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和文概要 
 
 

本研究は、通信ネットワークの問題に対してロバスト最適化の手法を適用すること

をテーマとしている。 
1 つ目の題材は、基幹ネットワークが混雑しないようにルーティングを定める問題

である。基本的かつ重要な問題である。既存研究では、通信需要が正確にわかってい

るモデルや末端ノードにおける入出力量が制限されているモデルなど、さまざまなモ

デルが提案されている。この問題において通信需要が正確にはわかっていない場合を

想定し、真の通信需要が楕円体と多面体の交わりに含まれているという仮定のもとで

ロバスト最適化の手法を適用し、その問題を 2 次錐計画問題として定式化した。いく

つかの例に対して数値実験を行い、提案したモデルは汎用ソルバーを用いて合理的な

時間内で求解可能であることを示し、また、従来のモデルとの比較検討を行なった。 
2 つ目の題材は、エネルギーの節約のために不要なネットワークのリンクの電源を

落とす問題である。このとき、真の通信需要が正確にはわからない状況は容易に起こ

りうるし、ネットワーク全体が通信需要のゆらぎに対して頑健であることが求められ

る。真の通信需要が楕円体と多面体の交わりに含まれているという仮定のもとでロバ

スト最適化の手法を適用し、その問題を整数 2 次錐計画問題として定式化し、実際に

汎用最適化ソルバーで求解できることを示した。 



Abstract

This thesis focuses on providing robust optimization models for min-

imization of the network congestion ratio and design of power e�-

cient network that can handle fluctuation in tra�c demands between

source-destination pairs in the networks. It has become essential to

design networks that are robust to di↵erent tra�c conditions.

In the first part of the thesis, we propose robust optimization

models to minimize congestion ratio for better performance of the

network. The simplest and widely used model to minimize the con-

gestion ratio, called the pipe model, is based on precisely specified

tra�c demands. However, in practice, network operators are often

unable to estimate exact tra�c demands as they can fluctuate due to

unpredictable factors. To overcome this weakness, we apply robust

optimization to the problem of minimizing the network congestion ra-

tio. First, we review existing models as robust counterparts of certain

uncertainty sets. Then we consider robust optimization assuming el-

lipsoidal uncertainty sets; the total amount of squared errors in tra�c

demands is bounded by a positive constant which represents the to-

tal admissible fluctuations over the network, and derive a tractable

optimization problem in the form of second-order cone programming

(SOCP). Furthermore, we take uncertainty sets to be the intersection

of ellipsoid and polyhedral sets, and considering the mirror subprob-

lems inherent in the models, obtain tractable optimization problems,

again in SOCP form. Compared to the previous model that assumes

an error interval on each coordinate, our models have the advantage

of being able to cope with the total amount of errors by setting a

parameter that determines the volume of the ellipsoid.



In the second part of the thesis, a green and robust optimiza-

tion model is proposed to minimize the network power consumption.

There are several researches that assume fluctuation in the tra�c-

demand matrix, our model is based on the idea of the green hose

model where the knowledge of an exact tra�c-demand matrix is not

required. In the green hose model, the tra�c is bounded by just total

outgoing and incoming amount at each node. To allow fluctuations in

tra�c demands, here we also consider the same uncertainty set and

subproblems as we did in the first part and formulate the green hose

ellipsoid (green HE) model in the form of mixed-integer second-order

cone programming (MISOCP) problem whose objective is to reduce

the total energy by allowing some links to be put into the sleep mode.

Furthermore, we establish a relationship between our model and the

green HLT model, formulated from an extended version of the hose

model called the hose model with bound of link tra�c (HLT).

Numerical results demonstrate that our proposed robust op-

timization models for congestion ratio and power e�cient network

achieves the performances with tra�c fluctuations comparable to the

previous studies in terms of congestion ratio, computation time and

power e�ciency.
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Chapter 1

Introduction

Nowadays, it is important to ensure an appropriate routing scheme in a network

so that an operator can perform better in the case of tra�c fluctuations due to

various reasons and users’ need. In a backbone network, sending too much infor-

mation on just a few of the links causes serious network congestion that results

in greater end-to-end delay, packet loss, and decreasing the throughput. Network

congestion can severely degrade the performance of the network [1]. Fortunately,

setting an appropriate routing can enlarge the network resource utilization rate

and the throughput [9]. Finding such a proper routing is a major concern for

network operators whose goal is to provide better network performance.

The maximum link utilization rate among all links in a network is called the

network congestion ratio [2]. Minimizing network congestion ratio is equivalent

to maximizing additional admissible tra�c [21].

Energy e�ciency network is also a major concern in modern communication

systems. Specially for economical and environmental reasons, energy-e�cient

networking has received a remarkable research interest over the last decade. The

huge amount of power is consumed by the information and communication tech-

nology (ICT) sector and it can save the worldwide energy by 2% to 10% [3],

[4].

There are several researches on minimizing network power consumption that

have been presented in the history. Most of them are presented under the as-

sumption that the tra�c-demand matrix, the set of tra�c demands, is known

and there are some bounds on the total outgoing/incoming tra�c from/to node.

1



1. INTRODUCTION

Or, in addition to these bounds, tra�c demands between each source and des-

tination pair are bounded by upper and lower bounds [56]-[60]. There are also

some studies on estimating the tra�c-demand matrix, which makes it easy for

network operators to avoid frequent dynamic route changes [61]-[63]. Most of

the previous studies have a common objective to turn o↵ some links for green

computing.

1.1 Fluctuations of tra�c demands

The outgoing and incoming amount at each node in the network is defined as

tra�c. The tra�c demand is denoted as the tra�c volume that a source node

requests to send to a destination node and the link capacity is the maximal volume

of tra�c that a link can accommodate. The tra�c demands and link capacities

are expressed in bits per seconds (bps). The set of demands which describes all

the tra�c demands between each source-destination pair in the network is called

the tra�c-demand matrix. When the network size is large, it is not easy for

network operators to know the actual tra�c matrix. In other words, since tra�c

demand between source and destination nodes easily fluctuates depending on the

users’ needs, it is di�cult task for network operators to compute the exact tra�c-

demand matrix. Therefore, it is challenging work for network operators to deal

with the uncertain nature of tra�c demands, if there are some errors in tra�c

demands. In the Figure 1.1, the matrix T which describes the tra�c demands,

dij for i = 1, 2, 3 and j = 1, 2, 3, is the tra�c matrix. If there are some errors in

dij, then it is not so easy for operators to deal with this matirx.

1.2 Related work

1.2.1 Problem of minimizing network congestion ratio

There are several studies on the problem of minimizing the network congestion

ratio. Wang and Wang [2] state that the problem of finding flows that minimize

the network congestion ratio can be cast into a linear programming (LP) problem

with the assumption that the tra�c demand dpq for every pair of source node p

2



1.2 Related work

Figure 1.1: Measurement of tra�c demands.

and destination node q, (p, q), is exactly known. This tra�c-demand model is

equivalent to the pipe model presented in [17], [18].

In practice, obtaining the exact tra�c-demand matrix is di�cult, if not im-

possible, for network operators. In a typical situation, the network operators can

only estimate the total outgoing/incoming tra�c from/to each node rather than

the actual tra�c-demand matrix [13], [15]. Chu et al. [13] formulated the prob-

lem of minimizing the network congestion ratio under this situation into an LP

problem. Their tra�c-demand model is called the hose model to contrast it with

the pipe model [17], [18]. The hose model rids network operators of the heavy

task of estimating the tra�c-demand matrix exactly.

In general, the hose model has much lower routing performance than the pipe

model. Based on the idea of additionally bounding the tra�c demands in the hose

model, Oki and Iwaki [20], [21] introduced another tra�c-demand model that sets

upper and lower bounds on the tra�c demand between each pair of source and

destination nodes in the network. They state that the problem of minimizing

the network congestion ratio using their model can also be formulated as an

LP problem. We call this model the hose-rectangle model in this paper as the

bounded area for the tra�c-demand matrix is contained in a rectangle.

3



1. INTRODUCTION

1.2.2 Power e�cient network problem

In this thesis, we also propose another robust optimization model for minimization

of the network power consumption. Minimizing the network power consumption

is also ongoing research and there are lots of studies that have been presented in

the history.

To minimize the power consumption in networks, Bianzino et al. [56] intro-

duced the green pipe model based on the knowledge of previously specified tra�c-

demand matrix. The green pipe model achieves the high performance due to exact

tra�c demands. However, it may not be fully applicable in the case where the

tra�c demands often fluctuate.

In green computing, Ouédraogo and Oki [30] applied the idea of the hose

model introduced by Du�eld et al. [17]. The hose model is contrary to the pipe

model introduced by Wang and Wang [2] and does not require the exact tra�c-

demand matrix as the pipe model does. In the hose model, they bound the tra�c

with total outgoing and incoming amount of tra�c at each node. The hose model

is robust against tra�c uncertainty and it is called a flexible service model.

Ouédraogo and Oki [30] introduced the green HLT model under tra�c uncer-

tainty to achieve power saving in networks. The green HLT model is proposed

on the idea of a model called the hose model with bound of link tra�c (HLT)

[31], which is the developed version of the hose model. In HLT, the authors as-

sume that network operators are able to impose additional bounds on the tra�c

passing through each link. The tra�c bound for each link is determined by total

amount of tra�c measured on that link. Since the performance of the model

depends on the maximum amount of tra�c measured on each link, In the green

HLT model, the authors proposed a parameter which indicates uncertainty to

maximum amount of tra�c measured on each link in order to maintain the ro-

bustness in the model. In the green HLT model, the additional bound on link

fixes the range of tra�c demand described by the hose model and makes it close

to the pipe model.

4



1.3 Problem statement

1.3 Problem statement

Based on the previous work related to the congestion ratio problem and power

e�cient networks, using the formulations based on the knowledge of the exact

tra�c information (pipe model) makes it possible to achieve significant perfor-

mance in both cases. However, these approaches, apart from the di�culty of

tra�c prediction for operators, have weaknesses in face of tra�c fluctuation. A

scheme applying the hose model, on the other hand, provides robustness against

tra�c uncertainty, but meager routing and energy performance compared to the

pipe model. The limitation with the hose model, which is highly conservative, is

due to the wide range of tra�c specification considered. On the other hand, the

hose-rectangle model is also robust and provides better routing performance by

adding additional bounds to the tra�c demand for each pair. The hose-rectangle

model has a weakness, that is, it does not deal with total fluctuation over the

network except fluctuation in each pair.

In the case of power e�cient network, the green HLT model is also robust

against tra�c uncertainty. In the green HLT model, the authors bound the

tra�c passing through each link by total amount of tra�c measured on that link

as an additional bound to the hose model. The performance of the green HLT

is closed to the green pipe model due to additional bound for each link. But the

green HLT requires initial routing to compute the total tra�c measured on each

link and the routes need to be changed after solving the optimization problem

which is not preferable for additional operating procedures needed to maintain

network stability.

Our goal is to provide robust optimization models in the form of SOCP for

minimization of congestion ratio and power e�cient network, where we can use an

ellipsoidal uncertainty set to allow total amount of fluctuation over the network

without any additional bound and enhance the performances compared to the

pervious studies. This is the objective in this thesis.

5



1. INTRODUCTION

1.4 Contributions

This thesis introduces robust optimization models to minimize the network con-

gestion ratio and for the design of power e�cient networks allowing fluctuations

in tra�c demands between source-destination pair in the network. The assump-

tion is that the network operator can estimate the tra�c-demand matrix, but

the estimated values may contain some errors where the total amount of er-

ror is bounded by a predefined constant. In other words, we assume that the

tra�c-demand matrix is contained in some uncertainty set whose ‘center’ is the

estimated tra�c-demand matrix and whose volume is bounded by some constant.

This is a relevant situation if we remember that estimating the tra�c-demand

matrix exactly is a virtually impossible task. Our models allow the network op-

erator to roughly estimate the tra�c-demand matrix, and indicate the amount

of admissible error.

In the first part of this thesis (Chapter 5), we apply robust optimization to

minimize the network congestion ratio with tra�c fluctuation. To do this, we

consider an ellipsoidal uncertainty set, di↵erent from the hose and hose-rectangle

uncertainty sets. Here we propose two models. The ellipsoid model considers

only the ellipsoidal uncertainty set, and the hose-ellipsoid model considers both

the hose and ellipsoidal uncertainty sets. We derive robust counterparts for these

models which turn out to be SOCP problems. To derive the robust counterpart

of the hose-ellipsoid model, we exploit the duality of conic linear programming in

the presence of polyhedral cones [41].

In contrast to the hose-rectangle model, which considers the error of each

source/destination pair, our ellipsoidal uncertainty set allows us to manage just

the total amount of error among all pairs. The ellipsoidal uncertainty set is

especially appropriate when the network-wide demands are governed by a multi-

variate gaussian probability distribution whose average is the estimated tra�c-

demand matrix.

It is well-known that, in general, a robust counterpart of LP with an ellipsoidal

uncertainty set becomes an SOCP [24]. Our first model, the ellipsoid model,

follows this logic; the original model is an LP, and we consider the ellipsoidal

uncertainty set used to derive its robust counterpart as an SOCP. However, in the

6



1.5 Organization of the thesis

second model, the hose-ellipsoid model, we consider the intersection of polyhedral

and ellipsoidal sets as an uncertainty set. Deriving a robust counterpart in such

a case is non-obvious, but we are able to derive it as an SOCP by applying the

duality theorem of SOCP. This is our major contribution.

In the second part of this thesis (Chapter 6), we propose a green and robust

optimization model to the problem of minimizing the network power consump-

tion using the same ellipsoidal uncertainty set that can also deal with tra�c

fluctuations. Our model introduced in that chapter is based on the hose-model-

based optimization in green research applying second-order cone programming

(SOCP) [16]. Our ultimate goal is to reduce the power consumption in networks

by turning o↵ some unnecessary links under tra�c fluctuation. To do this, we

use an ellipsoidal uncertainty set in addition to the hose model tra�c bounds,

where we assume that the true tra�c-demand matrix is contained in the uncer-

tainty set whose center is the estimated tra�c-demand matrix and whose volume

is bounded by some constant which indicates the total amount of fluctuation over

the network

For robust optimization, we consider subproblems for the worst-case tra�c

scenario taking the uncertainty set which is the intersection of ellipsoidal and

polyhedral sets. The subproblem is changed into a tractable SOCP problem.

