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Abstract

A maximally entangled state shared between two distant parties is useful to perform

various nonlocal tasks such as quantum teleportation and superdense coding. It should be

noted, however, that physically prepared states are not always maximally entangled states.

When the prepared states are not maximally entangled states, we may need to transform

them to maximally entangled states by local operations and classical communication

(LOCC) protocols.

Well-known examples of transforming partially entangled states into maximally en-

tangled states are entanglement concentration and dilution. Entanglement concentration

is a task to obtain copies of a maximally entangled state from many copies of a partialy

entangled state by LOCC and entanglement dilution is its inverse process. When initial

states are independently and identically distributed states (i.i.d. states), the optimal rates

of entanglement concentration and dilution are asymptotically equal to the entanglement

entropy.

For cases where initial states and target states are not necessarily a tensor power of a

bipartite entangled state, the information-spectrum method has been applied to analyze

entanglement concentration and dilution. Originally, the information-spectrum method

was developed in classical information theory by Han and S. Verdú (1993, 1994) to con-

struct a unified general theorem. Later it has been extended to quantum information

theory by Nagaoka and Hayashi (2003, 2007) in the context of quantum hypothesis test-

ing and classical-quantum channel coding. Under the information-spectrum setting, the

optimal rates of entanglement concentration and dilution are obtained in terms of inf-

/sup-spectral entanglement entropy rates by Hayashi (2006) and Bowen-Datta (2008),

respectively.

In this thesis, we consider a more general situation in which an arbitrary sequence of
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a bipartite pure entangled state is asymptotically converted into another by a sequence

of LOCC protocols. We require that the trace distance between the final state and the

target state vanishes when the sequences are sufficient large. We seek conditions for such

an asymptotic conversion to be possible. Different from the previous approaches, we do

not assume that neither the target state nor the initial state is a maximally entangled

state. We derive necessary and sufficient conditions for the asymptotic LOCC convertibil-

ity of one sequence to another in terms of spectral entropy rates of entanglement of the

sequences. Based on these results, we also provide simple proofs for previously known re-

sults on the optimal rates of entanglement concentration and dilution of general sequences

of bipartite pure states.
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Chapter 1

Introduction

1.1 Backgrounds

1.1.1 Entanglement convertibility

In quantum systems, two distant particles may behave dependently, such physical phe-

nomenon is called entanglement. It was first pointed out by Einstein, Podolsky and Rosen

[1] in 1935. Almost fifty years later, entanglement phenomenon was confirmed experimen-

tally by A. Aspect, J. Dalibrad and G.Roger in 1982 [2] by showing the violation of the

Bell inequality [3]. In 1990s, lots of quantum protocols using an entanglement were pro-

posed, such as quantum teleportation and super dense coding [4, 5, 6]. After then, the

researchers gradually recognized that an entanglement is an useful resource in quantum

information theory and the trend of research has been shifted to utilize the entanglement.

It is well known that quantum teleportation and super dense coding protocols require

the maximally entangled states as resources. It should be noted that physically prepared

states are not always maximally entangled states. Under this situation, we may need

to transform the prepared states to maximally entangled states by local operations and

classical communication (LOCC). It is mainly because performing global quantum oper-

ations between two distant parties are not realistic by today’s technology. Well-known

examples of converting a state into another by LOCC are entanglement concentration and

dilution. Entanglement concentration is a task to convert many copies of a non-maximum

entangled state into copies of a maximally entangled state by LOCC and entanglement
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dilution is its inverse process.

The research on entanglement convertibility in the asymptotic setting began by Ben-

nett et al. [7]. They showed that the optimal rates of entanglement concentration and

dilution are asymptotically equal to the von-Neumann entropy of the reduced state of

initial state when the initial state is independently and identically distributed state (i.i.d.

state) [see section 4.1]. After their research, Lo and Popescu [8] showed that for a known

bipartite pure entangled state, concerning a two-way LOCC protocol is equivalent to con-

cerning a one-way LOCC protocol. By their result, Nielsen et al. [9] derived necessary

and sufficient conditions for the possibility of converting a bipartite pure entangled state

into another only by LOCC with majorization. Since then the possibility of converting a

bipartite pure entangled state into another only by LOCC is called as LOCC convertibility.

After then, the research on entanglement convertibility under the general setting using

the informtion-spectrum method started. Hayashi [10] and Bowen-Datta [11] obtained

general formulas for entanglement concentration and entanglement dilution, respectively.

The optimal rates of entanglement concentration and dilution are obtained in terms of

inf-/sup-spectral entanglement entropy rates [see Section 4.4].

1.1.2 Information-spectrum methods

In 1948, Shannon [12] established the filed of information theory and demonstrated the

source coding theorem and the classical channel coding theorem for stationary and mem-

oryless channels. The source coding theorem states that Shannon entropy is the optimal

compression rate of a given information source for many observations. On the other hand,

the classical channel coding theorem states that for all communication rates under the

Shannon capacity the error probability can be made asymptotically to zero.

In quantum information theory, the source coding theorem was found by Schumacher

[13], which states that the von-Neuman entropy is the optimal compression rate of a given

information source. On the other hand, the direct part of the classical-quantum channel

coding theorem for a stationary and memoryless classical-quantum channel was shown by

Holevo [14] and Schumacher-Westmoreland [15] independently in 1990s, while the converse

part was shown by Holevo [16, 17] in 1970s. The classical-quantum channel coding theorem

states that the Holevo capacity is the maximum achievable rate for transmission of classical
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information through quantum channels.

It should be noted that in the real world many channels are neither stationary nor

memoryless even in the asymptotic setting. Han and S. Verdú [18, 19] developed the

information-spectrum method in classical information theory to construct a unified gen-

eral theorem in which channels may be arbitrary nonstationary and/or nonergodic in

1993. They obtained the general formula for classical channel coding theorem by mak-

ing no structural assumptions over the source and channel. In [20], Han also gave the

general formula for various problems in information theory such as source coding theo-

rem, random number generation, hypothesis testing, and rate distortion theory. Later,

the information-spectrum method has been extended to quantum information theory by

Nagaoka and Hayashi [21, 22, 23], initially in the context of quantum hypothesis testing

(simple hypotheses testing for quantum states) and was used to determine the general

expression for the capacity of arbitrary classical-quantum channels. After then, Hayashi

[10] and Bowen-Datta [11] obtained general formulas for entanglement concentration and

entanglement dilution, respectively, by informtion-spectrum approaches.

1.2 Motivation and approach

1.2.1 Motivation

A maximally entangled state shared between two parties is useful to perform various non-

local tasks such as quantum teleportation protocol and super dense coding. On the other

hand, a secret key shared by two parties is useful to perform private communication over

a public channel. Operational equivalences of these two resources have been suggested by

Schumacher [24] and Schumacher-Nielsen [25] in one shot scenario through noisy quantum

channels, and by Devetak [26] in asymptotic scenario. Given a correlated quantum state

as a resource, Devetak-Winter [27] addressed the questions of secret key distillation via

one-way public commnication and entanglement distillation via one-way LOCC protocol

from quantum states under the i.i.d. assumption.

In information theory, the i.i.d. case is just a starting point to solve the problem of

various setting such as correlated cases. It is natural to consider general theory developed

in the information-spectrum method. Because by using the information-spectrum method,
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we can obtain general and unified theorems without any assumptions. The motivation

of this thesis is to apply the information-spectrum method to obtain general and unified

formulas of secret key distillation and entanglement distillation from general sequence of

quantum states.

1.2.2 Approach

Let X = {Xn}∞n=1 be an arbitrary sequence of random variables, called a general source,

taking values in arbitrary countable sets X n (n = 1, 2, . . . ), and PXn(xn) (xn ∈ X n) be

the probability function of Xn for each n. A typical example of the general source is

the i.i.d. case, i.e., Xn is written as Xn = X1, X2, . . . , Xn (n = 1, 2, . . . ) and each Xi

(i = 1, 2, . . . , n) is a random variable subject to some identilal distribution independently.

With the information-spectrum method, the source coding theorem under the i.i.d.

asumption is usually expressed as follows:

R(X) = H(X) = H(X), (1.1)

where R(X) stands for the optimal compression rate of the general source, H(X) means

sup-spectral entropy, and H(X) is the Shannon entropy of the given i.i.d. source Xi (i =

1, 2, . . . , n).

The first formula R(X) = H(X) is entirely of information-theoretic coding aspects,

providing the key framework or skeleton of mathematical (or logical ) arguments in the

world of information-spectrum and apparently has no connection with the assumption

on probabilistic structure. We may say the formula R(X) = H(X) is extremely general

framework with simplicity and some beauty. However, it should be noted that it is not

always easy or rather hard to find the proof of R(X) = H(X). Once an excellent logic

has been found to prove the equality, the proof can be transparent and simple with few

assumptions, providing a framework or “skeleton” for information theory.

The second formula H(X) = H(X) is entirely of probabilistic or statistical nature,

providing a “concrete building” for information theory, and apparently has no connection

with information-theoretic coding aspects. Thus, with information spectrum methods,

we can divide the problem into two parts: coding problem and probabilistic problem.
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For entanglement convertibility, we address a more general situation in which an ar-

bitrary sequence of a bipartite pure state is asymptotically converted into another by a

sequence of LOCC protocols. Different from Hayashi [10] and Bowen-Datta’s approaches

[11], we do not assume that neither the target state nor the initial state is a maximally

entangled state. Compared to Hayashi and Bowen-Datta’s research, our framework or

skeleton is further simple as we removed the assumption on the initial state or on the

target state. For the proof, the logical process of our method is much simpler than theirs.

Since we assembled framework or skeleton parts such as random number generation [20],

majorization [9] and a lemma obtained by Kumagai-Hayashi [28] for direct part. For

converse part, we derived generalized properties of the spectral divergence rates such as

monotonicity under positive trace preserving (PTP) map and continuity as skeleton parts.

1.3 Related works

We state several other related works beyond i.i.d. approach in this section. Smooth en-

tropies were first introduced in the purely classical case [29] and later for a more general

quantum regime [30, 31] by Renner. Datta-Renner [32] have shown that “spectral entropy

rates are asymptotically equal to the limit of the smooth entropy rates.”

Recently, on shot scenario of entanglement convertibility of a bipartite pure entangled

state in infinite-dimensional systems has been studied. By introducing the concept of ε-

convertibility and reconstructing Nielsen’s theorems in infinite-dimension systems, Owari

et al. [33] stated that an entangled state is ε-convertible to another, if and only if their

Schmidt coefficients (see Lemma 2 for definition) have majorization relations. Using a

different approach to [33], Asakura [34] established an infinite dimensional version of

Birkoff’s theorem with the weakly operator topology to prove LOCC convertibility in

infinite dimension systems.

1.4 Contributions

In this thesis, the following results are obtained.

