+
32871.788%1 — 1345.143%3 %9 + 20975.689F5 53 — 1723.100% &5 + 23205.780 4
12}, (z, @) = — 577.934x5 + 979.04523%, — 573.6462510 — 463.476235% + 2209.7262:3% 1 50—
1409.3022353 + 533.9752933 — 401.2742972 %9 + 561.40920% 175 — 443.589005 —
772.9925] + 2206.00275 59 — 2440.4707373 + 1903.148%1 %5 — 1165.0067 5
I3, (x, &) = — 4538.987x5 — 754.564x3%1 — 769.90225%, — 8412.2192372 — 170.221 235 F9—
1010.4082232 — 326.75022%3 — 636.735x282 %9 + 111.01620% 175 — 213.941 975 —
5390.247%7 + 324.872i3 0 — 1280.408%2%3 + 876.570% 145 — 574.23275
1L (z, @) =620.02725 + 7647.864x55, — 467.84123%, + 1385.5612357 — 916.740235 o+
749.3300353 + 6625.841207F — 320.946295 359 + 1106.18220% 175 — 636.478x00 5+
1042.2123] — 1668.38473 79 4 2040.6657373 — 1494.64131 %5 + 894.55875
12, (x, &) = — 577.934z5 + 979.045x5% — 573.646x5379 — 463.47623%3 4 2209.72623% To—
1409.3022232 + 533.9752255 — 401.274x232 %9 + 561.40920% 155 — 443.589075 —
772.992%7 4 2206.002%3 79 — 2440.4705253 + 1903.148% 1 &5 — 1165.00675
132, (z, &) =25023.36925 — 603.03923%, + 1470.896x3F5 + 20426.71125%3 — 1559.9552351 &2+
21181.245x3%3 — 326.093x2F5 + 600.6382973 79 — 640.90829% 175 + 541.160z27 5+
23139.162%] — 1652.013%3 %9 4 21574.33133 53 — 2119.680%, 45 + 23506.621%5
133, (@, &) = — 1951.710x3 — 705.86123%; — 483.21025% — 64.9442373 — 1579.5612351 o+
166.200x3%3 — 376.038z0%5 4 115.564207 500 — 278.587xod 155 + 45.8192075+
186.198%] — 1094.09075 %5 + 1372.4217272 — 1032.584%1 &5 + 1076.508 5
113, (z, &) =1179.57225 — 423.610255, + 3748.95225%0 — 4831832347 + 884.9662351 Fo—
670.0122373 — 158.8302975 + 1526.6722973 %9 — 1193.956297 173 + 1091.1522975 —

787.003%] + 1405.51375 50 — 2015.8927373 + 1663.52741 45 — 1024.988%5
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13, (z, &) = — 4538.987x3 — 754.564x5%, — 769.902x3F, — 8412.2192233 — 170.221235 59—
1010.408x3%3 — 326.75029%3 — 636.735x00 500 4+ 111.016201 55 — 213.941 2055 —
5390.24771 4 324.87273 %9 — 1280.408%745 + 876.570F &5 — 574.23274

123, (z, &) = — 1951.71025 — 705.861x54; — 483.2100352 — 64.9442357 — 1579.56125%1 To+
166.2002272 — 376.03822%5 + 115.564x233 %9 — 278.587Tx971 73 + 45.81912F5+
186.198%7 — 1094.09073 %9 + 1372.42132%3 — 1032.584% &5 + 1076.508%5

133, (x, &) =41602.3215 + 490.15925%1 + 1578.084x375 + 36231.9382347 + 762.588x351 Fo+
30999.6392353 + 359.727x2%3 + 524.685x232 % + 148.197207 155 — 227.463x0F5+
34611.8345] + 315.23223 %, + 27738.6427372 — 368.268% 145 + 35978.075i5

133, (z, &) = — 1527.688x5 — 6850.347x3%, — 2438.756x55, — 961.8912352 + 536.14523F Fo—
700.76325%3 — 5334.003x2%7 — 265.81829%5%9 — 1007.577 2071 75 — 28.441 2975 —
352.271%] + 692.81973 %9 — 1231.57952%3 + 827.153%1 25 — 1049.55375

1, (2, &) =620.027x5 + 7647.864x55, — 467.84123%5 + 1385.5612347 — 916.7402351 o+
749.3302372% + 6625.841x0F5 — 320.946x972 79 + 1106.182x271 73 — 636.478x075+
1042.2123] — 1668.38443 % 4 2040.66552 73 — 1494.641%, &5 + 894.558%3

1121, (z, &) =1179.57225 — 423.610255, + 3748.9520570 — 483.1832357 + 884.96623F1 &y —
670.012227% — 158.83022%5 + 1526.672207 582 — 1193.95629% 173 + 1091.1522975 —
787.003%] + 1405.51375 0 — 2015.8927273 + 1663.52741 &5 — 1024.98845

I3}, (z, &) = — 1527.688x3 — 6850.347x3%, — 2438.756x559 — 961.89122%2 + 536.14523% Zo—
700.76323%% — 5334.003x2%5 — 265.818207 549 — 1007.577 207 75 — 28.44129F5 —
352.271%] + 692.81973 %9 — 1231.5795253 + 827.153%1 25 — 1049.55375

111, (x, &) =38171.27625 + 1700.503x3%, — 2962.117x3%, + 28627.5452372 — 1692.052x3% Fo+
23260.0002373 + 1125.3812975 — 2456.913x233 %5 + 2148.451 097155 — 1511.851 2075+

26190.463%] — 1513.53623 20 + 21762.7747355 — 2208.32471 %5 + 23691.39775
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1o (z, @) =3160.74025 4+ 393.679x551 + 250.77525%, + 4418.9592357 + 129.511235 &9+
22741922373 + 337.84020%5 4 268.620208 359 + 79.61020%1 72 + 43192085+
5026.870] — 55.922F5 70 + 2477.9347373 — 142.081%, &3 + 2340.985%3

2], (x, &) =221.62125 + 187.608235%1 + 133.23225% 4 291.6882347 + 531.87623531 32—
131.568x3%3 + 174.620x075 4 133.000297502 + 26.388x071 75 + 6.5652075 —
16.88%7 4 592.88615 4y — 384.89232 53 + 233.099%1 5 — 124.79975

I3, (x, &) = — 2431.643z5 — 1276.298x5% — 646.610x579 — 5449.4552252 — 424.465x37 Fo—
851.5292253 — 1161.802207" — 676.764x05 559 — 215.264x2%1 73 — 116.868x275—
4287.820%7 — 89.11173 %9 — 1150.87157%3 + 141.959%, 5 — 189.592%

1t (2, @) =342.72725 + 1371.50225%1 + 165.627x555 + 554.2902337 — 248.25723% To+
321.3012373 + 1620.9022275 + 130.9012232 %5 + 376.588x971 73 — 44.4T4x0F5+
226.8795] — 435.63133 %5 + 471.6697373 — 212.123% 75 + 137.8883

12, (x, &) =221.621x5 + 187.608x5%1 + 133.2322555 + 291.688x3%% + 531.876x3% To—
131.568x3%3 + 174.620x075 4 133.000297502 + 26.388x27 172 + 6.5652075 —
16.880%71 + 592.8867 54y — 384.89247 53 + 233.099%, &5 — 124.799%5

1325 (z, &) =2486.66225 + 90.67023% + 50.92625%9 + 2112.2752357 + 29377235 To+
2149.521 2373 + 7.927x973 + 79.2232052 %5 + 20.576207 155 — 40.1932975+
2327.4547] — 122.622%3 %5 + 2250.6525745 — 286.685%1 %5 + 2394.936%1

133, (x, &) = — 718.50625 — 614.571x5%; — 351.09123F, — 671.40423%3 — 1033.132233 &2+
191.97023%3 — 392.822x073 — 358.238x07 50y — 97.75020%1 75 — 14.50022F5 —
8.718%7 — 939.25075 %y + 531.5374253 — 334.607%, 25 + 241.475%5

132, (x, @) = — 96.46625 + 253.217x3%, + 548.119x3 % — 17.994225% + 287.284x2% 59—
293.6202353 + 45.7992075 4 481.990205 35y — 197.7612231 53 + 214.18729F5 —

95.681%7 4 184.333&5 %y — 334.1805243 + 290.048%, 75 — 180.051%5
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13,5 (z, &) = — 2431.643x5 — 1276.29825% — 646.61025%9 — 5449.45523%% — 424.46525F To—
851.5292353 — 1161.8022005 — 676.764x957 5y — 215.264x0F1 73 — 116.8682975 —
4287.8205] — 89.11&3 %9 — 1150.87122 73 + 141.959% 173 — 189.59274

123, (2, &) = — 718.50625 — 614.571x5%; — 351.09123F, — 671.40423%3 — 1033.132233 &2+
191.9702373 — 392.822x9%% — 358.238x07 50y — 97.7502071 75 — 14.50022F5 —
8.718%1 — 939.250%3 %9 + 531.5374545 — 334.607%1 &5 + 241.47555

133, (x, &) =10256.738z3 + 4585.56323%1 + 1606.160x572 + 15392.5442252 4+ 1307.607x37 To+
A771.824x372 4 3602.189x2F3 + 1670.8152952 %5 + 653.274x231 73 + 237.2752075+
11214.409%7 + 489.39975 70 4 4728.65772 73 — 21.89041 &5 + 3180.534i5

1135 (z, &) = — 963.2265x5 — 2945.72325%, — 575.65425%9 — 1563.16623%2 + 137.01625% To—
664.250257% — 2825.6282077 — 342.558207 509 — 667.3542051 55 — 26.897xods —
44702731 + 564.60555 59 — 728.00552%3 + 253.53721 75 — 273.196%3

1, (2, &) =342.72725 + 1371.50223% + 165.627x500 + 554.2902357 — 248.257x3% Fo+
321.30122%2 4+ 1620.902x275 + 130.9012973 %9 + 376.588x0% 155 — 44.474x0 75+
226.879%7 — 435.631%5 1y + 471.66975753 — 212.12351 %5 + 137.888%5

1315 (x, &) = — 96.46625 + 253.217x55, + 548.11923F, — 17.994235% + 287.284435 59—
293.62025%3 + 45.799x2F7 + 481.9902973 %0 — 197.761 208155 + 214.187x035 —
95.681%] + 184.333%3 29 — 334.180343 + 290.048% 45 — 180.05145

13}, (x, &) = — 963.22625 — 2945.72323%) — 575.654x5%9 — 1563.16623%7 + 137.01623% Zo—
664.2502575 — 2825.628x0F7 — 342.558207 50y — 667.3542051 55 — 26.897x0d5 —
44702757 + 564.60555 5 — 728.00552%3 + 253.5374 75 — 273.196%3

{5 (x, &) =3779.638z5 + 498.278x3%1 — 874.676x3iy + 3753.9222372 — 41.34503% Zo+
2919.5742373 + 265.5452005 — 718.69620F7F2 + 536.647x231 53 — 362.5892975+

2650.774%7 — 169.48275 79 4+ 2431.4527373 — 326.179% 145 + 2498.92175
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L, (z.&) =27017.84625 4 944.69025%, + 1106.26523% + 29330.597235% — 339.65123% &0+
20390.5532353 + 1169.4441575 4 915.976205 55y — 351.14929F1 53 + 359.97x005+
41152.86F] — 1358.9845 19 + 20690.5355743 — 1480.09%1 &5 + 23099.87675