Finally using the knowledge of conic duality of the subproblem, we formulate

the green hose ellipsoid (green HE) model again in mixed-integer second-order

cone programming (MISOCP) form. Our proposed model allows the network

operator to roughly estimate the tra�c-demand matrix and represents the amount

of permissible errors in the tra�c demands.

1.5 Organization of the thesis

In Chapter 2, we discuss network communication with components of network,

network model, and di↵erent types of network. Basic concept of conic program-

ming and its dual are described in Chapter 3. In the later part of Chapter 3, we

briefly discuss about mixed-integer second-order cone programming. The robust

optimization with uncertainty sets are described in Chapter 4.

7



1. INTRODUCTION

Chapter 5 presents the robust optimization model for the problem of mini-

mizing the network congestion ratio. In this chapter, first we explain the pipe

model, which demands the exact tra�c-demand matrix, and then, we show that

the hose and hose-rectangle models can be viewed as robust counterparts of the

pipe model. After introducing the ellipsoidal uncertainty set that we use in our

models, we formulate the ellipsoid model, the hose-ellipsoid model, and derive

their robust counterparts.

In Chapter 6, another robust optimization model is presented in order to min-

imize the network power consumption for green computing considering the tra�c

uncertainty. The power model used to build the model is first introduced. Then

the steps, which lead to the MISOCP formulation of green HE, are explained

in details using the same uncertainty set as we used for formulation of the HE

model in Chapter 5. These steps include the formulation for known tra�c de-

mands (green pipe model) and the formulation of the green hose model and green

HLT models using the respective uncertainty sets.

The performances of our proposed models for congestion ratio and power

e�cient network are shown in experiments sections at the end of Chapter 5 and

Chapter 6, respectively. We have conducted the experiments to check whether

the proposed models can be solved in a reasonable time or not. In particular, in

the case of MISOCP, there is a possibility that the problem cannot be solved in

a reasonable time because it is NP-hard. The another reason for experiments is

to observe some properties of the proposed models with respect to other models

numerically. Some properties are proved in theory, but some are not proved.

Chapter 7 concludes the thesis by summarizing the findings and showing the

direction for future work.
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Chapter 2

Network communications

A communication network is an infrastructure that allows two or more nodes to

communicate each other. The network accomplishes this by arranging a set of

rules for communication, which are called protocols that should be observed by

all participating nodes. In this chapter we review the fundamental concept of

network communication. We will first discuss the constituent network compo-

nents and various types of network, and then introduce the network model and

backbone network.

2.1 Components of communication network

2.1.1 Node

A node is a point or vertex where more than two branches (links) meet. In a

general communication network, there may be a large number of nodes and it is

not necessary that each of them is connected to all others. The nodes typically

handle the network protocols and provide switching capabilities. A node is usually

itself a computer (general or special) which runs specific network software. The

computers are also called the hosts of the network. The function of a network

node is to make a connection between the output and incoming paths so that

the signal can be switched to the desired path for onward transmission. In a

telephone network, the telephone exchange (circuit switch) works as a node. In

a data network, packet switch is known as node and is usually indicated to as a

9



2. NETWORK COMMUNICATIONS

router. There are some nodes, like the message and packet switching ones, that

have bu↵ers and storage for messages. These kinds of nodes work as store-and-

forward switches. There are also other functions of nodes like determining the

incoming message, testing the free outlet, signaling, etc.

In a communication network, there are two kinds of nodes: edge node and

intermediary node. The function of an edge node is to admit the data into the

network and forward the data from one network to another network. The function

of an intermediary node is to receive and forward data from one node to another

node.

2.1.2 Link

The transmission medium of a communication network is known as a link which

can be either a wire or a radio channel. There are di↵erent kinds of wired trans-

mission medium such as a co-axial cable, an optical fiber, pair of copper wires or

a multi-pair cable. The above transmission medium broadcasts the signals from

one node to the other. The wireless transmission medium is a part of electromag-

netic spectrum ranging from very low frequency to ultra high frequency including

millimeter and optical waves. The wireless and wire channels can support data

rates ranging from a few bits per second to many Giga/Peta bits per second since

they have a very wide range of bandwidth. Due to various reasons such as dis-

persion and attenuation, the lengths of these transmission links are limited. All

kinds of links in a communication networkIt are not necessary to be of the same

type. Some of them can be wireless and some other may be wired.

2.2 Network model

A network interconnects many nodes through which a desired entity flows. The

network is expressed as a directed graph G(V,A), where A is the set of links

and V is the set of nodes. Let the set Q ✓ V represents the set of edge nodes

through which data is admitted into and going outside the network. In this

thesis, an edge-node pair of p 2 Q and q 2 Q, where p 6= q, is denoted by

(p, q) 2 W , where W indicates the set of edge-node pairs (p, q). The link from

10



2.2 Network model

node i 2 V to node j 2 V \{i} is represented as (i, j) 2 A, i 6= j. Here cij and uij

represent the capacity and the flow on (i, j) 2 A, respectively. We consider the

full duplex links in this research and both directions are powered on when there

is data in one direction. Deactivating a link between node i and node j means

deactivating both directions (i, j) and (j, i). The binary variable bij represents

the on/o↵ status of the links. The orientation of link remains di↵erent in the

mathematical formulation although both directions (i, j) and (j, i) are powered

on or o↵ simultaneously. Power consumption of (i, j) 2 A is an a�ne function

of its usage (ratio between its load and capacity). Here Efij is the slope of the

function and E0ij is the constant term. The consumption of a link is equal to E0ij

when it is powered on and does not hold any tra�c. The set of tra�c demands

is represented by T = {dpq}. And xpq
ij , where 0  xpq

ij  1, is the portion of the

tra�c from p 2 Q to q 2 Q\{p} routed through (i, j) 2 A. Figure 2.1 describes a

network topology with five nodes A, B, C, D, and E. These nodes are connected

with the links LAB, LBC , LDC , LDE, etc.

Figure 2.1: Network topology.

11



2. NETWORK COMMUNICATIONS

2.3 Di↵erent types of network

Based on the following four criteria the networks are divided into di↵erent types.

2.3.1 Geographic spread of nodes and hosts

Local area network (LAN): A network is said to be a Local Area Network

(LAN) if the physical distance between the hosts is within a few kilometers. LANs

are usually used to connect a set of hosts within the same building e.g., an o�ce

environment or a set of closely-located buildings e.g., a university campus.

Metropolitan area network (MAN): For larger distances, the network is

said to be a metropolitan area network (MAN) or a Wide Area Network (WAN).

MANs interconnect hosts across a city and cover distances of up to a few hundred

kilometers.

2.3.2 Restricted access network

Private network: The network where the users are supposed to use the service

for their private or business purpose. Networks maintained by banks, insurance

companies, airlines, hospitals, and most other businesses are of this nature.

Public network: The network where the users have to complete required regis-

tration and have to pay the connection fees to get access to the network. Internet

is the well known example of public networks.

2.3.3 Communication model employed by the nodes

Point-to-point model network: In this network, to get access from one node

to another the message or information has to follow a specific route.

Broadcast model network: In this network, all nodes share the same commu-

nication medium. Therefore, a message or information transmitted by any node

can be received by all other nodes. A part of the message (an address) shows for

which node the message is designed and the nodes ignore the message if it does

not match their own address.

12



2.4 Backbone network

2.3.4 Switching model employed by the nodes

Circuit switching network: In circuit switching network, a dedicated com-

munication path is allocated between two hosts to communicate each other in the

network, via a set of intermediate nodes. The information is sent through the

path as a continuous stream of bits. This path is maintained for the duration of

communication between two nodes, and is then released.

Packet switching network: To send information form one node to another,

packet switching network divides the information into packets and also uses in-

termediate nodes to pass the information. Each intermediate node temporarily

stores the packet and waits for the receiving node to become available to receive

it. Since data is sent in packets, it is not necessary to reserve a path across the

network for the duration of communication between two nodes. In order to en-

hance the performance of the network, di↵erent packets can be routed di↵erently

to spread the load between the nodes. However, this requires packets to allow

additional admissible information.

2.4 Backbone network

The backbone network interconnects various local networks and provides paths for

the exchange of information between them. It can tie together diverse networks in

the same area, in di↵erent areas, or over wide areas. A large corporation that has

many locations may have its own backbone network that ties all of the locations

together. The network transmission medium such as ethernet, wire or wireless

connections that bring these location together is often mentioned as network

backbone. It is important to consider the network congestion while designing the

backbones for better performance of the network.

13



Chapter 3

Second-order cone programming

The importance of second-order cone programming (SOCP) and mixed-integer

second-order cone programming (MISOCP) problems has long been a focus of the

mathematical programming society. In this chapter, we discuss basic concepts of

SOCP and MISOCP with related propositions and theorems to read this thesis.

3.1 Preliminaries

In this subsection, we list some definitions needed for the following discussions.

Definition 1 A set C ✓ Rn is a cone if and only if for any positive scalar � and

for any x 2 C it holds that

�x 2 C.

Definition 2 Let C ✓ Rn. Then C is convex if for any two points x1,x2 2 C, it

holds that,

✓x1 + (1� ✓)x2 2 C, 8 0  ✓  1.

Let C be a convex set in Rn. A function f : C ! R is said to be a convex function

if 8x1,x2 2 C it holds that

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2), 8 0  �  1.

Definition 3 A set S ✓ Rn is a�ne if x1,x2 2 S implies that

tx1 + (1� t)x2 2 S

14



3.2 Second-order cone programming

for every real number t. Geometrically, a set is a�ne if whenever two points are in

the set, the entire line through these points is in the set. An a�ne combination of

vectors is a special kind of linear combination. For given vectors, v1,v2, . . . ,vm 2
Rn and scalars c1, c2, . . . , cm an a�ne combination of v1,v2, . . . ,vm is a linear

combination c1v1 + c2v2 + · · ·+ cmvm such that c1 + c2 + · · ·+ cm = 1.

Definition 4 An open ball of radius ✏ is the set of points of distance less ✏ from

a fixed point. The open ball centered at x and radius ✏ is defined by

B(x, ✏) = {y : ||y � x|| < ✏}.

Definition 5 The set of all a�ne combinations of vectors in a set S is called the

a�ne hull of S, and it is denoted by a↵(S).

Definition 6 A point x 2 C is a relative interior point of C if there exists ✏ > 0

such that B(x, ✏)\a↵(C) ✓ C. The set of relative interior points of C is the

relative interior of C, denoted by ri(C).

Definition 7 An optimization problem of the form

minimize f(x) (3.1a)

s.t. gi(x)  0, i = 1, 2, . . . ,m, (3.1b)

is said to be a convex optimization problem if the functions f, g1, . . . , gm : Rn ! R
are convex.

Definition 8 Given an optimization problem P , we call a solution x feasible for

P if it satisfies all the constraints of P . When f is the objective function of the

optimization problem P , we define

val(P ) = inf{f(x) : x is feasible},

which will be called the optimal value, or value of the optimization problem P .

3.2 Second-order cone programming

The second-order cone (SOC) of dimension l + 1 is defined as

SOC(l + 1) =

⇢✓
t
u

◆
: u 2 Rl, t 2 R, ||u||  t

�
, (3.2)
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3. SECOND-ORDER CONE PROGRAMMING

Figure 3.1: Second-order cone in 3 dimension.

which is also called the quadratic, ice-cream, or Lorentz cone. A second-order

cone of dimension 3 is presented in Figure 3.1. The unit second-order cone of

dimension 1 is defined as

SOC(1) = {t : t 2 R, 0  t} .

It is easy to verify that SOC(l+1) is a convex cone. The proof is presented below

using the following Lemma 1:

Lemma 1 . Suppose C is a cone. Then C is convex if and only if

8x,y 2 C and 8�, µ > 0,�x+ µy 2 C. (3.3)

Proof: If (3.3) holds, then C is obviously convex. Suppose C is a cone and

convex, and x,y 2 C and �, µ > 0 are given. Since C is a cone, we have

�

�+ µ
x 2 C and

µ

�+ µ
y 2 C.

Since C is convex, we have

�

�+ µ
x+

µ

�+ µ
y 2 C.

Again since C is a cone, we can write �x+ µy 2 C. Therefore, (3.3) holds.

⇤
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3.2 Second-order cone programming

Proposition 1 SOC(l+1 ) is convex.

Proof: Let x =

✓
t1
u1

◆
2 SOC(l + 1) and y =

✓
t2
u2

◆
2 SOC(l + 1). We have

to show 8�, µ � 0, ||�x+ µy||  �t1 + µt2.

For every, �, µ � 0 we can write

||�x+ µy||2 = �2||x||2 + 2�µxTy + µ2||y||2

 �2||x||2 + 2�µ||x|| ||y||+ µ2||y||2

 �2t21 + 2�µt1t2 + µ2t22 = (�t1 + µt2)
2,

which shows that

✓
�t1 + µt2
�x+ µy

◆
2 SOC(l + 1). Therefore, SOC(l + 1) is convex.

⇤

Let K be a closed convex cone in Rn. Then K⇤ = {s : sTx � 0 (8x 2 K)} is

called the dual cone of K. It is easy to see that K⇤ is in fact a cone. Furthermore,

we have the following property.

Theorem 1 (Separation theorem (cone version)) [39]

Let K be a closed convex cone and z /2 K. Then, there exists y such that

yTz < 0  yTx, 8x 2 K.

Proposition 2 If K is a closed convex cone, then K⇤⇤ = K.

Proof: Let x 2 K. Then for every y 2 K⇤, xTy � 0. So x 2 K⇤⇤.

Conversely, let x̄ 2 K⇤⇤. Then for every y 2 K⇤, x̄Ty � 0. Suppose that

x̄ /2 K. Since K is a closed convex cone, according to the Theorem 1, there exists

a vector ȳ such that

ȳT x̄ < 0  ȳTx, 8x 2 K.

The right inequality implies that ȳ 2 K⇤. Then ȳT x̄ < 0 contradicts the fact

that x̄ 2 K⇤⇤. Therefore, x̄ 2 K.

