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概要 

 

外界には奥行きが異なる物体が多数存在し，これら物体の視覚情報は重なりっ

ている場合が多い．このとき「遮蔽物体と被遮蔽物体を隔てる境界（Border）は

遮蔽物体に帰属する」．Border Ownership（BO）問題は，物体の重なり順序を計

算するための基盤的問題である．本研究の具体的な成果として，境界の Ownerが

存在する方向である BO 信号をベクトル場𝑬(𝑥, 𝑦)，重なり順序をスカラー場

𝜙(𝑥, 𝑦)として見なせば，電磁気学の電位と電場に関する定理（電場は電位の勾

配，𝑬(𝑥, 𝑦) =  𝛁𝜙(𝑥, 𝑦)である）を用いることで問題の定式化ができることを発

見した．数値シミュレーション結果から，提案モデルは様々な遮蔽状況や形状の

変化に対して頑健に，BO問題と重なり順序計算問題が解けることを見出した．  



 

 

   

 

Abstract 

 

Humans can distinguish the order of mutually overlapping objects in a visual scene. The 

border between an occluding object and the occluded object is “owned” by the occluding 

object. How the brain assigns these borders, or Border-ownership (BO) assignment, 

determines the perception of object depth order. Findings from physiological experiments 

reveal that some neurons in area V2 of the brain respond selectively when the object 

which “owns” the edge in its receptive field is located on a specific side. Several models 

have been proposed in existing studies to reproduce this phenomenon. However, these 

models are not based on a clear computational theory. 

  This study is the first to approach BO assignment from a computational viewpoint by 

treating it as a well-defined problem. I propose that the direction of BO assignment can 

be defined as a conservative vector field 𝑬(𝑥, 𝑦) with arrowheads pointing towards the 

occluding object, and that information pertaining to depth order can be defined as its 

corresponding scalar field  𝜙(𝑥, 𝑦). By using a theorem in electromagnetics which states 

that the gradient of electric potential is its electric field  𝐸(𝑥, 𝑦) =  𝛁𝜙(𝑥, 𝑦) , I 

demonstrate that the BO assignment problem can be solved by updating an initial vector 

field until its rotation, or “curl”, is zero. 



 

 

   

 

  A model developed on this computational theory can simultaneously reproduce BO 

assignment and perceived depth order. Results of numerical simulations agree 

qualitatively with the response of object-side selective neurons in V2 to stimuli containing 

occlusion with simple geometry. Neural networks can be deduced from the update rule 

curl using only one parameter for adjusting the scale of neural connections. This study 

also presents new interpretations of existing models in addition to insight into a possible 

method for calculation of depth order. 
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1 Introduction 

1.1 Background 

1.1.1 Occlusion and object perception 

  Humans can identify and recognize objects with ease from a cluttered scene in their 

surrounding environment. Figure-ground organization, or the separation of an object from 

the rest of the image, is thought to be a preliminary process for cognition. Figure 1.1a 

shows an image referred to as “Rubin’s vase”, which illustrates the basis of figure-ground 

organization [1]. The image is perceived in two distinct ways. It is perceived as a vase if 

the light-grey region is treated as the “figure”, and the dark-grey region is considered as 

the “ground”. In contrast, the viewer perceives the image as two faces if the dark-grey 

region is considered as the “figure” and the light-grey region is considered as the 

“ground”. 

  Evidence for figure-ground organization is most apparent for a single object occluding 

a background. However, the real world is filled with several objects of various shapes and 

sizes, many of which mutually overlap one another. Figure 1.2 shows a photograph with 

several objects, some of which are occluded. There are several “figures” in this scene, 

and figure-ground organization only describes the separation of one figure at a time. To 

accurately grasp the relative location and nature of objects in a scene, one needs a sense 

of the order that obejcts are located in front of us: object “depth order”. Figure-ground 

organization would involve segregating these objects one at a time, starting from the 

plastic bottle in the foreground occludes the laptop. In contrast, assigning larger depth 

order values to objects closer to the viewer would allow an instantaneous grasp of how 

objects are placed before us in a visual scene. 

  A process called “border-ownership” (BO) assignment is believed to be a strategy 
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adopted by the brain to approach problems in visual perception related to overlapping 

objects [2]. In a situation where one object occludes another, the border between them is 

“owned” by the occluding object. Let us revisit the example of Rubin’s vase in Figure 

1.1 to see how BO assignment effects perception. The direction of BO assignment is 

expressed by arrows pointing towards the occluding object along the perimeter of the 

border. In the perception of a vase, the border is owned by the inner region, as indicated 

by the arrows. Similarly, outward-pointing arrows imply that the border is owned by the 

two faces. For a real-world example, take a look at the plastic bottle in the foreground in 

Figure 1.2. The border between the plastic bottle and the laptop computer is owned by 

the plastic bottle. This border describes the shape of the plastic bottle. Conversely, this 

border is not owned by the laptop computer; part of the laptop computer is occluded by 

the plastic bottle, and the border between them does not describe the shape of the laptop 

computer. It is clear that BO assignment is important for the perception of object shape, 

as observed by psychologists [2]. However, does the human brain actually carry out BO 

assignment? 
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Figure 1.1 Bi-stable perception of Rubin’s vase.  

The image in (a) can either be perceived as a (d) vase over a dark grey background or 

(e) two faces over a light grey background. BO assignment is believed to account for 

these two percepts. The direction in which borders are assigned to occluding regions 

dictates how the image is perceived. Arrows along the border perimeters point either 

towards (b) the inner or (c) the outer region, resulting in the perception of (b) a vase or 

(e) two faces, respectively.  
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Figure 1.2 A real-world example, where several objects mutually overlap.  

Figure-ground organization does not adequately explain the perception of a scene where 

multiple “figures” exist. For example, the plastic bottle occludes the laptop computer, 

which occludes a jar. The order in which these objects overlap, or “depth order”, is 

important to gauge the nature of how objects are located in front of us. The border 

between the plastic bottle and the laptop computer, shown in red is owned by the plastic 

bottle. This means that the border describes the shape of the occluding plastic bottle, and 

not of the occluded laptop. 
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1.1.2  The human visual system 

  The human visual system processes information in a hierarchical manner. Local 

information such as luminance, color, and motion, are extracted from retinal images then 

subsequently integrated for a contextual understanding of the external world. A neuron in 

the visual cortex can only process information presented to it in a fixed range, located at 

a fixed location in the retinal image. This is the neuron’s “receptive field”. Figure 1.3 

shows the flow of information between areas in the visual cortex as compiled and 

organized from past findings [3]. Each area of the visual cortex carries out a different 

processing task. For example, neurons in area V1 respond selectively to discontinuities 

in luminance, at a specific orientation, placed in their receptive field [4]. This supports 

the assertion that one task of area V1 is to extract edges from an image, some of which 

coincide with object borders. More complex tasks are conducted higher up in the 

hierarchy; research shows that area IT is involved with recognition [5]. 

  Physiological experiments revealed the existence of neurons in area V2 which respond 

strongly to an edge of an arbitrary orientation when an object is located on a specific of 

its receptive field: BO is coded in area V2 [6]. The emergence of BO signals were fast 

(30 ms after response onset), and latency was independent of object size [7]. Their 

experiments were conducted on monkeys using 2D images consisting of simple shapes 

such as single squares, C-shapes, and occluding rectangles. Figure 1.4 shows data of the 

response of a neuron in area V2 with a left-side object selectivity. The pattern in its 

receptive field, a 90-degree vertical edge, is the same for all stimuli. This implies that 

visual information outside of the neuron’s receptive field modulates its response. The 

response of a substantial subset of these BO-coding neurons were consistent with object-

side even for complex natural scenes [8]. In addition, some BO-coding neurons also 
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respond selectively to three-dimensional (3D) objects in stereoscopic stimuli [9]. This 

implies that neurons in V2 utilize both global edge information and binocular depth 

information in BO coding to represent objects in a 3D space. 

 Area V4 may be the visual area where depth order is calculated. Some neurons have 

been reported to respond selectively to surfaces of various shapes [10]. Shape-selective 

neuron will respond selectively to an object of a specific shape if it is the occluding object 

[11]. Some neurons in area V4 have been shown to respond to subjective surfaces [12]. 

Lesions in area V4 also have been reported to impede the perception of color, brightness, 

shape, as well as subjective contours in monkeys [13], [14]. 
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Figure 1.3 Hierarchical nature of visual processing in the brain.  

Each area carries out a different visual processing task. Lower-level areas such as V1 

extract local edges from retinal images for further processing. Area V2 is believed to be 

involved in BO assignment. Area V4 is involved with color, shape and surface perception. 

Area IT, located higher in the hierarchy is involved with object and face recognition.  
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Figure 1.4 Response of a neuron in area V2 towards pairs of stimuli demonstrates 

its object-side selectivity.  

The receptive field of the neuron is represented by a circle, enlarged for explanatory 

purposes. The pattern inside the receptive field is the same for all cases: a vertical (90 

degree) edge. (a) This neuron responds stronger towards stimulus A, where an object 

exists on the left side of its receptive field. In contrast, an object does not exist on the left 

side of the neuron’s receptive field in stimulus B. (b) Similarly, the neuron responds 

stronger to stimulus C than to stimulus D, and (c) stronger to stimulus E than to stimulus 

F. For all three cases, an occluding object exists on the left side of the neuron’s receptive 

field. Data was adapted from Zhou et al. (2000) [6]. 
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1.1.3  Marr’s framework of visual processing 

  Marr (1982) proposed a framework of visual processing [15]. He argued that the 

processing of visual information is carried out in four distinct stages:  

(1) Visual information from the external world is projected as two-dimensional images 

(2D) onto the retina 

(2) A “Primal sketch” of low-level features such as edges and blobs is created. 

(3) Information is represented as 2.5D sketches, where contour, depth, and orientation of  

surfaces is described. 

(4) A 3D image of the external world is reconstructed based on visual information from 

the previous stages. 

This framework is backed up by the hierarchical structure of the visual cortex outlined 

earlier. In particular, the reconstruction of surfaces using edge information might be what 

the visual system is ultimately trying to achieve through BO assignment.  
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1.2 Objective   

  Previous studies support the idea that BO assignment and assignment of depth order to 

surfaces are involved in visual processing in the brain. The objective of this study is to 

understand how the visual system processes information pertaining to object perception. 

The author will attempt to propose a clear computational theory for the BO-assignment 

problem based on the concept of a reconstruction of surface depth order. 

 

1.3 Paper organization 

  The remainder of this paper is organized as follows. Section 2 outlines several existing 

models and the proposed approach taken by the author. Section 3 presents the 

computational theory underlying the model proposed in this paper. Section 4 implements 

the computational theory as a neural network model and presents simulation results for 

various problems in perception related to BO assignment. Section 5 contains deductions 

made from the computational theory and comparisons to existing models. Section 6 

contains extensions of the proposed theory. Section 7 is the discussion and conclusion. 
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2 Related works and approach 

2.1 Models of BO coding in area V2 

 The phenomenon of V2 neurons responding selectively to objects located on a specific 

side of their receptive field has been reproduced by existing models [16]–[18]. Li 

proposed horizontal connections as the medium for propagation of BO signals in area V2 

[16]. Figure 2.1a shows a schematic diagram of excitatory and inhibitory connections 

between neurons with different receptive field locations (ovals) and object-side selectivity 

(arrows). Li considered cases in which objects likely exist on a certain side of the edge 

for either mutual excitation, or mutual inhibition. For example, neurons of similar object-

side selectivity would mutually excite each other if collinearly placed (Figure 2.1b). Li 

also considered corners (Figure 2.1c) and T-junctions (Figure 2.1d). T-junctions are 

considered as cues for occlusion, where the top side of the “T” corresponds to the side of 

the occluding object [19]. These neural descriptions are complex, and they contain 23 free 

parameters that have to be determined properly for the model to function. Detailed 

descriptions of the neural connections can be seen in Appendix A.1. 

  Sakai et al. found that integrating edge using randomly generated regions of excitation 

and inhibition produced signals which resembled BO signals [17]. Figure 2.2 shows an 

example of the random weights. Responses of V1 neurons towards edges are pooled and 

given an either excitatory or inhibitive feedforward effect on the response of V2 object-

side selective neuron. For example, a neuron with a right object-side selectivity has an 

excitatory edge-pooling region on its right, and an inhibitory edge-pooling region on its 

left. Due to the random nature of these signals, the model successfully captures the diverse 

properties of neurons in V2. However, the computational theory underlying their model 

is unclear. 
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  Craft et al. (2007) proposed feedforward-feedback with hypothetical “grouping cells” 

as the mechanism for determining BO signals [18]. A schematic diagram of the model is 

shown in Figure 2.3. A grouping cell would be activated if neurons with selectivity 

towards an object located at the center of the grouping cell’s annular receptive field exist. 