2], (z.&) = — 119.61225 4+ 1057.88923% — 342.35225%0 — 137.807x34% + 2363.184235% 1 Zo—
1202.3732233 + 633.4192955 — 294.38219F2 %9 + 474.6332971 75 — 361.268x005 —
811.488%] + 2487178537y — 2258.4477343 + 1755.633%1 25 — 1062.748%5

I3, (x.2) = — 8170.111z5 — 3235.57625%, — 1604.575x5%, — 15658.489x372 — 361.59525% 1 49—
1025.5912252 — 2691.535207° — 1472.607x273 % + 245.81x2%1 73 — 394.6522975 —
9445.379%7 + 200.26275 55 — 1599.0962373 + 881.357% 145 — 601.76575

11y, (2.2) =952.19724 + 7559.00223F1 + 76.709x5%2 4+ 1690.75223%7 — 955.09223% To+
7774162553 + 7962.697x077 — 49.50429F3 %9 + 1328.497x0 155 — 556.973x225+
1581.804%] — 1863.47433 79 4+ 1904.8237373 — 1408.792%1 &5 + 849.132%5

12, (x.2) = — 119.612z4 + 1057.889z551 — 342.352x5% — 137.80723%3 4 2363.184x3% Fo—
1202.3732232 + 633.4192955 — 294.3821032 %9 + 474.633x071 75 — 361.2681075 —
811.488%7 + 2487.178%3 79 — 2258.447F2 %3 + 1755.633% 1 &5 — 1062.748%5

123, (z.&) =25687.469z3 — 369.7823% + 1799.173x3%5 + 20439.05823%% — 1240.98223% &0+
21777.206231% — 268.12622%5 + 526.25129F3 7 — 518.388297 175 + 537.231275+
23144.1245] — 1416.33723 29 4+ 21380.3062745 — 1961.5062, 75 + 23607.7025

1132, (x.2) = — 1820.32925 — 1540.43x57%, — 204.9172355 — 440.36625%3 — 1951157235 &2+
629.0572353 — 898.643x2F5 + 97.447x0F2 %9 — 519.264x971 73 + 188.54 72075+
136.759%] — 1646.5335 %5 + 1586.2727372 — 1058.486%1 5 + 1584.483%

112, (x.&) =1178.702x5 + 122.18623%, + 4581.035x3%2 — 456.17822%2 + 908.59x3%1 &9 —
942.7952373 — 12.1942973 + 1714.4042953 59 — 1056.8832971 73 + 1544.697 2255 —

805.851F] + 1259.57145 %0 — 1911.8267343 + 1586.733%1 45 — 1121.68644
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13, (z.&) = — 8170.111x5 — 3235.57625%, — 1604.57525%0 — 15658.4892357 — 361.595235 59—
1025.5912372 — 2691.53529%5 — 1472.6072082 0 + 245.81297 173 — 394.6521005 —
9445.379%] 4 200.262%3 75 — 1599.0963743 4 881.357%1 %5 — 601.765%5

11235, (@.2) = — 1820.32925 — 1540.43x57, — 204.91723%5 — 440.36625%7 — 1951.15723% o+
629.0572353 — 898.643x0F5 + 97.447 105259 — 519.264x971 73 + 188.54 72075+
136.759%] — 1646.5335 %5 + 1586.2727372 — 1058.486%1 5 + 1584.483%

133, (x.2) =71146.788x5 + 16898.32123%, + 4048.398x53%0 + 68779.912357 + 903.644235 To+
31735.8792233 + 8389.315x0%5 4 4337.756x232 79 — 879.488x9% 175 — 611.688x2F5+
59978.708%] — 583.177&3 %, + 28837.328%343 + 533.634% 145 4 37677.9885

1135, (x.2) = — 2941.97525 — 10159.505235% — 2208.48x5%9 — 3987.1982377 — 182.56254 1 T9—
618.3662512 — 9537.852x9%% — 610.944207 50y — T42.9382951 %5 + 67.587Lods —
1604.401%7 + 700.1623 29 — 1269.343%253 + 683.668% 75 — 1488.29475

M1, (x.2) =952.197x4 + 7559.00225%1 + 76.70923% + 1690.752x3%2 — 955.092235% 1 Zo+
TT7.416235% 4+ 7962.6972977 — 49.50429F3 %9 + 1328.497x91 55 — 556.973x2F5+
1581.804%7 — 1863.47423 %5 + 1904.8235252 — 1408.792% 175 + 849.13275

121, (z.&) =1178.702x5 + 122.18623% + 4581.035x5F, — 456.17823%2 + 908.592351 &y —
942.7952273 — 12.19429%5 + 1714.4042952 %5 — 1056.883x071 73 + 1544.697x255 —
805.851%7 + 1259.57123 %5 — 1911.8265743 4 1586.733% 123 — 1121.68674

131y, (.2) = — 2941.97525 — 10159.50525% — 2208.48x570 — 3987.19823%7 — 182.56254 1 Z9—
618.3662315 — 9537.852x0%5 — 610.944x07 50y — T42.9382951 %3 + 67.587Lods —
1604.401%] + 700.1625%5 — 1269.3437373 + 683.668% 45 — 1488.29475

{1y, (x.2) =38093.91x5 + 1598.177x5%, — 3959.5823% + 28439.331234% — 901.771235 1 o+
24716.9952373 + 1235.809x90 — 2658.1652973 79 + 2028.118x9F1 55 — 2132.9332975+

26568.9865] — 12341785379 4 21792.682735% — 2048.265% 75 + 24036.5455
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Il (2, &) =2596.37925 4 303.03925%, + 135.967x5%, + 2792.12357 + 143.52323% 3+
2022.0712373 + 293.581 1005 4 158.415205 580 + 41.844107 173 4 16.8842075+
2998.34177 4 48.94655 79 + 2022.9062373 — 39.86471 75 + 2261.42175

21 ~\ 4 3 3~ 2~2 24~

16.3442373 + 86.851 2935 + 83.802208 509 + 27.1652071 75 + 1.334x005+
26.045%7 + 146.307%3 o — 73.3072323 + 65.718%1 %5 — 32.8437%

I3, (x, &) = — 975.297x3 — 946.598z5%1 — 357.132x5%, — 2160.121235% — 393.368235 1 Fo—
225.765227% — 856.5762205 — 418.62829F7 %9 — 117.332x23 72 — 39.837x0F5—
1129.663%] — 163.42973 %9 — 230.1455743 4 30.983%, 75 — 41.274%5

i, (x, &) =183.347x5 + 521.66825%, + 102.412235% 4 368.8372347 + 17.727235 1 Zo+
91.6862375 4 506.941 2975 + 101.2272032 %9 + 113.7532971 75 — 8.8722975+
116.842%7 — 649772329 + 111.5228545 — 521712 %5 + 34.414%5

125 (2, ) =110.673x5 + 130.59423% + 75.544x5%9 + 166.5842377 + 202.626235 1 &0 —
16.34423752 + 86.8512075 + 83.8021282 %9 + 27.1652051 %3 + 1.334x275+
26.045&] + 146.307#3 5, — 73.3072242 + 65.718% 5 — 32.8435

123, (x, &) =2343.49125 4 56257 + 52.49925F9 + 2009.232235% + 30.40423% 1 G0+
1999.61923%2 + 15.699297% 4 46.07T29% 509 + 11.1922971 75 4 0.1632975+
2267.429%7 — 27.843%5 %9 + 2006.9547373 — 70.913%1 25 + 2273.578%5

11325, (x, &) = — 350.08x5 — 383.15523% — 209.885x570 — 443.2752357 — 414.40125% 9 —
3.3352373 — 232.5462977 — 233.2122975 %9 — 60.8332971 73 — 87551005 —
77.496%7 — 251.711%3 % 4 82.15443%3 — 80.533%1 %5 + 56.7781%

112, (x, @) =24.43823 + 133.066x3%1 + 192.564x3 %2 + 59.39923%% + 123.30123% Fo—
54.218137% 4 54.867xod5 + 150.686125 159 — 29.65920%173 + 60.8512975 —

17.85%71 + 63.65973 %0 — 79.044F2 %3 + 72.29751 &5 — 43.42975



Appendix C 142

13,0 (z, &) = — 975.297x3 — 946.59823%, — 357.13225%9 — 2160.1212372 — 393.36823% 1 50—
225.7652353 — 856.576x0F5 — 418.6282073 79 — 117.332207 155 — 39.8372975 —
1129.663%7 — 163.4295550 — 230.14532 53 + 30.983% &5 — 41.27474

23,5 (z, ) = — 350.08z3 — 383.155x5%1 — 209.885x53F9 — 443.275237% — 414.40123% 1 Zo—
3.3352333 — 232.5462973 — 233.2122973 %9 — 60.8331271 73 — 8.7552975 —
77.496%7 — 251711737 + 82.15422%3 — 80.533%1 &5 + 56.7785

I133,, (x, &) =5645.645x5 + 3263.5262551 + 943.734x3 70 + 81476562357 + 1104.15323% Zo+
2674.779x3%3 + 2660.94229F3 + 1120.413x05 589 + 299.717x051 %3 + 69.534x055+
5319.22477 + 474.9975 5 4+ 2530.818%343 + 31.553%1 &5 + 2529.078%5

130 (2, &) = — 553.247x3 — 1231.282237 — 307.7223%9 — 1090.1392357 — 181.257235% T2 —
195.0632375 — 1049.604297% — 250.7442975 %9 — 191.8789d 145 — 14.Txods—

291.1423] + 35.4783 %9 — 183.74952 %3 + 46.8964 &5 — 63.475%5

110 (2, &) =183.347x5 + 521.66825% + 102.412235% + 368.8372347 + 17.72725% 1 Zo+
91.68623%3 4 506.941 2975 + 101.2272032 %9 + 113.7532971 75 — 8.8722975+
116.842%F — 64.977435y + 111.52252%3 — 521714, &5 + 34.414%5

12}, (2, @) =24.43823 4+ 133.06623%1 + 192.564x3 %5 + 59.399225% + 123.30123% &2 —
54.21823573 + 54.867x2F5 + 150.6862972 % — 29.659x251 53 + 60.851 005 —
17.85%] 4+ 63.65973 %0 — 79.04432 %3 + 72.2975 &5 — 43.42975

1310y (x, &) = — 553.247x5 — 1231.28223% — 307.7223%5 — 1090.1392357 — 181.25723% &9 —
195.0632372 — 1049.6042977 — 250.7442075%0 — 191.878x9d 155 — 14.Txods—
291.1423] + 35.478%3 o — 183.74952 53 + 46.896% 45 — 63.475%5

150 (2, &) =2736.57x5 + 263.01423%, — 180.952254 4+ 2535.76123%% + 55.90723% 2+
2190.30423%3 + 157.572x075 — 126.97720750 5 + 138.93x071 72 — 92.726x2F5+

2405.098% — 31.346F3 %5 + 2057.305574% — 81.7563 %5 + 2299.553%3



Appendix C 143

L, (2, @) =36164.768x5 + 743.67823%, + 2710.283x3 %5 + 46744.65723%2 — 2799.523x3% 1 Fo+
22098.747x3%3 + 373.2552975 + 2088.335x23 %2 — 892.6012071 55 + 1128.962975+
57416.362%] — 5593.96613 7 + 26298.8717345 — 5167.327%1 %5 + 25549.047%5