⇤
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3. SECOND-ORDER CONE PROGRAMMING

The dual of a second-order cone is itself, i.e., SOC(l + 1)⇤ =SOC(l + 1) [55].

Such a cone is called self-dual.

Second-order cone programming (SOCP) is a convex optimization problem in

which a linear function is minimized over the intersection of an a�ne set and a

direct product of second-order cones. The following is called the equality standard

form second-order cone programming problem:

minimize cTx (3.4a)

s.t. Ax = b, (3.4b)

x 2 K, (3.4c)

where x 2 Rn is the decision variable, K ✓ Rn is a direct product of second-order

cones, and the other problem data are c 2 Rn, A 2 Rm⇥n, and b 2 Rm. To fully

understand the properties of SOCP, please consult [55] or textbooks such as [35],

[52], [53], [54].

An SOCP can be solved e�ciently by the primal-dual interior-point methods

[48], [49], [50], [51]. In fact, Gurobi [38] can be considered as one of the standard

solvers, such as CPLEX [43] and SCIP [42]. CPLEX and SCIP also support

SOCP.

3.3 Duality of conic linear programming

SOCP is a subcategory of more general class of optimization problems called

conic linear programming. In this section, we briefly review conic linear pro-

gramming and its duality, and derive a dual of SOCP in a special form. This

dual relationship is used to derive the dual of the problem S(xij) in Section 5.2.3

of Chapter 5.

We start with considering two closed convex cones C ✓ Rm and K ✓ Rn.

With Ā 2 Rm⇥n, b̄ 2 Rm, and c̄ 2 Rn, we consider an optimization problem of

the form:

(P ) : min c̄Tx

s.t. Āx� b̄ 2 C,

x 2 K.
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3.3 Duality of conic linear programming

This problem is called conic linear programming problem. Obviously, SOCP (3.4)

is a special case of conic linear programming where C = {0} and K is a direct

product of second-order cones. The (conic) dual of (P ) [40] is

(D) : max b̄Ty

s.t. c̄� ĀTy 2 K⇤,

y 2 C⇤.

It is easy to see that the weak duality holds between (P ) and (D).

Theorem 2 (Weak Duality) If x is feasible for (P ) and y for (D), then we have

c̄Tx � b̄Ty.

Proof: We can write

c̄Tx� b̄Ty = c̄Tx� yT Āx+ yT Āx� b̄Ty

= (c̄� Āy)Tx+ (Āx� b̄)Ty

� 0,

since c̄� Āy 2 K⇤,x 2 K, Āx� b̄ 2 C, and y 2 C⇤.

⇤

If C = {0} and K is a closed convex cone, then the primal-dual pair of conic

linear programming becomes

(P0) :

8
<

:

min c̄Tx
s.t. Āx = b̄,

x 2 K

dual ! (D0) :

⇢
max b̄Ty
s.t. c̄� ĀTy 2 K⇤.

The problem (P0), sometimes called the equality standard form of conic linear

programming, is widely used in the literature. Note that, although the rest of

this section writes the theorems in terms of (P0) and (D0), all are also valid on

(P ) and (D).

We say (P0) satisfies Slater’s condition if there exists a feasible solution x̄

such that

x̄ 2 riK.
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Similarly, we say that (D0) satisfies Slater’s condition if there exists a feasible

solution ȳ of (D0) such that

c̄� ĀT ȳ 2 riK⇤.

In conic linear programming, we need Slater’s condition to state the strong du-

ality.

Theorem 3 (Strong Duality) [41]

1. If (P0) satisfies Slater’s condition, and (D0) has a feasible solution, then

val(P0) = val(D0), and (D0) has an optimal solution.

2. If (D0) satisfies Slater’s condition, and (P0) has a feasible solution, then

val(P0) = val(D0), and (P0) has an optimal solution.

Using the duality of (P ) and (D), we can easily show that the following

theorem holds.

Theorem 4 Suppose that K is a direct product of SOCs, and b 2 Rm, A 2
Rm⇥n1 , B 2 Rm⇥n2 , c 2 Rn1 , f 2 Rn2. Then the dual of

(P1) : max bTy

s.t. ATy  c,

BTy = f ,

y 2 K

is

(D1) : min cTx+ fTw

s.t. Ax+Bw � b 2 K,

x � 0.

Proof: The problem (P1) can be written as

max bTy

s.t. c� ATy 2 Rn1
+ , (3.5)

f � BTy 2 {0}, (3.6)
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3.3 Duality of conic linear programming

y 2 K. (3.7)

Using the direct product Rn1
+ ⇥ {0}, we can write the above problem as

(P2) : max bTy

s.t.

✓
c
f

◆
�
✓

AT

BT

◆
y 2 Rn1

+ ⇥ {0},

y 2 K.

If we compare the problem (P2) with problem (D), then we obtain the following

correspondence:

Ā =

✓
AT

BT

◆T

= (A B) 2 Rm⇥(n1+n2), c̄ =

✓
c
f

◆
2 R(n1+n2)

+ , and C = K.

Since K is self-dual, the dual of the problem (P2) is as follows:

min

✓
c
f

◆T ✓
x
w

◆

s.t. (A B)

✓
x
w

◆
� b 2 K

✓
x
w

◆
2 Rn1

+ ⇥ Rn2

, min cTx+ fTw

s.t. Ax+Bw � b 2 K,

x 2 Rn1
+ ,w 2 Rn2

, min cTx+ fTw

s.t. Ax+Bw � b 2 K,

x � 0,

which is the final dual form of (P2).

⇤
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3.4 Mixed-integer second-order cone program-

ming (MISOCP)

An MISOCP is an optimization problem which involves some real and integer

variables to optimize a linear objective function subject to some linear and second-

order cone constraints. It is well known that MISOCP is NP-hard and it is not

so easy to solve MISOCP like LP or SOCP, because MISOCP involves integer

variables in addition to the properties of LP or SOCP. Modern optimization

software like Gurobi [38] and CPLEX [43] can handle MISOCPs but generally it

takes longer computation time compared to LP or SOCP of a similar size.

Mixed-integer second-order cone problems have various applications in finance

and engineering. For example, MISOCP have been used to model and solve many

challenging applied problems such as transmission in cellular networks [5], power

distribution [6], portfolio optimization [7], battery swapping stations on freeway

networks [8], telecommunication network design [30], etc.
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Chapter 4

Robust optimization

In the last few decades, the idea of robust optimization has emerged as a key

trend in the field of optimization [22], [37]. In this chapter, we discuss the basic

concept of robust optimization that we apply in this research.

4.1 General form of robust optimization

If some information of an optimization problem is not defined exactly, but it is said

to belong to a predefined set ,and we want to optimize the problem in the worst

case with respect to the set, then the resulting optimization problem is called

a robust optimization problem ([23], [39], [52], [54]). The objective of robust

optimization is to optimize the problem in the worst case wherein the problem

data lie in a set. In such cases, the set where parameters are supposed to fall in

is called uncertainty set. In general, the uncertainty set contains infinitely many

points. This means that the robust optimization problem can be categorized as

an instance of semi-infinite programming, which is inherently intractable. Thanks

to the progress in conic linear programming, robust optimization is now being

used in many real-world applications such as finance [44], mechanics [45], and

control [46], [47] etc.

The general form of robust optimization problem can be stated as follows:

minimize f0(x) (4.1a)

s.t. fi(x,di)  0, 8di 2 ⌦i, i = 1, 2, .....,m, (4.1b)

23



4. ROBUST OPTIMIZATION

where x 2 Rn is a vector of decision variables, f0, fi : Rn ! R are functions,

di 2 Rki are parameter uncertainties, and ⌦i are uncertainty sets. We can always

take the objective function to have no uncertainty by introducing a new constraint

if necessary. The aim of the problem (4.1) is to compute minimum solutions

x⇤ among all those solutions which are feasible for all realizations of the di 2
⌦i. The optimization problem (4.1) o↵ers some measure of feasibility protection

for optimization problems containing parameters which are not known exactly.

Although a robust optimization problem is in general intractable, in some cases,

we can reformulate it as a conic linear programming problem which is tractable,

and this is the case we present in the thesis. In such a case, the reformulated

optimization problem is called robust counterpart.

In the following sections, we consider robust optimization for LP. We con-

sider two uncertainty sets: a polyhedral uncertainty set and a ball uncertainty

set. We present how we can derive robust counterparts of the robust linear pro-

gramming. In the latter chapters, similar arguments will be used to obtain robust

counterparts of various models.

4.2 Robust optimization for linear programming

with polyhedral uncertainty sets

The linear programming (LP) problem can be represented as

min
x

cTx (4.2a)

s.t. aT
i x  bi, i = 1, 2, . . . ,m, (4.2b)

where ai 2 Rn, bi 2 R, and c 2 Rn are given, and x is the decision variable.

A robust linear programming problem can be stated as

min
x

cTx (4.3a)

s.t. aT
i x  bi, 8ai 2 Uai , 8bi 2 Ubi , i = 1, 2, . . . ,m, (4.3b)

where Uai ✓ Rn, and Ubi ✓ R are given uncertainty sets.
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4.2 Robust optimization for linear programming with polyhedral
uncertainty sets

Robust linear programming with polyhedral uncertainty sets is the special

case of the problem (4.3) where

Uai = {ai : Diai  di} , (4.4)

where Di 2 Rki⇥n and di 2 Rki are given, and Ubi is a given interval in R [23].

It is clear that for the optimal value of the problem (4.3), we can get rid of the

uncertainty in bi because the worst-case scenario is obtained at the infimum of

the interval. Therefore the problem (4.3) becomes

min
x

cTx (4.5a)

s.t. aT
i x  bi, 8ai 2 Uai , i = 1, 2, . . . ,m, (4.5b)

where Uai = {ai : Diai  di} and each bi denotes the infimum of each interval.

Equivalently, the robust linear programming problem (4.5) can be written as

min
x

cTx (4.6a)

s.t. max
ai2Uai

aT
i x  bi, i = 1, 2, .....,m. (4.6b)

Our goal is to convert the min-max problem to a min-min problem so that we

can combine the two minimization problems. If we are given x, then the left-hand

side of (4.6b) is the optimal value of

max aT
i x (4.7a)

s.t. Diai  di, (4.7b)

where ai is the decision variable. Now using the duality of equality standard form

of conic linear programming as describe above, the dual of the subproblem (4.7)

can be expressed as:

min pT
i di (4.8a)

s.t. DT
i pi = x, (4.8b)

pi � 0. (4.8c)

By the strong duality theorem, the primal (4.7) and the dual (4.8) have the same

optimal value. So, we can replace the left-hand side of the constraints (4.6b) by

the optimal value of (4.8).
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As a result, the problem (4.6) can be written as

min
x,pi

cTx

s.t. pT
i di  bi, i = 1, 2, . . . ,m, (4.9)

DT
i pi = x, i = 1, 2, . . . ,m,

pi � 0, i = 1, 2, . . . ,m.

We have seen that the robust optimization of LP with a polyhedral uncertainty

set is formulated into another LP . Obviously, LP can be solved e�ciently, and

so, (4.9) is the robust counterpart of (4.5).

4.3 Robust linear programming with ball uncer-

tainty sets

Here, we consider the following optimization problem:

min cTx (4.10a)

s.t. aT
i x  bi, 8ai 2 Uai , i = 1, 2, . . . ,m, (4.10b)

where the uncertainty sets,

Uai = {āi + u : ||u||  ✏} . (4.11)

Here, āi 2 Rn and ✏ are given, and u is restricted in a ball whose radius is ✏. We

call this uncertainty set a ball uncertainty set.

Again, using the ball uncertainty sets, we rewrite the problem (4.10) as

min cTx

s.t. max
ai2Uai

aT
i x  bi, i = 1, 2, . . . ,m. (4.12)

The left-hand side of the constraint (4.12) can be written as:

max
�
aT
i x : ai 2 Uai

 
= max

�
(āi + u)Tx : ||u||  ✏

 

= āT
i x+max

�
uTx : ||u||  ✏

 

= āT
i x+ ✏||x||,
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where the last equality is obtained by observing that the optimal solution of the

optimization problem max{uTx : ||u||  ✏} is ✏x/||x||.
Then, the problem (4.12) can be written as

min cTx (4.13)

s.t. āT
i x+ ✏||x||  bi, i = 1, 2, . . . ,m, (4.14)

which represents an SOCP problem because it minimizes the linear objective

function subject to the SOC constraints (4.14). Therefore, a robust LP problem

with ball uncertainty sets can be cast into an SOCP problem which can be solved

e�ciently by modern solvers.

Some existing studies on network communication related to this research used

polyhedral uncertainty sets to allow some errors in tra�c demands. In our cases,

we used ellipsoidal uncertainty set to make some fluctuations in tra�c demands

where the total amount of squared errors bounded by a positive constant.
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Chapter 5

Minimizing network congestion
ratio with tra�c fluctuations

The maximum link utilization rate among all links in a network is called the

network congestion ratio [2]. If some links or nodes broadcast too much informa-

tion, it causes serious network congestion that results in greater end-to-end delay

and packet loss or decreases in the throughput. Network congestion can severely

degrade the performance of the network [1]. Fortunately, setting an appropriate

routing can enlarge the network resource utilization rate and the throughput [9].

Finding such a proper routing is a major concern for network operators whose

goal is to provide better network performance. Since tra�c fluctuates due to

users’ needs, we can allow additional tra�c in the network by minimizing net-

work congestion ratio. [21]. There are a lot of studies in the history to minimize

the network congestion ratio, but most of them are presented under the assump-

tion that the tra�c-demand matrix is exactly known or there are some bounds in

the tra�c demands. In this chapter, we introduce robust optimization models to

minimize the congestion ratio that can deal with fluctuations of tra�c. Numeri-

cal results show that our proposed models can achieve the performance compared

to the previous studies.
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5.1 Minimizing network congestion ratio and ex-

isting robust optimization models

5.1.1 Problem formulation

The network we consider is represented as a directed graph G(V,A), where V is

the set of nodes and A is the set of links. A link from i 2 V to j 2 V \ {i} is

denoted by (i, j) 2 A. The capacity of link (i, j) 2 A is cij. Let Q ✓ V be the

set of edge nodes through which tra�c enters and leaves the network. We denote

by W the set of edge-node pairs (p, q), i.e,

W = {(p, q) 2 Q⇥Q : p 6= q}.