1. We obtained a general formula and unified form of asymptotic convertibility of arbi-

5



trary sequences of bipartite pure entangled states under the information-spectrum

setting (Section 4.3).

2. By applying our results, we gave simple proofs of the previously known results on

entanglement concentration [10] and dilution [11] of general sequences of a bipartite

pure entangled state. (Section 4.4).

3. As a byproduct of our approach, we addressed asymptotic convertibility of two

arbitrary sequences of states by random unitary operations, which is a subclass of

unital operations (Section 5.3).

4. It is proved by Bowen-Datta that the spectral divergence rate of two general se-

quences of states are monotonically nonincreasing under complete positive and trace

preserving (CPTP) maps for ε = 0. [35]. We generalized their result to an arbi-

trary ε ∈ [0, 1] under positive trace preserving (PTP) maps (Subsection 6.2.1). We

also showed the continuity of spectral divergence rates with respect to states in the

asymptotic sense (Subsection 6.2.2).

1.5 Organization

This thesis is organized as follows. First, in Chapter 2 we review several basic preliminaries

in quantum information theory that will be used in the later chapters. In Chapter 3, we

state several known results on LOCC convertibility and review criterions of one shot

scenario of LOCC convertibility obtained by Nielsen. The main results of this thesis are

given in Chapter 4. By applying our results, simple proofs for previously known results

of entanglement concentration and entanglement dilution will also be stated in Chapter

4. In Chapter 5, we review the information-spectrum method by introducing random

number generation and we prove the direct part of main results which is the achievability

of asymptotic convertibility. In Chapter 6, the definitions and properties of spectral

divergence rates are provided. We also prove the converse part of main results, which is

the optimality of LOCC convertibility in Chapter 6. Conclusion is given in Chapter 7.
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Chapter 2

Mathematical preliminaries of

quantum information theory

In this chapter, we brifely review several basic preliminaries of quantum information

theory which will be used in the later chapters. Note that the proofs of the Lemmas and

Propositions are omited here. In Section 2.1 we review linear operators on Hilbert spaces.

In Section 2.2, we introduce a mathematical formalism to describe quantum states and

measurement operations. A composite system of two Hilbert spaces is described in Section

2.3. In Section 2.4, we give a description of completely positive and trace preserving

(CPTP) map. In Section 2.5, we state two distance measures of states and a relationship

between them. Contents in this chapter are mainly based on [9, 36, 37].

2.1 Linear operators on Hilbert space

A quantum system is described by a Hilbert space H. By Hilbert space we mean finite-

dimensional Hilbert space in this thesis. We use |φ⟩ to stand for a ket vector. The symbol

⟨ψ|φ⟩ denotes inner product of two vectors |φ⟩ and |ψ⟩. For every ket vector |φ⟩ on H, ⟨φ|

is defined by the linear functional on H, namely ⟨φ| : |ψ⟩ $→ ⟨φ|ψ⟩. If ⟨ψ|φ⟩ = 0, we say

two vectors |ψ⟩ and |φ⟩ are orthogonal to each other. ∥ψ∥ denotes the norm of a vector

|ψ⟩ ∈ H which is defined by ∥ψ∥ =
√
⟨ψ|ψ⟩. If ∥ψ∥ = 1, vector |ψ⟩ is called a unit vector.

If the elements of unit vectors {|ei⟩}mi=1 are orthogonal to each other, {|ei⟩}mi=1 is called

an orthonormal system. An orthonormal system can be shown to be linearly independent.
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For an n-dimensional vector space, an orthonormal system {|ei⟩}ni=1 which consists of n

vectors forms a basis of the vector space. This orthonormal system is called a complete

orthonormal system (CONS).

Definition 1. Map A from a vector space V to another W is called a linear operator if

it satisfies the following linearity condition.

A(α |ψ⟩+ β |φ⟩) = αA |ψ⟩+ βA |φ⟩ , ∀α, β ∈ C, ∀ |ψ⟩ , |φ⟩ ∈ V.

We use L(H) to stand for the set of linear operators from H to itself. An operator

A† ∈ L(H) is called the adjoint operator of A if it satisfies ⟨v|Aw⟩ = ⟨A†v|w⟩ . If A = A†,

A is called Hermitian. For any |v⟩ ∈ H, if ⟨v|Av⟩ ≥ 0, A is called nonnegative, especially

when ⟨v|Av⟩ > 0, A is called positive. Hereafter we use A > 0 to mean that A is positive.

If A = A† = A2, A is called projection. A linear operator is called normal if AA† = A†A.

The trace of an operator A is given by

TrA :=
n∑

i=1

⟨fi|A|fi⟩,

where {|fi⟩}ni=1 is an arbitrary CONS of H. Note that this quantity does not depend on

the choice of the CONS.

Lemma 1. For A ∈ L(H), any |v⟩ ̸= 0 and a ∈ C, if

A |v⟩ = a |v⟩ , (2.1)

then a is called an eigenvalue of A and |v⟩ is an eigenvector of A corresponding to eigen-

value a.

2.2 Quantum states and measurement operators

Quantum states are described by density operators on Hilbert space H. By a density

operator we mean ρ = ρ† ≥ 0 and Trρ = 1. The set of density operator S(H) is defined

by

S(H) = {ρ ∈ L(H)|ρ ≥ 0,Trρ = 1} .

8



When the rank of quantum state ρ equals to 1, ρ is called a pure state, otherwise ρ is a

mixed state.

Quantum measurement on HA (A Hilbert space labeled by A) is described by a set

of Hermitian operators M := {Mk}dk=1, satisfying
∑d

k M
†
kMk = I, where I denotes the

identity operator. We call them measurement operators. The index k represents a mea-

surement result. Let us perform a measurement on a quantum state ρ by a measurement

operator Mk, then the probability that a result k occurs is given by

p(k) = TrρM †
kMk (2.2)

After the measurement the state ρ changes to the state

MkρM
†
k

pk
.

The description of measurement process is illustrated by Figure 2.1.

9



  

state ⇢

outcome  

p(k) = Tr⇢M†
kMk

the state changes  
depending on  k

occurs with probability 

measurement 

changes to 

where 

M = {Mk}nk=1
nX

k

M†
kMk = I

�1  

�2  

�3  

�� �

1, 2, · · · k, · · ·n

�� �

Mk⇢M
†
k

p(k)

Fig. 2.1: measurement process

2.3 Composite system

2.3.1 Tensor product space

Let HA be a dA-dimensional Hilbert space and HB be a dB-dimensional Hilbert space.

The tensor product operation “ ⊗ ” of Hilbert space HA and HB is a bilinear map from

HA×HB to some dAdB-dimensional Hilbert space HAB, denoted as (|φ⟩ , |ψ⟩) $→ |φ⟩⊗ |ψ⟩.

If we let {|e⟩i}
dA
i=1 be a CONS of Hilbert space HA and {|f⟩j}

dB
j=1 be a CONS of Hilbert

space HB, then {ei ⊗ fj|i = 1, · · · , dA, j = 1, · · · , dB} is a CONS of HAB. The tensor

product Hilbert space HAB is known to be unique for arbitrary two Hilbert space HA and
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HB up to isomorphism with inner product defined by

⟨ψ ⊗ φ|u⊗ v⟩ = ⟨ψ|u⟩⟨φ|v⟩ (∀ |ψ⟩ and |u⟩ ∈ HA, |φ⟩ and |v⟩ ∈ HB). (2.3)

Hence, HAB is written as HA ⊗HB.

Note that any vector of HA ⊗HB can be written as

|ψ⟩AB =
dA∑

i=1

dB∑

j=1

xij |ei⟩A ⊗ |fj⟩B . (2.4)

Lemma 2 (Schmidt decomposition). For any unit vector |ψ⟩AB in HA ⊗HB, there exist

pi > 0 (i = 1, 2, · · · ,m ≤ min[dA, dB]), a CONS {|e⟩i}
dA
i=1 of HA and a CONS {|f⟩j}

dB
j=1

of HB, such that

|ψ⟩AB =
m∑

i=1

√
pi |ei⟩A ⊗ |fi⟩B . (2.5)

In equation (2.5) m is called the Schmidt rank and pi is the Schmidt coefficient satisfying
∑m

i=1 pi = 1.

Using this Lemma and by choosing a suitable CONS of HA and HB, any vector |ψ⟩AB

has a diagonal form |ψ⟩AB =
∑

i xii |ei⟩A ⊗ |fi⟩B.

2.3.2 Tensor product between linear operators

For a linear operator A on HA and a linear operator B on HB, the linear operator A⊗B

of Hilbert space HA ⊗HB is defined by

(A⊗ B)(|u⟩ ⊗ |w⟩) := (A |u⟩)⊗ (B |w⟩) (∀ |u⟩ ∈ HA, |w⟩ ∈ HB), (2.6)

for vectors in tensor form and linearity using (2.4)

(A⊗B) |ψ⟩AB =
dA∑

i=1

dB∑

j=1

xijA |ei⟩A ⊗ B |fj⟩B . (2.7)

11



For a linear operator X of Hilbert space L(HA ⊗HB), it can be uniquely written as

X =
∑

i j

∑

k l

xijkl |ei⟩ ⟨ej|⊗ |fk⟩ ⟨fl| , (2.8)

where {|e⟩i}
dA
i=1 and {|f⟩j}

dB
j=1 be the CONSs of Hilbert space HA and HB, respectively.

The partial trace with respect to the system A is defined by

TrBX =
∑

i j

∑

k l

xijkl |ei⟩ ⟨ej|Tr(|fk⟩ ⟨fl|) (2.9)

=
∑

ij

∑

k

xijkk |ei⟩ ⟨ej| . (2.10)

From equation (2.5), the reduced state of |ψ⟩AB on the subsystem A and B are given by

ψA = TrB |ψ⟩⟨ψ|AB =
∑

i

pi |ei⟩ ⟨ei| , (2.11)

ψB = TrA |ψ⟩⟨ψ|AB =
∑

i

pi |fi⟩ ⟨fi| . (2.12)

If the reduced state of |ψ⟩AR is equal to ρ, namely

ψA = TrR |ψ⟩⟨ψ|AR = ρ,

then the bipartite pure state |ψ⟩AR is called a purification of ρ ∈ L(HA).

Proposition 1. If both |ψ⟩AB and |φ⟩AB are purifications of ρ, i.e.

ρ = TrB |ψ⟩⟨ψ| = TrB |φ⟩⟨φ| ,

then there exists an unitary operator UB ∈ L(HB) such that

|φ⟩AB = (IA ⊗ UB) |ψ⟩AB , (2.13)

where IA is an identity operator on HA.
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2.4 TPCP maps

Hereafter, we use HA to stand for a Hilbert space labeled by a system A. A quantum

operation on HA is defined by a super linear operator Λ : L(HA) → L(HA′
)

∀ρ −→ Λ −→ ρ
′

Fig. 2.2

that satisfies the following two conditions:

(1) trace preserving

For any ρ ∈ L(HA), Tr(Λ(ρ)) = Tr(ρ′) = Trρ holds, where ρ′ ∈ L(HA′
). (see Fig.