This process is similar to calculating circles inscribed in an object’s border. Annular 

shaped receptive fields of various sizes were used to account for objects of many sizes. It 

is not clear where, and if, grouping cells with annular receptive fields exists. Craft et al. 

(2007) also uses an existing model to detect T-junctions as occlusion cues [20]. 

  Current models are only capable of reproducing the phenomenon of neurons 

responding selectively to objects located on a specific side of their receptive field: they 

are phenomenalistic in their approach. Thus, there have only been discussions regarding 

the plausibity of the neural mechanisms proposed as the medium of propagating BO 

signals (horizontal connections, feedforward, or feedback) when comparing the existing 

models [18], [21]. None of the existing models are based on a clear computational theory. 
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Figure 2.1 A diagram of Li’s horizontal connection model and a description of the 

connections. 

(a) Horizontal connections between neurons with different object-side selectivity. Ovals 

on the image represent receptive fields, while dots represent V2 neurons. Li considered 

cues for BO such as (b) collinearity, (c) corners and (d) T-junctions for describing 

connections for mutual excitation. Mutual inhibition was described in a similar manner. 

(e) An excerpt of the complex neural descriptions. The description for neural connections 

in Li’s model contains 23 parameters. 
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Figure 2.2 Diagram of the randomly generated feedforward connections of the 

model by Sakai et al. (2012).  

The receptive field of a neuron with a right object-side selectivity is shown by the red 

oval. Responses of V1 neurons towards edges are pooled and given either excitatory or 

inhibitory properties based on randomly generated Gaussian weights. Some of the 

weights used are shown on the right. Black areas correspond to inhibition, while white 

areas correspond to excitation.   
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Figure 2.3 Diagram of hypothetical “grouping” cells in the feedforward-feedback 

model by Craft et al. (2007).  

The receptive field of a neuron with a right object-side selectivity is shown by the red 

oval. Responses of V2 send feedforward signals to a “grouping cell” which has an annular 

receptive field. In effect, neurons with object-side selectivity (shown aby arrows) to the 

center of an annular receptive field are “grouped” together. The more annularly located 

V2 neurons exist, the stronger the feedback signal is. 
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2.2 Vision from a computational approach 

  In addition to the framework introduced earlier, Marr (1982) also proposed that visual 

processing in the brain can be expressed as three distinct stages [15]:  

(1) Computational theory : Defining the problem and deriving a solution to solve a 

specific computational goal. 

(2) Algorithms/software : Deducing algorithms that can carry out the computation task.  

(3) Hardware implementation : Executing the deduced algorithms with physical means. 

Marr’s approach has been adopted in other studies of visual processing in the brain. For 

example, there are two rival computational theories for information processing in area 

V1: uncertainty principle and sparse coding. The Gabor function, which is the solution of 

minimizing the product of the uncertainty of spatial location and spatial frequency, was 

found to resemble the receptive fields of simple cells in area V1 [22], [23]. Increasing the 

sparseness of a set of filters required to encode natural image patches, resulted in filters 

which resembled the receptive fields of simple cells in area V1 [24]. Both studies are 

based on defining an optimization problem, where a suitable energy function is minimized.  

  As of this date, there are no other studies which approach studying area V2, specifically 

regarding to BO assignment, from the information processing standpoint outlined by Marr 

(1982). Such an approach has advantages over the existing phenomenalistic one, adopted 

by existing studies of BO assignment in V2. For example, deduced neural networks and 

algorithms might be able to provide a generalization of the various models outlined earlier. 

More specifically, it may be able to generate the neural connections by Li (2000) using 

fewer parameters.  
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3 Theory and algorithm 

3.1 Computational theory 

  Figure 3.1 outlines the the central concept in this study based on the framework 

proposed by Marr (1982). This study proposes that visual information from the retina is 

used to extract edges in area V1. BO assignment in V2 is processed based on the output 

of area V1. Surface depth order is calculated in area V4 using the output of area V2. 

Interactions between these two visual areas will also be examined. This study will focus 

on BO assignment (area V2) and surface depth order (area V4). 

  Variables must be defined for BO and depth order to formulate the BO assignment 

problem. As demonstrated in the introduction, the direction of BO assignment for local 

edge segments can be expressed by arrows pointing to the occluding object. Figure 3.2 

shows an image that can be perceived as a light-grey rectangle occluding a dark-grey 

rectangle on its right. The occluded-occluding perception of objects can be expressed as 

a scalar field 𝜙(𝑥, 𝑦) taking either zero or positive values. Zero 𝜙 values correspond to 

background regions, whereas larger positive 𝜙 values correspond to regions viewed as 

located closer in the foreground. In this example, the occluding rectangle has a larger 

depth order value (𝜙 = 2) than the occluded rectangle (𝜙 = 1). Differentiating depth 

order produces a vector field in the Cartesian coordinate system 𝑬(𝑥, 𝑦) =

(𝐸𝑥(𝑥, 𝑦), 𝐸𝑦(𝑥, 𝑦))
T

, where 𝐸𝑥(𝑥, 𝑦)  and 𝐸𝑦(𝑥, 𝑦)  are vector components in the 𝒙̂ 

and 𝒚̂ direction. This vector field resembles an array of BO signals. BO assignment 

problem can therefore be approached as a mathematical relationship between a vector 

field and a scalar field. The author proposes that the following electromagnetic theorem 

is an applicable analogy to express the mathematical relationship between BO and depth 
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order: the gradient of an electric potential field 𝜙(𝑥, 𝑦) is equal to its corresponding 

electric field 𝑬(𝑥, 𝑦), 

Therein, operator 𝛁 is defined as partial differentiation in the 𝒙̂ and 𝒚̂ direction, 𝛁 ≝

(𝜕/𝜕𝑥, 𝜕/𝜕𝑦)T. Both 𝑬(𝑥, 𝑦) and 𝜙(𝑥, 𝑦) are unknown values prior to the presentation 

of a visual stimulus. This study attempts to solve the problem by assuming that the value  

for a two-dimensional (2D) vector field that evolves over time 𝑬(𝑥, 𝑦, 𝑡) is given at 𝑡 =

0. There is no guarantee that Eq. (3.1) is satisfied at this initial condition, and thus 

𝑬(𝑥, 𝑦, 𝑡) must be updated accordingly. 

  Eq. (3.1) is satisfied when 𝑬(𝑥, 𝑦)  is a conservative vector field; line integration 

between two arbitrary points in a conservative vector field is independent of the 

integration path. A mathematical theorem states that the “curl”, or rotation, is zero at all 

spatial points of a conservative vector field. Consider the following analogy to understand 

the concept of “curl”. Calculating the curl at an arbitrary point in a vector field is similar 

to placing a windmill and observing its rotation. Vector field 𝑬(𝑥, 𝑦) represents wind 

blowing on the windmill blades. A counter-clockwise (clockwise) rotation of the windmill 

coincides with a positive (negative) value of curl. The curl at (0,0) is non-zero for 

examples in Figure 3.3a-b, because a windmill would rotate in a counter-clockwise 

(positive curl) or a clockwise (negative curl) direction, respectively. In contrast, the curl 

at (0,0) for examples in Figure 3.3c-d are both zero. In mathematical terms, the curl of 

a 2D vector field 𝑬(𝑥, 𝑦) is the difference of partial differentiation in the 𝒚̂ direction of 

𝐸𝑥(𝑥, 𝑦) and in the 𝒙̂ direction of 𝐸𝑦(𝑥, 𝑦), 

This formula will be the basis for constructing a suitable energy function. 

 𝑬(𝑥, 𝑦) = 𝛁𝜙(𝑥, 𝑦). (3.1) 

 curl(𝑬(𝑥, 𝑦)) =
𝜕

𝜕𝑥
𝐸𝑦(𝑥, 𝑦) −

𝜕

𝜕𝑦
𝐸𝑥(𝑥, 𝑦). (3.2) 
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Figure 3.1 Hierarchical structure of visual information processing proposed in this 

study.  

Edges are extracted in area V1 from a retinal image. Edge information is relayed to area 

V2, where BO assignment is processed, and then to area V4 where depth order is 

calculated (surface reconstruction). Top-down interaction from area V4 to area V2 will 

also be examined. 
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Figure 3.2 Proposed differentiation-integration relationship between depth order 

and BO. 

(a) An image that can be interpreted as a light-grey rectangle occluding a dark-grey 

rectangle on its right. (b) Perceived depth order of the image expressed as a depth order 

scalar field 𝜙(𝑥, 𝑦). The occluding rectangle is in the foreground and thus has a higher 

depth order value (𝜙 = 2) than the occluded rectangle (𝜙 = 1). (c) Differentiating depth 

order in (b) produces a vector field 𝑬(𝑥, 𝑦) with arrowheads pointing to the object that 

“owns” the border. These vectors are analogous to BO signals, thus leading to the 

proposition that depth order and BO signals are in an integration-differentiation 

relationship, similar to the relationship of electric potential and its corresponding electric 

field 𝑬(𝑥, 𝑦) = 𝛁𝜙(𝑥, 𝑦).  
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Figure 3.3 The “curl” operator calculates local rotation in a vector field. 

An imaginary windmill located at the cross mark at (0,0) will rotate depending on the 

size and direction of adjacent wind vectors in 𝑬(𝑥, 𝑦). A positive curl at (0,0) coincides 

with (a) the windmill rotating in a counter-clockwise direction, whereas a negative curl 

at (0,0) coincides with (b) the windmill rotating in a clockwise direction. A windmill 

placed at (0,0) in (c) and (d) will not rotate, and thus a zero curl exists there. Every 

spatial location in a conservative field has zero curl, i.e. an imaginary windmill will not 

rotate regardless where it is placed.  
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3.2 Energy function and update rule 

  An energy function for minimizing curl is constructed below, 

  Integration is applied on the entire image region. An update rule for 𝑬(𝑥, 𝑦, 𝑡) is then 

derived by applying the steepest descent method on energy function 𝐽[𝑬(𝑥, 𝑦)], 

This update rule is also expressible in a concise equation using the curl operator and the 

perpendicular of the gradient operator 𝛁⊥ ≝ (−𝜕/𝜕𝑦, 𝜕/𝜕𝑥)T, 

 

3.3 Model details 

3.3.4  Production of BO signals from an input image 

  Borders were first calculated from greyscale images. Consider a 2D discretized image, 

where 𝑥 and 𝑦 are set as unit length one. For an artificial image 𝐼(𝑥, 𝑦) with uniformly 

filled figures, edges can be treated as figure borders. Figure border region 𝐵(𝑥, 𝑦) ∈

{0,1} was calculated by applying Sobel edge filters on image 𝐼(𝑥, 𝑦) and thinning the 

result. 𝐵(𝑥, 𝑦) is simply a binary map that carries a value of 1 at figure borders and 0 at 

all other spatial locations. 

  A scheme for implementing the update rule derived in Eq. (3.4) will be outlined. Partial 

differentiation in Eq. (3.4) can be substituted by convolution with Gaussian derivative 

 𝐽[𝑬(𝑥, 𝑦)] =
1

2
∬(curl(𝑬(𝑥, 𝑦)))2 𝑑𝑥𝑑𝑦 → min. (3.3) 

 

𝜕

𝜕𝑡
𝑬(𝑥, 𝑦, 𝑡) = (

𝜕

𝜕𝑡
𝐸𝑥(𝑥, 𝑦, 𝑡)

𝜕

𝜕𝑡
𝐸𝑦(𝑥, 𝑦, 𝑡)

) ∝

(

 
 

𝜕2

𝜕𝑦2
𝐸𝑥(𝑥, 𝑦, 𝑡) −

𝜕2

𝜕𝑥𝜕𝑦
𝐸𝑦(𝑥, 𝑦, 𝑡)

−
𝜕2

𝜕𝑥𝜕𝑦
𝐸𝑥(𝑥, 𝑦, 𝑡) +

𝜕2

𝜕𝑥2
𝐸𝑦(𝑥, 𝑦, 𝑡)

)

 
 
. (3.4) 

 
𝜕

𝜕𝑡
𝑬(𝑥, 𝑦, 𝑡)

(

 
−
𝜕

𝜕𝑦
curl(𝑬(𝑥, 𝑦, 𝑡))

𝜕

𝜕𝑥
curl(𝑬(𝑥, 𝑦, 𝑡)) )

 = 𝛁⊥curl(𝑬(𝑥, 𝑦, 𝑡)). (3.5) 
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filters [25]. Convolution between two arbitrary functions 𝐾(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) using the 

convolution operator ∗ is defined as 

In this study, derivatives of normalized two-dimensional Gaussian function of standard 

deviation σ, 

was convolved with 𝐸𝑥(𝑥, 𝑦, 𝑡) and 𝐸𝑦(𝑥, 𝑦, 𝑡) to form  

Update rules for the 𝒙̂  (horizontal direction) and 𝒚̂  (vertical direction) vector 

components above were applied on the border region 𝐵(𝑥, 𝑦) until energy function 

𝐽[𝑬(𝑥, 𝑦, 𝑡)] was sufficiently minimized. In this model, standard deviation for the filters 

was set as σ = 1. The discrete filters used are shown in Figure 3.4.  