We assume that tra�c, which is allowed to be split into any portion, can take

any route. This is, for example, executed by the Multi-Protocol Label Switch-

ing (MPLS) Tra�c-Engineering (TE) technology [10], [11]. For (p, q) 2 W and

(i, j) 2 A, the ratio of tra�c from p to q routed on (i, j) with respect to the

total amount sent from p to q is denoted by xpq
ij , where 0  xpq

ij  1. When

demand T = {dpq : (p, q) 2 W} is given, the amount of tra�c sent on link (i, j)

is
P

(p,q)2W dpqx
pq
ij . Therefore, the network congestion ratio is defined by

max

(P
(p,q)2W dpqx

pq
ij

cij
: (i, j) 2 A

)
.

Assuming that tra�c demand T = {dpq : (p, q) 2 W} is known, Wang and

Wang [2] formulated an explicit routing problem whose objective is to minimize

the network congestion ratio by solving the following LP problem:

min r (5.1a)

s.t.
X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 1, 8(p, q) 2 W, i = p, (5.1b)

X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 0, 8(p, q) 2 W, 8i 2 V \ {p, q}, (5.1c)

X

(p,q)2W

dpqx
pq
ij  cijr, 8(i, j) 2 A, (5.1d)

0  xpq
ij  1, 8(p, q) 2 W, 8(i, j) 2 A, (5.1e)
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0  r  1. (5.1f)

Here the constraints (5.1b) and (5.1c) represent the flow conservation law. The

constraint (5.1b) indicates that the total of tra�c flow portions leaving node

i(= p) equals 1 while (5.1c) states that the total portion of tra�c entering node

i must be the same as that leaving from node i if node i is neither a source

nor destination for the tra�c flow. Constraint (5.1d) and the objective function

ensure that r becomes the network congestion ratio if an optimal solution is

obtained.

Note that, at the destination node (i = q), the condition to maintain the flow

is

X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = �1 8(p, q) 2 W, i = q. (5.2)

The destination node must satisfy the constraint (5.2), but this constraint can

be obtained by using the constraints (5.1b) and (5.1c). Therefore, the con-

straint (5.2) is guaranteed by the constraints (5.1b) and (5.1c), which is proved

in Appendix A.

This model is called the pipe model in [17] and [18], where the following hose

model was presented for virtual private networks. Note that the pipe model is

valid only if we know the complete tra�c-demand matrix exactly.

In this thesis, we use the robustness in the sense that the true tra�c-demand

matrix can be di↵erent from the estimated one. However, we impose that the

di↵erence is small and bounded by a constant.

5.1.2 Hose model

This and the next subsections give a fresh appraisal of two existing models asso-

ciated with minimizing the congestion ratio; each can be viewed as an application

of robust optimization for the pipe model, and their di↵erences come from the

uncertainty sets selected.

It is often an impossible task for network operators to measure and predict the

actual tra�c data, T , accurately, but sometimes they can easily specify just the
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total outgoing/incoming tra�c from/to node p to q. The total outgoing tra�c

from node p is represented as
X

q

dpq  ↵p, (5.3)

where ↵p is the maximum amount of tra�c that node p can send into the network.

In such a case the total incoming tra�c to node q is represented as
X

p

dpq  �q, (5.4)

where �q is the maximum amount of tra�c that node q can receive from the

network. The tra�c-demand model having such upper bounds is called the hose

model [16], [17], [19].

With regard to the robust optimization viewpoint, their work can be regarded

as follows. First, consider the uncertainty set:

H =

8
>>>><

>>>>:

d 2 RW :

X

q2Q

dpq  ↵p, 8p 2 Q,

X

p2Q

dpq  �q, 8q 2 Q,

dpq � 0, 8(p, q) 2 W

9
>>>>=

>>>>;

, (5.5)

which we call the hose uncertainty set in the following. Next, we amend the pipe

model so that (5.1d) holds for every demand d 2 H to obtain

(H) : min r (5.6a)

s.t. Eqs. (5.1b), (5.1c), (5.6b)

max
d2H

max
(i,j)2A

X

(p,q)2W

dpqx
pq
ij /cij  r, (5.6c)

Eqs. (5.1e), (5.1f). (5.6d)

This is robust version for the pipe model with respect to the hose uncertainty

set. Exchanging the two max operators in (5.6c), we obtain the condition

max
d2H

X

(p,q)2W

dpqx
pq
ij  cijr, 8(i, j) 2 A, (5.7)

which is equivalent to (5.6c).

Note that the left hand side of (5.7) is the optimal value of the following LP

problem:
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max
X

(p,q)2W

dpqx
pq
ij (5.8a)

s.t.
X

q2Q

dpq  ↵p, 8p 2 Q, (5.8b)

X

p2Q

dpq  �q, 8q 2 Q, (5.8c)

dpq � 0, 8(p, q) 2 W. (5.8d)

The dual of the problem (5.8) is as follows:

min
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q) (5.9a)

s.t. ⇡ij(p) + �ij(q) � xpq
ij , 8(p, q) 2 W, 8(i, j) 2 A, (5.9b)

⇡ij(p),�ij(q) � 0, 8(p, q) 2 W, 8(i, j) 2 A. (5.9c)

Since the dual of the LP problem has the same optimal value as the primal,1 it

is possible to reformulate the left hand side of (5.7) by the dual problem yielding

a robust counterpart of (H) as follows:

(H) : min r (5.10a)

s.t. Eqs. (5.1b), (5.1c), (5.10b)
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q)  cijr, 8(i, j) 2 A, (5.10c)

xpq
ij  ⇡ij(p) + �ij(q), 8(p, q) 2 W, 8(i, j) 2 A, (5.10d)

⇡ij(p),�ij(q) � 0, 8(p, q) 2 W, 8(i, j) 2 A, (5.10e)

Eqs. (5.1e), (5.1f). (5.10f)

This is the hose model presented in [13], [16], [17], and [19]. The hose model

is known as more flexible than the pipe model because we can choose parameters

to bound the total amounts of inputs/outputs. On the other hand, it tends to

1
Strictly speaking this holds if at least one of the primal or dual problem is feasible, and it

is easy to show that the condition holds with a mild assumption such as Assumption 1 which

will be presented in Section 5.2.3.
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allow big errors in the tra�c demands. The hose model is well performed in the

case of highly varied tra�c conditions and large network. However, the routing

performance of the hose model is much lower than that of the pipe model, because

this model tends to show much lower performance in the experiments [20] possibly

because of its loose bounds.

5.1.3 Hose-rectangle model

Oki and Iwaki [20] introduced another model where, in addition to the hose model,

each demand dpq should be bounded below and above by positive constants.

Specifically, given �pq and �pq for every (p, q) 2 W , we consider the following

uncertainty set:

R =
�
d 2 RW : �pq  dpq  �pq, (p, q) 2 W

 
, (5.11)

which we call the rectangle uncertainty set hereafter. If we consider robust opti-

mization with respect to the uncertainty set that is the intersection of the hose

and rectangle uncertainty sets we obtain

(R) : min r (5.12)

s.t. Eqs. (5.1b), (5.1c), (5.13)

max
d2H\R

X

(p,q)2W

dpqx
pq
ij  cijr, 8(i, j) 2 A, (5.14)

Eqs. (5.1e), (5.1f). (5.15)

Again, this problem can be converted into an LP, and the resulting problem is

(I1) : min r (5.16a)

s.t. Eqs. (5.1b), (5.1c), (5.16b)
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q) +
X

p2Q

X

q2Q

[�pq⌘ij(p, q)� �pq✓ij(p, q)]  cijr,

8(i, j) 2 A, (5.16c)

xpq
ij  ⇡ij(p) + �ij(q) + ⌘ij(p, q)� ✓ij(p, q), 8(p, q) 2 W, 8(i, j) 2 A,

(5.16d)

⇡ij(p),�ij(q), ⌘ij(p, q), ✓ij(p, q) � 0, 8(p, q) 2 W, 8(i, j) 2 A, (5.16e)
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Eqs. (5.1e), (5.1f), (5.16f)

where ⇡ij(p), �ij(q), ⌘ij(p, q) and ✓ij(p, q) are additional variables introduced by

the dual of the subproblems. See [20] for details.

We point out that the rectangle uncertainty set can be viewed as follows. Set,

for each (p, q) 2 W ,

d̄pq = (�pq + �pq) /2, and ✏pq = (�pq � �pq) /2, (5.17)

so that d̄pq is the midpoint of the interval [�pq, �pq]. This allows us to write the

condition in R as ��dpq � d̄pq
��  ✏pq, 8(p, q) 2 W. (5.18)

We can say that their model presumes an estimated value d̄pq for each (p, q) 2 W

and allows some fluctuation in real demand dpq from d̄pq up to ✏pq. Specifically,

we can write:

R =
�
d 2 RW : |dpq � d̄pq|  ✏pq

 
. (5.19)

Since they use a rectangle uncertainty set together with the hose uncertainty

set, we call their model the hose-rectangle model in this thesis. The hose-rectangle

model can set the range of errors of tra�c demands for each pair in the network

specified by the hose model. The network operators can predict the fluctuation of

each tra�c demand and can determine the total fluctuations in some part of the

network using the hose-rectangle model [21]. The hose-rectangle model narrows

the range of tra�c conditions specified by the hose model by adding additional

bounds to tra�c demands for each source-destination pair in the network and

o↵ers better routing performance than the hose model.

5.2 Robust optimization models using ellipsoidal

uncertainty set

5.2.1 Ellipsoidal uncertainty set

In contrast to the hose uncertainty set where fluctuation in total input/output

of source nodes is captured and in rectangle uncertainty set the fluctuation is
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locally considered for each demand pair, we try to capture the fluctuation over

the network in total. To this end, we bound the total amount of squared errors in

d̄pq for all (p, q) 2 W by a positive constant ✏, and the true demand is contained

in the ellipsoid:

⇥✏ =

8
<

:d :

s X

(p,q)2W

⇢pq(dpq � d̄pq)2  ✏

9
=

; , (5.20)

where ⇢pq > 0 for every (p, q) 2 W is a weight that indicates the significance of

pair (p, q) in terms of the fluctuation. If ⇢pq is large, then we will not allow a

large fluctuation on the link, while if it is small, we allow generous fluctuation.

Of particular interest, we put ⇢pq = 1 for every (p, q) 2 W if we do not know

any information on the fluctuations of the pairs in advance. In this case, ✏ is the

single network-wide parameter to be adjusted.

It is easy to derive the following inclusion relationships between the two sets.

Proposition 3 1. If ✏pq = ✏⇢�1/2
pq for every (p, q) 2 W , then ⇥✏ ✓ R.

2. If ✏pq = ✏|W |�1/2⇢�1/2
pq for every (p, q) 2 W , then ⇥✏ ◆ R.

Proof: We have to show that d 2 ⇥✏ where
s X

(p,q)2W

⇢pq(dpq � d̄pq)
2  ✏ implies

d 2 R if ✏pq = ✏⇢�1/2
pq for every (p, q) 2 W .

Suppose d 2 ⇥✏ such that
s X

(p,q)2W

⇢pq(dpq � d̄pq)
2  ✏. For every (p, q) 2 W

we can write
p

⇢pq(dpq � d̄pq)2  ✏. Since ✏pq = ✏⇢�1/2
pq , this can be written as

q
⇢pq(dpq � d̄pq)2  ✏pq⇢

1/2
pq

,(dpq � d̄pq)
2  ✏2pq

,|dpq � d̄pq|  ✏pq 8(p, q) 2 W,

which implies d 2 R. Therefore, ⇥✏ ✓ R if ✏pq = ✏⇢�1/2
pq for every (p, q) 2 W .

Similarly, suppose d 2 R such that |dpq � d̄pq|  ✏pq for every (p, q) 2 W. We

have to show d 2 ⇥✏. Since ✏pq = ✏|W |�1/2⇢�1/2
pq for every (p, q) 2 W , we have

|dpq � d̄pq|  ✏|W |�1/2⇢�1/2
pq , ⇢1/2pq |dpq � d̄pq| 

✏

|W |1/2 ,

35



5. MINIMIZING NETWORK CONGESTION RATIO WITH
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,⇢pq(dpq � d̄pq)
2  ✏2

|W | , 8(p, q) 2 W

)
X

(p,q)2W

⇢pq(dpq � d̄pq)
2 

X

(p,q)2W

✏2

|W | = ✏2,

which shows that d 2 ⇥✏ if ✏pq = ✏|W |�1/2⇢�1/2
pq for every (p, q) 2 W . Therefore,

⇥✏ ◆ R.

⇤

The ellipsoidal uncertainty set is more appropriate than the rectangle uncer-

tainty set in the cases where total amount of fluctuation is given for all pairs in

the network, tra�c demands fluctuate independently, and we want to capture

the error in terms of variance. The use of the ellipsoidal uncertainty set is not

appropriate in the case where some source-destination pairs have large errors si-

multaneously, because we consider that the di↵erence between true and estimated

demand is small and it is contained in a set. On the other hand, if fluctuation is

given for each source-destination pair in the network, the errors are correlated and

there are cases where most of the demands have large deviations simultaneously,

the use of the rectangle uncertainty set is more appropriate than the ellipsoidal

uncertainty set.

5.2.2 Ellipsoid model

The ellipsoid model is derived by applying the robust optimization to the pipe

model with respect to the ellipsoidal uncertainty set ⇥✏. Assuming that constraint

(5.1d) should be satisfied for every d 2 ⇥✏, we have the following condition:

max
d2⇥✏

max
(i,j)2A

X

(p,q)2W

dpqx
pq
ij /cij  r (5.21)

for the robust model. As we can exchange the two max operators, this is equiva-

lent with

max
d2⇥✏

X

(p,q)2W

dpqx
pq
ij  cijr (5.22)
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for each (i, j) 2 A. Next we evaluate the left hand side of (5.22), which yields a

second-order cone constraint.

Given ✓ > 0, define

⌦✓ =
�
v 2 RW : kvk  ✓

 
. (5.23)

The following lemma plays a crucial role in evaluating the left hand side of (5.22).