2.2).

(2) complete positivity

For any system R and XRA ∈ L(HR ⊗HA), XRA ≥ 0 ⇒ (IR ⊗Λ)(XRA) = XRA′ ≥ 0

holds, where IR is an identity operator on HR (see Fig. 2.3).

∀XRA −→
{

−→ IR −→
−→ Λ −→

}
−→ XRA′

Fig. 2.3

Such a quantum operation Λ is called a completely positive and trace preserving

(CPTP) map. An example of quantum operation is a random unitary operation defined

by

Λ(ρ) =
∑

i

piUiρU
†
i ,

where Uis are unitaries and pi is a probability distribution such that pi ≥ 0,
∑

i pi = 1.

By unitary we mean a linear operator U : L(H) → L(K) such that

U †U = IH, UU † = IK.

13



2.5 Distance measures of two states

We introduce two distance measures, trace distance and fidelity to measure “closeness” of

two quantum states. The trace distance of two quantum states ρ and σ is given as

d(ρ, σ) :=
1

2
Tr|ρ− σ|, (2.14)

where |A| :=
√
A†A.

Trace distance has the property of the monotonicity.

Lemma 3. For any CPTP maps Λ : L(H) → L(K) and any states ρ, σ ∈ S(H),

d(ρ, σ) ≥ d(Λ(ρ),Λ(σ)). (2.15)

holds.

The fidelity of any two quantum states ρ and σ is defined as

F (ρ, σ) := Tr|√ρ
√
σ|. (2.16)

When σ = |φ⟩⟨φ| is a pure state, the following is satisfied.

F (ρ, σ) =
√

⟨φ|ρ|ψ⟩. (2.17)

In particular, when ρ = |ψ⟩⟨ψ| , σ = |φ⟩⟨φ| both are pure states, the fidelity is given by

F (ρ, σ) = |⟨ψ|φ⟩|. (2.18)

The fidelity has the following properties.

Lemma 4. The properties of fidelity of any state ρ and σ are as follows.

1. (symmetry). F (ρ, σ) = F (σ, ρ).

2. (positivity). 1 ≥ F (ρ, σ) ≥ 0, F (ρ, σ) = 1 if and only if ρ = σ.

3. (monotonicity). For any CPTP Λ : L(H) → L(K), and two states ρ and σ,

F (ρ, σ) ≤ F (Λ(ρ),Λ(σ)) holds.
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Note that the trace distance and fidelity is related by the following Lemma.

Lemma 5. For any ρ and σ, we have the following equalities.

1− F (ρ, σ) ≤ 1

2
∥ρ− σ∥1 ≤

√
1− F (ρ, σ)2, (2.19)

if ρ and σ are pure state, the second inequality can be replaced by equality.
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Chapter 3

LOCC convertibility

In this chapter, we review several known results on LOCC convertibility. First, we give a

description of an entanglement and state definitions of an entanglement and a maximally

entangled state. Then in Section 3.2, we introduce the concept of LOCC protocols and

state an important result obtained by Lo and Popescu (Proposition 2). Finally we review

the research on one shot scenario of LOCC convertibility and state the necessary and

sufficient conditions for LOCC convertibility obtained by Nielsen.

3.1 Entanglement

Let two parties A and B share an entanglement (Figure 3.1). If party A observe his part,

party B will be affected by the observation of party A, even if they are far away from each

other, e.g. A is in Tokyo and B is in Beijing.
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are far away from each other  

  observed  A   affected  B 

A B 

Fig. 3.1: entanglement

The mathematical definition of entanglement is given as follows. Recalling that by

Lemma 2, a vector |ψ⟩AB of composite system HA ⊗HB can be written as

|ψ⟩AB =
m∑

i

√
pi |ei⟩A ⊗ |fi⟩B . (3.1)

When m ≥ 2, the right side of (3.1) cannot be written as a product state. We call

such a state as an entangled state. In particular, if all pis are equal to 1/d (d =

min[dimHA, dimHB]) , we call such a state as a maximally entangled state, which is

denoted by

|Φ⟩ =
d∑

i=1

1√
d
|ei⟩ ⊗ |fi⟩ . (3.2)

3.2 LOCC protocol

First, let us consider a situation where neither global operation nor direct transmission

of quantum state between the two parties A and B is not allowed. However, applying

physical operations (i.e., measurement, unitary operations) on their individual systems

is allowed. These operations are called local operations. Next, let us consider another

situation that quantum communication is still not allowed but classical communication

17



is allowed between these two parties. Then the following operations become possible: A

measures his part as a local operation, then he communicates with B to tell him the result

of the measurement. Depending on the information from A, B chooses his subsequent

local operations. Such operations are called local operations and classical communication

(LOCC).

Now we give an specific description of the LOCC entanglement conversion protocol.

The generalized version of LOCC protocol is written in Section 6.4. We assume that two

distant parties A and B share a pure bipartite entangled state in advance. The two parties

A and B aim to transform the given entangled state into another state only by LOCC

protocol. The starting state is called the initial state, and the ending state is called the

target state. Let us consider a situation where A and B engage in a multi-round LOCC

protocol. Without loss of generality, we may assume that the LOCC protocol starts

with A’s measurement and ends with A’s operation on his system. By rearranging the

order of quantum operation and classical communication, the LOCC protocol can then

be described as follows.

1. A performs a measurement on his part of the initial state, and obtains an outcome.

2. A communicates a classical message to B.

3. B performs a measurement on his part of the initial state, depending on the infor-

mation received from A, and obtains an outcome.

4. B communicates a classical message to A.

5. A and B recursively apply 1∼4.

6. A performs an operation on his part.

Such rounds are concatenated until the transformation from the initial state to the target

state is accomplished deterministically. Such a LOCC protocol with two-way classical

communication from A to B and B to A is called two-way LOCC (Figure 3.2). A LOCC

protocol with one-way classical communication from A to B is called one-way LOCC

(Figure 3.3).
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Fig. 3.2: two-way LOCC
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Fig. 3.3: one-way LOCC

The following proposition shows that, for a known bipartite pure state, concerning

two-way communication is equivalent to concerning one-way communication.

Proposition 2 (Lo and Popescu [8], Proposition 1). Let |ψ⟩⟨ψ|AB be a pure state known

by parties A and B. Entanglement transformation of |ψ⟩⟨ψ|AB by two-way LOCC can be

realized by one-way LOCC.

Proof. By Lemma 2, a bipartite pure state |ψ⟩AB on a composite system is written as

|ψ⟩AB =
∑

i

√
pi |i⟩A ⊗ |i⟩B . (3.3)
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Let B performs a measurement on his part of |ψ⟩AB, where measurement operators {Ml}

are given as

MB
l =

∑

jk

ml
jk |j⟩

B ⟨k|B , (3.4)

and
∑

l M
†
l Ml = I. When B obtains a result l, then the state changes to

|ψl⟩B = (I ⊗MB
l ) |ψ⟩AB =

∑

ij

ml
ji

√
pi |i⟩A ⊗ |j⟩B , (3.5)

up to the normalization constant. On the other hand, let A performs a measurement on

his part of |ψ⟩AB, where measurement operators are given as

NA
l =

∑

jk

ml
jk |j⟩

A ⟨k|A . (3.6)

When he obtains the result l, the state changes to

|φl⟩A = (NA
l ⊗ I) |ψ⟩AB =

∑

ij

ml
ji

√
pi |j⟩A ⊗ |i⟩B . (3.7)

Noted that since |ψl⟩B and |φl⟩A have the same coefficients and thus have the same Schmidt

coefficients, hence they are related by |ψ⟩Bl = (UA
l ⊗V B

l ) |φl⟩A where UA
l is a local unitary

on A system and V B
l is a local unitary on B system. Therefore, the statement that party

B performs a measurement described by MB
l is equivalent to the statement that party A

performs a measurement described by UA
l N

A
l , which is followed by party B performing

the unitary transformation V B
l .

3.3 One shot scenario of LOCC convertibility

Nielsen et al. [9] obtained the necessary and sufficient condition that for a bipartite pure

entangled state may be converted into another only by LOCC using majorization. The

problem setting of one shot of LOCC convertibility is described by Figure 3.4.
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Fig. 3.4: one shot scenario of LOCC convertibility

First we give the definitions of majorization as follows.

Definition 2. For a sequence of real nonnegative numbers a = {ai}mi=1 (m ∈ N), let

a↓ = {a↓i }mi=1 denotes the sequence rearranged in decreasing order. We say that a = {ai}mi=1

is majorized by b = {bi}mi=1 and write a ≺ b if we have

k∑

i=1

a↓i ≤
k∑

i=1

b↓i (k = 1, 2, . . . ,m) (3.8)

and the equality for k = m.

Note that the majorization relation a ≺ b can be defined even when the numbers of

elements in a and b are different, by including zero if necessary. When both a ≺ b and
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b ≺ a hold, or equivalently a↓ = b↓, we write a ∼ b.

Example 1. If pi ≥ 0 and
∑

i pi = 1, then

(
1

m
,
1

m
, · · · ) ≺ (p1, p2, · · · ) ≺ (1, 0, 0, · · · ).

For simplicity of the notation, we denote that ψAB = |ψ⟩⟨ψ|AB and φAB = |φ⟩⟨φ|AB.

Recall that their reduced states are denoted as ρ = TrBψAB and σ = TrBφAB ∈ L(HA),

respectively.

Definition 3. For density operators ρ and σ, let λρ and λσ be vectors whose entries are

the eigenvalues of ρ and σ, respectively. We say that state ρ is majorized by state σ and

write ρ ≺ σ if λρ ≺ λσ.

It is well known that the following relations (Proposition 3 and 4) between majorization

and doubly stochastic matrices hold (see [38] for proofs).

Definition 4 (doubly stochastic). An m×m matrix A = (aij) is called doubly stochastic

if

aij ≥ 0 for all i, j,

m∑

i

aij = 1 for all j,

m∑

j

aij = 1 for all i.

Proposition 3. x is majorized by y (x ≺ y) if and only if y = Dx for some doubly

stochastic matrix D.

Proposition 4 (Birkhoff’s theorem). A d × d matrix D is doubly stochastic if and only

if D =
∑

j pjPj for some probability distribution pj and permutation matrices Pj.

Proposition 5 (Nielsen [9]). For ρ = TrB |ψ⟩⟨ψ|AB and σ = TrB |φ⟩⟨φ|AB, the following

conditions are equivalent.

1. ρ ≺ σ.