Model dynamics were derived by constructing and energy function in Eq.(3.3) and 

minimizing it using the steepest descent method. A possible shape of the energy function 

curve is shown in Figure 3.5. Setting initial vectors is analogous to placing an object on 

the energy curve. This object is pulled down (in the negative gradient direction) to a local 

minimum, thus the name “steepest descent method”. The energy function curve has two 

local minima where 𝑬(𝑥, 𝑦) is at a stable state. For example, if initial vectors are set at 

 

𝐾(𝑥, 𝑦) ∗ 𝐿(𝑥, 𝑦) ≝∑∑𝐾(𝑥 − 𝑚,𝑦 − 𝑛)𝐿(𝑚, 𝑛)

𝑚𝑛

. (3.6) 

 𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
exp (−

𝑥2 + 𝑦2

2𝜎2
), (3.7) 

 

(

𝜕

𝜕𝑡
𝐸𝑥(𝑥, 𝑦, 𝑡)

𝜕

𝜕𝑡
𝐸𝑦(𝑥, 𝑦, 𝑡)

)

∝

(

 
 

𝜕2

𝜕𝑦2
𝐺𝜎(𝑥, 𝑦) ∗ 𝐸𝑥(𝑥, 𝑦, 𝑡) −

𝜕2

𝜕𝑥𝜕𝑦
𝐺𝜎(𝑥, 𝑦) ∗ 𝐸𝑦(𝑥, 𝑦, 𝑡)

−
𝜕2

𝜕𝑥𝜕𝑦
𝐺𝜎(𝑥, 𝑦) ∗ 𝐸𝑥(𝑥, 𝑦, 𝑡) +

𝜕2

𝜕𝑥2
𝐺𝜎(𝑥, 𝑦) ∗ 𝐸𝑦(𝑥, 𝑦, 𝑡)

)

 
 
. 

(3.8) 
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either (a) or (b), updating vectors will result in stable state 1. Conversely, if initial vectors 

are set at either (c) or (d), updating vectors will result in stable state 2. In natural viewing 

conditions, border ownership (and depth order) converges at a single stable state. Thus, 

determining suitable initial vectors that will converge at a stable state consistent with 

perception is important. The model’s behavior and the effect of initial vectors on its output 

will be examined in the next section. 
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Figure 3.4 Discrete Gaussian derivative filters used in simulations for standard 

derivative 𝛔 = 𝟏.  

Filters for 
𝜕2

𝜕𝑦2
𝐺𝜎(𝑥, 𝑦) , 

𝜕2

𝜕𝑥2
𝐺𝜎(𝑥, 𝑦)  and −

𝜕2

𝜕𝑥𝜕𝑦
𝐺𝜎(𝑥, 𝑦)  are shown. White pixels 

coincide with positive values, whereas black pixels coincide with negative values. These 

filters were convoluted with 𝐸𝑥(𝑥, 𝑦, 𝑡)  and 𝐸𝑦(𝑥, 𝑦, 𝑡)  vector components in 

accordance to the update rule in Eq. (3.8). 
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Figure 3.5 An example of an energy function with two local minima (stable state 1 

and stable state 2).  

The steepest descent method is analogous to an object pulled down by gravity towards 

the local minimum. Initial conditions (a) and (b) will result in stable state 1. Conversely, 

initial conditions (c) and (d) will result in stable state 2.  
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𝐽[
𝑬
] 

𝑬(𝑥, 𝑦) 

(a) 
(b) 

(c) 
(d) 

Stable state 1 Stable state 2 
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3.3.5  Production of depth order surface from BO signals 

In theory, the result of line integration between any two points in a conservative field 

is the same regardless of the path taken. However, during the updating process line 

integration is path dependent. One method to estimate depth order as updating is 

conducted, is to sum line integration from multiple paths and rescale the value. Consider 

an open path 𝐶  starting from an arbitrary position and ending at (𝑥0, 𝑦0) , 𝐶(𝑠) =

(𝑥(𝑠), 𝑦(𝑠)), where 𝑠 is the arc length. When the tangent of 𝐶(𝑠) is defined as 𝒕(𝑠) =

𝑑𝐶(𝑠) 𝑑𝑠⁄ , line integral of vectors 𝑬(𝑠) is calculated using ∑ 𝑬(𝑠) ∙ 𝒕𝑠 (𝑠). At a spatial 

position (𝑥0, 𝑦0), the depth order value 𝜙(𝑥0, 𝑦0, 𝑡) was calculated using line integration 

of 𝑬(𝑥, 𝑦, 𝑡). First, consider integral paths of horizontal and vertical lines passing through 

(𝑥0, 𝑦0), 

Therein, sign(𝑥)  =  1 for 𝑥 > 0  and sign(𝑥) =  −1 for 𝑥 < 0 . Summation was 

operated on the image domain excluding its own position, (𝑥0, 𝑦0). Depth order was 

normalized from 0 to 1 unless specified. The first component in Eq. (3.9) describes 

integration on the horizontal direction, whereas the second describes integration on the 

vertical path. Figure 3.6 shows an example of calculation in the horizontal direction. 

  This method of calculation is similar to weights resembling a Heaviside function with 

+1 weights in from the +𝒙̂ (+𝒚̂) direction, and −1 weights in from the −𝒙̂ (−𝒚̂) 

direction. Line integration with horizontal paths is qualitatively similar to filtering the  

𝐸𝑥  component with a vertically shifted negative Heaviside step function 𝐻(𝑥) − 1 , 

where 

 𝜙(𝑥0, 𝑦0, 𝑡) =∑𝐸𝑥(𝑥, 𝑦0, 𝑡)sign(𝑥0 − 𝑥)

𝑥

+∑𝐸𝑦(𝑥0, 𝑦, 𝑡)sign(𝑦0 − 𝑦).

𝑦

 (3.9) 

 𝐻(𝑥) = {
1 𝑥 > 0
0 𝑥 < 0

. (3.10) 
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Figure 3.6 An example of calculating depth order for an arbitrary point (𝒙𝟎, 𝒚𝟎) in 

a BO vector field.  

For a conservative field, the result of line integration between any two points is 

independent of the path taken. Line integration for a path that forms a horizontal (or 

vertical) straight line through (𝑥0, 𝑦0)  is similar to applying a filter with weights 

resembling a Heaviside function on vector field 𝑬(𝑥, 𝑦).  
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4 Neural network implementation 

4.1 Model behavior and initial vector dependence 

  To examine the model’s behavior, initial vectors were assigned randomly at the borders 

of the three benchmark stimuli used in physiological experiments by Zhou et al. (2000). 

The three stimuli used were a square (Figure 4.12a), a C-shape (Figure 4.12b), and a 

square overlapping a rectangle on its right (Figure 4.12c). Vectors were set as (a) +𝒙̂, (b) 

0 or (c) −𝒙̂ at horizontal edges and (a) +𝒚̂, (b) 0 or (c) −𝒚̂ at vertical edges. Similarly, 

vectors of magnitude 1 facing inwards (acute side), zero vectors, or vectors of magnitude 

1 facing outwards (obtuse side) at L-junctions were also assigned. Vectors facing the acute 

side of the L-junction was calculated based on the partial derivatives of border 𝐵(𝑥, 𝑦) 

at L-junctions by central difference approximation, 

Simulations were carried out for 𝑡 = 2000 with 1000 sets of randomly assigned initial 

vectors for the three figures. 

  Model outputs were categorized according to the direction of the BO signal located at 

the position of the neuron’s receptive field, represented by the red circle in Figure 4.1. 

The neuron responds selectively to an object placed on the left of its receptive field. This 

coincides with a left BO signal. The model outputs left-facing vectors at chance-level for 

all three stimuli. 

  Although this method of assigning initial vectors fails to reproduce the data from 

physiological experiments at a significant rate, it is interesting to note that surfaces 

coinciding with various depth order perception was reproduced. For example, Figure 4.2 

 

𝑬(𝑥, 𝑦, 0) =

(

 

𝜕

𝜕𝑥
𝐵(𝑥, 𝑦)

𝜕

𝜕𝑦
𝐵(𝑥, 𝑦)

)

 ≈
1

2
(
𝐵(𝑥 + 1, y) − 𝐵(𝑥 − 1, y)

𝐵(𝑥, y + 1) − 𝐵(𝑥, y − 1)
). (4.1) 



Section 4 : Neural network implementation 30 

 

   

 

and Figure 4.3 shows the two types of surfaces, an object or a hole, reproduced by the 

model. In addition, for an occluding square, a left (or right) BO signal at the location of 

the neuron’s receptive field coincides with three different depth order percepts, 

respectively (Figure 4.4 or Figure 4.5).  
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Figure 4.1 Categorization of calculated BO signals from randomly assigned initial 

vectors. 

The red circle represents a neuron’s receptive field located at the border of (a) a square, 

(b) a C-shaped figure and (c) an overlapping square. These figures are similar to those 

used in physiological experiments outlined in Figure 1.4. Assigning initial vectors 

randomly (1000 combinations) results in BO signals in the left or right direction at 

chance-level. Random initial vectors cannot reproduce physiological data consistently.  
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Figure 4.2 Calculated BO vectors and depth order for a square with randomly 

assigned initial vectors. 

Example of the different percepts categorized as (a) a left BO signal and (b) a right BO 

signal in Figure 4.1a. A left BO signal coincides with the percept of a square object, 

whereas a right BO signal coincides with a square hole. The element number in the set of 

1000 randomly assigned initial vectors is shown above the respective results.  
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Figure 4.3 Calculated BO vectors and depth order for a C-shaped figure with 

randomly assigned initial vectors. 

Example of the different percepts categorized as (a) a left BO signal and (b) a right BO 

signal in Figure 4.1b. A left BO signal coincides with the percept of a C-shaped object, 

whereas a right BO signal coincides with a C-shaped hole. The element number in the set 

of 1000 randomly assigned initial vectors is shown above the respective results. 
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Figure 4.4 Calculated BO vectors and depth order for an overlapping square with 

randomly assigned initial vectors. 

Example of the different percepts categorized as a left BO signal in Figure 4.1c. Unlike 

the square and C-shaped figure, a left BO signal coincides with three distinct depth order 

percepts (a~c). The element number in the set of 1000 randomly assigned initial vectors 

is shown above the respective results. 
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Figure 4.5 Calculated BO vectors and depth order for an overlapping square with 

randomly assigned initial vectors. 

Example of the different percepts categorized as a right BO signal in Figure 4.1c. Unlike 

the square and C-shaped figure, a left BO signal coincides with three distinct depth order 

percepts (a~c). The element number in the set of 1000 randomly assigned initial vectors 

is shown above the respective results. 
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4.2 Determining suitable initial vectors 

  To reproduce the data from physiological experiments, suitable initial vectors must be 

assigned. There are two types of junctions that might serve as useful cues: (a) L-junction 

and (b) T-junctions. 

  First, let us consider L-junctions. The contour of an occluding object is essentially a 

simple closed curve. For a closed curve 𝐶(𝑠) described by its arc length 𝑠, the total 

curvature along the curve is a positive value ∫ 𝜅(𝑠)𝑑𝑠
𝑠

> 0. In simple terms, there are 

more acute angles than obtuse angles in the contour of an occluding object. This is 

demonstrated in Figure 4.6 for the three figures used. Vectors facing the inner-side of the 

L-junctions might serve as suitable initial values. Physiological experiments reveal that 

some neurons in area V2 respond selectively to bent lines, especially to acute-angled lines, 

placed in their receptive fields [26], [27]. Gestalt psychologists observed that the convex 

side of curves are likely to be perceived as the inner-side of an object [28]. 

  Next, consider T-junctions. There are several possible depth-order combinations at 

around the junction, as illustrated in Figure 4.7. Initial BO vectors facing the surface with 

the largest depth order value. Since there are several possible BO signals, T-junctions may 

not be a reliable cue for the determination of initial vectors. In summary, initial vectors 

were assigned facing the inner side of L-junctions using Eq. (4.1), whereas zero vectors 

were assigned at straight-line segments and T-junctions for the three figures. 

 Simulations were conducted for 𝑡 = 10000 to confirm the suitability of these initial 

vectors. The time course from 𝑡 = 0  to 𝑡 = 10000  of 𝑬(𝑥, 𝑦, 𝑡)  and 𝜙(𝑥, 𝑦, 𝑡)  is 

shown for the three stimuli (Figure 4.8, Figure 4.9 and Figure 4.10). he red circle 

represents the approximate location of the receptive field for the neuron examined in the 

physiological experiment by Zhou et al. (2000). The neuron responds selectively to an 
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object on the left side of its receptive field. BO signals (vectors) located in the red circle 

point towards the left, qualitatively matching experimental results. Vectors around the 

concave region of the C-shaped figure were corrected to face the occluding object, and 

not the background. After sufficient updating of vectors reflect, relative depth order for 

all three stimuli how they are actually perceived. Notably, the occluding rectangle has a 

larger 𝜙  value than the occluded rectangle and vector magnitudes are adjusted 

automatically to reflect this. 