Lemma 2 For arbitrary a 2 R|W | and ✓ > 0, we have

max
v2⌦✓

aTv = ✓kak. (5.24)

The lemma is easy to show if we notice that the maximum is achieved when

kakv = ✓a. Details of the proof of lemma 2 is presented in Appendix B.

To apply Lemma 2 when evaluating the left hand side of (5.22), we introduce

a variable:

vpq =
p
⇢pq(dpq � d̄pq) (5.25)

for each (p, q) 2 W . We can easily see that

d 2 ⇥✏ , v 2 ⌦✏.

Therefore, using Lemma 2, we have for every (i, j) 2 A

max
d2⇥✏

0

@
X

(p,q)2W

dpqx
pq
ij

1

A

= max
v2⌦✏

0

@
X

(p,q)2W

vpq
xpq
ijp
⇢pq

1

A+
X

(p,q)2W

d̄pqx
pq
ij

= ✏

vuut
X

(p,q)2W

�
xpq
ij

�2

⇢pq
+

X

(p,q)2W

d̄pqx
pq
ij . (5.26)

Replacing the left hand side of (5.22) by (5.26) yields the equivalent inequality

for every (i, j) 2 A:
vuut

X

(p,q)2W

�
xpq
ij

�2

⇢pq
 1

✏

0

@cijr �
X

(p,q)2W

d̄pqx
pq
ij

1

A . (5.27)
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The constraint in (5.27) contains a square root and can be cast into the

following form using the second-order cone:

wij
pq = xpq

ij /
p
⇢pq, (5.28)

wij
0 =

0

@cijr �
X

(p,q)2W

d̄pqx
pq
ij

1

A /✏, (5.29)

✓
wij

0

wij

◆
2 SOC(1 + |W |), (5.30)

where wij = (wij
pq)(p,q)2W . The first two constraints are linear, and the last one

is a second-order cone constraint. As a result, we obtain an SOCP as a robust

optimization model of the pipe model as follows:

min r (5.31a)

s.t. Eqs. (5.1b), (5.1c), (5.31b)

Eqs. (5.28), (5.29), (5.30), 8(i, j) 2 A (5.31c)

Eqs. (5.1e), (5.1f). (5.31d)

We label this model the ellipsoid model in this thesis because it uses only the

ellipsoidal uncertainty set.

The ellipsoid model, which does not consider the hose uncertainty set, can

deal with total errors of tra�c demands for all source-destination pairs over the

network. On the other hand, the ellipsoid model has a weak point in handling

the case where some source-destination pairs have large errors simultaneously,

but such a case is considered to be rare.

5.2.3 Hose-ellipsoid model

Next, we implement robust optimization by applying both the hose and ellipsoidal

uncertainty sets to the pipe model to minimize the network congestion ratio. The

resulting model is called the hose-ellipsoid model.

First, we assume that the true value d is contained in the intersection of ⇥✏

for some ✏ > 0 and the hose uncertainty set. Given that (5.1d) should be satisfied
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for every d 2 ⇥✏ \H, we obtain the following robust version of (5.1d) as

max
d2⇥✏\H

max
(i,j)2A

X

(p,q)2W

dpqx
pq
ij /cij  r. (5.32)

Again, exchanging the two max operators yields the robust constraint as

max
d2⇥✏\H

X

(p,q)2W

dpqx
pq
ij  cijr (5.33)

for every (i, j) 2 A.

Therefore, for (i, j) 2 A, we consider the following problem:

S(xij) : max
X

(p,q)2W

dpqx
pq
ij (5.34a)

s.t.
X

q2Q

dpq  ↵p, 8p 2 Q, (5.34b)

X

p2Q

dpq  �q, 8q 2 Q, (5.34c)

s X

(p,q)2W

⇢pq(dpq � d̄pq)2  ✏, (5.34d)

dpq � 0, 8(p, q) 2 W. (5.34e)

In problem S(xij), routing xij = (xpq
ij )(p,q)2W , is assumed given and dpq, 8(p, q) 2

W is the decision variable. The problem S(xij) finds a tra�c demand T = {dpq :
(p, q) 2 W} that maximizes the link load on (i, j) 2 A for the given routing

{xpq
ij }.
In the following, for an optimization problem (P ), we denote its optimal value

by val(P ). Then, our robust optimization problem for minimizing the congestion

ratio with consideration of the error of (5.20) is

min r (5.35a)

s.t. Eqs. (5.1b), (5.1c), (5.35b)

val(S(xij))  cijr, 8(i, j) 2 A, (5.35c)

Eqs. (5.1e), (5.1f). (5.35d)
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At a glance, this problem seems di�cult to solve because of the constraint (5.35c).

Our solution is to reformulate this constraint as second-order cone constraints

with linear constraints, and obtain a robust counterpart of (5.35).

First, we derive the dual of S(xij), which is

min
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q)�
X

(p,q)2W

p
⇢pqd̄pqµ

pq
ij + ✏✓ij (5.36a)

s.t. ⇡ij(p) + �ij(q)�
p
⇢pqµ

pq
ij � xpq

ij � 0, 8(p, q) 2 W, (5.36b)
✓

✓ij
µij

◆
2 SOC(1 + |W |), (5.36c)

⇡ij(p) � 0, 8p 2 Q, (5.36d)

�ij(q) � 0, 8q 2 Q. (5.36e)

The derivation of the dual of S(xij) is described in detail in Appendix C.

With this knowledge of the duals in mind, we introduce the hose-ellipsoid

model below:

min r (5.37a)

s.t. Eqs. (5.1b), (5.1c), (5.37b)
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q)�
X

(p,q)2W

p
⇢pqd̄pqµ

pq
ij + ✏✓ij  cijr,

8(i, j) 2 A, (5.37c)

⇡ij(p) + �ij(q)�
p
⇢pqµ

pq
ij � xpq

ij � 0, 8(i, j) 2 A, 8(p, q) 2 W, (5.37d)
✓

✓ij
µij

◆
2 SOC(1 + |W |), 8(i, j) 2 A, (5.37e)

⇡ij(p) � 0, 8(i, j) 2 A, 8p 2 Q, (5.37f)

�ij(q) � 0, 8(i, j) 2 A, 8q 2 Q, (5.37g)

Eqs. (5.1e), (5.1f). (5.37h)

In the hose-ellipsoid model, variables µpq
ij and ✓ij are newly introduced with pa-

rameters d̄pq and ✏; ⇡ij(p) and �ij(q) are used in the hose model. Note that the

hose-ellipsoid model represents a regular SOCP problem; it contains |A| second-
order cone constraints, and all other constraints are linear. Therefore, (5.37) is

tractable, and this is a robust counterpart of (5.35).
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5.2 Robust optimization models using ellipsoidal uncertainty set

Note that both our models, the ellipsoid and the hose-ellipsoid need the es-

timated value denoted by d̄pq for every (p, q) 2 W explicitly, unlike the hose-

rectangle or the hose model. However, the hose-rectangle model is considered

to use d̄pq implicitly through the infimum and supremum bounds, as we have

explained above.

In order to narrow the range of tra�c conditions specified by the hose model,

the hose-ellipsoid model considers the ellipsoidal uncertainty set in addition to the

hose uncertainty set. The ellipsoidal uncertainty set allows us to consider the total

errors of tra�c demands over the network, whereas in the hose-rectangle model,

the rectangle uncertainty set allows the same errors for each source-destination

pair in the network which degrade the routing performance compared to the

hose-ellipsoid model.

Now we analyze the property of (5.37). To do this, we formally make the

following assumption.

Assumption 1 The estimated value d̄pq, 8(p, q) 2 W is a feasible solution of

S(xij).

Since the feasible region of S(xij) does not depend on xij, the assumption looks

natural. In fact, the assumption is equivalent to

X

q2Q

d̄pq  ↵p, 8p 2 Q, (5.38a)

X

p2Q

d̄pq  �q, 8q 2 Q, (5.38b)

d̄pq � 0, 8(p, q) 2 W. (5.38c)

Lemma 3 If Assumption 1 holds, then both S(xij) and its dual (5.36) have op-

timal solutions, and their optimal values coincide.

We provide a proof of Lemma 3 in the Appendix D together with the necessary

theorems from the theory of conic linear programming duality.

Theorem 5 If Assumption 1 holds, then val(5.35) = val(5.37).
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Proof: What we need to prove is that, given xij, (i, j) 2 A, (S(xij)) equals the

left-hand side of (5.37c) if ⇡ij(p), �ij(q), ✓ij, and µpq
ij satisfy (5.37d) to (5.37g).

This is true due to Lemma 3.

⇤

5.2.4 Characteristic of the considered models

To compare the performances of our proposed models, we consider di↵erent mod-

els in this thesis related to our work. The correctness, importance of these models,

and used uncertainty sets are summarized in Table 5.1.

5.3 Numerical experiments

5.3.1 Experiments settings

In this section, we numerically compare five models: the pipe, hose, hose-rectangle,

ellipsoid, and hose-ellipsoid models.

The networks used in the experiments, shown in Figure 5.1, are typical back-

bone networks used in [30] (Networks 1-3) and Japan Photonic Network 12 (JPN

12) [36]. In all experiments, we generate 100 instances for each network struc-

ture. We randomly generated tra�c demands d̄pq with a uniform distribution in

the range of (0, 100); the link capacities lie in the range of (2000, 3000) for all

networks. Bounds used in the hose constraints are set to ↵p =
P

q2Q d̄pq and

�q =
P

p2Q d̄pq. In the models that use the ellipsoidal uncertainty set, ⇢pq is

always set to 1 for all (p, q) 2 W .

In the hose-rectangle, ellipsoid, and hose-ellipsoid models, we use the same

parameter, ✏ > 0, to define the size of the uncertainty sets. For the ellipsoid and

hose-ellipsoid models, we use ✏ to define ⇥✏. These models are called Ellipsoid and

HE, respectively, in this section. For the hose-rectangle model, we use ✏ in two

ways. The first model, called HR-c, uses ✏ to define �pq = d̄pq�✏ and �pq = d̄pq+✏,

and the other, called HR-i, uses �pq = d̄pq � ✏/
p

|W | and �pq = d̄pq + ✏/
p

|W |.
Here, ‘c’ stands for ‘circumscribe’, since the rectangle used by HR-c circumscribes

the ellipsoid used by Ellipsoid and HE. Similarly, ‘i’ stands for ‘inscribe’.
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Table 5.1: Characteristic of models.

Model Uncertainty set Characteristic

Pipe None The tra�c-demand matrix is known ex-

actly. Provides the best routing performance

thanks to the exact tra�c matrix.
Hose H More flexible model than others, valid in

high variable tra�c conditions and large net-

works, and lower routing performance than

Pipe, Ellipsoid, Hose-Ellipsoid, and Hose-

Rectangle.
Ellipsoid ⇥✏ Deals with total errors of demands over the

network. The optimization problem is of the

form of SOCP.
Hose-Rectangle R \H Bounds the range of errors for each pair by

upper and lower bounds. Trends of tra�c

demands and fluctuations can be predicted

by network operators. Narrows the range

of tra�c conditions specified by the hose

model. Provides better routing performance

than the hose model.
Hose-Ellipsoid ⇥✏ \H Deals with total errors of demands over the

network. Narrows the range of tra�c condi-

tions specified by the hose model. The op-

timization problem is of the form of SOCP.

Improves the routing performance of Hose-

Rectangle using the ellipsoidal uncertainty

set.

Due to Proposition 3, HR-c has a larger uncertainty set than HE, whereas

HR-i has a smaller uncertainty set than HE. Since the uncertainty set of HR-c

circumscribes the uncertainty set of HE, the routing performance of HR-c is lower

than or equal to that of HE. On the other hand, since the uncertainty set used

in HR-i inscribes the uncertainty set of HE by dividing the errors by
p

|W | as
described above, the routing performance of HR-i is higher than or equal to that

of HE. Therefore, theoretically, the routing performance of HE is between those

of HR-c and HR-i.

Note that the hose model (Hose) and the pipe model (Pipe) are independent
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of ✏. Since Pipe has a no uncertainty set, the smallest among the six models,

the optimal value of Pipe is the minimum of the six models. Since Hose has the

largest uncertainty set among all the models except for Ellipsoid, the optimal

value of Hose is the largest among the five models. In comparing the results, we

always take the six optimal values by normalizing the optimal value of Hose to 1.

The experiments program is written in Python language and the optimization

problems are solved by Gurobi, version 7.0.1 [38]. We use a Windows based

computer with Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 16 GB memory.

Optimal solutions are obtained in all considered 100 problems for each model

and for each network. We confirmed optimality of each solution by checking

its primal feasibility, dual feasibility, and zero duality gap. Theoretically, these

three conditions ensure that the obtained solution is optimal for the corresponding

optimization problem. For more details about the optimality condition of conic

programming, please consult the textbooks such as [35], [51], and [54].

Figure 5.1: Sample networks.

5.3.2 Experiment results for fixed ✏

The comparisons of normalized average congestion ratios for ✏ = 30 are found in

Figure 5.2.
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Table 5.2: Network parameters considered in the experiments.

Network
No. of nodes No. of links p

|W |
considered considered

JPN 12 12 17 11.49

Network 1 12 18 11.49

Network 2 12 22 11.49

Network 3 15 27 14.49
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Figure 5.2: Average normalized congestion ratio for 100 randomly generated

problems for ✏ = 30.

First, as was theoretically expected, the normalized average congestion ratios

obtained by HE, HR-c, and HR-i always lie between those obtained by Hose and

Pipe in all networks considered. Furthermore, the optimal value of Ellipsoid is

always less than that of HR-c and Hose. The optimal value of HE is always

between those of HR-c and HR-i; this was predicted by Proposition 3.

We notice that the di↵erence between the hose and pipe models increases

with network size. Ellipsoid and HE have the same tendency as the pipe model,

whereas HR-c does not change much as network size changes. In this sense, the
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Figure 5.3: Average normalized congestion ratio for 100 randomly generated

problems for ✏ = 50.

behavior of HR-c is similar to that of the hose model.

HR-i actually follows the pipe model closely. We explain this in the following.