2. |ψ⟩AB −−−−→
LOCC

|φ⟩AB (which means |ψ⟩AB can be converted into |φ⟩AB by LOCC).
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3. There exist matrices Ui and probability pi, such that ρ =
∑

piUiσU
†
i where pi ≥

0,
∑

i pi = 1.

Proof. 1 ⇒ 2. Suppose ρ ≺ σ. By Definition 3, we have λρ ≺ λσ. By Proposition 3 and

4, λρ =
∑

i piPiλσ holds with permutation matrices Pi. Let Λ(ρ) and Λ(σ) denote the

diagonal matrix whose entries are the eigenvalues of ρ and σ, respectively. Then we have,

Λ(ρ) =
∑

i

piPiΛ(σ)P
†
i .

Since ρ = V Λ(ρ)V † and Λ(σ) = WσW † hold for some unitary matrices V and W, we

obtain ρ =
∑

piUiσU
†
i , where Ui = V PiW is a unitary matrix. Define operators Mi for

A system by

Mi
√
ρ :=

√
piσU

†
i . (3.9)

Then we can check the following relation:

∑

i

M †
i Mi = ρ−1/2(

∑

i

piUiσU
†
i )ρ

−1/2 = I, (3.10)

from which {Mi} are measurement operators. Suppose A performs a measurement on

his part of |ψ⟩AB by Mi. When he obtained a outcome i, then the state changed to

|ψi⟩ = (Mi ⊗ I) |ψ⟩AB up to the normalization constant. Note that

TrB(Mi ⊗ I) |ψAB⟩⟨ψAB| (M †
i ⊗ I)

= MiρM
†
i

= piσ, (3.11)

where the last equality follows from (3.9). Regarding that

pi = TrATrB(Mi ⊗ I) |ψAB⟩⟨ψAB| (M †
i ⊗ I), (3.12)
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then the post measurement state is given by

|ψi⟩ =
(Mi ⊗ I) |ψAB⟩

√
pi

and

TrB |ψi⟩⟨ψi| = σ = TrB |φAB⟩⟨φAB| .

By Proposition 1 in Chapter 2, there exists unitary Ui, such that

|φAB⟩ = (I ⊗ Ui) |ψAB⟩ .

Therefore we have |ψ⟩AB −−−−→
LOCC

|φ⟩AB.

2 ⇒ 3. Suppose |ψ⟩AB −−−−→
LOCC

|φ⟩AB. Then by Proposition 2, we may assume that the

conversion is given by one way LOCC protocol, where A performs a measurement with

measurement operator Mi then sending the result to B, who performs a unitary operation

Ui. From a point of view that the initial state is ρ and the final state is σ, regardless of

the measurement outcome, so we must have

σ =
MiρM

†
i

pi
(3.13)

where pi = TrMiρM
†
i is the probability of the outcome i. Polar decomposition of Mi

√
ρ

implies that there exists a unitary Vi such that

Mi
√
ρ =

√
MiρM

†
i Ui =

√
piσUi. (3.14)

Multiplying this equation by its adjoint and summing on i gives ρ =
∑

i piUiσU
†
i , by using

∑
i M

†Mi = 1.

3 ⇒ 1. Suppose ρ =
∑

piUiσU
†
i . Let ρ =

∑
j qj |ej⟩ ⟨ej| and σ =

∑
k q

′
k |fk⟩ ⟨fk| be their

eigenvalue decompositions. Define a unitary operator as W =
∑

k |fk⟩ ⟨ek| . Then UiW is

a unitary. Let uh
ik denote coefficients of Ui |fk⟩, that is Ui |fk⟩ = UiW |ek⟩ =

∑
h u

h
ik |eh⟩
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and
∑

h |uh
ik|2 = 1. The equation ρ =

∑
piUiσU

†
i can be rewritten as

∑

j

qj |ej⟩ ⟨ej| =
∑

i,k

piq
′
k(
∑

h

uh
ik |eh⟩ (

∑

l

u†
ik

l ⟨el|) (3.15)

Taking the inner product between |em⟩,

qm =
∑

i

pi
∑

k

q′k|um
ik|2 (3.16)

Define a matrix D with entries Dmi =
∑

k q
′
k|um

ik|2. So we have q = Dq′. The Dmi is

non-negative by definition, and the rows and columns of D all sum to one because the

rows and columns of unitary are unit vectors. So D is doubly stochastic and thus ρ ≺ σ.
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Chapter 4

Asymptotic LOCC convertibility

In this chapter, we state the main results of this thesis on asymptotic LOCC convertibil-

ity between two arbitrary sequences of bipartite pure states ψ̂ and φ̂. The research on

entanglement convertibility in the asymptotic setting began by Bennett et al. [7]. First

in Section 4.1, we review their setting and results. Then, in Section 4.2 we state the main

results of this thesis. Finally, in Section 4.3, we apply main results to give simple proofs of

previously known results obtained by Hayashi [10] and Bowen-Datta [11] on entanglement

concentration and entanglement dilution.

4.1 i.i.d. case

In this section, we give an intuitive explanation for what is asymptotic entanglement

convertibility. Specific definition is given later in the general setting.

A: Entanglement concentration

Entanglement concentration is a task to obtain copies of a maximally entangled state

from many copies of a non-maximum entangled state only by LOCC.

Let us suppose that two distant parties A and B share n pairs of a partially entangled

pure state |ψ⟩AB beforehand. By an LOCC protocol (Figure 4.1), they can convert n pairs

of a partially entangled pure state |ψ⟩AB into m (m < n) pairs of a maximally entangled

state |Φ⟩AB.
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Fig. 4.1: i.i.d. case of entanglement concentration

Proposition 6 (Bennet et al. [7]). Under the i.i.d. assumption, the asymptotic optimal

rates m
n of entanglement concentration are asymptotically equal to the entanglement en-

tropy of initial state (ψAB)⊗n which is defined by

H(ψA) = −TrψA logψA,

where ψA = TrB(ψAB) and ψAB = |ψ⟩⟨ψ|AB.
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B: Entanglement dilution

Entanglement dilution is a task to convert copies of a maximally entangled state asymp-

totically into many copies of a partially entangled state only by LOCC.

Let us suppose that two parties A and B share m pairs of a maximally entangled

state |Ψ⟩AB beforehand. By an LOCC protocol (Figure 4.2), they can share n pairs of a

partially entangled state |φ⟩AB instead of m pairs of a maximally entangled state |ΨMn⟩.
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(�AB)⌦n
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�0AB
m

close (n ! 1)

Fig. 4.2: i.i.d. case of entanglement dilution

Proposition 7 (Bennet [7]). Under the i.i.d. assumption, the asymptotic optimal rate m
n

of entanglement dilution are asymptotically equal to the entanglement entropy of target
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state (φAB)⊗n, which is defined by

H(φA) = −TrφA log φA,

where φA = TrB(φAB) and φAB = |φ⟩⟨φ|AB .

4.2 General setting

Let HA
n and HB

n (n = 1, 2, . . . ) be arbitrary Hilbert spaces. Let us consider a general

sequence of bipartite systems HAB
n = HA

n ⊗ HB
n (n = 1, 2, . . . ) composed of them. For

simplicity we assume that dimHA
n < ∞ and dimHB

n < ∞ for each n ∈ N. Let |ψn⟩AB and

|φn⟩AB be arbitrary pure states in HAB
n for each n ∈ N. For simplicity of the notation, we

denote these density operators by ψAB
n = |ψn⟩⟨ψn|AB and φAB

n = |φn⟩⟨φn|AB.

For arbitrary sequences of bipartite pure states ψ̂AB = {ψAB
n }∞n=1 and φ̂

AB = {φAB
n }∞n=1,

we seek for conditions under which ψAB
n can be asymptotically converted into φAB

n only

by LOCC Protocols (Figure 4.3) for each n, up to a certain error that vanishes in the

limit of n → ∞.

We give a definition of asymptotic convertibility here for readers’ convenience since it

is not so familiar to some readers.

Definition 5 (Asymptotic Convertibility). We say that an arbitrary sequence of bipar-

tite pure states ψ̂AB = {ψAB
n }∞n=1 can be asymptotically converted into another φ̂AB =

{φAB
n }∞n=1 only by LOCC, if there exists a sequence of LOCC L̂n = {Ln}∞n=1 such that

lim
n→∞

∥Ln(ψ
AB
n )− φAB

n ∥1 = 0. (4.1)

Note that ∥ · ∥1 is the trace norm defined by ∥A∥1 = Tr|A| for an operator A.

30



 

 

 

 

initial state 

     

final state 

target state  

≈
 

Local 

Operations Classical Communication  

Suppose the initial state and the target state to be pure states. 

Local 

Operations 

A B  AB
n (n = 1, 2, · · · )

�0AB
n (n = 1, 2, · · · )

�AB
n (n = 1, 2, · · · )

close (n ! 1)

Fig. 4.3: general setting

4.3 Main results under the general setting

Let ρ̂ = {ρn}∞n=1 be an arbitrary sequence of density operators. Then the inf- and sup-

spectral entropy rates [23, 35] are defined as

H(ε|ρ̂) := sup

{
a

∣∣∣∣ lim sup
n→∞

Trρn
{
ρn > e−naIn

}
≤ ε

}
, (4.2)

H(ε|ρ̂) := inf
{
a
∣∣∣ lim inf

n→∞
Trρn

{
ρn > e−naIn

}
≥ 1− ε

}
(4.3)
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for ε ∈ [0, 1], where Î = {In}∞n=1 is the sequence of identity operators and

{
ρn > e−naIn

}
=

{
ρn − e−naIn > 0

}
(4.4)

denotes the spectral projection corresponding to the positive part of the Hermitian oper-

ator ρn − e−naIn; see Subsection 6.1 for details. Especially, for ε = 0 we write

H(ρ̂) := H(0|ρ̂), H(ρ̂) := H(0|ρ̂). (4.5)

For a sequence of bipartite pure state ψ̂AB = {ψAB
n }∞n=1, let ψ̂

A = {ψA
n }∞n=1 and ψ̂B =

{ψB
n }∞n=1 be corresponding sequences of reduced states. Note that ψAB

n = |ψn⟩⟨ψn|AB. Let

the Schmidt decompositions of |ψn⟩AB given by

|ψn⟩AB =
∑

xn∈Xn

√
pn(xn) |exn⟩A ⊗ |exn⟩B , (4.6)

where {|exn⟩A}xn∈Xn is a CONS of HA and {|exn⟩B}xn∈Xn is a CONS of HB. Then the

reduced density operators of subsystem of A and B are given as follows.