  These results show that setting initial vectors facing the acute side of L-junctions is an 

appropriate method to reproduce the left object-side selectivity of the neuron used in 

physiological experiments. The next subsection will compare the response of the V2 

neuron with model outputs. 
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Figure 4.6 The contour of an occluding object has more acute angles than obtuse 

angles. 

Calculated depth order and BO signals which coincide with perception of (a) a square, 

(b) a C-shaped figure and (c) an overlapping square. For all three examples, the BO signal 

in the red circle (receptive field) point in the left direction. This agrees qualitatively with 

the response of the neuron in Figure 1.4. The outline of an occluding figure is a simple 

closed curve. This means that there are more acute angles (blue) than obtuse angles 

(yellow). Acute angles might be a reliable cue to reproduce data from physiological 

experiments.  
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Figure 4.7 Several possibilities for initial vectors exist at T-junctions. 

Examples of possible initial vectors at the T-junction in the figure of (a) an overlapping 

square. The T-junction at the red square is examined. Numbers in the brackets represent 

the depth order value of the surface. The blue arrow points towards the surface with the 

highest depth order value. Initial vectors (blue arrows) coinciding with the three 

respective percepts in (b) Figure 4.4 and (c) Figure 4.5.  
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Figure 4.8 Time course of vector field and scalar field for a square. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~10000 for a square. The red 

circle represents the location of the receptive field.  
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Figure 4.9 Time course of vector field and scalar field for a C-shaped figure. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~10000 for a C-shaped figure. 

The red circle represents the location of the receptive field.  
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Figure 4.10 Time course of vector field and scalar field for an overlapping square. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡)  and 𝜙(𝑥, 𝑦, 𝑡)  over time 𝑡 = 0~10000  for an overlapping 

square. The red circle represents the location of the receptive field.  

 



Section 4 : Neural network implementation 43 

 

   

 

4.3 Reproduction of experimental findings 

4.3.1  Modeling V2 neuron responses 

  The relationship between BO signals and responses of object-side selective neurons in 

V2 must be modeled to make a direct comparison between model results and neuronal 

responses. The response of a neuron with right object-side (left object-side) selectivity is 

termed as V2right (V2left). Outputs of these neurons can be modeled as the sum of the 

neuron’s response to a border in its receptive field and ownership information, 

Therein, Border is positive when a border is located in the neuron’s receptive field; 

Ownerright and Ownerleft  are either positive or zero. Based on the model proposed 

above, a BO signal in the horizontal direction 𝐸𝑥  can be defined as the difference in 

outputs of pairs of neurons with object-side selectivity in opposite directions, 

  In Figure 4.11, a vertical edge is located in the receptive field, invoking a positive 

Border  response. An object is located to the left of the receptive field. Ownership 

information pertaining to an object on the left is thus a positive value (Ownerleft > 0), 

whereas ownership information pertaining to an object on the right is zero (Ownerright =

0). The resulting BO signal in the horizontal direction is negative, 𝐸𝑥 = −Ownerleft <

0, indicating the existence of an object on the left. The same approach is taken to calculate 

BO signals in the vertical direction 𝐸𝑦 .  

  Model outputs were found to qualitatively match the relative magnitude of neuron 

responses to the three stimuli up to 𝑡 = 2000; neuron responses are largest for the square 

and smallest for the C-shaped object. The absolute value of the 𝒙̂ component at the center 

 V2right = Border+Ownerright, (4.2) 

 V2left = Border + Ownerleft . (4.3) 

 𝐸𝑥 = V2right − V2left = Ownerright − Ownerleft (4.4) 
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of the red circle |𝐸𝒙(20,21,2000)| was used to qualitatively compare model responses 

with physiological data. Notably, for the overlapping rectangle in Figure 4.12, vectors 

were scaled to a magnitude of 2 to account for the existence of two objects of different 

depth order. |𝐸𝒙(20,21,2000)| for the three figures are 0.92, 0.78 and 0.89, respectively. 

Figure 4.13 shows relative model response and neuronal response for the three stimuli. 

Values for relative model response were scaled to a maximum of 1, based on the model 

response to the square. Model responses for the C-shape and the overlapping square are 

lower than that for the square. This matches V2 neuronal responses for similar stimuli 

used in Zhou et al. (2000). The proposed model captures the qualitative nature of the 

response of the neuron towards the three benchmark stimuli better than previous models 

[17], [18], [21]. The method of recording neuron responses is a possible explanation why 

physiological data and model outputs qualitatively match. Responses of neurons were 

only recorded for the first 200 ms after stimulus onset. Neuron recordings for more than 

200 ms might present a different property. Craft et al. (2007) also specify a time frame 

for their model output.  

  Note that in theory, vector magnitude should be of equal value after updating. Figure 

4.14 shows relative model responses after 500, 1000, 2000, and 10000 iterations. Relative 

model response qualitatively match physiological data for the first 2000 iterations. Model 

responses at 10000 iterations show that the model does not update vectors for a C-shaped 

figure after a certain threshold of iterations. This might be due to the initial vectors facing 

outwards at the concave region. The relative response to the occluded figure exceeds the 

relative response to the square at 10000 iterations. Observations were made that the cause 

of this is due to the magnitude of occluded-object vectors decreasing as time progresses 

(Figure 4.10). 
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Figure 4.11 Data adapted from Zhou et al. (2000) is used to illustrate how to compare 

BO signals with V2 neuron responses. 

A horizontal BO signal 𝐸𝑥 can be obtained from the difference in response of a pair of 

V2 neurons with opposite object-side selectivity (V2left ≃ 50 and V2right ≃ 19).  

Neuron receptive fields are represented by circles, whereas arrows represent the neurons’ 

object-side selectivity and response strength. The difference in response of these neurons 

is a negative BO signal in the horizontal direction 𝐸𝑥 = V2right − V2left ≃ −31 , 

signifying an object to the left of the receptive field. 
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Figure 4.12 Initial vectors, calculated BO signals and depth order for figures similar 

to the stimuli used in physiological experiments for a V2 neuron with selectivity for 

an object to the left of its receptive field.  

Respective depth order scalar field agrees with the perception of (a) a square, (b) a C-

shape, and (c) an overlapping square. Red circles indicate the approximate location of the 

neuron’s receptive field in respect to the figure. Calculated BO signals face to the left, 

agreeing qualitatively with the neuron’s object-side selectivity. The absolute value for 

𝒙̂ component at the center of the red circle, |𝐸𝑥(20,21,2000)|, is displayed on the 

respective figures (a. 0.92; b. 0.78; c. 0.89). 
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Figure 4.13 BO signals calculated from experimental data produced by Zhou et al. 

(2000) and relative model response from the proposed model in comparison with 

existing models.  

Neuronal responses are shown for three benchmark stimuli (a C-shaped figure, an 

occluded figure, and a square). Responses to the stimuli are arranged in ascending order 

of response strength. Proposed model responses are based on absolute values for 

𝒙̂ component at the center of the red circle, |𝐸𝑥(20,21,2000)|, in Figure 4.12. The red 

circle in the respective figures represent the neuron’s receptive field, and the arrow 

represents the direction of the BO signal. The proposed model qualitatively reproduces 

the difference in response of the neuron to the three stimuli for 𝑡 = 2000. In comparison, 

existing models are incapable of reproducing this phenomenon [17], [18], [21]. 
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Figure 4.14 BO signals calculated from experimental data produced by Zhou et al. 

(2000) and relative model response for 500, 1000, 2000, and 10000 iterations.  

In general, relative model responses converge to 1 as the number of iterations increase. 

However, the response of the model to the C-shaped figure ceases to increase, and the 

relative response to the occluded figure exceeds the relative response to the square (10000 

iterations). 
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4.3.2 Transparent overlay 

  Some neurons in V2 which possess object-side selectivity also respond selectively to 

“transparent” occluding objects [29]. For example, the image in Figure 4.15b can be 

perceived as either a light-grey rectangle overlapping a dark-grey rectangle, or a dark-

grey rectangle overlapping a light-grey rectangle. Both rectangles are perceived to be 

“transparent”. Consider a neuron with a receptive field represented by the red circle,  

located at a vertical border. An occluding object is located on the left of the receptive field. 

This agrees with perception. Figure 4.15a is perceived as an opaque light-grey rectangle 

overlapping an opaque dark-grey rectangle. Similar to Figure 4.15b, the occluding object 

is located on the left-side of the receptive field. In contrast, the occluding object is located 

on the right-side of the receptive field in Figure 4.15c. This is because the image is 

perceived as four separate squares. The pattern and luminance in all three examples are 

the same. These three figures are similar to those used in physiological experiments by 

Qiu and von der Heydt (2007) [29]. 

  Calculated BO signals after 𝑡 = 1000  iterations and the enlarged region around 

(20,17) is shown for the three figures in Figure 4.15. The direction of the circled vectors 

in the enlarged region for Figure 4.15a and Figure 4.15b point to the left. In contrast, the 

direction of the circled vector in Figure 4.15c faces the right. The modulation (direction) 

of these vectors agree with BO signals from actual physiological experiments by Qiu and 

von der Heydt (2007) [29]. The model is capable of qualitatively reproducing BO signals 

despite the absence of luminance information as an input.  
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Figure 4.15 BO signals calculated for borders of (a) overlapping opaque rectangles, 

(b) overlapping transparent rectangle, and (c) four separated squares.  

Only borders, void of luminance information, was used as model inputs. The direction of 

vectors at (20,17) agree with BO signal modulation for a neuron with a receptive field 

represented by the red circles on the images [29].  
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4.3.3 Zero BO signal 

  Physiological experiments have demonstrated that for specific figures, the BO signal at 

a border between two objects can take a value of zero [30]. Figure 4.16 shows a figure 

where the occluding object and the occluded object is unclear. The image can be perceived 

as two rectangles placed side-to-side. This figure is similar to the one used in the 

physiological experiment. Calculated BO signals (vectors) at the red circle, which 

represents the location of a receptive field, are zero. This agrees qualitatively with 

experimental data. Depth order for both objects are the same despite the existence of a 

border. 
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Figure 4.16 BO signals and depth order for a figure with a zero BO signal at the 

border.  

Zero vectors are assigned along the central border. The regions on both sides have equally 

valued depth order. The neuron used in physiological experiments shares the same 

location for the receptive field represented by the red circle [30]. BO signals from 

experiments were found to be zero, as well.  
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4.4 Complex patterns 

  Several complex patterns which do not have corresponding data from physiological 

experiments were also tested to examine the robustness of the model towards shape and 

occlusion (Figure 4.17). These include (a) a complex Y-shaped figure, (b) an O-shaped 

figure, (c) C-shaped figure occluding a square, (d) interlocking L-shapes and (e) four 

overlapping cards. The evolution of 𝑬(𝑥, 𝑦, 𝑡)  and 𝜙(𝑥, 𝑦, 𝑡)  over time for the 

respective figures are shown in Figure 4.18 to Figure 4.22. 

  Figure 4.17a shows a figure with several concave regions. Initial vectors point towards 

these concave regions in Figure 4.18. As time progresses, these vectors are corrected to 

point to the object. However, the model is incapable of reproducing the perception of an 

O-shaped given the initial vectors set to face the acute side of the L-junctions at the 

perimeter of the hole (Figure 4.19). Figure 4.17b shows a figure with both local 

concavity and occlusion. The model is capable of correcting vectors facing the locally 

concave region and resolve depth order for the two objects simultaneously (Figure 4.20).  

  Figure 4.17d shows an image perceivable as two interlocking L-shapes. Figure 4.17e 

is a similar figure. It can be perceived as four overlapping cards. As iteration 𝑡 increases, 

calculated depth order converges at a flat surface; the depth order of the two (or four) 

objects carries the same value. However, it is interesting to note that at 𝑡 = 100, depth 

order resembles perception. 
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Figure 4.17 Five figures with problems of shape, occlusion, or both. 

Simulations were conducted for (a) a complex Y-shaped figure, (b) an O-shaped figure, 

(c) a C-shaped figure occluding a square, (d) interlocking L-shapes and (e) four 

overlapping cards. 
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Figure 4.18 Evolution of BO signals and depth order over time for a figure 

perceivable as a Y-shaped object. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~2000.  
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Figure 4.19 Evolution of BO signals and depth order over time for a figure 

perceivable as an O-shape. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~2000. Model outputs do not 

agree with the perception of an O-shaped figure. 
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Figure 4.20 Evolution of BO signals and depth order over time for a figure 

perceivable as a C-shape occluding a square. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~2000. 
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Figure 4.21 Evolution of BO signals and depth order over time for a figure 

perceivable as a interlocking L-shapes. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~2000.  
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Figure 4.22 Evolution of BO signals and depth order over time for a figure 

perceivable as overlapping cards. 