1123, (z, &) = — 1577.19623 4 2304.062257, — 1403.838x53F5 — 2131.4582277 4 6665.962257 T9—
4439.6552375 + 1451.095297% — 1012.21419F %9 + 1259.92820% 175 — 1130.8042975 —
3526.859%] + 7972.516 550 — 8402.8237343 + 5957.033%1 &5 — 3859.838

I3, (x, &) = — 16549.918z3 — 1267.95323%; — 2289.631x57 — 27981.87123%7 4 497.06423% 1 Z9—
48224322372 — 354.2182905 — 1764.5732973 %9 + 275.322971 73 — 834.9092975 —
25064.797%] + 2363.6613559 — T045.4773373 + 3348.39471 75 — 2813.53375

113, (z, &) =2115.43525 + 23449.118x5%, — 1601.93225% 4 3984.74723%2 — 3885.405255 o+
3202.173x3%3 4 20537.37122%5 — 1867.3092973 79 + 3866.45229F1 53 — 1858.355x005+
3780.079%] — 6501.9485 19 + 7403.3227373 — 4919.26531 &5 + 3197.5387

M2, (z, %) = — 1577.19623 + 2304.062237 — 1403.838x355 — 2131.4582247 4 6665.9622571 79—
4439.655x373 + 1451.09529%3 — 1012.214x08 359 + 1259.9282971 75 — 1130.8042975 —
3526.859%7 4 7972.51623 79 — 8402.823F2 %3 + 5957.033% 145 — 3859.838%5

122, (z, &) =29125.003x4 — 1478.658x5%, + 3149.247x3% 4 22709.278235% — 4191.06723% 1 Zo+
24927.262235% — 966.72912F3 + 1527.297000 500 — 1618.5432071 73 + 1178.12220F5+
25158.544%] — 5109.68173 % 4 26875.78%2 %3 — 6945.85551 &5 + 26809.09674

132, (z, &) = — 4528.514x5 — 1834.07723%, — 623.58823%9 + 698.02123%7 — 5215.6423% Fo+
1671.7982353 — 1177.329%% + 393.009208 559 — 843.29910F1 73 + 349.4482975+
1867.509%F — 5047.882%3 %5 + 5808.2695745 — 4257.5131 %5 + 4698.93715

142, (@, &) =1254.879x3 — 1465.655x5F; + 11052.764x5F, — 2113.0225%% + 3071.433x35 40—
3405.2552375 — 1117.17629%3 + 5123.321 295559 — 3922.56620% 175 + 3394.47 72975 —

2852.528%] + 4659.563%5 4y — 6848.77272 4 5761.39% 145 — 3835.028%5



Appendix C 144

I3, (z, &) = — 16549.918x5 — 1267.95325%, — 2289.631237 — 27981.87123%2 + 497.06423% 1 50—
4822.4322:372 — 354.2182075 — 1764.5732073 %0 + 275.3229F1 73 — 834.9092975 —
25064.797%] + 2363.661355y — T045.4777375 + 3348.39471 75 — 2813.533%1

123, (z, &) = — 4528.514x5 — 1834.07723%) — 623.588235%9 + 698.02123%7 — 5215.6425% 1 To+
1671.7982352 — 1177.320%% + 393.009203 559 — 843.299x0F1 75 + 349.448x075+
1867.5092] — 5047.882F5 %5 + 5808.2697345 — 4257.514 45 + 4698.93775

133, (x, &) =83094.32x5 + 748.841x37, + 3388.531x5%, + 73260.076x3%2 + 1163.2692351 Fo-+
56867.13523%3 + 615.3052975 + 1590.774w0F3E9 4 272.7052071 55 — 341.0912975+
68366.3375] — 353.89523 %9 + 50124.4987373 — 1752.33731 &5 + 66253.90675

113, (z, &) = — 3203.273x5 — 21952.88625%) — 5642.25123% — 2877.881235% + 2792.87223% 50—
2781.478x3%3 — 17489.582x9%% — 136.88720Z 0y — 4394.82970% 172 + 158.738x045 —

1936.471%] + 3758.853% 540 — 5314.138%273 + 3513.898%1 &5 — 4459.70745

5, (z, &) =2115.43525 + 23449.118x5%; — 1601.932235% 4 3984.74723%% — 3885.40503%1 T2+
3202.173x373 + 20537.3712075 — 1867.3092973 % + 3866.452x27 175 — 1858.355x%5+
3780.07921 — 6501.94833 %5 + 7403.322725% — 4919.2653, 75 + 3197.538%5

123, (x, &) =1254.879x4 — 1465.655z551 + 11052.764x3 79 — 2113.0223%2 + 3071.433x3% Zo—
3405.2552372 — 11171762933 + 5123.321 205759 — 3922.56620% 175 4+ 3394.47 72075 —
2852.528%1 + 4659.563F3 5y — 6848.74345 + 5761.3951 &5 — 3835.02845

133, (x, &) = — 3203.273x5 — 21952.886x5%1 — 5642.25 12570 — 2877.88123%7 + 2792.87223% &y —
2781.478x3%3 — 17489.582x9%% — 136.88720d 0y — 4394.82970% 172 + 158.738x075 —
1936.471%] + 3758.853% 349 — 5314.138%2 73 + 3513.898% &5 — 4459.70715

115, (z, &) =77060.613x5 + 5411.04325%; — 13081.751x55y + 49224.30523%% — 6082.51423% 1 To+
33342.35x373 + 3678.188x2%5 — 8724.3982082 %5 + 7202.424107 1 73 — 5209.47x0F5+

33657.5015] — 5274.73%3 %9 + 28167.3797343 — 7024.639%, &5 + 27433.6175



Appendix C 145

1 o (2, &) =2596.38z5 + 303.04x57, + 135.96725% 4+ 2792.10123%2 + 143.52325% Zo+
2022.0712353 + 293.581x075 + 158.415207 500 + 41.844x071 72 + 16.884x2F5+
2998.34%] + 48.9473 o 4 2022.90673 73 — 39.864F1 %5 + 2261.42175

2L, (z, &) =110.67325 + 130.59525%1 + 75.544x3 %9 + 166.584227% + 202.6262251 To—

1212 2 2 2 21 2

16.3442373 + 86.8511975 + 83.80120474 + 27.1652971 73 + 1.3352075
+ 26.046%7 + 146.308%3 0 — 73.3072223 + 65.718% &5 — 32.843i5

3L o (x, &) = — 975.297x4 — 946.59925%, — 357.132x3%9 — 2160.12122%2 — 393.369x3% 1 Fo—

1212 2 2 2 241 2

225.765237% — 856.57Trods — 418.62820F % — 117.332x97 735 — 39.837x0F5—
1129.6647] — 163.43%3 79 — 230.1457372 + 30.983%, &5 — 41.27475

i, (2, @) =183.347x4 + 521.66823% + 102.412237 + 368.837224% + 17.727225 1 Zo+
91.6862373 4 506.941 2975 + 101.227x0F &9 + 113.753x0F1 73 — 8.872x075+
116.843%7 — 64.9773 %9 + 111.5225352 — 52171475 + 34.41475

12,5 (2, &) =110.67323 4 130.595253%1 + 75.544x3%y + 166.5842377 + 202.626237 F9—
16.3442373 + 86.85122F5 + 83.801298 309 + 27.1652971 75 + 1.3352005+
26.04627 + 146.308%3 o — 73.3072323 + 65.718%1 %5 — 32.8433

1225 (x, &) =2343.49123 4 56.00123% + 52.49923F5 + 2009.2312257 + 30.40423% 1 To+
1999.618x2%2 + 15.69829%5 + 46.07x282 %9 + 11.19229%1 52 + 0.162x2F5+
2267.429%F — 27.843%3 %5 + 2006.9534545 — 70.913%, 45 + 2273.578%

32,5 (x, &) = — 350.081x5 — 383.154a3%, — 209.884x5%0 — 443.275235% — 414.401235 &9 —
3.3352373 — 232.5462977 — 233.211297749 — 60.833297173 — 8.755x005 —
77.49777 — 251711437 + 82.1547373 — 80.533%1 %5 + 56.7783

12,5 (2, &) =24.43825 + 133.066x5%1 + 192.56425%5 + 59.399235% + 123.30123% Zo—
54.2192352 + 54.867x005 + 150.6862255 % — 29.659107 155 + 60.851 2075 —

17.851%7 + 63.658%5 79 — 79.04432 52 + 72.297%1 &5 — 43.429%5



Appendix C 146

135 (z, @) = — 975.297x4 — 946.59923%, — 357.13225%9 — 2160.1212372 — 393.36923% 1 50—
225.7652353 — 856.57Txo&s — 418.6282073 79 — 117.33220% 175 — 39.8372975—
1129.664%7 — 163.433 79 — 230.1455743 + 30.983% 75 — 41.274%3

23,5 (z, ) = — 350.081x5 — 383.154a3% — 209.884x570 — 443.275x35% — 414.4012351 T —
3.3350333 — 232.5462973 — 233.2112973%9 — 60.8331271 73 — 8.7552975 —
77.497%7 — 251711237 + 82.15422 %3 — 80.533%1 &5 + 56.77815

133, (x, &) =5645.648x5 + 3263.528x551 + 943.734x3 70 + 8147.6592357 + 1104.154235 Fo+
2674.776x3%3 + 2660.94322F5 + 1120.413205 582 + 299.7162951 %3 + 69.534x055+
5319.225%7 + 474.99875 5 4+ 2530.8152343 + 31.552%1 &5 + 2529.07975

35,5 (x, &) = — 553.247x3 — 1231.28323%) — 307.7223%5 — 1090.1423%3 — 181.257x3% Zo—
195.0632375 — 1049.604297% — 250.7452075 %9 — 191.8789d 145 — 14.Txods—

291.142%] + 35.47933 %9 — 183.74952 %3 + 46.8961 &5 — 63.475%5

13,5 (z, &) =183.34725 + 521.668x3%1 + 102.41205%9 + 368.837x33% + 17.72703% 1 To+
91.6862373 + 506.941 2975 + 101.2272932 %9 + 113.753x971 75 — 8.8722975+
116.843%F — 64.97735%y + 1115225253 — 52171445 + 34.414%5

123 5 (2, &) =24.438x3 + 133.066x3%, + 192.564a3%2 + 59.39922%2 + 123.301227 Zo—
54.2192372 4 54.8672973 + 150.6862075%0 — 29.6592971 73 + 60.85 12055 —
17.8512] + 63.658F5 5y — 79.0445353 4 72.2977, 75 — 43.429%5

1335 (z, &) = — 553.247x5 — 1231.283x5%1 — 307.7225%9 — 1090.14x35% — 181.257x33 13—
195.063x373 — 1049.604z2F3 — 250.7452973 %9 — 191.87820% 155 — 14. 72975 —
291.142%] + 35.47935 50 — 183.74952%3 + 46.896% 75 — 63.475%5

13,5 (x, &) =2736.571x3 + 263.014x55, — 180.952253F5 + 2535.7625%% + 55.9072331 o+
2190.304x373 + 157.572x0%5 — 126.977x00 505 + 138.93x071 72 — 92.726x2F5+

2405.099%7 — 31.34623 %9 + 2057.304F253 — 817571145 + 2299.553%5



Appendix C 147

1, (x, &) =35633.591x3 + 1327.163x5%, 4 2940.569x5%, + 48358.448x372 — 1561.03123% Zo+
23188.7522:573 + 1906.638x2F5 4 2327.0521977 79 — 713.088x27 173 + 1036.4082975+
80339.637%F — 5161.085%5 &5 + 26240.29372 %3 — 4419.908% 75 + 25210.3665