Since the volume of a |W |-dimensional cube whose side length is 2✏/
p
|W | is

2|W |✏|W ||W |�|W |/2, and that of a |W |-dimensional ball whose radius is ✏ is

⇡|W |/2✏|W |

�(|W |/2 + 1)
, (5.39)

where � is the gamma function, their ratio is

2|W |�(|W |/2 + 1)

(|W |⇡)|W |/2 . (5.40)

When |W | = 132 as true for JPN 12, Network 1, and Network 2, a rough eval-

uation finds that this value is less than 2�66. This analysis suggests that the

uncertainty set of HR-i is so small that it loses robustness compared to HE or

Ellipsoid. The same behaviors describe above for ✏ = 30 appear for ✏ = 50 and

✏ = 10 which are depicted in Figure 5.3 and Figure 5.4, respectively.

Next, we compare the models in terms of computation time. The minimum,

average, maximum and variance of the computation times of 100 random prob-
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Figure 5.4: Average normalized congestion ratio for 100 randomly generated

problems for ✏ = 10.

lems for the six models are listed in Table 5.3 and comparisons of average com-

putation times between the considered models are presented in Figure 5.5.

Pipe is far faster than the other five models in every network, and Hose is the

second fastest. This seems natural if we recall that both Pipe and Hose are LP

problems, and Pipe has the least number of decision variables followed by Hose

in second.

Computation times of HE, HR-c, HR-i are all comparable; Among the other

four models, Ellipsoid always has the longest computation time. The ratio of

Ellipsoid with respect to the other four models depends on the network.

We note that, although the average of HE is smaller than those of Ellipsoid,

HR-c and HR-i, the variance of HE for Network 3 together with the maximum

computation time is the largest. We do not know the exact reason for this. What

we do know is that the SOCP solver is relatively young, and probably not as

stable as the LP solver, which has seen continuous development over 40 years.

Note that, from the complexity point of view, the HE model is the most

complex, because it has |A| second-order cone constraints which are equivalent

to quadratic constraints. In the considered models, the HE model also has the
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Figure 5.5: Comparisons of average computation time of 100 randomly generated

problems for ✏ = 30.

largest number of decision variables and constraints; the HR-c and HR-i model

are the second most complex in terms of number of variables and constraints.

However, experimental results for computation time illustrates that the HE model

has shorter computation time on average than the HR-c, HR-i and Ellipsoid

models in the four sample networks. We do not have the correct answer of this

question. Generally, LP is easier than SOCP, but that does not mean SOCP

always takes longer computation time than L. The computation time depends

on various factors.

5.3.3 ✏ dependency of the models

Figure 5.6 shows comparisons of the dependency of the network congestion ratios

for 100 randomly generated problems as given by the Pipe, Hose, HE, HR-c and

HR-i models for Network 3. Note that network congestion ratios for the Pipe and

Hose models do not depend on ✏.

We observe that the normalized congestion ratio of HR-c rapidly increases as

✏ increases; with ✏ = 50, the ratio is close to 90 % of Hose’s. We presume that
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Table 5.3: Comparisons of computation time of 100 randomly generated problems

for ✏ = 30.

Network Model
Minimum Average Maximum Variance

(sec) (sec) (sec) (sec2)

JPN 12

Pipe 0.0000 0.0208 0.0400 0.0000

Hose 0.2400 0.3713 0.4900 0.0028

Ellipsoid 0.4100 0.6975 2.3600 0.0807

HE 0.4100 0.5013 0.8200 0.0037

HR-c 0.4300 0.4861 0.7100 0.0016

HR-i 0.4100 0.4968 0.5800 0.0013

Network 1

Pipe 0.0200 0.0322 0.0500 0.0001

Hose 0.4000 0.4752 0.7000 0.0022

Ellipsoid 0.5900 1.4506 4.7800 0.7697

HE 0.4900 0.6934 0.9600 0.0109

HR-c 0.5100 0.7528 1.0400 0.0124

HR-i 0.4500 0.6905 1.2700 0.0311

Network 2

Pipe 0.0200 0.0703 0.1200 0.0003

Hose 0.5100 0.5911 0.7900 0.0029

Ellipsoid 1.0300 2.2801 5.5300 1.6287

HE 0.5900 0.8923 1.6400 0.0242

HR-c 0.8500 1.2236 1.8500 0.0341

HR-i 0.6700 1.3197 1.9900 0.0927

Network 3

Pipe 0.1000 0.1363 0.1700 0.0001

Hose 1.6200 1.9146 2.4600 0.0318

Ellipsoid 2.5600 5.3673 17.3600 4.9361

HE 2.3100 3.3776 20.9000 3.6909

HR-c 2.9500 4.4434 8.3900 0.7664

HR-i 2.6400 4.6432 7.7500 1.0238

the uncertainty set of HR-c is too large and cannot bound the congestion ratio

e�ciently if ✏ is large.

The normalized congestion ratio of HR-i is, even for ✏ = 50, close to that of

Pipe. This is natural since the uncertainty set of HR-i is very small as we saw in

the previous subsection.

On the other hand, Ellipsoid and HE always lie between HR-c and HR-i, and

exhibit moderate increases, suggesting a di↵erent tendency from HR-c and HR-i.
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There are also some research in the history that use robust optimization in

congestion ratio problem. The objective of this research is not to show the ex-

cellence of our proposed models to the previous studies. What we want to insist

is that, our proposed models can be used as an alternative or a candidate in the

respective field.

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

10	 20	 30	 40	 50	

N
or
m
al
ize

d	
co
ng
es
;o

n	
ra
;o

	

ε		

Hose	
HR-c	
HR-i	
Ellipsoid		
HE	
Pipe	

Figure 5.6: ✏ dependency of congestion ratios for 100 random problems. Conges-

tion ratios are normalized by the hose model (Network 3).

5.4 Summary

In this chapter, we applied robust optimization to the problem of minimizing the

network congestion ratio. The situation we considered was such that fluctuations

or errors in tra�c demands exist, but the total amount of them is limited. The

uncertainty sets contained in ellipsoids are able to cope with this situation, and

then we need to apply robust optimization technique to obtain robust counter-

parts that can be numerically computable by the standard solvers.

Specifically, we derived two robust optimization problems from the pipe model.

The first one considers the ellipsoidal uncertainty set, and the second the intersec-
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tion of the hose and ellipsoidal uncertainty sets. We obtained robust counterparts

of these robust optimization problems, with proofs of their equivalence. The re-

sulting robust counterparts of our models are both SOCP problems.

Both models exempt the operators from knowing the exact tra�c demands

by allowing them to specify merely the total error in tra�c demands.

We compared our proposed models with three existing models: the pipe,

hose, and hose-rectangle models. Our numerical experiments clearly showed that

the SOCP problems obtained by our proposed models are tractable by modern

solvers. Although the computation times are much larger than those of the pipe

model, they are comparable to those of the other existing models. Even for large

networks, the proposed robust optimization models for congestion ratio can be

solved within reasonable time compared to some existing models.

Numerical comparisons of the dependence of ✏ showed that the proposed mod-

els share a tendency in terms of optimal values which di↵ers from that of the

hose-rectangle model. The congestion ratios achieved by our proposed models in-

crease very slightly for increasing values of ✏ while for the hose-rectangle model,

it increase rapidly and close to the hose model. We believe that the proposed

models provide a new approach to the analysis of networks by existing methods.
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Chapter 6

Minimizing network power
consumption based on robust
optimization

In this chapter, a green and robust optimization model is proposed to mini-

mize the network power consumption allowing fluctuation in tra�c demands.

There are several researches on minimizing network power consumption that have

been presented in the history. Most of them are presented under the assumption

that the tra�c-demand matrix, the set of tra�c demands, is known, there are

some bounds on the total outgoing/incoming tra�c from/to node, or, in addition

to these bounds, tra�c demands between each source and destination pair are

bounded by upper and lower bounds [56], [57], [58], [59], [60]. There are also

some studies on estimating the tra�c-demand matrix, which is easy for network

operators to avoid frequent dynamic route changes [61], [62], [63]. In this chapter,

we apply the idea of robust optimization and proposed a model in the form of

mixed-integer second-order cone programming (MISOCP) whose objective is to

reduce the total energy by allowing some links to be put into the sleep mode.
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6.1 Minimizing network power consumption

6.1.1 Power model

Considering an appropriate power model is an important task to minimize the

network power consumption e�ciently. In our work we consider the power model

called energy aware model proposed by [56]. In this model, we assume that the

link power consumption is an a�ne function of its utilization. Specifically, the

power consumption (PC) of a link is expressed as

PC = EMx+ E0, (6.1)

if the link is on, and 0 otherwise. Here, E0 is the energy consumption by keeping

the link on, and x indicates the total portion of the tra�c passing through the

link with respect to the capacity of the link. As a result, we have 0  x  1. We

assume that E0 and EM depend on link.

If EM = 0, the model is called energy agnostic. In this case, the power con-

sumption does not depend on the utilization. On the other hand, if E0 = 0, then

the model is called fully proportional. Although adaptive link rate technologies

and dynamic voltage scaling [65] were introduced as proportional computing tech-

niques [64], it is still di�cult to develop such devices by the current technology.

In this chapter, we use the same network model as we consider in Chapter 5.

The useful notation used in this chapter is summarized in Table 6.1.

6.1.2 Formulation of green pipe model

To minimize the network power consumption, Bianzino et al. [56] introduced

a mixed-integer formulation known as the green pipe model assuming that the

tra�c-demand matrix T = {dpq : (p, q) 2 W} is exactly known. The green pipe

model is formulated as follows:

min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.2a)

s.t.
X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 1, 8(p, q) 2 W, i = p, (6.2b)
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Table 6.1: Summary of notations.

Parameters Description

G(V,A) Directed graph G with |V | nodes and |A| links
Q Set of edge nodes, Q ✓ V

W Set of edge node pairs of p 2 Q and q 2 Q, p 6= q

cij Capacity of link (i, j) 2 A

d̄pq Estimated tra�c demand from node p to q

T = {dpq} Tra�c-demand matrix (set of tra�c demands)

Efij, E0ij Power model parameters

✏ Total error in the tra�c demands

M Large positive number, at least twice the maximum

capacity in the network

↵p Total outgoing tra�c from node p 2 Q

�q Total incoming tra�c at node q 2 Q

apqij Portion of tra�c from node p 2 Q to node

q 2 Q through (i, j) 2 A (initial routing)

yij Maximum amount of tra�c measured on (i, j) 2 A

Variables Description

dpq Tra�c demand from node p to q

uij Tra�c flow on (i, j) 2 A

bij Binary variable used to designate the state of (i, j)

xpq
ij Portion of tra�c from p 2 Q to q 2 Q \ {p} routed through (i, j) 2 A

⇡ij(p),�ij(q),

✓ij, ⇠ij(s, t), µ
pq
ij Variables introduced by dual transformation

X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 0, 8(p, q) 2 W, 8i 2 V \ {p, q}, (6.2c)

X

(p,q)2W

dpqx
pq
ij = uij, 8(i, j) 2 A, (6.2d)

uij  cij, 8(i, j) 2 A, (6.2e)

Mbij � uij + uji, 8(i, j) 2 A, (6.2f)

xpq
ij � 0, 8(p, q) 2 W, 8(i, j) 2 A, (6.2g)

bij 2 {0, 1}, 8(i, j) 2 A. (6.2h)

Here the constraints (6.2b) and (6.2c) are flow conservation constraints. The

constraint (6.2b) represents that the total of portions of tra�c flow outgoing from

node i(= p) is equal to 1 and (6.2c) states that the total portion of tra�c incoming
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to node i must be the same as that of outgoing from node i if node i is neither

a source nor destination for the tra�c flow. Constraint (6.2d) defines the total

tra�c flow over link (i, j) 2 A and constraint (6.2e) is the capacity constraint.

Constraint (6.2f) is used to force the link to be on when there is a tra�c in one

direction of the link. Here, M is chosen as a big positive number twice greater

than the highest capacity in the network. The objective function (6.2a) minimizes

the network power consumption by deactivating some unnecessary links, i.e., the

flow through each link is minimized so that the link without any flow can be

put into the sleep mode. Here, we assume that the values of cij and cji are

same. In the objective, summation is divided by two to avoid counting the power

consumption twice.

6.1.3 Green hose model formulation

It is often a di�cult task for network operators to measure and predict the actual

tra�c data T , but operators could easily specify the tra�c as just the total

outgoing/incoming tra�c from/to node p to q. The total outgoing tra�c from

node p is represented as
X

q

dpq  ↵p, 8p 2 Q, (6.3)

where ↵p is the maximum amount of tra�c that node p can send into the network.

The total incoming tra�c to node q is represented as
X

p

dpq  �q, 8p 2 Q, (6.4)

where �q is the maximum amount of tra�c that node q can receive from the

network. The tra�c-demand model having such upper bounds is called the hose

model in [13], [14], [16], [17].

With regard to the robust optimization point of view, their work can be

regarded as follows. First, consider the uncertainty set

H =

8
>>>><

>>>>:

d 2 RW :

X

q

dpq  ↵p, 8p 2 Q,

X

p

dpq  �q, 8q 2 Q,

dpq � 0, 8(p, q) 2 W

9
>>>>=

>>>>;

, (6.5)
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which we call the hose uncertainty set in the following.

In the green hose model, we first suppose that the routing xpq
ij for (i, j) 2 A

and (p, q) 2 W is fixed, and consider the worst case flow on each link when the

true demand d is contained in H:

uij = max
d2H

X

(p,q)2W

dpqx
pq
ij , 8(i, j) 2 A.

Then we force uij to satisfy (6.2e) and (6.2f). Considering xpq
ij as a variable again,

we obtain the following optimization problem:

(H) : min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.6a)

s.t. Eqs. (6.2b), (6.2c), (6.6b)

max
d2H

X

(p,q)2W

dpqx
pq
ij = uij, 8(i, j) 2 A, (6.6c)

Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.6d)

The robust counterpart of (H) can be obtained as follows by using the same

technique as we did for the formulation of the hose model in Chapter 5:

(H) : min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.7a)

s.t. Eqs. (6.2b), (6.2c), (6.7b)
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q) = uij, 8(i, j) 2 A, (6.7c)

xpq
ij  ⇡ij(p) + �ij(q), 8(p, q) 2 W, 8(i, j) 2 A, (6.7d)

⇡ij(p),�ij(q) � 0, 8(p, q) 2 W, 8(i, j) 2 A, (6.7e)

Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.7f)

6.1.4 Green HLT model formulation

In order to minimize the network power consumption, Ouédraogo and Oki [30]

proposed the green HLTmodel based on an extended version of the hose model [31].