Evolution of 𝑬(𝑥, 𝑦, 𝑡) and 𝜙(𝑥, 𝑦, 𝑡) over time 𝑡 = 0~2000. 
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4.5 Evaluation of results 

    Simulation results demonstrate that the model was capable of assigning BO correctly 

for figures with occlusion without the use of a specific T-junction detector. Although a T-

junctions may serve as an important occlusion cue in some cases, there are also situations 

where T-junctions are not formed by an intersection of three surfaces of differing depth 

order. Figure 4.23 shows four ways in which a local T-junction can be interpreted as. For 

all four cases, the rotation at the T-junction is zero. In particular, the depth order in Figure 

4.23c-d can be seen at T-junctions in figures containing ambiguous borders (Figure 4.16). 

The proposed model uses global contextual information to determine a unique solution 

for various perceptual problems involving depth order. 

  The proposed model simultaneously produced BO signals and depth order that 

match perception. Simulation results demonstrate that the model is highly dependent on 

initial vectors. To reproduce data from physiological experiments, initial vectors were 

provided in a deterministic manner through L-junction detectors. Spatial propagation of 

contextual information using the update rule automatically determines BO signals 

regardless of local concavity. Calculating curvature might serve as a replacement to L-

junction detectors. This would allow simulations of figures with more complex shapes to 

be carried out.  

  Although initial vectors based on L-junctions alone are useful, they are insufficient to 

reproduce depth order perception for figures such as an O-shaped figure. Reversing the 

vectors at the center, as shown in Figure 4.24 demonstrates the importance of initial 

vectors. A more global method of initial vector determination is required to reproduce 

human perception. 
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Figure 4.23 Image of a T-junction, four possible perceptions of depth order and their 

corresponding BO signals.  

Numbers on the surfaces represent depth order values. Short vectors are of length one, 

while long vectors are of length two. (a) and (b) are T-junctions where the surface to the 

top of the T-junction has the highest depth order value of the three. However, adjoined 

surfaces of equal depth order value, such as in (c) and (d) may also form T-junctions. 

Notably, the local curl at the cross-mark for all four examples is zero. 
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Figure 4.24 Reversing initial vectors at the inner border produces depth order 

consistent with perception of an O-shaped figure. 

L-junctions are vital cues to occluded object perception, but are insufficient to reproduce 

the perception of an O-shaped figure. For example, reversing initial vectors around the 

border perceived as the hole reproduces this percept. 
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5 Deductions and model comparisons 

5.1 Mathematical foundation for present models 

5.1.1 Spatial distribution of intra-cortical connections in the model by Li 

   Deductions can be made about the spatial distribution of intra-cortical connections 

from the update rule in Eq. (3.4). For example, the 𝒙̂ component of the update rule 

𝜕

𝜕𝑡
𝐸𝑥(𝑥, 𝑦, 𝑡) reveals neural connections for a neuron at (𝑥, 𝑦) with either a right object-

side (𝐸𝑥(𝑥, 𝑦, 𝑡) > 0), or a left object-side ((𝐸𝑥(𝑥, 𝑦, 𝑡) < 0) selectivity. A closer look at 

the right hand side of this update rule shows that this neuron at (𝑥, 𝑦) has connections 

to other neurons with either left or right object-side selectivity 
𝜕2

𝜕𝑦2
𝐸𝑥(𝑥, 𝑦, 𝑡)  and 

neurons either up or down object-side selectivity −
𝜕2

𝜕𝑥𝜕𝑦
𝐸𝑦(𝑥, 𝑦, 𝑡). The differentiation 

operators dictate the spatial distribution of these connections. Figure 5.1 illustrates 

possible intra-cortical connection for a neuron with a right object-side selectivity, with a 

receptive field represented by a red oval on the image. As seen in Figure 5.1a, 

connections with left or right object-side selective neurons 𝐸𝑥 is equivalent to diffusion 

in the horizontal 𝑦 -direction. Figure 5.1b, illustrates connections with left or right 

object-side selective neurons 𝐸𝑦  positioned diagonally. 

  The structure of these connections is similar to that of the model by Li (2000). A 

method to qualitatively compare the two is proposed. Spatial filters for 𝐸𝑥 and 𝐸𝑦  in 

Eq. (3.8) can be expressed as weights 𝑤𝑥(𝑥, 𝑦) ≝
𝜕2

𝜕𝑦2
𝐺𝜎(−𝑥−, 𝑦) and 𝑤𝑦(𝑥, 𝑦) ≝

−𝜕2

𝜕𝑥𝑦
𝐺𝜎(−𝑥,−𝑦). Discrete weights for a neuron positioned at (0,0) with a left or right 

object side selectivity can thus be expressed as 
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Weights can then be expressed as vectors 𝒘 = (𝑤𝑥 , 𝑤𝑦)
T  of magnitude ‖𝒘‖ =

√𝑤𝑥
2 +𝑤𝑦

2 . Weights for 𝐸𝑥(𝑥, 𝑦, 𝑡)  are visualized in Figure 5.2a using weights 

consisting of Gaussian derivative kernels with standard deviation 𝜎 = 1. Each vector 

illustrates the direction of 𝒘, whereas pixel intensity represents vector magnitude ‖𝒘‖. 

Vector magnitudes were normalized to 1.  

  Horizontal connections proposed by Li (2000) were visualized in a similar manner 

using weights for a right object-side selective neurons. In particular, the weights which 

describe connections to four types of other object-side selective neurons were used (left, 

right, up, down). These weights are visualized in Figure 5.2b. The nature of deduced 

intra-cortical connections from the proposed model and those from the model by Li 

(2000) were found to be qualitatively similar. However, the results cannot be treated as 

ground truths since the nature of horizontal connections in area V2 are currently unknown. 

 

 𝜕

𝜕𝑡
𝐸𝑥(0,0, 𝑡) = ∑∑𝑤𝑥(𝑖, 𝑗)𝐸𝑥(𝑖, 𝑗, 𝑡)

𝑗

+∑∑𝑤𝑦(𝑖, 𝑗)𝐸𝑦(𝑖, 𝑗, 𝑡).

𝑗𝑖𝑖

 (5.1) 
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Figure 5.1 Plausible neural network for a neuron that responds selectively to a 

vertical border and an object to the right of its receptive field.  

Neuron receptive fields are represented by ovals; arrows represent their object-side 

selectivity. The neuron focused on has a red oval as a receptive field. Black circles in area 

V2 represent neurons with receptive fields on the image. Neurons are either connected by 

excitatory or inhibitive neural connections, according to their relative location and object-

side selectivity. Connections with (a) right (or left) object side selective neurons were 

derived from the 𝐸𝑥 component; (b) up (or down) object side selective neurons were 

derived from the 𝐸𝑦  component in in Eq. (3.4). 
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Figure 5.2 Charactertistics of neural weights 𝒘 for a neuron at spatial position 

(𝟎, 𝟎) with a right object-side selectivity, visualized using vectors. 

Vector magnitudes ‖𝒘‖are represented by pixel intensity. The characteristics of neural 

weights for (a) the proposed model are qualitatively similar to those of (b) the model by 

Li (2000).  
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5.1.2 Annular receptive fields in the model by Craft et al. 

  Craft et al. (2007) proposed that the responses of object-side selective neurons in V2 

are modulated by hypothetical “grouping cells” with annular-shaped receptive fields. 

They base their assertion on findings in psychological experiments which suggested the 

existence of mechanisms in the visual cortex to integrate concentric circular patterns, as 

well as neurophysiological findings on the response of neurons in area V4 to concentric 

gratings [31], [32]. Weights of annular receptive fields of different radii were created in 

an ad-hoc manner; spatially discrete circles were convolved with 2D Gaussian filters. 

This study proposes that these ad-hoc weights can be reproduced by generating vector-

to-scalar integration kernels at different scales. Details will be outlined next. 

As proposed in Eq. (3.1), integrating BO signals should produce depth order. Although 

Eq. (3.9) outlines a way to estimate depth order from line integration with horizontal and 

vertical paths, no evidence exists that this calculation is feasible by the brain, especially 

since it requires calculation across the entire image. The author discovered that the sum 

of normalized one-dimensional (1D) Gaussian first derivatives is qualitatively similar to 

a Heaviside step function. The details how this was achieved will be explained next. 

  First, a 1D Gaussian with standard deviation 𝜎 is defined as 

This was combined with the octave concept, where standard deviation was replaced with 

powers of two 2𝑛 , 

An example of the normalized sum of the first derivative 

 𝑔𝜎(𝑥) = exp (−
𝑥2

2𝜎2
). (5.2) 

 𝑔𝑛(𝑥) = exp (−
𝑥2

22𝑛+1
). (5.3) 
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for integers between -10 and 10 is shown at the bottom of Figure 5.3. Notably, for a 

narrow spatial range, it is qualitatively similar to a Heaviside step function. 

  Next, a quantitative comparison will be made by differentiating the two and comparing 

the result in Fourier space. The differentiation of the negative Heaviside function 𝐻(𝑥) 

is a negative delta function −δ(𝑥). Fourier transformation on a function 𝑓(𝑥) is 

Therein, 𝑗 is the imaginary unit, where 𝑗2 = −1. The Fourier transformation of negative 

delta function −δ(𝑥) is a constant −1/√2𝜋. Therefore, if it can be demonstrated that 

the differentiation of the normalized sum of the first Gaussian derivative 

∑ 2𝑛 (
𝑑

𝑑𝑥
g𝑛(𝑥))𝑛  seen in Fourier space is a constant, one can say that it is qualitatively 

similar to a Heaviside function 𝐻(𝑥). The Fourier transformation of the differentiation 

of 𝑔𝑛(𝑥) was calculated using Mathematica,  

Integration of 𝑛 between −∞ and ∞ of Eq. (5.6) resulted in a constant, 

demonstrating the quantitative similarity of the two functions. 

  This theory can be expanded to a 2D filter that calculates line integration through paths 

of all orientations passing through (𝑥, 𝑦). This would be similar to integrating vectors in 

an annular direction. An estimate of depth order 𝜙est(𝑥, 𝑦, 𝑡)  can be calculated by 

convolution of the proposed filter with the 𝒙̂ and 𝒚̂ components, 

 

∑2𝑛 (
𝑑

𝑑𝑥
g𝑛(𝑥))

𝑛

= −∑𝑥 exp (−
𝑥2

22𝑛+1
)

𝑛

 (5.4) 

 ℱ(ω) ≝ ∫ 𝑓(𝑥)
∞

−∞

exp(−𝑗ω𝑥)d𝑥. (5.5) 

 
−2

1
2
+2𝑛exp(−2−1+2𝑛)√𝜋𝜔2. (5.6) 

 ∫ −2
1
2
+2𝑛exp(−2−1+2𝑛)√𝜋𝜔2

∞

−∞

𝑑𝑛 =
√2𝜋

log2
, (5.7) 
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Therein, 𝐺𝑛(𝑥, 𝑦) is the normalized 2D Gaussian function with its standard derivative 

replaced with powers of two 2𝑛, 

Comparisons of this method of calculating depth order with the existing method is shown 

in Figure 5.4a using values of 𝑛 from −1 to 5 at 0.1 intervals. Values were scaled 

to a maximum of 1. The proposed method produces smoother depth order surfaces 

compared to the existing method. The respective filters can be expressed as weights 

𝑤𝑥(𝑥, 𝑦; 𝑛) ≝ 2𝑛
𝜕

𝜕𝑥
G𝑛(−𝑥,−𝑦)  and 𝑤𝑦(𝑥, 𝑦; 𝑛) ≝ 2𝑛

𝜕

𝜕𝑦
G𝑛(−𝑥, −𝑦) . Discrete 

weights at (0,0) is thus rewritten as 

The magnitude of these weights ‖𝒘(𝑖, 𝑗; 𝑛)‖ = √𝑤𝑥(𝑖, 𝑗; 𝑛)2 + 𝑤𝑦(𝑖, 𝑗; 𝑛)2 at various 

𝑛 was found to resemble the annular receptive fields proposed by Craft et al. (2007). 

Figure 5.4b shows individual filters for 𝑛 = 1,2,3. Notably, parameters for annular 

receptive fields proposed by Craft et al. (2007) were not based on either a specific 

computational theory or physiological data.  A qualitative comparison of the connection 

weights will be made next. 