ψA
n = TrB

[
ψAB
n

]
=

∑

xn∈Xn

pn(x
n) |exn⟩⟨exn|A , (4.7)

ψB
n = TrA

[
ψAB
n

]
=

∑

xn∈Yn

pn(x
n) |exn⟩⟨exn |B . (4.8)

Since the reduced density operators ψA
n and ψB

n have the same eigenvalues and the spectral

entropy rates only depend on eigenvalues of density operators (see (4.2) and (4.3)), it is

clear that ψ̂A and ψ̂B have the same spectral entropy rates:

H(ε|ψ̂A) = H(ε|ψ̂B), H(ε|ψ̂A) = H(ε|ψ̂B), (4.9)

which we call the inf-/sup-spectral entanglement entropy rates of ψ̂AB. The main results

of this thesis are as follows.

Theorem 1 (Direct Part). Let ψ̂AB = {ψAB
n }∞n=1 and φ̂AB = {φAB

n }∞n=1 be arbitrary

sequences of bipartite pure states on HAB
n (n = 1, 2, . . . ). If H(ψ̂A) > H(φ̂A) holds, then
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ψ̂AB can be asymptotically converted into φ̂AB by LOCC.

Theorem 2 (Converse Part). Let ψ̂AB = {ψAB
n }∞n=1 and φ̂AB = {φAB

n }∞n=1 be arbitrary

sequences of bipartite pure states on HAB
n (n = 1, 2, . . . ). If ψ̂AB can be asymptotically

converted into φ̂AB by LOCC, it must hold that H(ε|ψ̂A) ≥ H(ε|φ̂A) and H(ε|ψ̂A) ≥

H(ε|φ̂A) for every ε ∈ [0, 1].

Proofs of the above two theorems are given in Section 5.2 and Section 6.5, respectively.

4.4 Applying main results to entanglement concen-

tration and dilution

In this section, we use the above two theorems to provide simple proofs of known re-

sults [10, 11] on the optimal rates of entanglement concentration and dilution for general

sequences of bipartite pure states.

Let {Mn}∞n=1 be an arbitrary sequence of natural numbers, and let |ΦMn⟩ ∈ HAB
n be a

maximally entangled state with Schmidt rank Mn for each n. As a shorthand notation,

we write ΦAB
Mn

= |ΦMn⟩⟨ΦMn|. Note that ΦA
Mn

= TrB[ΦAB
Mn

] and ΦB
Mn

= TrA[ΦAB
Mn

] are the

maximally mixed states with rank Mn, it is straightforward to verify that

H(Φ̂A) = lim inf
n→∞

1

n
logMn, (4.10)

H(Φ̂A) = lim sup
n→∞

1

n
logMn (4.11)

for Φ̂A = {ΦA
Mn

}∞n=1.

4.4.1 A simple proof of entanglement concentration

Entanglement concentration is a task to obtain a sequence of maximally entangled states

Φ̂AB asymptotically from a sequence of bipartite pure states ψ̂AB by LOCC.

The problem setting is described as follows (Figure 4.4).
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Fig. 4.4: entanglement concentration

Definition 6 (Distillable Entanglement). For a sequence of bipartite pure state ψ̂AB =

{ψAB
n }∞n=1, we say a rate R is achievable if there exists a sequence of natural numbers

{Mn}∞n=1 such that ψ̂AB can be asymptotically converted into a sequence of maximally

entangled states Φ̂AB = {ΦAB
Mn

}∞n=1 only by LOCC and the conversion rate R satisfies

lim inf
n→∞

1

n
logMn ≥ R. (4.12)

The entanglement concentration rate [10], or distillable entanglement [11], of a sequence

ψ̂AB is defined by

R(ψ̂AB) := sup {R | R is achievable } . (4.13)
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Proposition 8 (Hayashi [10, Theorem 1], Bowen-Datta [11, Theorem 3]). For a sequence

of bipartite pure states ψ̂AB = {ψAB
n }∞n=1, the distillable entanglement of ψ̂AB is given by

R(ψ̂AB) = H(ψ̂A). (4.14)

Proof. Note that the target sequence of states φ̂AB should be instead by Φ̂AB in Theorem

1 and Theorem 2. First we show H(ψ̂A) ≤ R(ψ̂AB). Suppose that R < H(ψ̂A). Then,

taking Mn = enR and Φ̂AB = {ΦAB
Mn

}∞n=1, (4.11) yields

H(Φ̂A) = lim sup
n→∞

1

n
logMn = R < H(ψ̂A). (4.15)

Hence, from Theorem 1, we know that ψ̂AB can be asymptotically converted into Φ̂AB

only by LOCC, and the conversion rate satisfies (4.12) (with equality). Thus a rate R is

achievable if H(ψ̂A) > R, which implies H(ψ̂A) ≤ R(ψ̂AB).

Next we show H(ψ̂A) ≥ R(ψ̂AB). Suppose that a rate R is achievable. From Defi-

nition 6, we know that there exists a sequence Φ̂AB = {ΦAB
Mn

}∞n=1 such that ψ̂AB can be

asymptotically converted into Φ̂AB and (4.12) holds. Then, from Theorem 2 and (4.10),

it must hold that

H(ψ̂A) ≥ H(Φ̂A) = lim inf
n→∞

1

n
logMn ≥ R, (4.16)

which implies H(ψ̂A) ≥ R(ψ̂AB). Therefore, we have (4.14).

4.4.2 A simple proof of entanglement dilution

Entanglement dilution is a task to convert a sequence of maximally entangled states Φ̂AB

asymptotically into a sequence of bipartite pure states φ̂AB only by LOCC.

The problem setting is described as follows (Figure 4.5).
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Fig. 4.5: entanglement diluion

Definition 7 (Entanglement Cost). For a sequence of bipartite pure states φ̂AB = {φAB
n }∞n=1,

we say a rate R is achievable if there exists a sequence of natural numbers {Mn}∞n=1 such

that a sequence of maximally entangled states Φ̂AB = {ΦAB
Mn

}∞n=1 can be asymptotically

converted into φ̂AB only by LOCC and the rate R satisfies

lim sup
n→∞

1

n
logMn ≤ R. (4.17)

The entanglement dilution rate, or entanglement cost [11], of a sequence φ̂AB is defined

by

R∗(φ̂AB) := inf {R | R is achievable } . (4.18)
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Proposition 9 (Bowen-Datta [11, Theorem 4]). For a sequence of bipartite pure states

φ̂AB = {φAB
n }∞n=1, the entanglement cost of φ̂AB is given by

R∗(φ̂AB) = H(φ̂A). (4.19)

Proof. Note that the initial sequence of states ψ̂AB should be instead by Φ̂AB in Theorem

1 and Theorem 2. First we show R∗(φ̂AB) ≤ H(φ̂A). Suppose that R > H(φ̂A), and let

Mn = enR and Φ̂AB = {ΦAB
Mn

}∞n=1. Then using (4.10) we have

H(Φ̂A) = lim inf
n→∞

1

n
logMn = R > H(φ̂A). (4.20)

Hence, from Theorem 1, we know that Φ̂AB can be asymptotically converted into φ̂AB

only by LOCC and (4.17) holds (with equality). Consequently, a rate R is achievable if

R > H(φ̂A), which implies R∗(φ̂AB) ≤ H(φ̂A).

Next we show R∗(φ̂AB) ≥ H(φ̂A). Suppose that a rate R is achievable. From Defi-

nition 7, we know that there exists a sequence Φ̂AB = {ΦAB
Mn

}∞n=1 such that Φ̂AB can be

asymptotically converted into φ̂AB only by LOCC and (4.17) holds. Then from (4.11) and

Theorem 2, it must hold that

R ≥ lim sup
n→∞

1

n
logMn = H(Φ̂A) ≥ H(φ̂A), (4.21)

which implies R∗(φ̂AB) ≥ H(φ̂A). Therefore, we have (4.19).
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Chapter 5

Achievability of asymptotic LOCC

convertibility

In this chapter, first we review the concept of random number generation of the information-

spectrum method in classical information theory. Then we state a relation between ran-

dom number generation and majorization. Next, we prove the achievability of asymptotic

convertibility which is the direct part of the main results. Finally we state asymptotic

LOCC convertibility between two arbitrary sequences of bipartite pure states by random

unitary operations.

5.1 Random number generation

Let X = {Xn}∞n=1 be an arbitrary sequence of random variables, called a general source,

taking values in arbitrary countable sets X n (n = 1, 2, . . . ), and PXn(xn) (xn ∈ X n) be

the probability function of Xn for each n. Then the inf- and sup-spectral entropy rates of

X are defined by

H(ε|X) := sup

{
a

∣∣∣∣ lim sup
n→∞

Pr

{
− 1

n
logPXn(Xn) < a

}
≤ ε

}
, (5.1)

H(ε|X) := inf

{
a

∣∣∣∣ lim inf
n→∞

Pr

{
− 1

n
logPXn(Xn) < a

}
≥ 1− ε

}
(5.2)
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for ε ∈ [0, 1]. Especially, for ε = 0 we write

H(X) := H(0|X), (5.3)

H(X) := H(0|X). (5.4)

In the following paragraph, we state the relation between the classical version (Eqs. (5.1)

and (5.2)) and the quantum version (Eqs. (4.2) and (4.3)) of inf-/sup-spectral entropy

rates.

Let ρ̂ = {ρn}∞n=1 be a sequence of density operators and let

ρn =
∑

xn∈Xn

pn(x
n) |exn⟩⟨exn | (n = 1, 2, . . . ) (5.5)

be their eigenvalue decompositions. Then we have

Trρn
{
ρn > e−naIn

}
=

∑

xn∈Xn: pn(xn)>e−na

pn(x
n)

= Pr

{
− 1

n
log pn(X

n) < a

}
. (5.6)

where Xn is the random variable subject to pn(xn) for each n ∈ N. Thus, the quantum

inf-/sup-spectral entropy rates of ρ̂ = {ρn}∞n=1 are regarded as the classical ones with

respect to the general source X = {Xn}∞n=1 corresponding to the eigenvalues of density

operators.

Note that under the i.i.d.assumption where Xn is given by (X1, X2, · · · , Xn), the inf-

and sup-spectral entropy rates reduce to Shannon entropy, namely,

H(X) = H(X) = H(X), (5.7)

which follows from the law of large numbers, i.e.

lim
n→∞

Trρn
{
ρn > e−naIn

}
= lim

n→∞
Pr

{
− 1

n
log pn(X

n) < a

}
=

⎧
⎨

⎩
1, if a > H(X),

0, if a < H(X).

(5.8)
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Let Y and Ỹ be random variables taking values in a countable set Y , and let q(y)

and q̃(y) (y ∈ Y) be the corresponding probability functions, respectively. Then the

variational distance between Y and Ỹ is defined by

d(Y, Ỹ ) :=
1

2

∑

y∈Y

|q(y)− q̃(y)|. (5.9)

Proposition 10 (Nagaoka [20, Theorem 2.1.1]). Let X = {Xn}∞n=1 and Y = {Y n}∞n=1

be arbitrary two general sources. If H(X) > H(Y), then there exists a sequence of maps

ϕn : X n → Yn (n = 1, 2, . . . ) such that

lim
n→∞

d(Y n,ϕn(X
n)) = 0. (5.10)

Random number generation and majorization are related as follows. We show a proof

here for readers’ convenience since we cannot find any proofs of this Lemma in the liter-

ature.