123, (z, &) = — 568.77x3 4+ 2440.15x5%, — 1035.495235%9 — 1108.09223%2 + 6996.7725% To—
3821.18123%5 + 1748.56 12975 — 849.412932 %9 + 1027.157w0d 145 — 944.0321055 —
3439.913%] + 8969.638% 519 — 7827.6627343 + 5541.362%1 &5 — 3615.8071

I3k, (2, &) = — 23237.2725 — 4760.671237) — 4114.922379 — 39648.97623%7 + 48.3082371 To—
4617.983x373 — 3764.59622%5 — 3457.938100 359 + 546.56207 175 — 1287.328x975 —
34437.445%] + 1857.73973 %9 — 7524.84652%3 + 3067.067, 75 — 2834.51275

3o (2, &) =2176.12325 4+ 22113.48325%, — 154.158x555 + 3716.3172347 — 4056.246257 To+
2998.1882373 + 23463.785x075 — 893.197x0i 40 + 4533.915207 173 — 1708.663x2F5+
4986.325F] — 7258.2125 19 + 6910.5257343 — 4669.862%1 %5 + 3113.51%3

%, (z, &) = — 568.77x5 4+ 2440.1525%, — 1035.49523%9 — 1108.09223%2 + 6996.7725% To—
3821.18123%5 + 1748.561 2973 — 849.412932 %5 + 1027.15700d 145 — 944.0321955 —
3439.913%7 4 8969.638%3 79 — 7827.6623553 + 5541.362% 145 — 3615.80775

122, (x, &) =31097.044z5 — 1068.416x3%, 4 3958.736x5%, + 22809.9162372 — 3507.44623% To+
26829.344x353 — 829.613x975 + 1318.039x252 5y — 1372.674x071 73 + 1081.73 7z F5+
25106.69%7 — 4322.646F3 3, + 26279.57972%3 — 6534.807F &5 + 27245.202%5

1132, (z, &) = — 4427.717x5 — 3704.22923%, + 158.325%0 — 152.9723%2 — 5897.885x35 &2+
2625.8092373 — 2276.997x235 + 541.1562973 79 — 1452.06509% 155 + T11.15120F5+
1555.842%F — 6479.24233 %5 + 5970.7095743 — 4083.793% 125 + 6055.72275

{2, (x, &) =1102.963z4 — 36.018z5%1 + 13771.063x5% — 2161.6432357 + 2859.24725% &g —
4522.464235% — 503.53220F3 + 5592.906125 150 — 3505.0462071 73 + 4903.1052255 —

2892.203%] + 4073.26475 5 — 6502.7132272 4 5528.901%1 &5 — 4308.06515



Appendix C 148

13, (z, &) = — 23237.27x5 — 4760.67123%, — 4114.922379 — 39648.9762:377 4 48.30823% Fo—
4617.9832372 — 3764.59620F3 — 3457.938x0F 35y + 546.56207 175 — 1287.328x0F5 —
34437.445%F + 1857.73973 %y — 7524.8465143 + 3067.0631 5 — 2834.5127

123, (z, &) = — 4427.71725 — 3704.22923% + 158.325%9 — 152.9723%% — 5897.885x3%1F2+
2625.8092373 — 2276.997x2F5 + 541.1562973 79 — 1452.06529% 155 + T11.15120F5+
1555.84231 — 6479.24253 %9 + 5970.709343 — 4083.793%1 %3 + 6055.722%3

133, (x, &) =147718.122x5 + 25970.923z3% + 8244.505x5375 + 129666.30223%2 + 586.987x37 To+
59300.0382272 + 9254.258x2%5 + 8563.91297 20y — 1333.465x07 172 — 869.4362255+
126564.9463] — 2540.704%5%5 + 53020.87657 53 + 244.4243, 3 + 70386.28975

113, (z, &) = — 4657.123x5 — 26080.17425%, — 5462.885257 — 6386.657235% + 1145345235 50—
2311.0232373 — 24825.221297% — 950.743 12275 F9 — 3426.741 297155 + 359.6831255 —

3642.807%7 4 4091.26673 79 — 5114.11552%3 + 2935.402% 175 — 5684.86

150 (2, &) =2176.12323 4+ 22113.48325%; — 154.158x53%5 + 3716.3172347 — 4056.246257 Z9+
2998.188x3%3 + 23463.785x075 — 893.197207 50y + 4533.9152071 75 — 1708.663x275+
4986.325%1 — 7258.21233 %9 + 6910.52572 7% — 4669.862% 75 + 3113.5175

123, (x, &) =1102.963x4 — 36.018z5%, + 13771.063x53, — 2161.6432357 + 2859.24722% Gy —
4522.4642372 — 503.5322075 + 5592.9062073 %9 — 3505.0462231 33 + 4903.1052005 —
2892.203%7 + 4073.26453 %5 — 6502.713%343 4+ 5528.9017, 75 — 4308.06535

133, (@, &) = — 4657.123x5 — 26080.174x3F, — 5462.885x570 — 6386.65725%7 + 1145.345235 &9 —
2311.0232373 — 24825.221 2975 — 950.74309 09 — 3426.741 297175 + 359.683005 —
3642.807%7 4 4091.266%3 79 — 5114.1155753 + 2935.402% 175 — 5684.86

1135 (z, &) =76911.0223 + 3746.50223% — 16615.895x5% 4 47529.002235% — 3763.79623% 1 To+
38231.3992373 + 3262.5052075 — 9301.352x073 % 4 6593.794x271 75 — 7397.34x0 75+

34029.7265] — 4257.86615 o + 28280.97252 53 — 6617.901% 115 4 28746.49775



Appendix C 149

113, (2, @) =3160.55125 4+ 393.63625%, + 250.744x3 %5 + 4417.932225% + 129.5322% Zo+
2274.163x3%3 + 337.77Tx075 + 268.5562085 %9 + 79.617xod 152 + 43.1922075+
5024.397%7 — 56F3 %o + 2477. 7795353 — 142.108F1 %5 + 2340.9987 5

12300 (2, @) =221.527x5 + 187.56323%, + 133.174x5% 4 291.5392357 + 531.857x35 &y —
131.58723%5 + 174.531 290 + 132.962123% %5 + 26.38629% 155 + 6.55212F5 —
16.94457 + 592.638%3 %y — 384.8072373 + 233.1254 5 — 124.816%4

13100 (2, @) = — 2430.68123 — 1275.766257) — 646.2442379 — 5446.379237% — 424.21223% T9—
851.337x3%3 — 1161.2422905 — 676.272973%9 — 215.151 208155 — 116.85 12055 —
4282.856% — 88.9651 54y — 1150.4017372 4 142.033% 145 — 189.612i5

1oy (2, @) =342.613x4 + 1371.33623%1 + 165.592579 + 554.1282357 — 248.28122% Zo+
321.2482373 + 1620.0642275 + 130.84x075 70 + 376.584x07 155 — 44.4892075+
226.83127 — 435.45585 19 + 471.539F7 53 — 212.1497, 75 + 137.89745

M2, (z, &) =221.527x5 + 187.56325%1 + 133.174x5% 4 291.5392357 + 531.857x331 32—
131.587x323 + 174.5312075 4 132.962297705 + 26.3862271 73 + 6.5522975 —
16.9443] + 592.638%3 79 — 384.8072343 + 233.125% 145 — 124.816%5

122, (, &) =2486.668x5 4+ 90.63x3%1 + 50.927237s 4+ 2112.2922272 + 29.299x2% o+
2149.592x2%3 + 7.933x2@5 + 79.2092952 %5 + 20.55x281 73 — 40.173z0F5+
2327.472%F — 122.6555 19 4 2250.67722%3 — 286.705% 145 + 2394.95974

132, (z, &) = — 718.124x5 — 614.29423% — 350.83423%0 — 670.9582377 — 1032.84123% To+
192.0082375 — 392.583x90F — 358.012005 %0 — 97.7242971 73 — 14.48312F5 —
8.677&] — 938.716F3%5 + 531.3897343 — 334.642% 75 + 241.51%5

{2, (x, &) = — 96.526x5 + 253.11823%, 4 548.16x55, — 18.0652347 + 287.24323% 19—
293.661 2353 + 45.797Txod5 4 481.938008 00 — 197. 75207175 + 214.2092905 —

95.685%1 + 184.36423 79 — 334.20972%2 4 290.054% 145 — 180.064%3



Appendix C 150

13, (z, @) = — 2430.681x5 — 1275.76625%, — 646.24425%9 — 5446.3792357 — 424.212257 Fo—
851.337x353 — 1161.2422075 — 676.272508 5%y — 215.15120F1 53 — 116.8512975 —
4282.856%7 — 88.965%7 79 — 1150.4013%%3 + 142.03371 75 — 189.612%5

23,0 (2, &) = — 718.124x5 — 614.294237 — 350.834x5%9 — 670.9582347 — 1032.84123%1 Zo+
192.0082375 — 392.583x905 — 358.012073 %9 — 97.724x971 73 — 14.48319F5 —
8.677%] — 938.71623 79 + 531.3897345 — 334.642% &5 + 241.51%5

I133,, (x, &) =10252.88623 + 4583.33923%1 + 1604.134x579 + 15384.70222%7 + 1306.182x37 Zo+
4771.0892372 4 3600.3722%5 + 1669.186207 579 4 652.698207 155 + 236.947 1055+
11204.794%7 + 488.78975 10 4+ 4727.4717373 — 22.10531 &5 + 3180.61845

I3 (2, &) = — 962.723x5 — 2944.668x55, — 575.4x5% — 1562.436235% + 137.255235 9 —
663.9932372 — 2823.862x077 — 342.318297 50y — 667.222971 75 — 26.834x275 —

446.858F1 + 564.28773 79 — T27.6861745 + 253.571%1 &5 — 273.204%5

135 (x, &) =342.613z5 + 1371.33625%, 4 165.592552 + 554.128x372 — 248.281235% 1 To+
321.24873%3 + 1620.0642975 + 130.842073 %9 + 376.584x07 155 — 44.4892975+
226.831%7 — 435.455% 509 + 471.5397545 — 212.149%1 &5 + 137.897%5

12300 (2, &) = — 96.52623 4 253.11825% + 548.1623%9 — 18.06523%7 + 287.24325% F9—
293.6612353 + 45.797xo75 4 481.93800 500 — 197. 75207173 + 214.2092075 —
95.685%1 4 184.36455 %y — 334.20952 %3 + 290.054%, 75 — 180.064%5

1350 (2, &) = — 962.723x5 — 2944.6685%, — 575.4x5F) — 1562.4362357 4+ 137.255035 1 59—
663.9937373 — 2823.862x905 — 342.31810F2 %y — 667.220971 55 — 26.834x075 —
446.858F] + 564.28773 %9 — T27.6861343 + 253.571% 145 — 273.2047%

11305 (x, &) =3779.733x4 + 498.072x3%, — 874.824x37y + 3753.733x373 — 41.38523% Zo+
2919.647x3%3 + 265.487 2075 — 718.652207 505 + 536.5482951 53 — 362.645x275+