Craft et al. (2007) start by defining a discrete approximation to a circle of radius 𝑟 

centered at (𝑥0, 𝑦0), 

 

𝜙est(𝑥, 𝑦, 𝑡) = 2
𝑛∑(

𝜕

𝜕𝑥
𝐺𝑛(𝑥, 𝑦)

𝑛

∗ 𝐸𝑥(𝑥, 𝑦, 𝑡))  +  2𝑛∑(
𝜕

𝜕𝑦
𝐺𝑛(𝑥, 𝑦) ∗ 𝐸𝑦(𝑥, 𝑦, 𝑡))  

𝑛

 

(5.8) 

 
𝐺𝑛(𝑥, 𝑦) ≝

1

2𝑛+1𝜋
exp (−

𝑥2 + 𝑦2

2𝑛+1
) (5.9) 

 

𝜙𝑒𝑠𝑡(0,0) = ∑∑ ∑2𝑛 (𝑤𝑥(𝑖, 𝑗; 𝑛)𝐸𝑥(𝑖, 𝑗) + 𝑤𝑦(𝑖, 𝑗; 𝑛)𝐸𝑦(𝑖, 𝑗))  
𝑛𝑗𝑖

 (5.10) 
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The annular weight 𝐼𝑟(𝑥, 𝑦) is then normalized so that the total weight adds up to 1,  

regardless of radius 𝑟, 

Connection weights 𝐾𝑟(𝑥, 𝑦)  was obtained by blurring 𝐼𝑟(𝑥, 𝑦)  by means of 

convolution, 

where ℎ̂(𝑥, 𝑦) is a discrete, 2D normalized Gaussian function of standard deviation 𝜎, 

Radius 𝑟  is proportionate to standard deviation 𝜎  where 𝜎 = 2.5𝑟 . Examples of 

annular receptive fields of different 𝑟 and 𝜎, as well as receptive connection weights for 

all the annular receptive fields used is shown in Figure 5.5a-b. Connection weights are 

shown for 𝑥 > 0  of the 𝑦 = 0  cross-section of “grouping cell” receptive fields 

centered at spatial position (0,0).  

  As demonstrated in Figure 5.4, individual integration kernels required to reconstruct a 

scalar surface from a vector field resembles the annular receptive fields proposed by Craft 

et al. (2007), shown in Figure 5.5a.  

The above equation was derived from Eq.(5.10) by substituting 𝑦 = 0 and calculating 

the Gaussian derivatives expressed in terms of 𝑥  and 𝑛 . The connection weights 

proposed by Craft with the integration kernels in this study at four scales (𝑛 = 1,2,3,4) 

are qualitatively similar (Figure 5.5b).  

 𝐼𝑟(𝑥, 𝑦) = {
1 if |√(𝑥 − 𝑥0)

2 + (𝑦 − 𝑦0)
2 − 𝑟| ≤ 0.5

0 otherwise
 (5.11) 

 𝐼𝑟(𝑥, 𝑦) =
𝐼𝑟(𝑥, 𝑦)

∑ ∑ 𝐼𝑟(𝑖, 𝑗)𝑗𝑖
. (5.12) 

 𝐾𝑟(𝑥, 𝑦) = 𝐼𝑟(𝑥, 𝑦) ∗ ℎ̂(𝑥, 𝑦) (5.13) 

 ℎ̂(𝑥, 𝑦) =
exp (−(𝑥2 + 𝑦2)/2𝜎2)

∑ ∑ exp (−(𝑥2 + 𝑦2)/2𝜎2)𝑦𝑥
. (5.14) 

 𝑤study(𝑥) =
𝑥

22𝑛+1𝜋
exp (−

𝑥2

2𝑛+1
). (5.15) 



Section 5 : Deductions and model comparisons 71 

 

   

 

 

Figure 5.3 A schematic diagram showing the qualitative similarity between the sum 

of normalized 1D Gaussian first derivatives and a Heaviside function. 

(a) 1D Gaussian first derivatives of various standard deviations 2𝑛 . (b) Strategy to 

quantitatively compare both methods by differentiating and applying the Fourier 

transformation.  
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Figure 5.4 Analysis of the proposed line integration method. 

(a) Comparison of integration results using horizontal and vertical paths with integration 

results using paths from all directions implemented using annular weights. (b) Magnitude 

of the individual weights resemble receptive fields of “grouping cells” proposed by Craft 

et al. (2007) in their model. 
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Figure 5.5 Receptive fields of “grouping cells” proposed by Craft et al. (2007) 

compared to integration kernel weights proposed in this study. 

Integration kernels are qualitatively similar to the annular-shaped weights used to model 

receptive fields of “grouping cells”. This suggests that “grouping cells” may in fact be 

“integration cells”, involved in producing scalar surfaces from BO signals (vector fields).  
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5.2 Computational clarity 

  The proposed model is based on the computational theory of minimizing curl. This puts 

it above other models in term of computational clarity. It consists of simple Gaussian 

derivative filters, and only one parameter dictating kernel size: standard deviation 𝜎. In 

comparison, the model by Li (2000) requires 23 free parameters that need to be adjusted 

accordingly to express intra-cortical connections. In addition, it also may provide clarity 

to the feedforward model by Sakai et. al (2012), which utilizes randomly generated neural 

connections [17]. This study also suggests that the “grouping cells” suggested by Craft et 

al. (2007) may actually be integration cells for reproducing depth order [18]. 

 

5.3 Model limitations 

    Some object-side selective neurons in area V2 are selective to object shape [6]. The 

model by Sakai et al. (2012) successfully captured this diversity of neurons through 

randomly generated neural connections. Deduced neural connections proposed earlier are 

not capable of accounting for such diversity. Furthermore, a fraction of object-side 

selective neurons display selectivity to the polarity of the pattern in their receptive fields. 

For example, a neuron might respond to a black object to the right of its receptive field, 

but not to a white object to the right of its receptive field. Currently, the proposed model 

does not use luminance as an input and cannot reproduce these characteristics. 

  Initial vectors are set in a deterministic manner for the proposed model. As a result, BO 

signals for only one percept. Randomly setting initial vectors show that the model is 

capable of reproducing many percepts, as shown in Section 4.1. Visual areas other than 

area V2 might be responsible for the various percepts. The model does not include this 

factor in setting initial vectors through L-junctions, alone.  
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6 Extention of the proposed theory 

6.1 Surface coding and top-down interactions 

  This study agrees with the concept introduced by Marr (1982) that the objective of the 

visual system is to reconstruct a 3D interpretation of the surrounding environment using 

2D retinal images. This objective persists even in the absence of binocular disparity 

(actual depth information), such as for 2D images. For objects closer to us, binocular 

disparity is large. Binocular disparity decreases the further away from us it is located. 

However, our visual system is not a perfect machine that can measure binocular disparity 

precisely. Similarly, there may be “missing” or “undetected” information in the image of 

the outside world retrieved by our eyes. Thus, the visual system has to account for the 

possibility that information is incomplete. The completion of a surface based on 

observable/detectable edges might be the cause of the perception of a “subjective surface”. 

  The perception of a Kanizsa figure in Figure 6.1 is one example of perception of a 

“subjective surface” [33]. A subjective surface, shaped like a square, can be perceived at 

the center of the image. This square is perceived to occlude four white circles. In addition, 

“subjective contours” of the square is perceived despite no real edges existing. The visual 

system performs surface reconstruction with the assumption that these “subjective 

contours” are undetectable. Performance of the proposed model towards the Kanizsa 

figure serves as a good evaluation criterion. 

  The proposed model is only conducted on real edges, and not subjective ones. Thus, 

the model needs to be expanded to account for subjective surfaces. An update rule for 

surface depth order 𝜙(𝑥, 𝑦) can be obtained in a similar manner to BO vector field 

𝑬(𝑥, 𝑦) by setting a suitable energy function to minimize. Ideally, depth order values at 

all spatial points on a closed surface should be of the same value; surfaces should be flat. 
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An existing model which uses level-set methods to obtain flat surfaces, and consequently 

reproduce subjective contours in Kanizsa figures was adapted to obtain update rule 

𝜕𝜙(𝑥, 𝑦, 𝑡)/𝜕𝑡 [34]. The details of this model are summarized below. First, an edge 

detector was defined as 

where 

Values of 𝑔 at the edges approach 0 at discontinuities in intensity (edges), and 1 for 

areas of homogenous intensity. The differential area of a surface 𝑆: (𝑥, 𝑦) → (𝑥, 𝑦, 𝜙) 

can be defined as 

Therein, 𝜙𝑥 and 𝜙𝑦  are partial derivatives of 𝜙 with respect to 𝑥 and 𝑦. Differential 

area 𝑑𝐴 will effectively take a minimum value for flat surfaces since the gradients 𝜙𝑥 

and 𝜙𝑦  will be 0. An energy function based on the edge detector 𝑔(𝑥, 𝑦) and surface 

area 𝑑𝐴𝐸 can be formulated as 

At regions where the value of 𝑔 approaches 0, partial derivatives 𝜙𝑥 and 𝜙𝑦 , can take 

large values and not effect energy 𝐽[𝜙]. At regions where the value of 𝑔 approaches 1, 

partial derivatives 𝜙𝑥 and 𝜙𝑦 , will have to take small values so energy 𝐽[𝜙] approaches 

a minimum. 

Using the steepest descent method on Eq. (6.4) results in the following update rule, 

 𝑔(𝑥, 𝑦) =
1

1 + (|∇𝐺𝜎(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)|/𝛽)2
 (6.1) 

 𝐺𝜎(𝜉) =
exp (−(𝜉/𝜎)2)

𝜎√𝜋
. (6.2) 

 𝑑𝐴𝐸 = √1 + 𝜙𝑥2 + 𝜙𝑦2𝑑𝑥𝑑𝑦. (6.3) 

 𝐽[𝜙] = ∬𝑔(𝑥, 𝑦)√1 + 𝜙𝑥2 + 𝜙𝑦2𝑑𝑥𝑑𝑦. (6.4) 

 𝜕𝜙

𝜕𝑡
= 𝑔

(1 + 𝜙𝑥
2)𝜙𝑦𝑦 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 + (1 + 𝜙𝑦

2)𝜙𝑥𝑥
1 + 𝜙𝑥2 + 𝜙𝑦2

+ (𝑔𝑥𝜙𝑥 + 𝑔𝑦𝜙𝑦) (6.5) 
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The authors then consider a rectangular grid in space-time with the points (𝑡𝑛 , 𝑥𝑖, 𝑦𝑗) =

(𝑛Δ𝑡, 𝑖Δ𝑥, 𝑗Δ𝑦) and denote 𝜙𝑖𝑗
𝑛  as the value of 𝜙  at (𝑡𝑛 , 𝑥𝑖, 𝑦𝑗). The scheme they 

propose to approximate Eq. (6.6) is 

where 𝐷 is a finite difference operator on 𝜙𝑖𝑗
𝑛 , superscripts {−,0, +} indicate backward, 

central and forward differences respectively, and superscripts {𝑥, 𝑦}  indicate the 

direction of differentiation. Locating the boundary of the surface in the foreground, or 

subjective surface can be achieved by choosing the level set 𝜙 = {max(𝜙) − ε} . 

Simulations were carried out for a Kanizsa figure and the three benchmark stimuli. For 

simulations in this paper, 𝛽 = 0.01, Δ𝑡 = 0.1 and 𝑛 = 10000, except for the occluded 

square where 𝑛 = 20000. The subjective surface was extracted by ε = 0.15. 𝜙 was 

rescaled to 1  after every iteration. The initial surface 𝜙0  was a point of value 1 

decaying with distance 1/𝑑 set at the center of the image. Figure 6.2 shows the results 

of numerical simulations. The time course of 𝜙  for the four figures is shown in 

Appendix A.2. Edges were calculated using a Canny edge detector. 

 Qualitatively, the model is capable of reproducing the subjective surface in the Kanizsa 

figure (Figure 6.2a). However, the edges do no describe the shape of the inducers 

(Packman-shaped figures). In addition, the model does not produce satisfactory results 

 𝜙𝑖𝑗
𝑛+1

= 𝜙𝑖𝑗
𝑛

+ Δ𝑡 {[𝑔𝑖𝑗
(1 + 𝐷𝑖𝑗

0𝑥2)𝐷𝑖𝑗
0𝑦𝑦

− 2𝐷𝑖𝑗
0𝑥𝐷𝑖𝑗

0𝑦
𝐷𝑖𝑗
0𝑥𝑦

+ (1 + 𝐷𝑖𝑗
0𝑦2
)𝐷𝑖𝑗

0𝑥𝑥)

1 + 𝐷𝑖𝑗
0𝑥2 +𝐷𝑖𝑗

0𝑦2
]

− [[max(𝑔𝑖𝑗
0𝑥 , 0) 𝐷𝑖𝑗

−𝑥 +min(𝑔𝑖𝑗
0𝑥 , 0) 𝐷𝑖𝑗

+𝑥]

+ [max(𝑔𝑖𝑗
0𝑦
, 0) 𝐷𝑖𝑗

−𝑦
+min(𝑔𝑖𝑗

0𝑦
, 0) 𝐷𝑖𝑗

+𝑦]]} 

 

 

 

(6.6) 
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for the benchmark stimuli, except for the square. From these results, it is clear that the 

model by Sarti et al. (2000) alone might not be adequate to describe the perception of 

these stimuli. A method to produce satisfactory results with interactions with the BO 

assignment model in this study is proposed.  