Lemma 6 (Kumagai-Hayashi [28, Section 3.2]). Let X and Y be finite sets. Given a map

ϕ : X → Y and a probability function p : x ∈ X $→ p(x) ∈ [0, 1] on X , let

q̃(y) = p(ϕ−1({y})) =
∑

x∈ϕ−1({y})

p(x) (5.11)

be the induced probability function on Y. Then we have p ≺ q̃.

Proof. For each y ∈ Y , let n(y) = |ϕ−1({y})| and ϕ−1({y}) = {xy,1, xy,2, . . . , xy,n(y)}.

Define real column vectors by

αy :=
(
p(xy,1), p(xy,2), . . . , p(xy,n(y))

)t
, (5.12)

βy := (q̃(y), 0, . . . , 0)t , (5.13)

where (. . . )t denotes the transposition of the vector. Then it obviously holds that αy ≺ βy.

From Proposition 3, we know that there exists a doubly stochastic matrix Dy such that
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αy = Dyβy. Indeed, if we let

Dy =
n(y)∑

j=1

p(xy,j)

q̃(y)
Uσ(1,j) (5.14)

then we have the relation αy = Dyβy, where σ(1, j) is the transposition and Uσ(1,j) is

the n(y) dimensional unitary representation, which transpose the 1st and j-th elements.

From Proposition 4, we know that if Dy is a convex combination of permutation matrices,

then it is doubly stochastic. Now let us introduce a notation for the direct sum of two

vectors u ∈ Rn and v ∈ Rm, and the corresponding direct sum of matrices A ∈ Rn×n and

B ∈ Rm×m, by

u⊕ v =

⎛

⎝u

v

⎞

⎠ , A⊕ B =

⎛

⎝A 0

0 B

⎞

⎠ . (5.15)

Then we have p ∼
⊕

y∈Y αy and q̃ ∼
⊕

y∈Y βy =: q̃′. Since D :=
⊕

y∈Y Dy is a doubly

stochastic matrix, we obtain

p ∼
⊕

y∈Y

αy =
⊕

y∈Y

Dyβy

=

(⊕

y∈Y

Dy

)(⊕

y∈Y

βy

)

= Dq̃′ ≺ q̃′ ∼ q̃ (5.16)

as asserted, where the last equality means that Dq̃′ is majorized by q̃′, and q̃′ ∼ q̃ means

that q̃′ ≺ q̃ and q̃ ≺ q̃′ hold at the same time (see Definition 2 ).
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5.2 Proof of the direct part

Let |ψn⟩AB and |φn⟩AB (n = 1, 2, . . . ) be the initial and target states, respectively. Let

their Schmidt decompositions given as follows.

|ψn⟩AB =
∑

xn∈Xn

√
pn(xn) |exn⟩A ⊗ |exn⟩B , (5.17)

|φn⟩AB =
∑

yn∈Yn

√
qn(yn) |fyn⟩A ⊗ |fyn⟩B . (5.18)

Then their reduced density operators are given by

ψA
n = TrB

[
ψAB
n

]
=

∑

xn∈Xn

pn(x
n) |exn⟩⟨exn| , (5.19)

φA
n = TrB

[
φAB
n

]
=

∑

yn∈Yn

qn(y
n) |fyn⟩⟨fyn | . (5.20)

From the Schmidt coefficients we can define random variables Xn and Y n subject to

probability functions pn(xn) (xn ∈ X n) and qn(yn) (yn ∈ Yn), and general sources X =

{Xn}∞n=1 and Y = {Y n}∞n=1 composed of them. For sequences of density operators ψ̂A =

{ψA
n }∞n=1 and φ̂A = {φA

n}∞n=1, it is straightforward to verify that

H(X) = H(ψ̂A), H(Y) = H(φ̂A). (5.21)

Suppose that H(ψ̂A) > H(φ̂A), or equivalently H(X) > H(Y). From Proposition 10,

there exists a sequence of maps ϕn : X n → Yn (n = 1, 2, . . . ) such that the variational

distance between q̃n(yn) = p(ϕ−1
n ({yn})) and qn(yn) (yn ∈ Y) goes to zero asymptotically,

i.e.,

lim
n→∞

d(Y n, Ỹ n) = 0, (5.22)

where Ỹ n is a random variable subject to the probability function q̃n(yn). Then from

Lemma 6 we have pn ≺ q̃n. Consider a state

|φ′
n⟩

AB :=
∑

yn∈Yn

√
q̃n(yn) |fyn⟩A ⊗ |fyn⟩B . (5.23)
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Due to Proposition 5 (Nielsen et al. [9]), |ψn⟩AB can be deterministically converted to

|φ′⟩AB
n by LOCC for each n.

To complete the proof, we verify that the state |φ′
n⟩

AB is asymptotically equal to the

target state |φn⟩AB. Let F (ρ, σ) := Tr|√ρ
√
σ| be the fidelity between states ρ and σ.

Noting that

φ
′A
n = TrB

[
φ′AB

n

]
=

∑

yn∈Yn

q̃n(y
n) |fyn⟩⟨fyn | , (5.24)

we have

F (φ′AB
n ,φAB

n ) = |⟨φ′
n,φn⟩|

=
∑

yn∈Yn

√
q̃n(yn)qn(yn)

= F (φ′A
n ,φ

A
n ). (5.25)

Using (2.19) for pure states and from (5.25), we have

∥φ′AB
n − φAB

n ∥1 = 2
√

1− F (φ′AB
n ,φAB

n )2

= 2
√

1− F (φ′A
n ,φ

A
n )

2. (5.26)

Since (5.22) yields

lim
n→∞

∥φ′A
n − φA

n∥1 = 2 lim
n→∞

d(Y n, Ỹ n) = 0, (5.27)

we have

lim
n→∞

F (φ′A
n ,φ

A
n ) = 1, (5.28)

from the first inequality of (2.19). Combining (5.26) and (5.28) leads to

lim
n→∞

∥φ′AB
n − φAB

n ∥1 = 0. (5.29)
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5.3 Existence of random unitary

As a byproduct of our approach, we address asymptotic convertibility of two arbitrary

sequences of states ρ̂ = {ρn}∞n=1 and σ̂ = {σn}∞n=1 by random unitary operations, which

is a subclass of unital operations. The obtained result is applied to a study of quantum

thermodynamics in [39].

Along the same line as the proof of the direct part, it can be shown that if two arbitrary

sequences of states ρ̂ = {ρn}∞n=1 and σ̂ = {σn}∞n=1 satisfy H(ρ̂) < H(σ̂), there exists a

sequence of random unitary operations Rn (n = 1, 2, · · · ) such that

lim
n→∞

∥Rn(ρn)− σn∥1 = 0. (5.30)

To prove this, let

ρn =
∑

yn∈Yn

qn(y
n) |fyn⟩⟨fyn| ,

σn =
∑

xn∈Xn

pn(x
n) |exn⟩⟨exn|

be the eigenvalue decompositions of ρn and σn for each n. Equivalently to (5.28), the

states

ρ′n =
∑

yn∈Yn

q̃n(y
n) |fyn⟩⟨fyn| (n = 1, 2, · · · ) (5.31)

satisfies

lim
n→∞

∥ρn − ρ′n∥1 = 0. (5.32)

In addition, for each n, the condition pn ≺ q̃n implies the existence of a random unitary

operation Rn such that Rn(ρ′n) = σn (see Proposition 5 ). Hence, due to the monotonicity

of the trace distance, we have

lim
n→∞

∥Rn(ρn)− σn∥1 ≤ lim
n→∞

∥ρn − ρ′n∥1 = 0, (5.33)
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which completes the proof.
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Chapter 6

Optimality of asymptotic LOCC

convertibility

In this chapter, we prove Theorem 2 which is optimality of asymptotic LOCC convert-

ibility. The general properties of the spectral divergence rates play an important role in

the proofs. In Sections 6.1, we provide mathematical prerequisites for spectral divergence

rates. The definitions and properties are given in Section 6.2. Then we prove Theorem 2

under the assumption that the final state Ln(ψAB
n ) is pure in Section 6.3. By a description

of a general LOCC protocol (section 6.4 ), we complete the proof of Theorem 2.

6.1 Mathematical prerequisites

Let A =
∑

k akEk be the spectral decomposition of a Hermitian operator A. Then the

positive and negative parts of Hermitian operator A are given by

A+ :=
∑

k: ak>0

akEk, A− :=
∑

k: ak≤0

(−ak)Ek,

respectively. Following the notations of [21, 23], we denote the corresponding projections

as

{A > 0} :=
∑

k: ak>0

Ek, {A ≤ 0} :=
∑

k: ak≤0

Ek. (6.1)
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We have A+ = A{A > 0} and A− = −A{A ≤ 0} strightforward. Note that

A = A+ − A−, |A| = A+ + A− (6.2)

are the Jordan decomposition and the absolute value of the operator A, respectively.

The following lemma is essential in the information-spectrum method.

Lemma 7. For any 0 ≤ T ≤ I, we have

TrA+ = TrA{A > 0} ≥ TrAT, (6.3)

or equivalently,

TrA+ = max
T : 0≤T≤I

TrAT. (6.4)

It is useful to note that the following relation with the trace norm follows from (6.2):

TrA+ =
1

2
{Tr|A|+ TrA}, TrA− =

1

2
{Tr|A|− TrA}.

Especially, if TrA = 0, we have

Tr|A| = 2TrA+ = 2TrA− = 2 max
T : 0≤T≤I

TrAT. (6.5)

It should also be noted that from Tr(A− B)+ = Tr(A− B){A−B > 0} ≥ 0, we have

TrA{A−B > 0} ≥ TrB{A− B > 0} (6.6)

and

Tr(A−B)+ = Tr(A−B){A− B > 0}

≤ TrA{A− B > 0}. (6.7)

The following lemma regarding the monotonicity of TrA+ under trace preserving maps

was pointed out by Bowen-Datta [11], based on the additional assumption that the maps
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are completely positive. It should be noted that the condition of complete positivity is

not need; see [40, p. 1620] for example.

Lemma 8. Let A be a Hermitian operator. For any positive trace preserving (PTP) maps

F , we have TrA+ ≥ TrF(A)+.