The tra�c bounds in the green HLT model are determined as below:

Eqs. (6.3), (6.4), (6.8a)
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X

(p,q)2W

apqij dpq  yij, 8(i, j) 2 A, (6.8b)

where yij is the maximum amount of tra�c measured on link (i, j). The parameter

apqij is the initial portion of tra�c from node p to q using link (i, j). The value of

apqij is known in advance and it is derived from an initial routing determined by

the network operator, e.g., shortest path routing. The value of variable xpq
ij that

represents the proper routing is di↵erent from the value of apqij after solving the

optimization problem.

The power saving by the green HLT model highly varies on the maximum

amount of tra�c measured on link (i, j) which is expressed by yij. Lower values of

yij due to measurement errors during low-tra�c durations can lead to infeasibility

of the optimization problem. On the other hand, higher values of yij due to

measurement errors cause to degrade the performance of the green HLT model.

For the robust optimization point of view, when the tra�c measurements deviate

from the initial green HLT model bounds, yij varies from its original value to

yij(1 + �), where � represents the uncertainty to yij [30]. Using this parameter �

to yij, they allowed some fluctuation in the true demand dpq up to �, which can

be represented as an increase in the initial value of yij due to the error set by

the operator. Based on this knowledge, the green HLT model uses the following

uncertainty set,

G = H \ L =

8
>>>>>>>><

>>>>>>>>:

d 2 RW :

X

q

dpq  ↵p, 8p 2 Q,

X

p

dpq  �q, 8q 2 Q,

X

(p,q)2W

apqij dpq  yij(1 + �), 8(i, j) 2 A,

dpq � 0, 8(p, q) 2 W

9
>>>>>>>>=

>>>>>>>>;

,

where

L =

8
<

:d 2 RW :
X

(p,q)2W

apqij dpq  yij(1 + �), 8(i, j) 2 A

9
=

; .

We call the set G the green-hose uncertainty set in this thesis.
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In [30], the performance of green HLT is evaluated for di↵erent values of �,

which can be represented as errors or margin in the estimated value yij for every

(i, j) 2 A to allow fluctuation in the real demand dpq for every (p, q) 2 W . In

the green HLT model, the authors assume that the true demand d is contained

in G. Now the same argument with the green hose model leads to the following

optimization problem:

min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.9a)

s.t. Eqs. (6.2b), (6.2c) (6.9b)

max
d2G

X

(p,q)2W

dpqx
pq
ij = uij, 8(i, j) 2 A, (6.9c)

Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.9d)

In the above problem, the left hand side of constraint (6.9c) is the optimal value

of the following problem:

V (xij, aij, yij) : max
X

(p,q)2W

dpqx
pq
ij (6.10a)

s.t.
X

q2Q

dpq  ↵p, 8p 2 Q, (6.10b)

X

p2Q

dpq  �q, 8q 2 Q, (6.10c)

X

(p,q)2W

apqij dpq  yij(1 + �), (6.10d)

dpq � 0, 8(p, q) 2 W. (6.10e)

The problem V (xij, aij, yij) is the worst-case tra�c scenario of (6.9c) where the

routing xpq
ij is assumed given and dpq is considered to be a decision variable.

Applying the duality theory to the above problem, the resulting green HLT model

is as follows:

min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.11a)

s.t. Eqs. (6.2b), (6.2c), (6.11b)
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X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q) +
X

(s,t)2A

⇠stij yst(1 + �) = uij, 8(i, j) 2 A,

(6.11c)

xpq
ij  ⇡ij(p) + �ij(q) +

X

(s,t)2A

apqst ⇠
st
ij , 8(p, q) 2 W, 8(i, j) 2 A, (6.11d)

⇡ij(p),�ij(q) � 0, 8(p, q) 2 W, 8(i, j) 2 A, (6.11e)

⇠stij � 0, 8(i, j), (s, t) 2 A, (6.11f)

Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.11g)

6.2 Green hose-ellipsoid model formulation

To minimize the network power consumption allowing fluctuation in the demands

between nodes, we apply the robust optimization to the green hose model and

formulate the green hose-ellipsoid model (green HE) in the form of mixed integer

second-order cone programming problem (MISOCP). In this case, we consider

the same uncertainty set ⇥✏\H as we used to formulate the hose-ellipsoid model

in Section 5.2.3 of Chapter 5.

First, we assume that the true demand d is contained in ⇥✏ \ H, for some

✏ > 0. By a similar argument as that for the green hose and HLT models, we set

uij as

max
d2⇥✏\H

X

(p,q)2W

dpqx
pq
ij = uij, 8(i, j) 2 A. (6.12)

For the worst-case tra�c scenario of our proposed model, for every (i, j) 2 A, we

consider the same subproblem S(xij) (used in Section 5.2.3 of Chapter 5) in this

chapter to formulate the robust optimization model.

The proposed robust optimization model for minimizing network power con-

sumption with consideration of the error (5.20) and uncertainty set H is

min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.13a)

s.t. Eqs. (6.2b), (6.2c), (6.13b)

val(S(xij)) = uij, 8(i, j) 2 A, (6.13c)
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Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.13d)

Since the left hand side of constraint (6.13c) is the optimal value of a second-order

cone programming problem (SOCP), it can be evaluated by its dual optimal value.

We derived the dual of S(xij) in Chapter 5.

We present our proposed green HE model using the knowledge of dual of the

problem S(xij) as

min
1

2

X

(i,j)2A

✓
uij + uji

cij
Efij + bijE0ij

◆
(6.14a)

s.t. Eqs. (6.2b), (6.2c), (6.14b)
X

p2Q

↵p⇡ij(p) +
X

q2Q

�q�ij(q)�
X

(p,q)2W

p
⇢pqd̄pqµ

pq
ij + ✏✓ij = uij,

8(i, j) 2 A, (6.14c)

⇡ij(p) + �ij(q)�
p
⇢pqµ

pq
ij � xpq

ij � 0, 8(i, j) 2 A, 8(p, q) 2 W, (6.14d)
✓

✓ij
µij

◆
2 SOC(1 + |W |), 8(i, j) 2 A, (6.14e)

⇡ij(p) � 0, 8(i, j) 2 A, 8p 2 Q, (6.14f)

�ij(q) � 0, 8(i, j) 2 A, 8q 2 Q, (6.14g)

Eqs. (6.2e), (6.2f), (6.2g), (6.2h). (6.14h)

In the green hose-ellipsoid model, variables µpq
ij and ✓ij are newly introduced with

parameters d̄pq and ✏, while ⇡ij(p) and �ij(q) are used in the hose model, too.

Note that the green hose-ellipsoid model represents a regular SOCP problem;

it contains |A| second-order cone constraints, and all the other constraints are

linear. This is an MISOCP, which can be solved by modern solvers, e.g., Gurobi.

We explicitly assume the following to analyze the property of (6.14).

Assumption 2

X

q2Q

d̄pq  ↵p, 8p 2 Q,

X

p2Q

d̄pq  �q, 8q 2 Q,

d̄pq � 0, 8(p, q) 2 W.

60



6.3 Relation between ✏ and �

Note that, if Assumption 2 holds, then both Lemma 3 and Theorem 5 of Chapter 5

also hold.

6.3 Relation between ✏ and �

In the green hose-ellipsoid model, ✏ is a parameter in the ellipsoidal uncertainty

set whose center is the estimated value of d̄pq for every (p, q) 2 W . The parameter

✏ represents the total fluctuation over the network. To explain the role of � in

the green HLT model, let us consider the two dimensional situation given in

Figure 6.1. In this figure, the shaded area is the original feasible region defined

by the constraints (6.8b). The green HLT model expands the feasible region with

the ratio 1 + �. This figure suggests that if we take � su�ciently large, then the

ellipsoid is contained in the expanded feasible region of (6.8b). In the following,

we mathematically describe this relationship.

Figure 6.1: Relation between ✏ and �.

To analyze the properties of G and ⇥✏, we make the following assumption.
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Assumption 3

✏

vuut
X

(p,q)2W

�
apqij

�2

⇢pq
 �yij, 8(i, j) 2 A. (6.15)

Theorem 6 If Assumption 3 holds, the feasible region of the optimization prob-

lem S(xij) is contained in the feasible region of the problem V (xij, aij, yij).

Theorem 6 is proved in Appendix E.

Next, given � and yij, we consider computing ✏ and ⇢pq to satisfy Assumption 3.

To do this, let r = ✏/�. Then by putting ⇠pq = 1/
p
⇢pq for every (p, q) 2 W , we

obtain that
s X

(p,q)2W

�
apqij ⇠

pq
�2  yij/r. (6.16)

We consider the following optimization problem:

min t (6.17a)

s.t. ⌘pqij = apqij ⇠
pq, 8(p, q) 2 W, 8(i, j) 2 A, (6.17b)

s X

(p,q)2W

�
⌘pqij

�2  yijt, 8(i, j) 2 A, (6.17c)

t � 0, (6.17d)

⇠pq � 0.1, 8(p, q) 2 W. (6.17e)

In order to avoid infinite values of ⇢pq, we set ⇠pq � 0.1 which leads values of

⇢pq for (p, q) 2 W to at most 100. The linear optimization problem (6.17) allows

us to maximize r for its optimal value, where t = 1/r. Note that every feasible

solution of (6.17) satisfies Assumption 3. The optimal solution of (6.17) achieves

the largest value in ✏.

6.4 Numerical experiments

6.4.1 Experiment settings

We compare the network power consumption obtained by the green HE model

against the green pipe model, the green hose model, and the green HLT model.
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The networks used in the experiments, shown in Figure 6.2, are typical backbone

networks used in [66] (Networks 1 and 2) and [30] (Networks 3 and 4). The values

of ⇢pq for all (p, q) 2 W are taken by solving the optimization problem (6.17) for

each considered network. The tra�c demands d̄pq are randomly generated with

a uniform distribution in the range of (1,150) and the link capacities are in the

range of (800, 2800) for all networks. We assume that link power consumption

is an a�ne function of its usage as we describe in Section 6.1.1. To describe the

power consumption of 1 Gbps links, the values of Efij and E0ij are deduced from

the a�ne function used in [56].

We calculate the power saving for each model using the following formula:

power saving =
TCP� RCP

TCP
,

where TCP stands for total consumed power by the links when all considered

links are on and RCP is that by the links required by the optimal solution.

The power saving obtained by the green pipe model is based on the exact

tra�c demands. To allow fluctuation, we need the estimated tra�c demands for

the green HE model. In the green HLT model, we do not need tra�c demands

directly, but need the estimated tra�c volume yij passing through each (i, j) 2 A.

To compare the power consumption between the considered models, HLT bounds

are set as follows: ↵p =
P

q2Q d̄pq, 8p 2 Q, �q =
P

p2Q d̄pq, 8q 2 Q, and

yij =
P

(p,q)2W apqij d̄pq, 8(i, j) 2 A. The values of apqij are obtained by initial

routing which is a shortest path routing where we assume that each link in the

network has a unit length.

For comparisons between the models in terms of power saving in the network,

we choose ✏ and � so that Assumption 3 holds. Specifically, we fix � = 0.5 for the

HLT model in Networks 1-4. Then, using the relation as we established in the

theory, we compute ✏ from

✏ = min
(i,j)2A

8
>>>><

>>>>:

yijs X

(p,q)2W

�
apqij

�2
/⇢pq

9
>>>>=

>>>>;

� (6.18)
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for every considered network. Then, the corresponding values of ✏ stand to 24.75,

35, 95.26, and 25 in Networks 1-4, respectively.

The experiment program is written in Python language and the optimization

problems are solved by using Gurobi, version 7.0.1 [38]. We use a Windows based

computer with Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 16 GB memory.

Figure 6.2: Sample networks.

Table 6.2: Network fixtures considered in experiments.

Network No. of nodes considered No. of links considered

Network 1 12 18

Network 2 12 22

Network 3 15 27

Network 4 16 32

6.4.2 Model comparisons

The network power consumption achieved by the green HE (G. HE) model is

compared with the green pipe (G. Pipe), green HLT (G. HLT), and green hose
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(G. Hose) models. The computation results for the values of ✏ and � are reported

in Figure 6.3. Note that, in G. HE, the fluctuation of tra�c demands between

two nodes, i.e., the error that we consider depends on ✏, and in G. HLT, the error

on maximum amount of tra�c measured on each link depends on �. However, G.

Pipe and G. Hose are independent of ✏ and �.

Figure 6.3 depicts that the power saving achieved by G. HE is ranking from

29.1% to 41.29%, whereas these values for G. HLT varies from only 18.82% to

36.3% in the considered networks for � = 0.5. The network power reduction be-

tween G. Pipe and G. HLT contrasts from 5.06% to 10.49% whereas the di↵erence

of power reduction between G. Pipe and G. HE di↵ers from only 0.23% to 0.01%

in the examined networks.
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Figure 6.3: Comparisons of power saving for � = 0.5, ✏ = 24.75 (Network 1), 35

(Network 2), 95 (Network 3), 25 (Network 4).

The numbers of deactivated links achieved by considered models are shown

in Table 6.3 for � = 0.5 and the corresponding values of ✏, which shows that

links deactivated for G. Pipe and G. HE are the same for all considered networks.

However, for G. Pipe and G. HLT, this value di↵ers by 2, 1, 3, and 3 units for

Networks 1, 2, 3, and 4, respectively.
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Table 6.3: Number of deactivated links for � = 0.5, ✏ = 24.75 (Network 1), 35

(Network 2), 95 (Network 3), 25 (Network 4).

Network Number of deactivated links

Type G. Pipe G. HE G. HLT G. Hose

Network 1 6 6 4 4

Network 2 10 10 9 9

Network 3 10 10 7 6

Network 4 15 15 12 *

* The model is infeasible.