   The author proposes using a combination of real contours with subjective contours 

from the results in Figure 6.2 as the border for the BO assignment model to be applied 

on. These subjective contours are regions where the gradient of 𝜙(𝑥, y) is large. Based 

on the established relationship, 𝑬(𝑥, 𝑦) = 𝛁𝜙(𝑥, 𝑦), 𝑬(𝑥, 𝑦) also should carry a large 

value at these regions. Pixels containing subjective contours are thus suitable regions for 

updating 𝑬(𝑥, 𝑦). This process, for example, might represent interactions between area 

V4 to area V2. The update rule was applied on (a) real contours, (b) subjective contours 

and (c) a combination of both real and subjective contours.  

Initial vectors were calculated based on the partial derivatives of border 𝐵(𝑥, 𝑦) at L-

junctions, similar to Eq. (4.1), but with Sobel filters instead of central differentiation. 

Results are shown in Figure 6.3 to Figure 6.6. Human perception tends to agree with 

either the result using (a) real or (c) a combination of real and subjective contours. A 

possible method to determine which is preferred over the other is to evaluate the number 

of real border pixels existing inside the subjective surface seen in (b). If this number 

crosses a certain threshold, the result using the real contour is adopted. This is particularly 

useful for the C-shaped figure in Figure 6.5, which has 24 real border pixels existing 

inside the subjective contour. For the combination of real and subjective contours, real 

edges exist within the subjective surface, and the result using real contours is chosen.  
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Figure 6.1 The Kanizsa figure demonstrates the perception of a subjective surface. 

Based on the “real contours”, there should be one interpretation of the image on the left: 

four packman-shaped figures. However, humans can also interpret the image as a square 

occluding four circles. As shown on the right, a “subjective surface” is perceived in this 

instance. “Subjective contours” of this “subjective surface” are perceived.  
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Figure 6.2 Numerical simulations for (a) Kanizsa figure, (b) a square, (c) a C-shaped 

figure, and (d) an occluded figure using the model by Sarti et al. (2000) and results 

of Canny edge detection.  

Although the model reproduces the subjective surface, the edges do not adequately 

capture the shape of the occluded objects. The model does not perform well with the 

benchmark stimuli, other than the square.  
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Figure 6.3 Numerical simulations of the BO assignment model for a Kanizsa figure 

using (a) real contours, (b) subjective contours and (c) a combination of both 

subjective and real contours.  
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Figure 6.4 Numerical simulations of the BO assignment model for a square using 

(a) real contours, (b) subjective contours and (c) a combination of both subjective 

and real contours.
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Figure 6.5 Numerical simulations of the BO assignment model for a C-shaped figure 

using (a) real contours, (b) subjective contours and (c) a combination of both 

subjective and real contours.  
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Figure 6.6 Numerical simulations of the BO assignment model for an occluded figure 

using (a) real contours, (b) subjective contours and (c) a combination of both 

subjective and real contours. 
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6.2 Scale-space selection and visual attention 

Results of convolution for individual filters can be used for scale-space selection for 

the size of objects. Scale-space theory, as first proposed by Lindeberg (1994), is based on 

convolution of an image 𝐼(𝑥, 𝑦) with normalized Laplacian of Gaussian (LoG) filters 

[25]. An estimation of the location and size of an object can be made, in addition to an 

estimation of the medial axis of objects. Figure 6.7 shows an the squared results of 

convolution for individual weights proposed in Eq. (5.8) with BO calculated for the 

square in Figure 4.12a. Results shown for scales 𝑛 = 1,2,3,4,5 were rescaled to 1. 

Figure 6.7f shows a graph of scale 𝑛 against squared convolution at spatial location 

(12,20). The graph takes maximum value of 1 at 𝑛 = 2.7, indicating that (12,20) is 

the center of an object with an approximate size of 22.7. The location of this maximum 

value coincides with the center of an object closest to the viewer. This can be applied to 

simulating the effect of attention. Object-based saliency map have been shown to predict 

the location of visual attention [35]. 

 The image of four overlapping cards in Figure 6.8 is an example where local attention 

at different locations produces different perceptions of depth order. Notably, calculating 

BO using the method proposed in this study produces a flat surface when the number of 

iterations are large, and an “endless staircase” when 𝑡 = 100 (Figure 4.22). Model 

results from adding local bias to intial vectors are summarized in Figure 6.8. For example, 

if one focuses on (a), the surface with the highest depth order in the vicinity is (b). When 

one focuses their attention on (b), the surface with the depth order in the vicinity is (c). 

This process continues until attention moves back to the starting point at (a). 

  Details of how the effect of local attention is seen in Figure 6.8. If we assume visual 

attention as a spotlight, initial vectors 𝑬(𝑥, 𝑦, 0) can be changed with weights 𝛼 taking 
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a maximum at the spatial location of visual attention. A possible weight 𝛼  using a 

Gaussian function of standard deviation 𝜎, located at (𝑥𝑜 , 𝑦𝑜) is  

Therein, 𝛽 = 0.4 and 𝜎 = 22.5 for this study. The location of attention (𝑥𝑜, 𝑦𝑜) was 

first set at (27,19). The location (𝑥𝑜 , 𝑦𝑜) for the next weight is obtained by searching 

for the location where squared convolution takes a maximum value. First, let us examine 

the results in Figure 6.10. Attention towards the object on the right side (27,9) of the 

image produces depth order, which resembles an ascending staircase. This agrees with 

perception if attention is given in the same manner. The next location of attention, 

calculated automatically using scale-space selection is shifted to the object with a higher 

depth order value : the object at the upper side (18,28). This process is repeated, and the 

location of attention makes a full circle back to the initial position, thus reproducing the 

perception of an “endless staircase”. Figure 6.11 to Figure 6.13 illustrates the different 

depth order (surface) perceptions based on the location to where attention is given. 

  

 𝛼 = (1 − 𝛽) exp (−
(𝑥 − 𝑥𝑜)

2 + (𝑦 − 𝑦𝑜)
2

2𝜎2
) + 𝛽 (6.7) 
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Figure 6.7 Squared convolution of individual integration kernels at different scales 

in Eq. (5.8). 

Square convolution of the BO signals (vector field) of the square in Figure 4.12a at scales 

(a) 21, (b) 22, (c) 23, (d) 24 and (e) 25. (f) Squared results of convolution for scales 

between −1 to 5 at spatial location (12,20). A maximum value 1 can be seen at 𝑛 =

2.7. 
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Figure 6.8 Example of focusing local visual attention of the perception of object 

depth order with model outputs. 

When one focuses local visual attention on (a) at the center, the surface depth order of the 

vicinity, calculated by changing initial vectors, is the highest at surface (b). One then 

moves the focus of attention to occluding object (b). This is repeated until attention moves 

back to (a). The proposed model can carry out this process automatically by use of scale-

space selection and adjusting initial vectors locally. 
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Figure 6.9 Model results for BO signals without the effect of attention and a possible 

weight for local processing.  

(a) Initial vectors, (b) calculated BO signals and (c) calculated depth order without the 

effect of attention. (d) A possible weight to change initial vectors, caused by attention to 

the object on the right side of the image. 
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Figure 6.10 Simulation results with the effect of attention on the object on the right 

side of the image. 

(a) Initial vectors, (b) calculated BO, and (c) depth order. (d) Location of attention that 

produced (a) initial vectors. (e) Squared convolution at scale 𝑛 = 2, where a maximum 

value is located at (18,28), (f) the next location of attention (object with highest depth 

order). 
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Figure 6.11 Simulation results with the effect of attention on the object on the upper 

side of the image.  

(a) Initial vectors, (b) calculated BO, and (c) depth order. (d) Location of attention that 

produced (a) initial vectors. (e) Squared convolution at scale 𝑛 = 2, where a maximum 

value is located at (8,18), (f) the next location of attention (object with highest depth 

order).  
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Figure 6.12 Simulation results with the effect of attention on the object on the left 

side of the image. 

(a) Initial vectors, (b) calculated BO, and (c) depth order. (d) Location of attention that 

produced (a) initial vectors. (e) Squared convolution at scale 𝑛 = 2, where a maximum 

value is located at (18,8), (f) the next location of attention (object with highest depth 

order).  
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Figure 6.13 Simulation results with the effect of attention on the object on the lower 

side of the image. 

(a) Initial vectors, (b) calculated BO, and (c) depth order. (d) Location of attention that 

produced (a) initial vectors. (e) Squared convolution at scale 𝒏 = 𝟐, where a maximum 

value is located at (8,18), (f) the next location of attention (object with highest depth 

order). This is the approximate location of the first location of visual attention in Figure 

6.10. 
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6.3 Brightness reconstruction from vector integration 

 In the previous section, integration of a BO vector field using multiple annular-shaped 

receptive fields was used to reconstruct surfaces and in turn reproduce depth order. This 

can be likened to processing from area V2 to area V4. One surprising discovery was the 

result of such integration on the gradient of an image 𝛁𝐼(𝑥, 𝑦) =
𝜕

𝜕𝑥
𝐼(𝑥, 𝑦)𝒙̂ +

𝜕

𝜕𝑦
𝐼(𝑥, 𝑦)𝒚̂. Such a process is analogous to processing from area V1 to area V4, or the 

reconstruction of brightness,  

Therein, partial derivatives of 𝐼(𝑥, 𝑦) were calculated with central differentiation. 

 Annular weights in Eq. (5.8) for 𝑛  from −1 to 5  at 0.1  invervals were used to 

reconstruct brightness. Figure 6.14 shows a bar that is uniformly grey over a dark to white 

gradient. The bar is perceived as light grey on the left, and dark grey on the right. The 

proposed integration method reproduces this perception. This is because the annular 

weights were limited to a scale of 𝑛 = 5, meaning that vectors located further away are 

have a smaller weight. The integration method in this study also reproduces the white and 

black “bands” in the Chevreul illusion in Figure 6.15. The relative brightness of these 

four bands are qualitatively reproduced. “Bands” arise because integration of vectors is 

conducted in a radial manner. 

  

 

𝐼(𝑥, 𝑦) = 2𝑛∑(
𝜕

𝜕𝑥
𝐺𝑛(𝑥, 𝑦)

𝑛

∗
𝜕

𝜕𝑥
𝐼(𝑥, 𝑦))  +  2𝑛∑(

𝜕

𝜕𝑦
𝐺𝑛(𝑥, 𝑦) ∗

𝜕

𝜕𝑦
𝐼(𝑥, 𝑦)) . 

𝑛

 

(6.8) 
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Figure 6.14 The method of brightness reconstruction proposed in this study 

reproduces the perception of a brightness gradient on a uniformly-filled bar. 

The integration method proposed in this study reproduces the perception of a light to dark 

grey bar. (a) Input image 𝐼(𝑥, 𝑦), (b) gradient of image 𝛁𝑰(𝑥, 𝑦), and (c) integration of 

the image gradient using integration kernels proposed in this paper 𝐼(𝑥, 𝑦). Contrast of 

the bar with its background produces the perception of a grey bar that has a gradient from 

light to dark, despite it having a uniform physical luminance. 
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Figure 6.15 The method of brightness reconstruction proposed in this study 

reproduces the bands seen in the Chevreul illusion. 

The integration method proposed in this study reproduces the perception of a light to dark 

grey bar. (a) Input image 𝐼(𝑥, 𝑦), (b) gradient of image 𝛁𝐼(𝑥, 𝑦), and (c) integration of 

the image gradient using integration kernels proposed in this paper 𝑰̂(𝒙, 𝒚). Four light 

and dark “bands” are perceived at the ramps between regions of three different luminance 

values. Integration using the multiple annular-shaped integration kernels qualitatively 

produces the relative brightness of these bands, where 1 is the brightest and 4 is the 

darkest.  
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7 Discussion and conclusion 

7.1 Overall discussion 

  In the previous section, perceptual alternation and dependence of simulation results on 

initial vectors was discussed briefly. Although the mechanics of such an initial vector 

assignment is unknown, the model is capable of reproducing the two percepts from a C-

shaped contour, as seen in Figure 4.3. The energy is at a local minima and the system is 

its stable state for both percepts. Figure 7.1 illustrates the nature of an energy function 

with two local minima, corresponding to the two stable percepts. For explanation 

purposes, suppose that perceptual alternation occurs in this case. This would require 

crossing the peak which separates the two local minima. Perceptual alternation was 

reported to to be caused by a discrete schotastic process in the brain [36]. Although the 

proposed model cannot produce the discrete states in the transition phase, it is capable of 

producing the stable states where energy is at a minimum. 