6.2 Definitions and properties of spectral divergence

rates

Let ρ̂ = {ρn}∞n=1 be an arbitrary sequence of density operators and σ̂ = {σn}∞n=1 be an

arbitrary sequence of nonnegative Hermitian operators. For each ε ∈ [0, 1], the spectral

divergence rates [23] between the sequences ρ̂ and σ̂ are defined by

D(ε|ρ̂||σ̂) :=sup
{
a
∣∣∣lim inf

n→∞
Trρn{ρn − enaσn > 0} ≥ 1− ε

}
, (6.8)

D(ε|ρ̂||σ̂) :=inf
{
a

∣∣∣∣lim sup
n→∞

Trρn{ρn − enaσn > 0} ≤ ε

}
, (6.9)

where {A > 0} denotes the spectral projection corresponding to the positive part of a

Hermitian operator A (see (6.1)). It is straightforward to verify that the spectral entropy

rates defined by Eqs. (4.2) and (4.3) can be rewritten as

H(ε|ρ̂) = −D(ε|ρ̂||Î), (6.10)

H(ε|ρ̂) = −D(ε|ρ̂||Î), (6.11)

where Î = {In}∞n=1 is the sequence of identity operators.

6.2.1 Monotonicity under PTP maps

It was proved by Bowen-Datta [35, Proposition 4] that the spectral divergence rates

between two general sequences of states are monotonically nonincreasing under completely

positive and trace preserving (CPTP) maps for ε = 0. In the following, we generalize the

monotonicity to an arbitrary ε ∈ [0, 1] and positive trace preserving (PTP) maps.
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Proposition 11. For any sequences of states ρ̂, σ̂, and for any sequence of PTP maps

F̂ = {Fn}∞n=1, we have

D(ε|ρ̂||σ̂) ≥ D
(
ε|F̂(ρ̂)||F̂(σ̂)

)
, (6.12)

D(ε|ρ̂||σ̂) ≥ D
(
ε|F̂(ρ̂)||F̂(σ̂)

)
, (6.13)

where we defined F̂(ρ̂) = {Fn(ρn)}∞n=1 and F̂(σ̂) = {Fn(σn)}∞n=1.

To prove the above proposition, we use an alternative expression for the spectral

divergence rates introduced by Bowen-Datta [35]. For each ε ∈ [0, 1], define

C(ε|ρ̂||σ̂) := sup
{
a
∣∣∣lim inf

n→∞
Tr(ρn − enaσn)+ ≥ 1− ε

}
, (6.14)

C(ε|ρ̂||σ̂) := inf

{
a

∣∣∣∣lim sup
n→∞

Tr(ρn − enaσn)+ ≤ ε

}
. (6.15)

It can be shown that the spectral divergence rates defined by the above expressions coin-

cide with those defined by Eqs. (6.8) and (6.9), that is:

Lemma 9. For any ε ∈ [0, 1], we have

C(ε|ρ̂||σ̂) = D(ε|ρ̂||σ̂), (6.16)

C(ε|ρ̂||σ̂) = D(ε|ρ̂||σ̂). (6.17)

Eqs. (6.16) and (6.17) were proved in [35] for ε = 0. A simple proof for the case of an

arbitrary ε ∈ [0, 1] is provided as follows.

Proof. Recall that (6.7) gives

Tr(ρn − enaσn)+ = Tr(ρn − enaσn){ρn − enaσn > 0}

≤ Trρn{ρn − enaσn > 0}. (6.18)

Let γ > 0 be arbitrary and a = C(ε|ρ̂||σ̂)− γ. From the definition of C(ε|ρ̂||σ̂), we have

lim inf
n→∞

Tr(ρn − enaσn)+ ≥ 1− ε.
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Thus, taking lim inf
n→∞

in the both sides of (6.18), we have

lim inf
n→∞

Trρn{ρn − enaσn > 0} ≥ lim inf
n→∞

Tr(ρn − enaσn)+

≥ 1− ε, (6.19)

which implies

D(ε|ρ̂||σ̂) ≥ a = C(ε|ρ̂||σ̂)− γ. (6.20)

Since γ > 0 can be arbitrary, we have

D(ε|ρ̂||σ̂) ≥ C(ε|ρ̂||σ̂). (6.21)

We show the converse inequality. For any real number a and b, (6.3) yields

Tr(ρn − enaσn)+ ≥ Tr(ρn − enaσn){ρn − enbσn > 0}

= Trρn{ρn − enbσn > 0}− enaTrσn{ρn − enbσn > 0}

≥ Trρn{ρn − enbσn > 0}− enae−nbTrρn{ρn − enbσn > 0}

≥ Trρn{ρn − enbσn > 0}− enae−nb, (6.22)

where the fourth line follows from (6.6). Letting a = D(ρ̂||σ̂) − 2γ and b = D(ρ̂||σ̂) − γ

(γ > 0), we have

lim inf
n→∞

Tr(ρn − enaσn)+ ≥ lim inf
n→∞

[
Trρn{ρn − enbσn > 0}− e−nγ

]

= lim inf
n→∞

Trρn{ρn − enbσn > 0}

≥ 1− ε, (A6)

which implies

C(ε|ρ̂||σ̂) ≥ a = D(ε|ρ̂||σ̂)− 2γ. (6.23)
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Since γ > 0 can be arbitrary, we have

C(ε|ρ̂||σ̂) ≥ D(ε|ρ̂||σ̂). (6.24)

Thus we have (6.16). In the same way, we have (6.17).

In the following, we prove Proposition 11.

Proof of Proposition 11: Due to Lemma 9, it is sufficient to prove that Eqs. (6.14) and

(6.15) are monotonically nonincreasing under PTP maps, i.e., that we have

C(ε|ρ̂||σ̂) ≥ C
(
ε|F̂(ρ̂)||F̂(σ̂)

)
, (6.25)

C(ε|ρ̂||σ̂) ≥ C
(
ε|F̂(ρ̂)||F̂(σ̂)

)
(6.26)

for any sequences of states ρ̂, σ̂ and for any sequence of PTP maps F̂ .

For any γ > 0, let a = C
(
ε|F̂(ρ̂)||F̂(σ̂)

)
−γ. From the definition in (6.14) and Lemma

8, we have

1− ε ≤ lim inf
n→∞

Tr
(
Fn(ρn)− enaFn(σn)

)
+
≤ lim inf

n→∞
Tr(ρn − enaσn)+. (6.27)

Thus we obtain C(ε|ρ̂||σ̂) ≥ a = C
(
ε|F̂(ρ̂)||F̂(σ̂)

)
−γ for any γ > 0, which implies (6.25).

Similarly, let a = C(ρ̂||σ̂) + γ. From the definition in (6.15) and Lemma 8, we have

lim sup
n→∞

Tr
(
Fn(ρn)− enaFn(σn)

)
+
≤ lim sup

n→∞
Tr(ρn − enaσn)+ ≤ ε. (6.28)

Hence we have C
(
ε|F̂(ρ̂)||F̂(σ̂)

)
≤ a = C(ε|ρ̂||σ̂)+γ for any γ > 0, which leads to (6.26).

!

The monotonicity of the spectral entropy rates immediately follows from Proposition

11 and Eqs. (6.10) and (6.11):

Corollary 1. For any sequence of unital TP maps F̂ = {Fn}∞n=1 and for any ε ∈ [0, 1],
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we have

H(ε|ρ̂) ≤ H
(
ε|F̂(ρ̂)

)
, (6.29)

H(ε|ρ̂) ≤ H
(
ε|F̂(ρ̂)

)
. (6.30)

6.2.2 Continuity

The spectral divergence rates are “continuous” with respect to the sequences of density

operators in the first argument, that is, the spectral divergence rates of two sequences

coincide if the sequences are asymptotically equal.

Lemma 10. Let ρ̂ = {ρn}∞n=1 and ρ̂′ = {ρ′n}∞n=1 be sequences of density operators. If

lim
n→∞

||ρn − ρ′n||1 = 0, (6.31)

then

D(ε|ρ̂||σ̂) = D(ε|ρ̂′||σ̂), (6.32)

D(ε|ρ̂||σ̂) = D(ε|ρ̂′||σ̂) (6.33)

hold for any ε ∈ [0, 1] and any sequence σ̂ = {σn}∞n=1 of nonnegative Hermitian operators.

Proof. From (6.5), we have

∥ρn − ρ′n∥1 ≥ 2Tr(ρn − ρ′n){ρn − enaσn > 0}

= 2Tr(ρn − enaσn){ρn − enaσn > 0}

− 2Tr(ρ′n − enaσn){ρn − enaσn > 0}

≥ 2Tr(ρn − enaσn)+ − 2Tr(ρ′n − enaσn)+, (6.34)

where the last inequality follows from (6.3). Hence

Tr(ρ′n − enaσn)+ +
1

2
||ρn − ρ′n||1 ≥ Tr(ρn − enaσn)+. (6.35)
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For any γ > 0, let a = D(ε|ρ̂||σ̂)− γ. From D(ε|ρ̂||σ̂) = C(ε|ρ̂||σ̂), we have

lim inf
n→∞

Tr(ρn − enaσn)+ ≥ 1− ε. (6.36)

Thus taking the limit infimum of (6.35) gives

lim inf
n→∞

Tr(ρ′n − enaσn)+ ≥ lim inf
n→∞

Tr(ρn − enaσn)+

≥ 1− ε,

which implies D(ε|ρ̂||σ̂)− γ = a ≤ C(ε|ρ̂′||σ̂) = D(ε|ρ̂′||σ̂). Since γ > 0 can be arbitrary,

we have D(ε|ρ̂||σ̂) ≤ D(ε|ρ̂′||σ̂). Interchanging the role of ρ̂ and ρ̂′, we have the converse

inequality D(ε|ρ̂||σ̂) ≥ D(ε|ρ̂′||σ̂). Thus we obtain (6.32). (6.33) is obtained along the

same line.

The following corollary immediately follows from Eqs. (6.10) and (6.11).

Corollary 2. Let ρ̂ = {ρn}∞n=1 and ρ̂′ = {ρ′n}∞n=1 be sequences of density operators. If

lim
n→∞

∥ρn − ρ′n∥1 = 0, (6.37)

then

H(ε|ρ̂) = H(ε|ρ̂′), (6.38)

H(ε|ρ̂) = H(ε|ρ̂′) (6.39)

hold for any ε ∈ [0, 1].