2650.816%7 — 169.48973 % 4 2431.49772%3 — 326.187%, 45 + 2498.93774



Appendix C 151

I3 (z, @) =26853.102x5 + 516.65425%, + 989.50625% + 28141.422235% — 723.344235 Fo+
20285.3232353 + 455.434x0F3 + 797.5222073 %9 — 441.521 07175 4 411.56Tz005+
32895.917%] — 1345.16453%9 4 20975.33357 43 — 1723.523% 15 + 23205.9774

13}, (z, @) = — 581.494x5 + 979.80823%, — 575.775a5is — 465.652235% + 2210.68713% 1 4o —
1410.2882353 + 533.674x273 — 401.7172932 %9 + 561.77420% 175 — 444.031 2905 —
773.223%] + 2206.34975 50 — 2440.59973 73 + 1903.38431 %5 — 1165.0967

131, (x, &) = — 4529.83525 — 754.91x5F — 766.546x5% — 8385.1223%2 — 171.51922% 49—
1007.3452273 — 323.8152983 — 635.4512232 %9 4+ 110.072951 33 — 213.241 2075 —
5319.932%7 + 326.5251 50 — 1278.1352243 + 875.61441 45 — 573.2545

5} (z, &) =614.825x5 + 7653.4525% — 470.90225% 4 1386.90223%2 — 916.96323%1 Zo+
748.45125%3 + 6631.55920F7 — 322.7352975%0 + 1106.581071 55 — 636.972075+
1047.228%] — 1668.968% 519 + 2040.0947373 — 1494.43% 1 &5 4 894.29875

32, (x, &) = — 581.494z5 + 979.808z5F — 575.775x5% — 465.65223%3 + 2210.687x3% To—
1410.2882272 + 533.6 742953 — 4017172282 %9 + 561. 774207155 — 444.031 2975 —
773.223%7 4 2206.34953 79 — 2440.59952 53 + 1903.384% 145 — 1165.09675

153, (z, &) =25024.14125 — 605.11223%, + 1471.271a3%, + 20427.77925%3 — 1561.401235 &+
21181.63423%3 — 326.555205 + 601.1132932 % — 641.3722971 75 + 541.4152075+
23139.709%] — 1652.47633 &9 4+ 21574.555F3 53 — 2119.6674, 5 + 23506.5045

133, (@, &) = — 1956.347x3 — 702.87423% — 486.438x5%9 — 66.23823%7 — 1576.2052331 2+
162.9142375 — 375.7262905 + 114. 75720838y — 277.4392231 %3 + 44.9082975+
186.868%] — 1091.23575 45 + 1371.0062372 — 1030.952%1 &5 + 1074.82345

153, (z, @) =1178.627x5 — 426.7523% + 3748.723%, — 483.2262577 + 883.81123% 40—
670.0792373 — 159.7550%5 + 1527184297359 — 1194.556297 173 + 1091.3442975 —

787.607E] + 1405.64475 50 — 2015.7653343 + 1663.06631 45 — 1024.61275



Appendix C 152

I3, (z, &) = — 4529.835x5 — 754.9125% — 766.54623%0 — 8385.122347 — 171.519235 59—
1007.3452333 — 323.81529%5 — 635.451 207370 + 110.072031 3 — 213.2412975 —
5319.93271 4 326.525F3 &9 — 1278.1354745 + 875.614F &5 — 573.25474

133, (z, %) = — 1956.34725 — 702.874x57; — 486.43815%5 — 66.2382347 — 1576.2052571 To+
162.9142252 — 375.72629%5 + 114.7572033 %9 — 277.4392971 73 + 44.90812F5+
186.868%F — 1091.23533%5 + 1371.0062745 — 1030.952%, 75 4 1074.823%5

133, (x, &) =41588.275x5 + 497.864x5%1 + 1576.52525 70 + 36252.5132347 + 763.164235 Zo+
30981.75323%3 + 359.41829%3 + 511.038x232 79 + 147.67x081 53 — 223.123z275+
34680.027#] + 323.523%3 %9 + 27725.3564343 — 370.013% 145 + 35973.02745

153, (z, &) = — 1532.36225 — 6840.894237 — 2442.265x5F — 960.732343 + 537.419235 &9 —
701.112373 — 5314.424x933 — 266.3592973 79 — 1005.3262231 55 — 29.758905 —
351.0223] + 690.54973 79 — 1231.0373253 + 826.23% 45 — 1048.42375

I}, (2, &) =614.825x5 + 7653.4525% — 470.90223% + 1386.90223%% — 916.96323% Zo+
748.45123%% 4+ 6631.559x2F5 — 322.7352072 %0 + 1106.58107 155 — 63697075+
1047.228%] — 1668.96873 % 4 2040.09452 73 — 1494.437, 75 + 894.298%5

151, (z, @) =1178.627x5 — 426.7523%, + 3748.7253% — 483.2262377 + 883.81123% 40—
670.0792353 — 159.75520%5 + 1527.184a07 389 — 1194.55629% 175 + 1091.3442975 —
787.607%7 + 1405.644F3 35 — 2015.7655743 + 1663.066% 75 — 1024.61275

131, (@, &) = — 1532.362x5 — 6840.894x5%, — 2442.265235% — 960.732337 + 537.419235% F9—
701.112373 — 5314.424x933 — 266.3592973 %9 — 1005.3262031 55 — 29.758005 —
351.022%] + 690.54973 79 — 1231.0373253 + 826.23% 45 — 1048.423%5

151, (x, &) =38169.503z5 + 1696.23125%; — 2963.809x5%2 + 28634.599x372 — 1694.989x2% To+
23259.5922253 + 1127.9152075 — 2457.533x0F3 %9 + 2147.97307 155 — 15119012075+

26196.906%] — 1514.68675 % 4 21762.9155545 — 2208.37441 75 + 23691.1745



Appendix C 153

1311 (2, &) =3157.26425 + 394.09325%1 + 250.73x5% + 4407.181237% + 131.11423% 79+
2273.0942372 + 337.2192005 + 268.549105 &9 + 79.941 0071 73 + 43.0982075+
5006.528%] — 54.333&5 19 4 2476.038%343 — 142.055, &5 + 2340.897%3

13}, (x, &) =221.186x3 4+ 187.858z3F1 + 133.313x329 + 291.7682357 + 531.429235 59—
130.912373 + 174.4812973 + 133.157200 500 + 26.4282971 73 + 6.653x005 —
16.0132] + 590.49623 79 — 383.1562545 + 232.953% 45 — 124.72%5

31, (x, &) = — 2411.75925 — 1271176255, — 645.551x5% — 5405.1522357 — 427.3323% 49—
846.756225% — 1156.2x075 — 676.33120720y — 215.184x9 152 — 116.734x255 —
424715157 — 922052379 — 1143.00633 53 + 141.9497, 75 — 189.306%5

5t o (2, @) =342.15924 + 1367.785x55, + 165.620510 + 552.4882357 — 247.214235 1 &0+
320.462375 + 1611.9622275 + 131.3362973%9 + 376.21 1298155 — 44.6852075+
225.2765] — 433.31723 %9 + 469.87253 — 212.003%1 25 + 137.802%5

32, (x, &) =221.18623 + 187.858z5%1 + 133.313x532, + 291.768x373 + 531.42925% 1 59—
130.912232 + 174.48129F3 + 133.1572282 %9 + 26.42829%1 52 + 6.653x255 —
16.013%7 + 590.49675 %5 — 383.1564753 + 232.953% &5 — 124.7275

152 o (2, &) =2486.78223 + 90.89223% 1 + 51.144a370 + 2112.9822357 + 29.121235 Fo+
2150.0272373 + 8.257x9%7 + 79.231w982 %9 + 20.76Txod1 55 — 40.11 72075+
2327.663%] — 122.37973 %5 + 2250.3275343 — 286.263%1 &5 + 2394.8547

335 (z, &) = — 714.237x5 — 612.54323% — 350.19723%9 — 669.7582347 — 1029.082235%1 Zo+
189.10223735 — 391.3862905 — 357.29500F5 %9 — 98.56220% 145 — 14561255 —
10.592%] — 931.81443 %9 + 526.883%545 — 334.159% &5 + 241.15%3

32 5 (2, &) = — 96.255x3 + 252.757x5%1 + 548.36Ta 20 — 18.074x3%% + 287.36322% Fo—
293.5912373 + 46.4812973 + 481.0462973 79 — 197.0042971 73 + 214.3562975 —

95.56105] + 184.21233 %, — 333.75973%3 + 289.699% 145 — 179.94175



Appendix C 154

1335 (z, @) = — 2411.75925 — 1271176237 — 645.55105%0 — 5405.15223%2 — 427.33x35 59—
846.7562353 — 1156.2207 — 676.331a08 5y — 215.184x9F1 53 — 116.7342975 —
424715157 — 92.20553 %9 — 1143.0062723 + 141.9495, &5 — 189.30674

133, (x, &) = — 714.23725 — 612.543x5%; — 350.197233, — 669.75823%7 — 1029.08223F1 &2+
189.102x373 — 391.386x0%5 — 357.295200 50y — 98.562x971 75 — 14.562005 —
10.592%] — 931.81423 %5 + 526.8837343 — 334.159% 45 4 241.15%5

133, (x, &) =10157.23325 + 4543.37823%1 + 1603.134x5 79 + 15243.30622%7 4 1313.1823% 1 Zo+
47511762353 4 3568.58129F3 + 1669.747 105559 + 650.15220F1 73 + 237.0392075+
11081.026%7 + 492.5433 %9 + 4705.4315253 — 22.1997 75 + 3179.011%5

133, (2, &) = — 956.88923 — 2925.62923%) — 574.357Tx549 — 1553.3262377 + 133.13123% Zo—
660.0262572 — 2800.378x9%7 — 342.878207 70y — 664.9462951 55 — 26.487xod5 —
443.193%] + 558.482%3 %9 — 722.878%343 + 253.138% 145 — 272.8061

315 (2, &) =342.15925 + 1367.785x5% + 165.62255, + 552.488x3%% — 247.214x37 To+
320.4623%3 + 1611.9622573 + 131.3362255 29 + 376.211297 75 — 44.685x275+
225.276%7 — 433.317%5 iy + 469.872273 — 212.003%, 75 + 137.802%5

51,5 (x, &) = — 96.25525 + 252.757x551 + 548.367x55, — 18.0742357 + 287.363x35 15—
293.5912573 + 46.48129F7 + 481.0462975 %9 — 197.004208 155 + 214.35622F5 —
95.561027 + 184.2125%0 — 333.759F37 %3 + 289.69971 5 — 179.941%3

1311, (x, &) = — 956.889x5 — 2925.62923%) — 574.357x5%0 — 1553.32623%7 + 133.13123% Zo—
660.0262372 — 2800.378x0%5 — 342.878x97 70y — 664.9462951 55 — 26.487xod5—
44319337 + 558.48273 5y — 722.878F2 %3 + 253.138% 75 — 272.806%5

5115 (x, &) =3779.898x5 + 496.384x3%, — 874.671x3iy + 3749.294x372 — 41.33923% Zo+
2919.4422373 + 263.818x005 — 716.544x0F 359 + 534.928x0F1 73 — 362.9142975+

2650.823%7 — 168.933%5 10 4 2431.355353 — 325.892%1 &5 + 2498.8287 5



Appendix C 155

i, (z, @) =27018.797x5 + 948.57323%, + 1106.20525%5 + 29335.504235%2 — 339.04x35 o+
20390.1122353 + 1172.532233 + 916.2552972 %9 — 351407207172 + 360.051 2075+
41147.973%1 — 1358.083E5 %5 + 20691.04552 53 — 1479.9397 1 &5 + 23099.6995