  Local concavity is a low-level perceptual cue for object-side. A possible mechanism 

that might explain various percepts is attention. Psychophysical research using stimuli 

with locally concave but globally convex images was used to demonstrate the effect of 

attention on the perception of depth order [37]. Drawing the viewer’s attention to the 

locally concave area resulted in a reverse of the perception of depth order of the attended 

region. Physiological experiments support the effect of attention on depth order, as object-

side selective neurons respond stronger when attention is given to the object [38]. It is 

also important to note that object familiarity plays a role in the perception of depth order 

in an image [39]. A combination of attention towards local concavity cues and top-down 

effects from object recognition might contribute to how an image is perceived. 

  In this study, an existing model which successfully reproduce subjective surfaces was 
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adopted [40], [41]. As demonstrated in Section 4.2, using real and subjective contours 

appropriately successfully reproduced human perception. It has been reported that there 

are sets of neurons which respond at equal strength towards both real and subjective 

contours, in addition to solely real or subjective ones (100 ms after stimulus onset) [42]. 

Neurons which respond towards subjective surfaces respond earlier, or simultaneously 

with those which respond towards subjective contours in area V4 [43]. This suggests area 

V4 might be the location where surface reconstruction and border completion is 

conducted. In simulations, initial surfaces were set manually. However, scale-space 

theory can be used to set the location for an initial surface in the model. 

  Experiments by Chen at al. (2014) on areas V1 and V4 in awake monkeys suggest that 

global contours are processed concurrently in a bidirectional loop [44]. In this study, a 

possible framework framework for interactions between for BO and depth order (area V2 

and V4) was proposed based on real and subjective contours. Interactions in time between 

BO and depth order need to be addressed to produce a model which might reproduce the 

findings by Chen et al (2014). One possible dynamic to achieve this is to incorporate the 

update rule for depth order ∂𝜙(𝑥, 𝑦, 𝑡)/ ∂𝑡 in the update rule for BO 𝑬(𝑥, 𝑦, 𝑡)/ ∂𝑡 and 

vice-versa, 

where 𝛼 and 𝛽 are suitable parameters. The author hopes to address this in a future 

work. 

 ∂𝑬

∂𝑡
= 𝛁⊥curl(𝑬) + 𝛼𝛁

∂𝜙

∂𝑡
 (7.1) 

 ∂𝜙

∂𝑡
= 𝑔

(1 + 𝜙𝑥
2)𝜙𝑦𝑦 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 + (1 + 𝜙𝑦

2)𝜙𝑥𝑥
1 + 𝜙𝑥2 + 𝜙𝑦2

+ (𝑔𝑥𝜙𝑥 + 𝑔𝑦𝜙𝑦)

+ 𝛽∬
∂𝑬

∂𝑡
𝑑𝑥𝑑𝑦 

(7.2) 
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  The proposed model is based on the assumption that both BO 𝑬(𝑥, 𝑦) and depth order 

𝜙(𝑥, 𝑦) are unknown at stimulus onset. This condition occurs for 2D images or when 

disparity is not large enough to estimate object depth order. As introduced earlier, the 

response of some BO-coding neurons in area V2 are effected by both Gestalt cues such 

as closure of contours, as well as actual stereoscopic depth [9]. In a condition where depth 

order 𝜙(𝑥, 𝑦) can be estimated by, for example, binocular disparity, calculating the 

gradient of depth order 𝛁𝜙(𝑥, 𝑦) will result in BO 𝑬(𝑥, 𝑦). 

  Amodal completion is an important process in object recognition. For example, 

Fukushima (2005) proposed a neural network model to restore partially occluded 

alphabets [45]. The occluding patterns were removed using predefined masks before the 

pattern restoration process. It might be possible to employ the proposed model to remove 

these occluding patterns automatically. 
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Figure 7.1 Characteristics of the energy function proposed in this study. 

Two local minima exist, where the system is in a stable state. The proposed model is 

capable of producing these two percepts depending on the initial conditions. Supposing 

the image is perceptually bistable, and perceptual alternation occurs, the system will have 

to reach the local minimum on the opposing side of the peak between them. This is 

represented by the double-sided arrow. 
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7.2 Summary and conclusion 

  This study is the first to formulate the BO assignment in a well-defined manner. 

Treating BO signals as a vector field 𝑬(𝑥, 𝑦), and depth order as a scalar field 𝜙(𝑥, 𝑦), 

an analogy was made to the relationship between an electric field and its electric potential: 

the gradient of electric potential is an electric field (𝑬(𝑥, 𝑦) = 𝛁𝜙(𝑥, 𝑦)). Using the 

theorem of zero curl for a conservative field, an update rule was formulated. Simulation 

results of the proposed model was capable of solving BO assignment and depth order 

simultaneously for various problems involving occlusion and shape. This study also 

provided a mathematical base for existing models (Figure 7.2). Characteristics of 

deduced neural networks was similar to the model by Li (2005), suggesting that its 

computational objective is to minimize curl. The annular receptive fields of grouping cells 

by Craft et al. (2007) was similar to those deduced from executing the task of 

reconstructing surfaces from BO signals, suggesting that its computational objective is to 

integrate vector fields. The reproduction of random neural connections Sakai et al. (2012) 

will be addressed in a future work. The addition of surface completion using an existing 

model showed how subjective surfaces and contours can be reproduced using top-down 

processing. Although the computational theory proposed is a simple one, the findings in 

this study might serve as a fundamental base for others studies in object perception. 
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Figure 7.2 This study provides a mathematical foundation for existing models. 

(a) This study suggests that the computational objective of ad hoc neural weights 

proposed by Li (2005) is to minimize the curl of a vector field. (b) This study suggests 

that the computational objective of annular weights based on circle detection proposed 

by Craft et al. (2007) is to integrate BO signals to reconstruct depth order scalar field.  
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Appendix A.1 

  The following is a direct excerpt of the description of the connection weights in the 

model by Li (2005). 

  To describe the synaptic weights, we need some notation. Let 𝛽 be the direction of the 

spatial displacement 𝑗 − 𝑖 (spatial distance is in the unit of the grid) from one cell 𝑖𝜃 to 

another 𝑗𝜃′ , 𝑑 = |𝑖 − 𝑗|, and 0 ≤ 𝜃, 𝜃′ < 2𝜋 . Let 𝜃1 = 𝜑(𝜃, 𝛽) and 𝜃2 = 𝜑(𝛽, 𝜃
′) , 

where 

𝜑(𝑥, 𝑦) = {

𝑥 − 𝑦 𝑖𝑓 − 𝜋 < 𝑥 − 𝑦 ≤ 𝜋
𝑥 − 𝑦 + 2𝜋 𝑖𝑓 𝑥 − 𝑦 ≤ 𝜋
𝑥 − 𝑦 − 2𝜋 𝑖𝑓 𝑥 − 𝑦 > 𝜋

 

 Denoting 

𝑠𝑖𝑔𝑛(𝑥) = {
1 𝑥 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 Define (𝜃′1, 𝜃
′
2) = (𝑠𝑖𝑔𝑛(𝜃1)|𝜋 − |𝜃1||, 𝑠𝑖𝑔𝑛(𝜃2)|𝜋 − |𝜃2||). Then, 

(𝜃𝑎 , 𝜃𝑏) = {
(𝜃1, 𝜃2) 𝑖𝑓 |𝜃1| + |𝜃2| ≤ |𝜃1′| + |𝜃2′|

(𝜃′𝑎 , 𝜃′𝑏) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 Now 𝜃𝑎 and 𝜃𝑏  describe the directional angle between the two border segments (𝑖𝜃) 

and (𝑗𝜃′) and the spatial displacement 𝑗 − 𝑖 . The directional angles are positive or 

negative if a right turn or left turn of no more than half a cycle brings the border segments 

aligned with 𝑗 − 𝑖 or 𝑖 − 𝑗. Define 𝜃′± ≡ 𝜃𝑎 ± 𝜃𝑏, 

𝜃± = {

𝜃′± −𝜋 ≤ 𝜃′± ≤ 𝜋

2𝜋 − 𝜃′± 𝜃′± > 𝜋

−2𝜋 − 𝜃′± 𝜃′± < −𝜋
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𝑱𝑖𝜃,𝑗𝜃′ =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 (

11

108
) 𝑒𝑥𝑝 {−

[3 − 2.5𝑠𝑖𝑔𝑛(𝜃+)]|𝜃+|

5𝜋
−
2𝜃−

2

𝜋2
}𝑓1(𝑑), 𝑖𝑓 |𝜃𝒂| ≤ 𝜋/11, |𝜃𝑎|

(11/81)𝑒𝑥𝑝 {
−3𝜃+
5𝜋

−
2𝜃−

2

𝜋2
}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎, 𝜃𝑏 ≥ 0, 𝜃+ ≥ 𝜋/2.01;

(11/81)𝑒𝑥𝑝 {−(
9𝜃+
8𝜋

)
2

−
2𝜃−

2

𝜋2
}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎, 𝜃𝑏 ≥ 0, 𝜃+ < 𝜋/2.01;

(11/81)𝑒𝑥𝑝 {−(
9𝜃+
8𝜋

)
2

− 0.5(
𝜃−
𝜋/2

)
6

}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎, 𝜃𝑏 ≥ 0, 𝜃+ ≥ 𝜋/2.01;

(11/81)𝑒𝑥𝑝 {−4(
𝜃+
𝜋
)
2

−
9𝜃−

2

𝜋2
}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎, 𝜃𝑏 ≤ 0;

(11/81)𝑒𝑥𝑝 {11.5𝑠𝑖𝑔𝑛(𝜃+)
𝜃+
2

𝜋2
−
14𝜃−

2

𝜋2
}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎 ∙ 𝜃𝑏 ≤ 0; |𝜃−| < 𝜋/2.01;

(11/81)𝑒𝑥𝑝 {11.5𝑠𝑖𝑔𝑛(𝜃+)
𝜃+
2

𝜋2
−
15

4
(
2𝜃−
𝜋
)

6

}𝑓2(𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝜃𝑎 ∙ 𝜃𝑏 ≤ 0; |𝜃−| ≥ 𝜋/2.01.

 

where 

𝑓1(𝑑) = 𝑒𝑥𝑝 [− (
𝑑

9
)
2

], 

𝑓2(𝑑) = 𝑒𝑥𝑝 [−
𝑑

5
], 

𝑓1(𝑑) = 𝑓2(𝑑) = 0 𝑓𝑜𝑟 𝑑 > 10 𝑎𝑛𝑑 𝑑 = 0. 

This, though cumbersome, is no more than a piecewise parameterization of the lateral 

connections with changes in spatial configuration between the underlying border 

segments. Additionally, the connection strength decays with distance between linked cells, 

vanishes for distance larger than 10, and is a translation invariant quantity depending 

only on 𝜃, 𝜃′, and the relative displacement 𝑗 −  𝑖. Meanwhile, the connections onto the 

interneurons are 

𝑾𝑖𝜃,𝑗𝜃′ = 𝑐(𝑱𝑖(𝜃+𝜋)%(2𝜋),𝑗𝜃′ + 𝑱𝑖𝜃,𝑗(𝜃′+𝜋)%(2𝜋))/𝑱𝑖,0,𝑖+1𝑥 ,0 

Where 𝑥%(2𝜋) = 𝑥 if 𝑥 < 2𝜋 and 𝑥%(2𝜋) = 𝑥 − 2𝜋 otherwise, 𝑖 + 1𝑥 is the grid 

position one unit displaced from 𝑖 horizontally, and 𝑐 = 0.02646 usually, except when 

(𝜃𝑎 , 𝜃𝑏) as defined above for the two border segment (𝑖𝜃) and (𝑗(𝜃′ + 𝜋)%(2𝜋)) 

satisfy |𝜃𝑎|, |𝜃𝑏| ≤ 𝜋/11, in which case 𝑐 = 0.0147. 
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Appendix A.2 

The time course of the upate rule for 𝜙(𝑥, 𝑦) is shown below. 

Table A.1 

𝑛 = 1 𝑛 = 1000 𝑛 = 2000 

   

𝑛 = 3000 𝑛 = 4000 𝑛 = 5000 

   

𝑛 = 6000 𝑛 = 7000 𝑛 = 8000 

   

𝑛 = 9000 𝑛 = 10000  
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Table A.2 

𝑛 = 1 𝑛 = 1000 𝑛 = 2000 

   

𝑛 = 3000 𝑛 = 4000 𝑛 = 5000 

   

𝑛 = 6000 𝑛 = 7000 𝑛 = 8000 

   

𝑛 = 9000 𝑛 = 10000  
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Table A.3 

𝑛 = 1 𝑛 = 1000 𝑛 = 2000 

   

𝑛 = 3000 𝑛 = 4000 𝑛 = 5000 

   

𝑛 = 6000 𝑛 = 7000 𝑛 = 8000 

   

𝑛 = 9000 𝑛 = 10000  
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Table A.4 

𝑛 = 1 𝑛 = 1000 𝑛 = 2000 

   

𝑛 = 3000 𝑛 = 4000 𝑛 = 5000 

   

𝑛 = 6000 𝑛 = 7000 𝑛 = 8000 

   

𝑛 = 9000 𝑛 = 10000  
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