6.3 Proof of the converse part for pure final states

Suppose that ψ̂AB = {ψAB
n }∞n=1 can be asymptotically converted into φ̂AB = {φAB

n }∞n=1 by

LOCC. By Definition 5, there exists a sequence of LOCC L̂n = {Ln}∞n=1 such that

lim
n→∞

∥Ln(ψ
AB
n )− φAB

n ∥1 = 0. (6.40)
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Let φ′AB
n := Ln(ψAB

n ) be final states, which we assume to be pure states, and recall that

the reduced density operators are written as φA
n = TrB[φAB

n ]. Then by the monotonicity

of trace distance, we have

lim
n→∞

∥φ′A
n − φA

n∥1 ≤ lim
n→∞

∥φ′AB
n − φAB

n ∥1 = 0, (6.41)

which leads to

H(ε|φ̂′A) = H(ε|φ̂A), (6.42)

H(ε|φ̂′A) = H(ε|φ̂A), (6.43)

due to the continuity (Corollary 2). From Nielsen’s theorem [41] (see also Remark 5.3

and [9, proof of Theorem 12.15]), there exists a unital CPTP map that transforms φ′A
n to

ψA
n for each n. Applying the monotonicity of spectral inf-/sup-entropy rates (Corollary

1), we have

H(ε|φ̂′A) ≤ H(ε|ψ̂A), (6.44)

H(ε|φ̂′A) ≤ H(ε|ψ̂A). (6.45)

Combining the above relations yields

H(ε|φ̂A) ≤ H(ε|ψ̂A), (6.46)

H(ε|φ̂A) ≤ H(ε|ψ̂A) (6.47)

for any ε ∈ [0, 1].

6.4 Description of a general LOCC protocol

Note that the final states need not always be pure states in general even if they are close

to the target states. To address the cases where the final states can be mixed states, we’ve

introduced a method to describe a multi-round LOCC protocol by two distant parties in

a “purified” picture, which simplifies an analysis of LOCC protocols.
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Let us consider a situation where A and B engage in a multi-round LOCC protocol.

Without loss of generality, we assume that an LOCC protocol starts with A’s measurement

and end up with A’s operation on his system. Due to the Naimark extension theorem

([42], see also Theorem 4.5 in [36]), such a protocol (Figure 3.2) can in general be described

as follows:

1. A and B recursively apply 1∼6 for γ = 1, · · · ,Γ, where Γ ∈ N is the number of

rounds of the protocol.

2. A performs an isometry operation Vγ : A → AE1
A,γE

2
A,γ .

3. A performs a projective measurement on E1
A,γ, and obtains an outcome.

4. A communicates a classical message to B.

5. B performs an isometry operation Wγ : B → BE1
B,γE

2
B,γ .

6. B performs a projective measurement on E1
B,γ, and obtains an outcome.

7. B communicates a classical message to A.

8. A performs an isometry operation V ∗ : A → AE∗
A, where E

∗
A is an ancillary system.

9. A and B discard ancillary systems E2
A,1 · · ·E2

A,ΓE
∗
A and E2

B,1 · · ·E2
B,Γ, respectively.

An advantage of introducing such a description is that, if the initial state is pure, the

whole state remains pure until the last step in which A and B discard ancillary systems

E2
A,1 · · ·E2

A,ΓE
∗
A and E2

B,1 · · ·E2
B,Γ. (Step 9 above).

6.5 Proof of converse part for mixed final states

Theorem 2 for mixed final states is proved as follows. Suppose ψ̂AB = {ψAB
n }∞n=1 can be

asymptotically converted into φ̂AB = {φAB
n }∞n=1 by LOCC. By Definition 5, there exists a

sequence of LOCC Ln (n = 1, 2, · · · ) such that

lim
n→∞

∥Ln(ψ
AB
n )− φAB

n ∥1 = 0. (6.48)
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Due to (2.19), the above equality implies

lim
n→∞

F (Ln(ψ
AB
n ),φAB

n ) = 1. (6.49)

Let L′
n be an LOCC protocol corresponding to Step 1 to 8 of Ln (Subsection 6.4) for

each n, and denote ancillary systems E2
A,1 · · ·E2

A,ΓE
∗
A and E2

B,1 · · ·E2
B,Γ simply by EA and

EB, respectively. Define a pure state φ′ABEAEB
n by

φ′ABEAEB
n = L′

n(ψ
AB
n ). (6.50)

The final state of the protocol is then given by

Ln(ψ
AB
n ) = TrEAEB [L′

n(ψ
AB
n )] = TrEAEB [φ

′ABEAEB
n ]. (6.51)

Due to Eqs. (6.49), (6.51) and Uhlmann’s theorem [43], there exists a sequence of pure

states ξ̂EAEB = {ξEAEB
n }∞n=1 such that φ′ABEAEB

n is asymptotically equal to φAB
n ⊗ ξEAEB

n ,

i.e.,

lim
n→∞

F (φ′ABEAEB
n ,φAB

n ⊗ ξEAEB
n ) = 1, (6.52)

which implies

lim
n→∞

∥φ′ABEAEB
n − φAB

n ⊗ ξEAEB
n ∥1 = 0 (6.53)

from (2.19). Thus, there exists a sequence of LOCC L′
n such that

lim
n→∞

∥L′
n(ψ

AB
n )− φAB

n ⊗ ξEAEB
n ∥1 = 0. (6.54)

Since the final state φ′ABEAEB
n = L′

n(ψ
AB
n ) are pure states, and applying the Theorem 2

for pure final states (see Section 6.3), we have

H(ε|φ̂A ⊗ ξ̂EA) ≤ H(ε|ψ̂A), (6.55)

H(ε|φ̂A ⊗ ξ̂EA) ≤ H(ε|ψ̂A). (6.56)
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To prove inequalities Eqs. (6.67) and (6.68), we first prove similar relations for classical

general sources.

Lemma 11. Let (X,Y) = {(Xn, Y n)}∞n=1 be an arbitrary sequence of a pair of random

variables, taking values in X n×Yn (n = 1, 2, . . . ) according to a joint distribution PXnY n

for each n. For any ε ∈ [0, 1], we have

H(ε|XY) ≥ H(ε|X), (6.57)

H(ε|XY) ≥ H(ε|X). (6.58)

Proof. Since we have

− logPXnY n(xn, yn) = − logPXn(xn)− logPXn|Y n(yn|xn)

≥ − logPXn(xn) (6.59)

for any xn ∈ X n and yn ∈ Yn, we obtain

{(xn, yn)|− logPXnY n(xn, yn) < a} ⊆ {(xn, yn)|− logPXn(xn) < a} (6.60)

for any real number a. Consequently we have

Pr

{
− 1

n
logPXnY n(Xn, Y n) < a

}
≤ Pr

{
− 1

n
logPXn(Xn) < a

}
, (6.61)

and hence

{
a

∣∣∣∣ limn→∞
Pr

{
− 1

n
logPXnY n(Xn, Y n) < a

}
≤ ε

}
⊇

{
a

∣∣∣∣ limn→∞
Pr

{
− 1

n
logPXn(Xn) < a

}
≤ ε

}
.

Therefore, from the definition (5.1) we obtain (6.57). The inequality (6.58) is obtained

along the same line.

The following lemma is obtained as a corollary of Lemma 11, and immediately leads

to Eqs. (6.67) and (6.68). We remark that Lemma 12 below was proved by Bowen-Datta

for the case of ε = 0 [35, Corollary 7].
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Lemma 12. For arbitrary sequences ρ̂A = {ρAn}∞n=1 and σ̂B = {σB
n }∞n=1, and for any

ε ∈ [0, 1], we have

H(ε|ρ̂A ⊗ σ̂B) ≥ H(ε|ρ̂A), (6.62)

H(ε|ρ̂A ⊗ σ̂B) ≥ H(ε|ρ̂A). (6.63)

Proof. For density operators ρn and σn (n ∈ N), let

ρn =
∑

xn∈Xn

pn(x
n) |exn⟩⟨exn | ,

σn =
∑

yn∈Yn

qn(y
n) |fyn⟩⟨fyn | ,

be their eigenvalue decompositions, where pn(xn) and qn(yn) are the eigenvalues of ρn

and σn corresponding to eigenvectors |exn⟩ and |fyn⟩, respectively. Here, X n and Yn are

appropriate finite sets indicating eigenvalues. Let Xn and Y n be random variables that

takes values in X n and Yn, respectively, according to a joint distribution PXnY n defined

by

PXnY n(xn, yn) = pn(x
n)qn(y

n) (6.64)

for each n. Consider general sources (X,Y) = {(Xn, Y n)}∞n=1 composed of them. It is

straightforward to verify that for any ε ∈ [0, 1] we have

H(ε|ρ̂) = H(ε|X), H(ε|ρ̂) = H(ε|X) (6.65)

and

H(ε|ρ̂⊗ σ̂) = H(ε|XY), H(ε|ρ̂⊗ σ̂) = H(ε|XY). (6.66)

Hence Eqs. (6.62) and (6.63) follow from Eqs. (6.57) and (6.58), respectively.
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By Lemma 12, we also have

H(ε|φ̂A) ≤ H(ε|φ̂A ⊗ ξ̂EA), (6.67)

H(ε|φ̂A) ≤ H(ε|φ̂A ⊗ ξ̂EA). (6.68)

Combining all the inequalities above finishes the proof.
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Chapter 7

Conclusion

In this thesis, we applied an information-spectrum approach to analyze asymptotic LOCC

convertibility between two arbitrary sequences of bipartite pure states. In the following

paragraphs, we state the obtained results of this thesis and their applications.

(1) We obtained a general formula and unified form of asymptotic LOCC convertibil-

ity between two arbitrary sequences of bipartite pure entangled states by an information-

spectrum approach (Theorem 1 and Theorem 2). Applying our results, we can provide

simple proofs for known results on LOCC conversion of a sequence of maximally entan-

gled states. (Section 4.4.1 and Section 4.4.2 ). The information-spectrum method has

applications in analyzing physical states, such as Gibbs states [44] and finitely correlated

states [45, 46, 47]. By a similar approach as [48] and this thesis, it is possible to ana-

lyze asymptotic LOCC convertibility between two arbitrary sequence of finitely correlated

states.

(2) We obtained asymptotic LOCC convertibility between two arbitrary sequences of

bipartite pure states by random unitary operations as a byproduct of our approach. These

random unitary operations are a subclass of unital operations. Recently, the existence

of unital operations which converts a particular state into another plays an key role in

several studies of quantum thermodynamics [49, 50, 51, 52]. This byproduct has been

applied to study quantum thermodynamics in [39].

(3) We obtained the general result that the spectral divergence rate of two arbitrary

sequences of bipartite pure states are monotonically nonincreasing for an arbitrary ε ∈

[0, 1] under positive trace preserving (PTP) maps (Section 6.2.1). We also showed the
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continuity of spectral divergence rates with respect to states in the asymptotic sense. In

this thesis, we applied the properties of spectral entropy rates, which follows from those of

spectral divergence rates, to proof the converse part of our main results. The generalized

properties of spectral divergence rates may become useful tools in information-spectrum

methods for analyzing general source.

As written in Chapter 1, next study following this thesis would be adopting information-

spectrum methods to analyze asymptotic LOCC convertibility between two arbitrary se-

quence including mixed entangled states [53]. The information-spectrum approach used

in this thesis and obtained results would play important roles in many applications.
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