315 (z, %) = — 119.907x5 + 1057.969x55, — 342.786x332 — 137.07223%% + 2363.0450551 52—
1202.77223%3 + 633.6472973 — 294.4452073 %0 + 474.652090 155 — 361.441 2955 —
810.793%] + 2487.45133 70 — 2258.5343 + 1755.323%1 %5 — 1062.61714

131, (x, &) = — 8180.553z5 — 3256.031x5%; — 1602.099z55, — 15684.67x243 — 363.3523% Zo—
1024.01x373 — 2722.097x2%3 — 1473.89808 59 + 247.544x05 73 — 394.272x075 —
9485.53%] + 194.59973 %5 — 1596.0435752 + 880.673%1 &5 — 601.163%5

5k, (z, @) =954.60925 + 7560.401x3%1 + 76.763025%0 + 1696.8262357 — 954.81523% o+
777.009235%5 4 7965.90520F7 — 48.64929F2 %5 + 1328.13520%1 55 — 557.070x225+
1583.411%] — 1863.57145%9 + 1904.375253 — 1408.384% 175 + 848.9043

32, (x, &) = — 119.907z3 + 1057.96923%, — 342.786x5is — 137.072235% + 2363.04525% 49—
1202.7722253 + 633.6472953 — 294.4451052 9 + 474.6522971 75 — 361.441 075 —
810.793%7 + 2487.451%3 79 — 2258.55253 + 1755.323% 145 — 1062.61775

132, (z, &) =25686.672x5 — 370.24623%, + 1798.362512 4+ 20439.0652357 — 1241.39423% 1 Fo+
21776.957235% — 268.20822%5 + 526.4631232 %9 — 518.69929% 172 + 537.079z05+
23144.0545] — 1416.05675 9 4+ 21379.8934345 — 1961.3177, %5 + 23607.53145

133, (&, &) = — 1820.218x3 — 1539.265x54, — 203.633x535, — 441.53425%2 — 1951.146235 &2+
630.744235% — 898.74622%3 + 98.15002F3 %9 — 518.37xod 155 + 188.886x2F5+
133.3392] — 1645.64755%y + 1585.8587242 — 1057.763%1 25 + 1583.695%

52, (x, &) =1178.331x5 + 122.23223% + 4580.571x5% — 455.80123%2 + 908.444225 Fg—
943.5872373 — 114852973 + 1714.184x9F 359 — 1057.0532071 73 + 1544.658x2F5 —

805.744F] + 1259.47975 %0 — 1911.4337373 + 1586.343%1 &5 — 1121.59845



Appendix C 156

I3, (z, %) = — 8180.553x3 — 3256.03123%; — 1602.099x55, — 15684.6723%7 — 363.35235% Fo—
1024.012252 — 27220972933 — 1473.8981052 59 + 247.544x0F1 73 — 394.2722975 —
9485.53%7 + 194.59953 %9 — 1596.043343 + 880.673%, 45 — 601.16374

1133, (z, &) = — 1820.218z3 — 1539.26523% — 203.63325%9 — 441.5342257 — 1951.146237 Zo+
630.7442253 — 898.74622%3 + 98.150022F2 9 — 518.37Txo%1 53 + 188.886x275+
133.3392F — 1645.64743%5 + 1585.858%245 — 1057.763%1 75 + 1583.695%5

133, (x, &) =71211.79625 + 17044.284z551 + 4035.4962572 + 68888.8612357 + 925.938x3% To+
31723.8132253 + 8408.841x975 + 4357.383x075 %9 — 876.63612% 153 — 615.856x2F5+
59928.367%] — 578.21153 %, + 28856.8322243 + 531.5014, 45 + 37667.781i5

153, (z, &) = — 2957.622x3 — 10176.475254, — 2208.87923%9 — 4011.1992372 — 180.22425% Fo—
617.0442373 — 9549.7122905 — 613.3172232 39 — T42.7662971 73 + 68.03522F5 —
1618.552%] + 698.788%3 %9 — 1266.846F7 53 + 683.24171 75 — 1487.30973

i, (x, &) =954.609z5 + 7560.401x3%, + 76.763023% 4+ 1696.826x3%2 — 954.81523% To+
777.00923%% 4+ 7965.905207 — 48.6492955 %9 + 1328.1352951 53 — 557.070x275+
1583.4113] — 1863.57143 % 4+ 1904.37725% — 1408.384%, 75 + 848.9047%5

1315, (z, &) =1178.331x5 + 122.232x551 + 4580.571x5%s — 455.8012357 + 908.444235 &y —
943.587221% — 11.4852977 4 1714184293229 — 1057.05322%1 %5 + 1544.658075 —
805.744%7 + 1259.47973 % — 1911.43373 53 + 1586.343%, 45 — 1121.598%3

1315, (x, &) = — 2957.622x3 — 10176.475255, — 2208.879x57s — 4011.19923%3 — 180.22423% 1 To—
617.0442353 — 9549.7122975 — 613.3172232 55 — T42.7662971 73 + 68.0351255 —
1618.552%] + 698.788%3 %9 — 1266.84632 53 + 683.24171 75 — 1487.3097 %

1510, (x, &) =38095.274x5 + 1602.054x3%, — 3959.662x5%0 + 28441.51623%2 — 901.61123% Zo+
247172252353 4+ 1239.729F5 — 2657.6012073 79 + 2027.7322231 55 — 2133.3952075+

26568.832%] — 1233.835% 5% + 21792.0845355 — 2047.9551 %5 + 24036.4475



Appendix C 157

3o (2, @) =2596.25525 + 304.116x551 + 136.69125%0 + 2791.184x357 + 144.98523F o+
2022.3372372 + 293.7622075 + 159.59810F 5y + 42.278107 173 4 16.9442975+
2991.9415] 4 49.54553 %9 + 2023.5597 45 — 39.821%1 73 + 2261.42674

310, (x, &) =111.023x3 + 131.38823%) + 75.984a3%5 + 167.52223%7 + 203.3323% Zo—
16.1392273 + 87.438x0%% + 84.38207 509 + 27.385x071 75 + 1.3762075+
26.335%7 + 146.321359 — 73.0572343 + 65.77% 145 — 32.859%5

31, (x, &) = — 970.118z3 — 945.407x5% — 358.299x57 — 2148.5923%2 — 396.36325% 1 Zo—
226.156237% — 854.62622%5 — 420.745x982 9 — 118.191x07 175 — 40.067x2%5 —
1122.0443] — 164.8773 % — 229.793353 4 30.902%, 75 — 41.34975

5t (z, &) =183.688z5 + 521.67223% + 102.904257 + 369.082372 + 18.62223% Fo+
91.85923%3 + 505.407x9d + 101.94819F2 %9 + 114.0962971 73 — 8.8552975+
116.481%7 — 64.412085%9 + 111.5313233 — 52.1621 25 + 34.443%5

32, (x, &) =111.02323 + 131.388z551 + 75.98423% + 167.5222357 + 203.3323% To—
16.1392273 + 87.438x075 + 84.38207 500 + 27.385x071 72 + 1.3762075+
26.335&] + 146.32153%9 — 73.0574553 + 65.77%1 %5 — 32.85975

132, (z, &) =2343.807x3 + 56.45123% + 52.824x5%9 + 2009.8292357 + 3077235 Zo+
1999.8112253 + 15.98620%7 + 46.39222F2 %9 + 11.3392931 73 + 0.178x275+
2267.573%] — 27.70553 %9 4 2007.02843 45 — 70.923% 123 + 2273.60174

3200 (2, &) = — 349.429x5 — 383.85x5% — 210.361a579 — 443.819237% — 415.12223% 1 Zo—
4162352 — 232.9871033 — 233.81090 509 — 61.61329%175 — 8.83792975 —
78.0070&] — 250.76953 %5 + 81.345514% — 80.681%1 %5 + 56.813%4

1152, (x, &) =24.812x5 + 133.5325%1 + 192.965x5%2 + 59.979225% + 123.796235 1 F2—
54.1072372 4 55.30229%3 + 150.9892073 %0 — 29.49129F1 73 + 60.938x255 —

17.698%] + 63.77653 5y — 78.977TE31% 4 72.345% 75 — 43.445%5



Appendix C 158

33,0 (z, &) = — 970.118z5 — 945.40723% — 358.29925%0 — 2148.592347 — 396.3631351 T —
226.1562353 — 854.626x0F5 — 420.7452073 %9 — 118.191 207155 — 40.0672975 —
1122.044%7 — 164.87753 50 — 229.79373 53 + 30.902%, &5 — 41.3497%

33,0 (2, &) = — 349.429x5 — 383.85x5%1 — 210.3612579 — 443.8192377 — 415.122223 59—
4162352 — 232.9871033 — 233.81290 509 — 61.613297175 — 8.83792975 —
78.0070&] — 250.76953 %5 + 81.345314% — 80.681%1 %5 + 56.813%4

II33,, (x, &) =5606.859x5 + 3241.14425F1 + 945.666x5%2 + 8088.73x3%2 + 1111.219225 Fo+
2674.51123%3 + 2641.08229F3 + 1124.636207505 + 3016622772 + 70.14x075+
5270.637%1 + 476.658%5 o 4+ 2530.0937373 + 31.55941 &5 + 2529.07175

133, (2, &) = — 551.12323 — 1226.255237 — 308.317x519 — 1085.8962377 — 183.62923%1 79—
1949782375 — 1042.718x97% — 252.0332973 %9 — 192.45520% 175 — 14.8232975 —
289.2523%] + 33.98315 %9 — 183.2963253 + 46.813% 145 — 63.5437

30y (x, &) =183.688z3 + 521.672x551 + 102.904x5%0 + 369.082347 + 18.62225% 1 To+
91.8592272 + 505.407297 + 101.948x052 %9 + 114.09622%1 73 — 8.8552075+
116.481% — 64.412023 %9 + 111.53132%2 — 52.16% 145 + 34.443%5

310 (z, @) =24.81225 + 133.5325%1 4 192.9652572 + 59.97923%7 4 123.79623% 1 50—
54.10723%3 + 55.30220%7 + 150.98920F2 %5 — 29.491 207155 + 60.9382975 —
17.698%1 + 63.7764 359 — 78.977T4343 + 72.345%1 73 — 43.445%5

M3loe(z, &) = — 551.123x5 — 1226.255x5%; — 308.317x335 — 1085.8962347 — 183.62925%1 52—
194.9782373 — 1042.71829F3 — 252.0332973 %9 — 192.45520% 175 — 14.8232975 —
289.25277 + 33.983%3 % — 183.2967273 + 46.813%1 %5 — 63.54F5

510y (2, &) =2737.044x5 + 263.04523%, — 180.684x37s + 2535.3152332 + 56.387x35 1 Fo+
2190.5782373 + 157.2092005 — 126.451 208589 + 139.0292031 53 — 92.767x0d5+

2404.877%1 — 31.06923 %5 + 2057.512343 — 81.7720% 145 + 2299.597%4
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L, (2, @) =36169.361x5 + 744.27723%) + 2708.625x5F, + 46749.87323%2 — 2800.523x351 &9+
22998.102237%3 + 385.19922F3 + 2085.406207 50 — 891.9829F1 %3 + 1128.695075+
57412.888%] — 5592.27273 %9 + 26300.372223 — 5167.751 &5 + 25549.072%5