6.4.3 ✏ dependency of G. HE model

Figures 6.4, 6.5, and 6.6 describe the comparisons of dependency of the power

saving by the G. Hose, G. HLT, and G. HE models for Networks 1, 2, and 3. The

comparisons are made by considering the di↵erent values of � from 0 to 1 and

the corresponding values of ✏ using the relation (6.18). In this case, the values of

⇢pq for every (p, q) 2 W are also chosen from the optimal solution of the problem

(6.17). Note that power saving for the G. Hose model is independent of ✏ and �,

and it constructs a lower bound in each network.

Figures 6.4, 6.5, and 6.6 show that network power saving for G. HE and G.

HLT are decreased for increasing values of ✏ and �. It is also clear that for ✏ =

25, 21, and 152.4, the power saving by G. HLT for the corresponding values of

� (� = 0.5, 0.3, 0.8) equals the results of the G. Hose model in Networks 1, 2,

and 3, respectively. The results also confirm that the G. HE model achieves the

first position in terms of power saving for every value of ✏ in each network and

decreases very slightly for increasing values of ✏ compared to the G. HLT model.

6.5 Summary

In this chapter, we have developed a mixed-integer SOCP formulation (green HE

model) using the robust optimization to minimize network power consumption

allowing tra�c fluctuation. Compared to the previously studied model that uses

exact information on tra�c demands, the green HE model exempts the operators
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Figure 6.5: ✏ dependency of G. HE model (Network 2).

from knowing the exact tra�c demands by allowing total outgoing and incoming

amount of tra�c at each node and the total amount of fluctuation in the estimated

value over the network. We formulated this problem into MISOCP that can be
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solved by the modern optimization solvers with proof of related theorems.

The power saving achieved by our proposed model are compared with those

of the existing models, the green pipe, green hose and green HLT models. Note

that, due to exact tra�c demands, the green pipe model achieves the highest

performance in terms of power saving. The numerical results showed that our

proposed model provides significantly better power e�ciency than that by the

green HLT model and it is close to the green pipe model in every considered

network. The limitation of the proposed model is that it is not easy to solve the

problems in the case of large network due to MISOCP which is NP-hard.

Since practically tra�c demands fluctuate, our proposed robust optimization

model is an e↵ective approach to the problem of minimizing the network power

consumption allowing fluctuation in the tra�c demands as much as we wish.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we applied robust optimization to the problem of minimizing the

network congestion ratio and to the problem of minimizing power consumption in

network. We considered the situation that there are some fluctuations or errors

in tra�c demands, but the total amount of errors is limited. The uncertainty sets

contained in ellipsoids are able to cope with this situation, and then we need to

apply robust optimization technique to obtain robust counterparts that can be

numerically computable by the standard solvers.

In the first part of this thesis, we introduced two robust optimization models

from the pipe model to minimize the network congestion ratio. The first one

considers the ellipsoidal uncertainty set and the second the intersection of the

hose and ellipsoidal uncertainty sets. We obtained robust counterparts of these

robust optimization problems in the form of SOCP problems, with proofs of their

equivalence. Both of our proposed models exempt the operators from knowing

the exact tra�c demands and can deal with total amount of fluctuations over the

network.

The congestion ratios obtained by our proposed models are compared with

three existing models: the pipe, hose, and hose-rectangle models. Numerical

experiments confirmed that the SOCP problems obtained by our proposed models

are tractable by modern solvers; although the computation times are much larger

than those of the pipe model due to SOC constraints but they are comparable to
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those of the other existing models. Recall that due to exact tra�c matrix, the pipe

model achieves the first position in terms of minimizing the congestion ratio. The

results also confirm that our proposed models can minimize the congestion ratios

with fluctuations of tra�c demands comparable to the hose and hose-rectangle

models.

In the last part of the thesis, we proposed a mixed-integer SOCP formulation,

the green HE model using the same robust optimization technique for the design

of power e�cient networks allowing fluctuations in tra�c demands. Compared to

the previous research that uses exact information on tra�c demands, the green

HE model releases the operators from knowing the exact tra�c demands by al-

lowing total outgoing and incoming amount of tra�c at each node and the total

amount of fluctuations in the estimated value over the network. Here, we pro-

posed an MISOCP formulation that can be tracked by the modern optimization

solvers.

The achieved power saving by our proposed model is compared with those of

the existing models, the green pipe, green hose and green HLT models. It is noted

that due to exact tra�c demands, the green pipe model achieves the highest

performance in terms of power saving. Since tra�c demands fluctuate due to

various reasons and users’ needs, our proposed robust optimization model is an

e↵ective approach to the problem of minimizing the network power consumption

allowing fluctuations in the tra�c demands. The numerical results showed that

our proposed model provides at most 11% better power e�ciency than that by

the green HLT model and it is close to the green pipe model in every considered

network.

7.2 Future work

This research paper is on theoretical aspect. The packet level performance in-

cluding delays and packet losses corresponding to the discussion in Section 6.4 of

Chapter 5 should be addressed by using network simulators tools to observe the

packet level behaviors. Duplex links are considered in this thesis, we also have a

plan to conduct some researches considering the one directional link only.
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Appendix A

Derivation of tra�c flow condition for destination node

We fix (p, q) 2 W . Then, the given tra�c conditions for source and intermediary

nodes are

X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 1, if i = p, (A.1)

X

j:(i,j)2A

xpq
ij �

X

j:(j,i)2A

xpq
ji = 0, 8i 2 V \ {p, q}. (A.2)

The equation (A.1) can be written as

X

j:(p,j)2A

xpq
pj �

X

j:(j,p)2A

xpq
jp = 1. (A.3)

The equation (A.2) represents a set ofN�2 equations for i 2 V \{p, q}. We obtain

the following equation (A.4) by taking the sum over the left sides of equation (A.3)

and N � 2 equations expressed in equation (A.2) and a sum over the right sides

of them:

X

j:(p,j)2A

xpq
pj +

X

i2V \{p,q}

X

j:(i,j)2A

xpq
ij �

X

j:(j,p)2A

xpq
jp �

X

i2V \{p,q}

X

j:(j,i)2A

xpq
ji = 1. (A.4)

Now, we consider the following subsets of links

A0 = {(p, j) : (p, j) 2 A}, A1 = {(q, j) : (q, j) 2 A}, and A2 = A \ (A0 [ A1),

where A = A0 [ A1 [ A2. Then, the following relationship holds:

X

j:(i,j)2A0

xpq
ij +

X

j:(i,j)2A2

xpq
ij =

X

j:(i,j)2A

xpq
ij �

X

j:(i,j)2A1

xpq
ij . (A.5)

71



By substituting
X

j:(i,j)2A0

xpq
ij =

X

j:(p,j)2A

xpq
pj ,

X

j:(i,j)2A1

xpq
ij =

X

j:(q,j)2A

xpq
qj ,

X

j:(i,j)2A2

xpq
ij =

X

i2V \{p,q}

X

j:(i,j)2A

xpq
ij , and

X

j:(i,j)2A

xpq
ij =

X

i2V

X

j:(i,j)2A

xpq
ij

in our case, we can write the following relationships:
X

j:(p,j)2A

xpq
pj +

X

i2V \{p,q}

X

j:(i,j)2A

xpq
ij =

X

i2V

X

j:(i,j)2A

xpq
ij �

X

j:(q,j)2A

xpq
qj , (A.6)

X

j:(j,p)2A

xpq
jp +

X

i2V \{p,q}

X

j:(j,i)2A

xpq
ji =

X

i2V

X

j:(j,i)2A

xpq
ji �

X

j:(j,q)2A

xpq
jq . (A.7)

Using the relations (A.6) and (A.7), the equation (A.4) can be transformed to
X

i2V

X

j:(i,j)2A

xpq
ij �

X

j:(q,j)2A

xpq
qj �

X

i2V

X

j:(j,i)2A

xpq
ji �

X

j:(j,q)2A

xpq
jq = 1. (A.8)

Finally, using the condition
X

i2V

X

j:(i,j)2A

xpq
ij �

X

i2V

X

j:(j,i)2A

xpq
ji = 0,

the equation (A.8) can be expressed as
X

j:(q,j)2A

xpq
qj �

X

j:(j,q)2A

xpq
jq = �1. (A.9)

⇤

Appendix B

Proof of Lemma 2

The given optimization problem is

max
v2⌦✓

aTv
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s.t. ||v||  ✓.

The Lagrangian function of the problem is F (v,�) = aTv + �(✓ � ||v||). At the
optimal point, the Karush-Kuhn-Tucker (K.K.T.) conditions are

1. rvF (v,�) ⌘ a� �rv(||v||) = 0, (B.1)

2. �(✓ � ||v||) = 0, (B.2)

3. (✓ � ||v||) � 0, (B.3)

4. � � 0. (B.4)

The equation (B.1) can be written as a� � v
||v|| = 0, which is equivalent to

a||v|| = �v. (B.5)

Here, � 6= 0 because by condition (B.1), if � = 0, then a = 0. Therefore, by

condition (B.2), ||v|| = ✓ and the equation (B.5) is equivalent to

a✓ = �v

,v =
✓

�
a. (B.6)

Here we have, a✓ = �v ) ||a||✓ = �||v|| , ||a||✓ = �✓, which implies � = ||a||.
Therefore the equation (B.6) can be written as

v =
a

||a||✓ ) aTv =
aTa

||a||✓,

which is equivalent to

aTv =
||a||2

||a|| ✓.

Since K.K.T. conditions are written at optimal point, therefore

max
v2⌦✓

aTv = ✓||a||.

⇤
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APPENDIX

Appendix C

Dual transformation of the problem S(xij)

Using the vector notation ↵ = (↵p)p2Q, � = (�q)q2Q, and x = (xpq
ij )(p,q)2W , we

can express S(xij) as follows:

S(xij) : max xT
ijd

s.t. ET
1 d  ↵,

ET
2 d  �,

v0 = ✏,

�p⇢pqdpq + vpq = �
p
⇢pqd̄pq,

d � 0,
✓

v0
v

◆
2 SOC(1 + |W |),

where E1 2 RW⇥Q and E2 2 RW⇥Q are

(E1)(p,q),j =

⇢
1 if q = j
0 otherwise,

(E2)(p,q),j =

⇢
1 if p = j
0 otherwise,

respectively. Let

f =

✓
✏
f̃

◆
2 R1+W ,

where (f̃)pq = �
p
⇢pqd̄pq, and B1 2 RW⇥W is the diagonal matrix defined by

(B1)(p,q),(i,j) =

⇢
�p⇢pq if (p, q) = (i, j)
0 otherwise.
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Then, the equality constraints of S(xij) can be written as

✓
0T 1 0T

B1 0 I

◆0

@
d
v0
v

1

A = f .

Finally, S(xij) can be written in the form:

S(xij) : max

0

@
xij

0
0

1

A
T 0

@
d
v0
v

1

A

s. t.

✓
ET

1 0 O
ET

2 0 O

◆0

@
d
v0
v

1

A 
✓

↵
�

◆

✓
0T 1 0T

B1 0 I

◆0

@
d
v0
v

1

A = f

0

@
d
v0
v

1

A 2 RW
+ ⇥ SOC(1 + |W |).

Therefore, applying the duality between (P1) and (D1) yields the dual of S(xij)

as

min ↵T⇡ + �T�+ ✏✓ + f̃Tµ

s. t. E1⇡ + E2�+B1µ� xij � 0
✓

✓
µ

◆
2 SOC(1 + |W |)

⇡ � 0, � � 0.

⇤
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APPENDIX

Appendix D

Proof of Lemma 3

One can easily verify that dpq = d̄pq for every (p, q) 2 W forms a feasible

solution of S(xij), and that

µpq
ij = �xpq

ij /
p
⇢pq,

⇡ij(p) = �ij(q) = 0,

✓ij =

s X

(p,q)2W

(µpq
ij )

2 + 1

for every (p, q) 2 W form a feasible solution of (5.36).

Unfortunately, Assumption 1 does not ensure that these feasible solutions are

relative interior points of the corresponding cones because the linear inequality

constraints could be satisfied with equality. Thus, we cannot apply Theorem 3

directly.

Recently, Lourenço, Muramatsu, and Tsuchiya [41] extended this theorem to

the ‘partially polyhedral’ case where K = K1 ⇥K2 and K2 is polyhedral. Note

that in this case, K⇤ = K⇤
1 ⇥K⇤

2 , and K⇤
2 is polyhedral.

We recall that (D0) satisfies the Partial Polyhedral Slater’s (PPS) condition if

there exists a slack (s1, s2) = c�ATy such that s1 2 riK1 and s2 2 K2. Similarly,

we say that (P0) satisfies the PPS condition if there exists a feasible solution

x = (x1,x2) such that x1 2 riK1.

Theorem 7 (Proposition 2 of [41])

1. If (P0) satisfies the PPS condition and (D0) is feasible, then val(P0) =val(D0)

and (D0) has an optimal solution.
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2. If (D0) satisfies the PPS condition and (P0) is feasible, then val(P0) =val(D0)

and (P0) has an optimal solution.

Since each subvector of the feasible solutions corresponding to a second-order cone

is contained in the relative interior of the second-order cone, the two feasible

solutions satisfy the PPS condition. Therefore, we can apply Theorem 7 and

conclude that both S(xij) and its dual (5.36) have optimal solutions, and that

their optimal values coincide.

⇤

Appendix E

Proof of Theorem 6

We have to show that d 2 ⇥✏\H implies d 2 G if ✏
s X

(p,q)2W

�
apqij

�2
/⇢pq  �yij

for every (i, j) 2 A. Suppose d 2 ⇥✏\H. We can express dpq = d̄pq+ ✏ vpqp
⇢pq

, where

||v||  1. Then for each (i, j) 2 A, we can write

X

(p,q)2W

apqij dpq =
X

(p,q)2W

apqij

✓
d̄pq + ✏

vpqp
⇢pq

◆

 yij + ✏
X

(p,q)2W

apqijp
⇢pq

vpq

 yij + ✏

vuut
X

(p,q)2W

�
apqij

�2

⇢pq
||v||  yij + ✏

vuut
X

(p,q)2W

�
apqij

�2

⇢pq
.

Therefore, if ✏
s X

(p,q)2W

�
apqij

�2
/⇢pq  �yij for each (i, j) 2 A, then

X

(p,q)2W

apqij dpq 

yij(1 + �), which shows that d 2 L.

⇤
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