33, (z, &) = — 1578.34123 4 2301.396257 — 1403.427x355 — 2132.62623%7 4 6664.69323571 T9—
4438.5072375 + 1448.884x973 — 1010.682973 %9 + 1258.485x231 %3 — 1130.1662945 —
3526.623%1 + 7970.88645 55 — 8401.518%24% + 5956.9567 75 — 3859.652%5

133, (x, &) = — 16539.114z5 — 1273.05523%; — 2282.828x5%9 — 27948.60923%2 + 493.98623% 1 49—
4815.416x373 — 355.06722%5 — 1762.2131282 %9 + 273.169297 172 — 833.0662275 —
24971.601%] + 2364.56675 79 — 7036.70722 %3 + 3347.5074, %5 — 2812.3115

155, (z, &) =2109.90923 + 23458.3723%, — 1604.208x53%5 + 3988.3452347 — 3887. 774257 To+
3202.3422373 4 20541.348297F — 1869.3232973 79 + 3866.842x2F1 35 — 1858.573x00 5+
3787.496%7 — 6502.1625 19 + 7402.7562375 — 4919.483%1 %5 + 3197.556

L2, (x, &) = — 1578.341x5 + 2301.39625%, — 1403.427x55y — 2132.62625%7 + 6664.693x37 To—
4438.507x373 + 1448.884z9F3 — 1010.681232 79 + 1258.485x951 %3 — 1130.1662245 —
3526.623%1 + 7970.88645 %5 — 8401.518%272 + 5956.9567 75 — 3859.6525

153, (z, &) =29120.243x5 — 1478.535x5%, + 3143.758x5% 4 22709.1652347 — 4190.02623%1 Fo+
24923.8832357% — 966.743x015 + 1526.466297 759 — 1617.0242971 75 + 1176.50622%5+
25159.236] — 5110.09973 % + 26875.5614315 — 6944.9453 75 + 26808.28575

132, (z, &) = — 4540.28925 — 1827.2225% 1 — 632.04213%5 + 693.995237% — 5209.894237 1 To+
1664.2392352 — 1176.5292975 + 390.7992035 55 — 840.63x9% 155 + 346.64520F5+
1867.566%] — 5044.71555 %5 + 5806.819745 — 4255.094%1 5 + 4695.768%5

132, (xz, &) =1242.587x5 — 1467.62525%) + 11046.84x55y — 2114.77623%7 4 3071.853235% Fo—
3408.4882372 — 1118.177xoF3 + 5123.157x0F 7 Fy — 3922.43810% 175 + 3393.7882975 —

2854.099%7 + 4660.60453 5y — 6849.4963773 4+ 5761.1367, 75 — 3834.937%5
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I3, (z, &) = — 16539.114x5 — 1273.05525% 1 — 2282.828237 — 27948.60923%2 + 493.98623% 1 50—
4815.4162372 — 355.067x0d5 — 1762.2132073 % + 273.169207 155 — 833.0661055 —
24971.6012] + 2364.56635%9 — 7036.7074343 + 3347.507% 5 — 2812.31141

35, (z, &) = — 4540.28925 — 1827.2225%1 — 632.0421355 + 693.995237% — 5209.894237 1 To+
1664.2392373 — 1176.52929%5 + 390.79920F3 %5 — 840.6319%1 55 + 346.64520F5+
1867.56621 — 5044.71555 %5 + 5806.8197745 — 4255.094%1 75 + 4695.768%3

1133, (x, &) =83082.403x5 + 760.54925%1 + 3384.47x5%, + 73292.893x372 + 1162.337235 Zo+
56831.356x353 + 615.16320%5 + 1579.1212052% + 272.612071 73 — 344.0422075+
68462.723%] — 348.13923 %5 + 50108.74F2 53 — 1755.299% 1 &5 + 66237.1575

133, (z, &) = — 3217.034x5 — 21944.90925% 1 — 5648.6462579 — 2880.643x35% + 2796.30723% 1 50—
2784.6142373 — 17470.75520%% — 138.542090 509 — 4389.8312971 75 + 156.3292905 —
1937.35&] + 3756.764%5 &9 — 5314.938%273 4 3513.259%1 5 — 4458.443

133, (z, &) =2109.909x5 + 23458.37x551 — 1604.20823%2 + 3988.345x372 — 3887.774x55 To+
3202.342x373 + 20541.3482975 — 1869.323x073 %9 + 3866.842x27 175 — 1858.573x2%5+
3787.496%F — 6502.16%3 79 + 7402.75652 53 — 4919.483% &5 + 3197.55675

133, (z, &) =1242.587x3 — 1467.62525%, + 11046.84x55y — 2114.7762357 4 3071.853235% Fo—
3408.488x373 — 1118.177x9&3 + 5123.157x08 389 — 3922.43829% 153 + 3393.7882975 —
2854.09977 4 4660.60473 79 — 6849.496F3 %3 + 5761.136%, 45 — 3834.937%5

133, (@, &) = — 3217.034x5 — 21944.90923F, — 5648.6462570 — 2880.64323%2 + 2796.307x35 &9 —
2784.6142373 — 17470.75520%% — 138.54209 09 — 4389.8312971 75 + 156.3292905 —
1937.3521 + 3756.7645 5, — 5314.938%245 + 3513.2597 75 — 4458.443%5

53, (x, &) =77047.103z5 + 5406.603z3%; — 13091.5022575 + 49238.113235% — 6085.84822% 1 o+
33339.3052353 + 3682.288x005 — 8726.1072973 %9 + 7202.013x251 53 — 5210.3632245+

33669.058%] — 5277.3827 570 + 28168.58957 53 — 7024.796% 15 4 27433.19275
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L3 o (2, @) =2596.25525 + 304.117x5351 + 136.69125%0 + 2791.183x357 + 144.98523F 9+
2022.3362372 + 293.7622075 + 159.598105 75y + 42.278107 153 4 16.9442075+
2991.9415] 4 49.54553 %9 + 2023.5597 45 — 39.821%1 73 + 2261.42574

13315 (x, &) =111.023x5 + 131.38823%) + 75.984x3%5 + 167.52223%7 + 203.331234 1 Zo—
16.1392233 + 87.4429%3 + 84.3829F3 %0 + 27.38520% 155 + 1.376x235+
26.335%7 + 146.3213519 — 73.0562345 + 65.77% 145 — 32.859%5

133, (x, &) = — 970.118z3 — 945.408x5% — 358.299x5 7 — 2148.5923%2 — 396.363254 1 Zo—
226.157225% — 854.627Tx9%3 — 420.744x952 9 — 118.192x971 72 — 40.068x2%5 —
1122.0443] — 164.87723 % — 229.7937372 + 30.902%, 5 — 41.35%5

5310 (z, @) =183.68925 + 521.67225%1 4+ 102.904z5%, + 369.0812357 + 18.62223% &0+
91.85923%3 + 505.407x9d5 + 101.9481932 %9 + 114.09529F1 73 — 8.8552975+
116.481%7 — 64.41123%9 + 1115312342 — 52.1631 &5 + 34.44375

1132, (x, &) =111.02325 + 131.388z551 + 75.984x3%0 + 167.5222247 + 203.331235 1 39—
16.1392233 + 87.442953 + 84.3829F3 %9 + 27.3850% 155 + 1.376x55+
26.335&] + 146.32153 %5 — 73.0562543 + 65.771 %5 — 32.85975

122 5 (2, &) =2343.80623 + 56.45125%1 4 52.824a379 + 2009.828x357 + 30.76923% 1 Fo+
1999.812373 + 15.987x9%5 + 46.392207 589 + 11.349%1 %3 + 0.178x275+
2267.573%] — 27.705&59 4+ 2007.028%343 — 70.923%1 25 + 2273.625

33,5 (z, &) = — 349.429x5 — 383.85123% — 210.3622570 — 443.819235% — 415.1222331 39—
4162332 — 232.9871933 — 233.8112973 %9 — 61.613297 155 — 8.8379x075 —
78.0070%] — 250.77%3 % 4 81.34572 %3 — 80.681%1 &5 + 56.81315

152, (x, &) =24.812x5 + 133.53x5%1 + 192.965x5%2 + 59.979225% + 123.797235 19—
54.1082372 4 55.30229%3 + 150.9891073 %0 — 29.49129F1 73 + 60.937x255 —

17.698%] + 63.77653 5y — 78.977TE3i3 4 72.345% 75 — 43.445%5
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13,5 (2, &) = — 970.118x5 — 945.40825% — 358.29923% — 2148.592347 — 396.363135 50—
226.1572353 — 854.627x233 — 420.7442973 %9 — 118.1922971 72 — 40.0682975 —
1122.044%7 — 164.87753%9 — 229.79373 %3 + 30.902%, &5 — 41.35%3

1135, (x, &) = — 349.42925 — 383.851x54; — 210.362235, — 443.81923%7 — 415.12203% 1 79—
4162373 — 232.987x973 — 233.811297509 — 61.613x971 75 — 8.8379x2F5 —
78.0070%] — 250.77%3 %o 4 81.34573 %3 — 80.681%1 %5 + 56.81375

1133 5 (x, &) =5606.859x5 + 3241.14425%1 + 945.667x552 + 8088.731x247 + 1111.21923% Zo+
2674. 514x2x2 + 2641.082x227 + 1124. 635x2~2:i2 + 301. 661x2$1x2 + 70. 14x2x2+
5270.637%7] 4 476.658%3 %5 + 2530.0935753 4 31.5621 75 + 2529.06975

T35, (x, &) = — 55112325 — 1226.256237) — 308.317x349 — 1085.896237% — 183.632331 &9 —
194.97823735 — 1042.718x9F3 — 252.0332973 %9 — 192.454207 175 — 14.8232975 —
289.252%7 4 33.98343 %, — 183.29652 23 + 46.814% 45 — 63.541

1335 (x, &) =183.689x5 + 521.67223%, + 102.904257 + 369.0812357 + 18.62223% 1 To+
91.8592272 4 505.407x2%5 + 101.94822F2 %5 + 114.0952971 75 — 8.8551005+
116.4817] — 64.41173%5 + 111.5312373 — 52.1631 &5 + 34.44375

1335 (x, 2) :24.812m§ + 133.5323%, + 192.96525% 4 59.97925%3 + 123.79723%1 50—
54.10823%3 + 55.302207% + 150.9892952 %) — 29.491 2071 55 + 60.93 72075 —
17.698%7] + 63.7761 550 — 78.97T4343 + 72.345% 75 — 43.445%4

133, (x, &) = — 551.123z5 — 1226.25623% — 308.317x3%9 — 1085.8962377 — 183.632331 32—
1949782272 — 1042.7182973 — 252.0332973 %0 — 192.454207 155 — 14.8232975 —
289.252%] + 33.983%3 0 — 183.2964342 + 46.814% 175 — 63.547%

53,5 (x, &) =2737.043z5 + 263.04525%, — 180.684x37s + 2535.316x372 + 56.38823%1 To+
2190.5782373 + 157.212933 — 126.45208 %2 + 139.0292051 53 — 92.767x0d5+

2404.876%7 — 31.073 o 4+ 2057515253 — 81.7720%, &5 + 2299.59775
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L, (z, &) =35633.275 4+ 1331.47523%, + 2939.487x3%, + 48363.13923%2 — 1560.988x351 &2+
231876462353 + 1914.3352075 + 2326.594x052 9 — 713.7012071 73 + 1036.577x2F5+
80325.429999999997] — 5157.78173 %9 4 26238.645745 — 4419.183%1 75 + 25209.77315

135, (z, &) = — 570.291x5 + 2439.43825%, — 1036.957x3%0 — 1107.73923%2 + 6995.958235 &9 —
3821.9722375 4 1748.51529F% — 850.2772973 %9 + 1027.0582971 73 — 944.5219F5 —
3436.72%] + 8969.41535 %y — 7827.3172343 + 5540.23431 75 — 3615.2427 5

133, (x, &) = — 23252.97x5 — 4797138255, — 4108.097x3iy — 39697.9152357 + 45.32423% 1 49—
4612.717x373 — 3822.407x2%3 — 3460.38622 552 + 548.9682951 %3 — 1286.437xoi5 —
34541.658%] + 1844.46273 7y — 7522.1637343 + 3064.372%, &5 — 2831.628%5

133, (z, &) =2178.773x5 4+ 22113.18425%, — 154.604x55, + 3723.6472357 — 4056.24237 Fo+
2997.0652373 + 23471.80829%% — 892.149297 149 + 4533.0812971 75 — 1708.885x2F5+
4989.998%7 — 7258.235%3 %9 + 6908.47T7F1 53 — 4668.478% 145 + 3112.6145

L2, (x, &) = — 570.291x5 + 2439.43823%, — 1036.957x3% — 1107.739234% + 6995.95823% 1 49—
3821.972x373 + 1748.51529%5 — 850.277x2&2 %9 + 1027.05829F1 %3 — 944.521075 —
3436.7277 + 8969.41533 79 — 78273174253 + 5540.2347 &5 — 3615.24275

1152, (z, &) =31095.314x4 — 1069.804x5%, + 3956.937x5% 4 22809.9362347 — 3508.77x35 9+
26829.19725%% — 829.8461077 + 1318.388297 700 — 1373.622001 55 + 1081.7482075+
25105.8364] — 4321.263%3 2 + 26277.95342 — 6533.962% 75 + 27244.577%5

132, (x, &) = — 4426.597x5 — 3700.633z5%1 + 160.899x3%, — 153.70123%7 — 5897107235 Zo+
2627.9952373 — 2276.40922F3 + 543.2312973 %9 — 1450.45329%1 55 + 712.38622F5+
1547.2023] — 6477.99655 %5 + 5969.4237375 — 4080.91% 45 + 6051.82775

132, (z, &) =1101.158z3 — 36.71523%, + 13769.672x5%0 — 2161.44123%2 + 2858.362x551 &2 —
45241892353 — 501.974x973 + 5592.168197 19 — 3505.3082971 73 + 4902.9661255 —

2891.562%7 + 4072.666F53, — 6501.327343 + 5527.458% &5 — 4307.4535
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I3, (z, &) = — 23252.97x5 — 4797.138253%, — 4108.097x55y — 39697.9152357 + 45.324235 50—
4612.7172372 — 3822.4072033 — 3460.386205 59 + 548.96812F1 53 — 1286.437x005 —
34541.658%7 + 1844.462%3 %5 — 7522.1635743 4 3064.372% 173 — 2831.62874

133, (x, &) = — 4426.597x5 — 3700.633z551 + 160.899x3%, — 153.70123%3 — 5897107235 Zo+
2627.9952373 — 2276.40922F5 + 543.2312973 79 — 1450.45329%1 55 + 712.3862235+
1547.202%] — 6477.99655 %5 + 5969.4237375 — 4080.91% &5 + 6051.82775

1133, (x, &) =147838.012x5 + 26231.26z55, + 8214.768z51y + 129836.832357 + 628.414x3% Fo+
59264.9232272 + 9248.106x275 + 8604.4312952 %0 — 1324.173x951 53 — 882.019x275+
126450.8413] — 2526.6825 %y + 530645353 + 243.457% 75 + 70349.888%5

1355, (@, &) = — 4686.747x3 — 26107.94623F1 — 5463.576x550 — 6427.8022:3%7 + 1149.92235  To—
2307.2332373 — 24847.2319F5 — 955.3712973 %9 — 3425.482971 25 + 359.134x075 —
3676.09%] + 4089.6164559 — 5109.0252373 + 2933.132%1 %5 — 5680.08513

1335 (2, &) =2178.773x5 4+ 22113.18425%; — 154.604x550 + 3723.6472357 — 4056.2423% 1 To+
2997.065x353 + 23471.808x275 — 892.1492972 0y + 4533.081x97 172 — 1708.885x2F5+
4989.998% 1 — 7258.2355 %9 + 6908.47772 5% — 4668.478% 75 + 3112.6175

133, (z, %) =1101.158z3 — 36.71523%, + 13769.672x5%0 — 2161.44123%2 + 2858.362x551 2 —
4524.189x373 — 501.974x9%5 4 5592.16812F% %9 — 3505.3082231 %3 + 4902.9662975 —
2891.562%7 + 4072.66635 3, — 6501.322343 + 5527.458% &5 — 4307.45345

1133, (@, &) = — 4686.747x3 — 26107.94623%1 — 5463.576 x50 — 6427.80223%7 + 1149.92235  To—
2307.2332373 — 24847.2312F3 — 955.3712973 %9 — 3425.482971 75 + 359.134x075 —
3676.09%] + 4089.616359 — 5109.0257373 + 2933.132%1 %5 — 5680.08513

530, (2, &) =76909.779z5 + 3750.54723%, — 16616.395254 2 + 47530.638235% — 3763.642225 1 o+
38231.588x3%3 + 3270.5532005 — 9300.7132973 %9 + 6592.6112951 53 — 7398.407x0d5+

34027.8255] — 4257.6735 10 + 28279.22552 53 — 6616.5861 115 4 28745.858
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1300 (z, @) =3157.09425 + 394.0562551 + 250.70425%, + 4406.2312357 + 131.1322351 3o+
2273.0692373 + 337.162x075 + 268.491 208350 + 79.9492071 72 4 43. 12975+
5004.1547] — 54.41253 70 + 2475.8937373 — 142.081%, &3 + 2340.909%3

3300 (2, &) =221.097x5 + 187.816235%1 + 133.2562570 4 291.6282357 + 531.415233 13—
130.9312373 4 174.397x905 + 133.1242032 %9 + 26.4252971 52 + 6.641005 —
16.077%] + 590.263%3 79 — 383.0797343 + 232.979% 145 — 124.737%5

133, (x, &) = — 2410.873z5 — 1270.676x5%, — 645.200x579 — 5402.2812352 — 427.078x3% Fo—
846.5852245 — 1155.685200 — 675.857wod Es — 215.075x281 73 — 116.7192975 —
4242.393%7 — 92.058085 %y — 1142.57F253 + 142.0212, 75 — 189.32615

5300 (2, @) =342.053z5 + 1367.641255, + 165.585x5F, + 552.3462332 — 247.24122% To+
320.41223%3 + 16111722905 + 131.2762232 %9 + 376.21 207175 — 44.6982975+
225.237%] — 433.153 9 + 469.7515253 — 212.02931 %5 + 137.81125

132, (x, &) =221.097x5 + 187.81625%1 + 133.2562552 + 291.628x3%% + 531.41523% To—
130.9312333 + 174.397x075 + 133.124x0750 5 + 26.425x071 72 + 6.642055 —
16.077%1 4+ 590.263%5 45 — 383.0794753 + 232.979%, &5 — 124.737%5

152, (z, &) =2486.788x5 + 90.85223%, + 51.144a5%9 + 2112.9982357 + 29.04823% 1 To+
2150.0952373 + 8.262x2F7 + 79.217x0F2 %y + 20.742207 1 55 — 40.0972975+
2327.68%7 — 1224115579 + 2250.3537343 — 286.284% i3 + 2394.87715

132, (x, &) = — 713.873z5 — 612.281x5%; — 349.95123%, — 669.33123%7 — 1028.81523% &9+
189.1472373 — 391.1582945 — 357.081298 7%y — 98.53Txod 145 — 14.5422975 —
10.5495] — 931.31123 %9 + 526.75753 — 334.19721 25 + 241.18675

132, (¢, @) = — 96.31225 + 252.665x5%1 + 548.409x3 %9 — 18.141225% + 287.32522% &9 —
293.6332373 + 46.481975 + 481.00122F3 %9 — 196.99529F1 3 + 214.3782975 —

95.565%1 4 184.24353 %9 — 333.792343% 4 289.706%, &5 — 179.95475



Appendix C 166

I3, (2, &) = — 2410.873z5 — 1270.67625%; — 645.20023% — 5402.281235% — 427.07823% Fo—
846.585x353 — 1155.6852005 — 675.857x0d2Ey — 215.075x0F1 33 — 116.7192975 —
4242.3937] — 92.05803 79 — 1142.575353 4 142.0213, %5 — 189.326%3

350 (2, &) = — 713.873x5 — 612.28123% — 349.95123%9 — 669.3312347 — 1028.815235%1 Zo+
189.1472252 — 391.15829%5 — 357.0812033 %9 — 98.53Twod 155 — 14.5421075 —
10.54927 — 931.31123%9 + 526.753373 — 334.197% 25 + 241.186%3

133, (2, @) =10153.682x5 + 4541.2923% + 1601.163x3%2 + 15235.98722%2 + 1311.776 235 Fo+
4750.523x373 + 3566.892275 4 1668.165x232 79 + 649.597 207172 + 236.72x275+
11071.854%7 4 491.94133 %y + 4704.3367373 — 22.414, 75 + 3179.1%5

1330 (x, &) = — 956.419x5 — 2924.655x5%, — 574.111a35 — 1552.6562343 + 133.376235 9 —
659.7922353 — 2798.712x905 — 342.641 2032 F9 — 664.824x971 73 — 26.4261255 —
443.0447% + 558.18573 %9 — 722.5812545 + 253.173%1 &5 — 272.81675

13300 (2, &) =342.053x5 + 1367.64125%; + 165.585x550 + 552.346237% — 247.24123% To+
320.4122353 + 16111722975 + 131.2762952 %9 + 376.21 007155 — 44.6982975+
225.237%1 — 433.1583 %, + 469.75152 %3 — 212.029%, 75 + 137.811%5

13300 (2, &) = — 96.31223 4 252.665x5%, + 548.409x55y — 18.1412357 + 287.325235 59—
293.6332575 + 46.48297% + 481.0012083 %9 — 196.99529F1 73 + 214.378x975 —
95.5653] + 184.243%3 79 — 333.792323 + 289.706% 73 — 179.95471

13500 (2, &) = — 956.419x5 — 2924.655x5%; — 574.111x3%5 — 1552.6562247 + 133.3762551 32—
659.7922353 — 2798.7122905 — 342.64120F3 59 — 664.824x971 73 — 26.42612F5 —
443.0447% + 5581857379 — 722.5814545 + 253.173%, &5 — 272.81675

15305 (2, &) =3779.996x4 + 496.19225%, — 874.818x3%y + 3749.128x373 — 41.3772351 &0+
2919.51923%3 + 263.76920%5 — 716.509207 100 + 534.837x0F1 55 — 362.968x2F5+

2650.865%F — 168.94273 % + 2431.472 73 — 325.902% 75 + 2498.84477
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